

A) image
B) focal point
C) lens edge
D) object

Chapter 5: Refraction and Lenses

1 - How is information carried in an optical fiber?
A) by sound
B) by different colors
C) by electrical impulses
D) by light
2 - For the situation shown in the figure below, which of the substances listed below should be chosen to put in front of the pencil to make its "break" the most pronounced?
A) flint glass
B) vacuum
C) ethanol
D) water
3 - A light ray is traveling through an unknown material when it intersects ethanol ($\mathrm{n}=$ 1.36) at an incident angle of 62.0°. If the angle of refraction is 46.4°, what is the index of
 refraction of the unknown material?
A) 1.12
B) 1.66
C) 0.985
D) 2
4 - If a refracted ray moves away from the normal, the speed of light of the ray in this material is \qquad that of the incident ray.
A) unrelated to
B) less than
C) greater than
D) the same as
5 - If a substance has a critical angle of 50°, what happens to the light from an incident angle hitting the boundary at 30° ?
A) It is stopped.
B) It is reflected.
C) It is diffused.
D) It is refracted.
6 - What is dispersion?
A) the separation of light into its spectrum
B) the refraction of light
C) the combining of colored light into white light
D) the reflection of colored light
7 - The incident angle that causes a refracted ray to lie along the boundary of a substance is the \qquad .
A) refracted angle
B) reflected angle
C) critical angle
D) normal angle
8 - What is the speed of light in a diamond $(n=2.42)$?
A) $2.42 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B) $1.24 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C) $7.26 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D) $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$9-$ Why would it be impossible to have optical fibers filled with a vacuum?
A) there is nothing for light to travel through
B) there is nothing less optically dense than a vacuum
C) because a vacuum is too optically dense
D) because optical fibers must use glass 10 - A light ray traveling through crown glass $(n=1.52)$ intersects a sheet of flint glass $(n=1.61)$ at an angle of 27.3°. What is the angle of refraction?
A) 0.839°
B) 33.0°
C) 25.7°
D) 0.433°
11 - In relation to a rainbow that you are looking at, where is the Sun?
A) in the center of the rainbow
B) behind you
C) directly overhead
D) in front of you

12 - Water is more optically dense than air. Therefore, the speed of light in water is \qquad _.
A) the same as the speed of light in a vacuum
B) slower than the speed of light in air
C) faster than the speed of light in air
D) the same as the speed of light in air 13 - According to Snell's law, light traveling from a vacuum to glass will \qquad .
A) speed up
B) travel at the same speed
C) stop completely
D) slow down

14-Because of refraction, the Sun actually sets \qquad we see it disappear.
A) after
B) before
C) at the same time as
D) hours before 15 - A beam of light travels through air $(\mathrm{n}=1.0003)$ and strikes an unknown material at an angle of 50.0°. The new angle of refraction is 25.0°. What is the index of refraction of this material?
A) 0.643
B) 1.2
C) 1.81
D) 0.709

16-What happens to light during total internal reflection?
A) The angle of refraction is less than the critical angle.
B) The angle of incidence is greater than the critical angle.
C) The angle of incidence is 0 .
D) The angle of reflection is the same as the critical angle.

17 - Optical fibers are a technical application of \qquad .
A) diffraction
B) dispersion
C) total internal reflection
D) refraction

18 - A ray of light striking perpendicular to an optically dense surface will \square
A) refract away from the normal
B) reflect
C) refract toward the normal
D) remain straight 19-A ray of sunlight travels through air and intersects the surface of water at a small incident angle. The ray is \qquad .
A) pure
B) reflected
C) refracted
D) incident

20 - What causes a mirage?
A) heatstroke
B) a continuous change in the index of refraction of air because n increases as air gets warmer
C) water on the ground
D) a continuous change in the index of refraction of air because n decreases as air gets warmer

21 - In the figure below, if the incident angle is 35°, what is the angle of refraction in the glass? Use 1.55 for the index of refraction of glass.
A) 35°
B) 68°
C) 57°
D) 22°

