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11
Probabilistic Design for Reliability 
and the Factor of Safety

To ensure the production of a reliable product, reliability activities must start early in 
the product development cycle. In order to analyze the reliability of a product, we 
have to first understand how to analyze the reliability of its components. In order to 
achieve the desirable reliability level, various reliability methodologies and tools can 
be used throughout the life cycle of the product—from the early planning stages 
through design, development, production, field testing, and customer use.

This chapter covers basic models and principles to quantify and evaluate reliability 
during the design stage. It presents the probabilistic design approach and relationships 
between reliability and safety factor. The relationship between tolerances on the char-
acteristics of the parts and reliability is also discussed. Probabilistic design requires 
analysis of the functions of random variables.

11.1  Design for Reliability

Reliability is a design parameter and must be incorporated into a product at the design 
stage. One way to quantify reliability during design and to design for reliability is the 
probabilistic approach to design (Haugen 1968; Kececioglu 1991; Kececioglu and 
Cormier 1968). The design variables and parameters are random variables, and hence 
the design methodology must consider them as random variables.

The basic premise in reliability analysis from the viewpoint of probabilistic design 
methodology is that a given component has a certain strength which, if  exceeded, will 
result in the failure of the component. The factors that determine the strength of the 
component are random variables, as are the factors that determine the stresses or load 
acting on the component. Stress is used to indicate any agency that tends to induce 
failure, whereas strength indicates any agency resisting failure. Failure is taken to mean 
failure to function as intended; it occurs when the actual stress exceeds the actual 
strength for the first time.
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11.2  Design of a Tension Element

Let us consider the design of a tension element for a tensile load of P = 4,000 units 
of load, as shown in Figure 11.1. The design engineer is considering the failure mode 
due to tensile fracture. Based on the material and its manufacturing processes, the 
designer finds the value of the ultimate tensile strength to be 10,000 units of load per 
square inch. This value typically is some average or mean value for the strength.

The classical approach to design uses the equation (where A is the cross-sectional 
area of the element) 

Mean Strength Mean Stress Factor of Safety≥ ×

or 100 000 4 000 2, , /≥( )×A

or 8 inA≥ 0 0 2. .

If  we consider that the element has a circular cross-section with diameter D, then we 
can calculate that D = 0.3192 in.

Thus, it is clear that this approach does not consider the concept of reliability. We 
cannot answer the following questions:

■	 How reliable is this design? The answer is not provided by the above design 
approach and analysis.

■	 If  a certain level of reliability is specified for a given mode of failure, what 
should be the value of the design variable (the diameter) of the tension element?

We do know that

■	 The load is a random variable due to varying conditions of customer usage 
and environmental factors.

■	 The ultimate tensile strength is a random variable due to material variation 
and manufacturing processes.

■	 The diameter of the element is a random variable due to manufacturing vari-
ability and is typically dealt with by introducing tolerances.

Thus we want to know what effect all types of variability have on the reliability.
The concept of design by probability, or probabilistic design, recognizes the reality 

that loads or stresses, and the strength of products subjected to these stresses, cannot 
be identified as specific values but have ranges of values with a probability of occur-
rence associated with each value in the range. Figure 11.2 shows f(x) as the probability 
density function (pdf) for the stress random variable X, and g(y) as the pdf for the 
strength random variable Y.

Figure 11.1  Design of a tension element.
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11.3  Reliability Models for Probabilistic Design

The words stress and strength are used here in a broad sense applicable in a variety 
of situations well beyond traditional mechanical or structural systems. As mentioned, 
stress is used to indicate any agency that tends to induce failure, while strength indi-
cates any agency resisting failure. Formulaically, we can say that

Reliability Strength Stress= = >R P[ ].

The reliability of the component is the probability that the strength of the compo-
nent will be greater than the stress to which it will be subjected. The factor of safety, 
represented by number n, is the ratio of strength (Y) and the stress (X ). Since both Y 
and X are random variable, one definition of the factor of safety is

	 n Y

X

=
μ
μ

. 	 (11.1)

There are four basic ways in which the designer can increase reliability:

1.	 Increase Mean Strength.  This is achieved by increasing size or weight of materi-
als, using stronger materials, and so on.

2.	 Decrease Average Stress.  This can be done by controlling loads or using higher 
dimensions.

3.	 Decrease Stress Variations.  This variation is harder to control, but can be effec-
tively truncated by putting limitations on use conditions.

4.	 Decrease Strength Variation.  The inherent part-to-part variation can be reduced 
by improving the basic process, controlling the process, and utilizing tests to 
eliminate less desirable parts.

11.3  Reliability Models for Probabilistic Design

For a certain mode of failure, let f(x) and g(y) be the probability density functions 
for the stress random variable X and the strength random variable Y, respectively. 

Figure 11.2  Stress and strength 
distributions.X and Y

f(x)
g(x)
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Also, let F(x) and G(y) be the cumulative distribution functions for the random vari-
ables X and Y, respectively. Then the reliability, R, of  the product for a failure mode 
under consideration, with the assumption that the stress and the strength are inde-
pendent random variables, is given by

	

R P Y X

g y f x dx dy

g y F y dy

y

= >{ }

= ( ) ( )










= ( ) ( )
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∞
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∞
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∫
== ( ) ( )
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= ( ) − ( ){ }

∞

−∞

∞

−∞

∞

∫∫

∫

f x g y dy dx

f x G x dx

x

1 .

	 (11.2)

Consider a product where the stress and strength are normally distributed. Specifi-
cally, stress random variable X is normally distributed, with mean μX and with the 
standard deviation as σX. Similarly, the strength random variable Y is normally dis-
tributed, with mean μY and standard deviation σY. The reliability, R, for this mode of 
failure can be derived by:

	 R P Y X P Y X= >[ ]= −( )>[ ]0 . 	 (11.3)

It is known that U = Y − X is also normally distributed with

	 µ µ µ

σ σ σ
U Y X

U Y X

= −

= +2 2 2 .
	 (11.4)

Hence,

	 R P U Z ZU

U

U

U

= >[ ]= >
−


















= <















0 Φ Φ

µ
σ

µ
σ 


, 	 (11.5)

or

	 R Y X

Y X

=
−

+











Φ

µ µ

σ σ2 2
, 	 (11.6)

where Φ(·) is the cumulative distribution function for the standard normal variable.
The reliability computations for other distributions, such as exponential, lognor-

mal, gamma, Weibull, and several extreme value distributions, have been developed 
(Kapur and Lamberson 1977). In addition, the reliability analysis has been general-
ized when the stress and strength variables follow a known stochastic process.
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11.4  Example of Probabilistic Design and Design for a Reliability Target

Example 11.1

Suppose we have the following data for strength Y and stress X for a particular failure 
mode:

µ σY Y= =40 000 4000,

µ σX X= =30 000 3000, .

One definition for the factor of safety as mentioned before is that it is the ratio of 
mean value of strength divided by the mean value of stress. Hence, for this problem,

Factor of safety= =40 000 30 000 1 33, / , . .

Using Equation 11.6, the reliability for this failure mode is

R=
−

( ) +( )
















= ( )=Φ Φ

40 000 30 000

4000 3000
2 0 0 97725

2 2

, ,
. . .

From the failure perspective, there would be 2275 failures per 100,000 use conditions. 
The above reliability calculation is for a factor of safety of 1.33. We can increase the 
factor of safety by changing the design (such as increasing dimensions). This change 
makes μX equal to 20,000, increasing the factor of safety to 2. Thus, higher reliability 
can be expected, given as

R=
−

( ) +( )
















= ( )=Φ Φ

40 000 20 000

4 000 3 000
4 0 0 99997

2 2

, ,

, ,
. . ..