22 - Through which medium is the speed of light the fastest?
A) air
B) water
C) vacuum
D) glass

A) one focal point
B) no focal points
C) many focal points
D) two focal points

33-An achromatic lens corrects chromatic aberration using \qquad .
A) two convex lenses with the same index of refraction
B) a combination of concave and convex lenses with different indices of refraction
C) two concave lenses with the same index of refraction
D) no lenses
! 34 - \qquad single lenses have chromatic aberration.
A) Only parabolic
B) Only concave
C) Only convex
D) All

35 - In nearsightedness, the image is focused \qquad .
A) in front of the retina
B) beyond the retina
C) directly on the retina
D) in front of the eye 36 - Farsightedness can be corrected with a \qquad .
A) parabolic lens
B) convex lens
C) concave lens
D) plane lens

Chapter 6: Vibrations and Waves

1 - The formula represents the period of a pendulum, T. What is the period of a 3.5 m -long pendulum on Earth? $T=2 \pi \sqrt{\frac{l}{g}}$
A) 3.2 s
B) 4.6 s
C) 3.8 s
D) 1.4 s

2 - In the figure below, if the spring's constant is $20.0 \mathrm{~N} / \mathrm{m}$ and x has a value of 0.25
m , what is m equal to?
A) 0.06 kg
B) 0.63 kg
C) 0.51 kg
D) 5.0 kg

3 - In the figure below, if you doubled the mass of the pendulum, what effect, if any, would it have on its period?
A) The new period would be half the old period.
B) The new period would be the old period, divided by the square root of two.
C) The new period would be the old period, times the square root of two.
D) It would have no effect.

4 - In the figure below, if the scale of the graph is 1 block $=10 \mathrm{~N}$ on the vertical axis and one
 block $=2 \mathrm{~cm}$ on the horizontal axis, what is the spring constant?
A) $500 \mathrm{~N} / \mathrm{m}$
B) $250 \mathrm{~N} / \mathrm{m}$
C) $5 \mathrm{~N} / \mathrm{m}$
D) $20 \mathrm{~N} / \mathrm{m}$

5 - In the figure below, if you quadrupled the length of the string, what effect, if any, would it

 23 - When a continuous wave meets a boundary that transmits the wave at a lower speed, the wavelength \qquad -
A) increases
B) decreases
C) interferes with itself
D) becomes negative 24 - A standing wave appears to be \qquad .
: A) moving very fast
B) fluctuating
C) standing still
D) moving very slowly

25 - When a wave pulse strikes a wall, it reflects back and is \qquad -.
A) changed from compressional to transverse
B) inverted
C) amplified
D) reduced to zero

26 - \qquad is the point of the largest displacement where two waves meet.
A) A node
B) A period
C) A crest
D) An antinode

27 - A wave that reflects off a flat surface will reflect at \qquad .
A) a different angle from which it struck the surface
B) an angle of zero
C) the same angle at which it struck the surface
D) a right angle to the surface

28 - \qquad is the change in direction of a wave when it intersects a boundary between two different media.
A) Refraction
B) Diffusion
C) Diffraction
D) Reflection

29-A \qquad wave bounces off a boundary.
A) incident
B) surface
C) transverse
D) reflected
Chapter 7 : Thermal Energy

\qquad have no definite shape and flow．．alloan ant．coln
A）Crystals
B）Solids
C）Metals
D）Fluids

7 －Pressure is measured as \qquad ＿．
A） FA
B） F / A
C）A / F
D） $\mathrm{F}+\mathrm{A}$

8 －A particle is moving so fast in a liquid that it escapes the liquid＇s cohesive force．This is an example of \qquad ．
A）condensation
B）sublimation
C）evaporation
D）melting

9－Surface tension is a result of \qquad in a fluid．
A）nuclear forces
B）adhesive forces
C）cohesive forces
D）kinetic force