Now there are only three failures per 100,000 use conditions, which is a tremendous 
decrease from the previous situation. Reliability could also have been increased by 
decreasing the stress and strength variation.

11.4  Example of Probabilistic Design and Design for a 
Reliability Target

Let us now illustrate how to solve the design of the tension element given in Section 
11.2 by using the probabilistic approach, which considers variability in the load condi-
tions, ultimate tensile strength, and the diameter of the element. Suppose the vari-
ability of the load is quantified by its standard deviation as 100 units, and the ultimate 
tensile strength has a standard deviation of 5 × 103 units of strength. Thus we have

Load: , .µ σP P= × =4 10 1003

Ultimate tensile strength: , .µ σY Y= × = ×100 10 5 103 3

Now we want to design the element for a specified reliability = R = 0.99990, with 
tensile fracture as the failure mode. Suppose the standard deviation of the diameter 
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based on manufacturing processes is 0.5% of the diameter. The standard deviation 
can be converted to tolerances based on the idea of using ±kσ tolerances, where k is 
typically chosen as 3. If  k is equal to 3 and the underlying random variable has normal 
distribution, then 99.73% of the values of the variable will fall within ±3σ (it must 
be emphasized that it can be any other number depending on the requirements). Thus, 
for our example, ±3σ tolerances will be ±1.5% of the diameter of the element. Then 
we can design (Kapur and Lamberson 1977) the tension element using a probabilistic 
approach, and the mean value of the diameter will be D= 0 2527. , compared with 
0.3192 (calculated in Section 11.2).

We can also do a sensitivity analysis of reliability with respect to all the design 
variables. For example, consider the effect of tolerances or the standard deviation of 
the diameter of the design element. Table 11.1 shows the effect on the diameter of 
tolerances, based on the nature of the manufacturing processes, as a percent of the 
dimension.

Similarly, we can study the sensitivity of R with respect to the standard deviation 
of the strength, which also may be a reflection of the design and manufacturing pro-
cesses. This is given in Table 11.2.

11.5  Relationship between Reliability, Factor of Safety,  
and Variability

When stress and strength are normally distributed,

	 R Y X

Y X

=
−

+











Φ

µ µ

σ σ2 2
. 	 (11.7)

The factor of safety is some ratio of the strength and stress variables. Since both are 
random variables, the question arises of which measure of the strength or the stress 

Table 11.1  Relationship between dimensional tolerances and 
reliability

% Tolerances on D Reliability

0 0.999915
1.0 0.999908
1.5 0.999900
3.0 0.999847
7.0 0.999032

Table 11.2  Relationship between strength variability and reliability

Standard deviation for strength Reliability

2 × 103 0.99999

4 × 103 0.99996
5 × 103 0.99990
8 × 103 0.99157

10 × 103 0.97381
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11.5  Relationship between Reliability, Factor of Safety, and Variability 

should be used in the computation of the factor of safety. One definition is based on 
using the mean values of the strength and the stress variables; then, the factor of 
safety, n, is defined as

	 n Y

X

= =
μ
μ

factor of safety. 	 (11.8)

The variability of any random variable can be quantified by its coefficient of varia-
tion, which is the ratio of the standard deviation and the mean value. Thus, the coef-
ficient of variation is a dimensionless quantity. If  it is 0.05, we can say that the 
standard deviation is 5% of the mean value, and if  we use ±3σ tolerances, we can say 
that the tolerances are ±15% of the mean value of the underlying variable. Thus,

	

CVY

Y

Y

=

=

coefficient of variation for strength random variable

σ
µ

	 (11.9)

	

CVX

X

X

=

=

coefficient of variation for stress random variable

σ
µ

.
	 (11.10)

Then, Equation 11.7 can be rewritten as (by dividing both the numerator and the 
denominator by μY):

	 R
n

CV n CVY X

=
−

+











Φ

1
2 2 2

. 	 (11.11)

Thus, the above relation can be used to relate reliability, factor of safety, coefficient 
of variation for the stress random variable, and coefficient of variation for the strength 
random variable.

Example 11.2

The stress (X) and the strength (Y ) random variables for a given failure mode of a 
component follow the normal distributions with the following parameters:

μ μX X= =10 000 2400,

μ μY Y= =15 000 2000, .

(a)	 Find the reliability for the component for this failure mode.

Solution:

R Y X

X Y

=
−

+










=






= ( )=Φ Φ Φ

µ µ

σ σ2 2

5000
3124 1

1 60
.

. 00 9452. .
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(b)	 The customer wants a reliability of 0.9990. The only thing that the designer 
can change for this failure mode is the mean value for the strength random 
variable Y (thus increasing the factor of safety). Find the new target for μY to 
achieve the reliability goal.

Solution:

R Y X

X Y

=
−

+










=Φ

µ µ

σ σ2 2
0 9990.

3 10
10 000

3124 12 2
.

,
.

=
−

+
=

−µ µ

σ σ

µY X

X Y

Y

μY = × + =3 1 3124 2 10 000 19 684 7. . , , . .

Thus, the new target for the mean value of the strength should be 19,684.7 units.

Example 11.3

The stress (X ) and the strength (Y ) for a given failure mode of a component follow 
a normal distribution with the following information about their coefficient of varia-
tion, CV:

CV CVX Y= =0 25 0 17. . .

The customer wants a reliability of 0.99990 for this failure mode. What is the safety 
factor that the designer must use to meet the requirements of the customer?

Solution:

R
n

n CV CVY X

= =
−

+











 = ( )0 99990

1
3 715

2 2 2
. .Φ Φ

3 715
1

0 17 0 252 2 2
.

. .
=

−

+

n

n

n n−( ) = +( )×1 0 0289 0 0625 13 80122 2. . .

0 601145 2 0 137423 0. .n n2 − + =

n
b b ac

a
=
− ± −

=
± − × ×

×

=
±

2 4
2

2 4 4 0 601145 0 137423
2 0 601145

2 1 91561
1

. .
.

.
..

. . .
20229

3 26 0 0702= or
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11.6  Functions of Random Variables

Choose n = 3.26. Note that the other root of the quadratic equation gives us the value 
of the unreliability.

11.6  Functions of Random Variables

For any design problem, there is one design variable that is a function of several other 
design variables. For example, for the tension element considered in Section 11.2, the 
stress random variable, X, for the circular cross-section tension element is given by

	 X
P
D

=
4

2π
, 	 (11.12)

where P and D are both random variables. Generally, it is very difficult to find the 
probability density function for one variable that is a nonlinear function of several 
other variables. In such cases, for engineering analysis, knowledge of the first and the 
second moments of the transformed variable is quite useful. This knowledge can be 
used for probabilistic design. Consider the following general model:

	 Y f X X Xn= ( )1 2, , , ,… 	 (11.13)

where Y is a function of n other variables, represented by vector X  =  (X1, 
X2, . . . , Xn).

This represents a general equation where a design random variable, Y, is a function 
of other design random variables. Information about the mean and variance of these 
n random variables is given as

	
E X i n

V X i n
i i

i i

[ ]= =

[ ]= =
µ
σ

, , , ,

, , , , .

1 2

1 22

…

…
	 (11.14)

Then, we can find the approximate values for μY and σY
2  using Taylor’s series 

approximations as follows:

	

µ µ µ µ µ

σ

Y n
i

i

i

n

Y Y
i

f
f X
X

X V X

V
f X
X

X

≅ ( )+
∂ ( )
∂

= ( )

= ≅
∂ ( )
∂

=
∑1 2

2

2
1

2

1
2

, , ,…

==









( )

=
∑ µ

2

1

V Xi

i

n

,

	 (11.15)

where

	 X X X Xn n=( ) =( )1 2 1 2, , , , , , .… …and μ μ μ μ 	 (11.16)

For approximate analysis, the second derivative terms for the mean are typically 
ignored.
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For engineering analysis, designers think in terms of tolerances. Let the tolerances 
about the mean value be denoted by

	 X tX X= ±μ . 	 (11.17)

If  X is normally distributed with a mean of μX and variance of σX
2 , and we use 3σ 

limits—that is, tX = 3σX, then for symmetrical tolerances about the mean, 0.27% of 
the items will be outside the 3σ limits.