10 － \qquad is the force that acts between particles of different substances．
A）Rehesion
B）Cohesion
C）Elasticity
D）Adhesion

11－Which of the following does pressure in water not depend on？
A）depth
B）density
C）shape
D）gravity

12 －The buoyant force is in which direction？
A）toward higher pressures
B）upward
C）circular
D）downward

13 －In the figure below，if the chunk of steel were cut in half and one of the pieces were placed in the same liquid，how would it behave？
A）It would float mostly submerged．
B）It would sink to the bottom of the container

\qquad _
A) volume
B) liquid phase
C) crystalline pattern
D) shape

25 - In terms of the kinetic-molecular theory, why do substances expand when heated?
A) The particles vibrate less and push other particles away.
B) The particles on the surface vibrate faster.
C) The particles vibrate more, causing air pressure to compress the substance.
D) The particles vibrate more and push other particles away.

26 - Which example demonstrates elasticity?
A) a snapping rubber band
B) a bent iron bar
C) a broken stick
D) a melted stick of butter 17 - If an iron bar expands 0.1 cm when heated $20^{\circ} \mathrm{C}$, how much would it expand if it were heated $40^{\circ} \mathrm{C}$?
A) 1 cm
B) 0.1 cm
C) 0.05 cm
D) 0.2 cm

قو انين عاشـرعام ف2 + 3			
Reflection and Mirrors الإنعكاس والمر ايا			
$\mathrm{f}=\frac{r}{2}$	$\frac{1}{f}=\frac{1}{d i}+\frac{1}{d o}$	$\mathrm{m}=\frac{h i}{h o}=\frac{-d i}{d o}$	
Refraction and Lenses الإنكساروالعدسات			
$n=\frac{c}{v}$	$\mathrm{n}_{1} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2}$	$\theta_{c}=\sin ^{-1} \frac{n_{2}}{n_{1}}$	$\frac{1}{f}=\frac{1}{d i}+\frac{1}{d o}$
$\mathrm{m}=\frac{h i}{h o}=\frac{-d i}{d o}$			11
Vibrations and waves الإهتزازات والموجات			
$f=\frac{1}{T}$		$\lambda=\frac{v}{f}$	
Thermal Energy الطاقة الحرارية			
$\begin{aligned} \mathrm{T}_{\mathrm{K}} & =\mathrm{T}_{\mathrm{C}}+273 \\ \mathrm{Q} & =\mathrm{m} C \Delta \mathrm{~T} \end{aligned}$	$T_{f}=\frac{m_{A} C_{A} T_{A}+m_{B} C_{B} T_{B}}{m_{A} C_{A}+m_{B} C_{B}}$		$\begin{aligned} & Q=m H_{f} \\ & Q=m H_{v} \end{aligned}$
$\Delta U=Q-W$	$e=\frac{W}{Q_{H}}$	$\Delta S=\frac{Q}{T}$	
حالات المادةtates Of Matter			
$P=\frac{F}{A}$	$P_{1} V_{1}=P_{2} V_{2}$	$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$	$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
$P V=n R T$	$\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}$	$P=\rho g h$	$F_{\text {Buoyant }}=\rho_{\text {flouid }} \mathrm{V}$ g
$F_{\text {net }}=F_{g}-F_{\text {buoyant }}$	$F_{g}=m g=p_{\text {solid }} V g$	$\alpha=\frac{\Delta L}{L_{1} \Delta T}=\frac{L_{2}-L_{1}}{L_{1}\left(T_{2}-T_{1}\right.}$	$\beta=\frac{\Delta V}{V_{1} \Delta T}=\frac{V_{2}-V_{1}}{V_{1}\left(T_{2}-T_{1}\right)}$
الثوابت			
$\mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$	$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$	$1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$	$\mathrm{R}=8.31 \mathrm{~Pa} \cdot \mathrm{~m}^{3} /(\mathrm{mol} \cdot \mathrm{K})$
Avogadro no $=6.022 \times 10^{23}$			