If  we use 4σ limits, then tX = 4σX and 99.993666% of the values of X are within 4σ 
limits, or 0.006334% will be outside 4σ limits.

Example 11.4

Consider the probabilistic analysis of part of an electrical circuit that has two resis-
tances in parallel. The terminal resistance, RT, as a function of the two other resis-
tances, R1 and R2, is given by

R f R R
RR
R R

T = ( )=
+

1 2
1 2

1 2

, .

Suppose 3σ tolerances on R1 are 100 ± 30, and 3σ tolerances on R2 are 200 ± 45. 
Thus,

µ σ
µ σ

R R

R R

1 1

2 2

100 10

200 15

= =
= =

Ω Ω
Ω Ω

.

Then, using Equation 11.15,

E R fT[ ]= ( )=
×
+

=100 200
100 200
100 200

66 67, . Ω

∂
∂
=

+( )
∂
∂
=

+( )
f
R

R

R R

f
R

R

R R1

2
2

1 2
2

2

1
2

1 2
2

∂
∂

= =
∂
∂

= =
f
R

R
f
R

R
1 2

0 444 0 111μ μ. .

σ σR RT T
2 2 2 2 20 444 10 0 111 15 22 4858 4 74= × + × = =. . . . .or Ω

Thus, the three tolerances on RT are 66.67 ± 14.22. These statistical tolerances are 
much tighter than the tolerances based on worst-case analysis, which may consider 
minimum and maximum values of the resistances based on 3σ tolerances for the two 
resistances.

Example 11.5

Determine the tolerance for the volume of a cylinder having the following 3σ toler-
ances for the diameter, D, and its length, L

D L= ± = ±2 5 0 002 4 0 0 005. . , . . . m  m

Also assume that D and L are probabilistically independent.
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11.6  Functions of Random Variables

Solution:
The volume of the cylinder is given by

V
D L

=
π 2

4
.

so the mean volume is approximately given by

µ µ µ π
µ µ

πV D L
D Lf≈ ( )= =

×
=,

. .
. .

2 2

4
2 5 4 0

4
19 635

The partial derivatives are:

∂
∂
=

∂
∂
=

V
D

DL V
L

Dπ π
2 4

2

,

so,

σ σ σ
µ µ µ µ

V D L
V
D

V
LD L D L

2

2

2

2

=
∂
∂











+
∂
∂









, ,

22

2
2

2 2
2

2 4
=






 +









πµ µ
σ

πµ
σD L

D
D

L.

If  we let the tolerance on V as TV = 3σV, then the above equation can be written 
in terms of tolerances as,

T
V
D

T
V
L

TV D

D L D L

2

2

2

2

==
∂
∂



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



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


µ µ µ µ, ,

LL

D L
D

D
LT T

2

2
2

2 2
2

2 4
0 001589=







 +







 =

πµ µ πµ
. .

Hence the tolerances on V = μV ± TV = 19.635 ± 0.0399 m3.

Example 11.6

A random variable, Y, for a product is a function of three other random variables, 
X1, X2, X3, and is given by

Y
X

X X
Y

X
X X

= =
2 21

2 3

1
1 2

2 3

or
/

.

(a)	 Find the expected value and the standard deviation of the random variable Y, 
given the following information on the three-sigma tolerances for the variables 
using Taylor’s series approximation:

X1 4 00 1 20= ±. .

X2 2 00 0 60= ±. .
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X3 1 00 0 30= ±. .

μ
μ

μ μ
Y

X

X X

≅ =
×
×
=

2 2 4
2 1

21

2 3

.

Now, the derivatives are:

∂
∂
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X X X X
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X X1 1 2 3 2
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1 2
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∂
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2
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Evaluate the derivatives at μ:
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To find the variance, we have:
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Y X X
Y
X

Y
X

Y
X

2

1

2

1

2

1
1 2≅

∂
∂










+
∂
∂











+
∂
∂











=





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σX3
2

2
2 2 2 21

4
0 4 1 0 2 2 0 1. . . 22

0 01 0 04 0 04 0 09= + + =. . . . .

Hence, σY = =0 09 0 3. . .

(b)	 The upper specification limit on Y is 3.00, and the lower specification limit is 
1.50. What percent of the products produced by this process will be out of 
specifications?
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11.8  Summary

11.7  Steps for Probabilistic Design

Considering the total design-for-reliability program, the steps related to the probabi-
listic approach may be summarized as follows:

■	 Define the design problem. Develop system functional and reliability block 
diagrams to the lowest level of detail.

■	 Identify the design variables and parameters needed to meet customer’s require-
ments for each component. Focus on understanding the physics/chemistry/
biology of failure.

■	 Conduct a failure modes, mechanisms, and effects analysis (FMMEA). Focus 
on understanding failure mechanisms.

■	 Select and verify the significant design parameters.

■	 Formulate the relationship between the critical parameters and the failure-
governing criteria related to the underlying components.

■	 Determine the stress function governing failure.

■	 Determine the failure governing stress distribution.

■	 Determine the failure governing strength function.

■	 Determine the failure governing strength distribution.

■	 Calculate the reliability associated with these failure-governing distributions 
for each critical failure mode.

■	 Iterate the design to obtain the design reliability goal.

■	 Optimize the design in terms of other qualities, such as performance, cost, and 
weight.

■	 Repeat optimization for each critical component.

■	 Calculate system reliability.

■	 Iterate to optimize system reliability.

11.8  Summary

Producing a reliable product requires planning for reliability from the earliest stages 
of product design. There are models and principles that can be used to quantify and 
evaluate reliability in the design stage. One approach is known as probabilistic design 
for reliability. The basic premise of probabilistic design for reliability is that a given 
component has a certain strength which, if  exceeded, will result in failure. The factors 
that determine the strength of the component are random variables, as are the factors 
that determine the stresses or load acting on the component. Stress is used to indicate 
any agency that tends to induce failure, whereas strength indicates any agency resisting 
failure. The factor of safety is some ratio of the strength and stress variables. Since 
both are random variables, the engineers designing a product must determine which 
measures of strength or the stress should be used in the computation of the factor of 
safety based on probability. Following the steps for probabilistic design provided in 
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this chapter can result in the production of a product that will achieve the desired 
level of reliability in its application environment.

Problems

11.1  The stress (X) and the strength (Y) random variables for a given failure mode 
of a product follow the normal distributions with the following parameters:

µ σ
µ σ
X X

Y Y

= =
= =

11 000 2400

15 000 1500

,

,
.

(a)	 Find the system reliability for this failure mode.

(b)	 The customer wants a reliability of 0.99990. The only thing that the designer can 
change for this failure mode is the mean value for the strength random variable 
Y (thus increasing the factor of safety). Find the new target for μY to achieve the 
reliability goal.

11.2  The stress (X) and the strength (Y) are random variables for a given failure mode 
and follow the normal distribution with the following information (CV is the coeffi-
cient of variation):

CV CVX Y= =0 20 0 15. . .

(a)	 The customer wants a reliability of 0.9990. What is the safety factor that the 
designer must use to meet the requirements of the customer?

(b)	 The customer wants a reliability of 0.990. What is the safety factor that the 
designer must use to meet the requirements of the customer?

(c)	 Another customer wants a reliability of 0.9990. The design team does not want 
to increase the safety factor any more. The only thing the team can easily change 
is the variation of the strength variable. What should be the value of CVY to meet 
the requirements of the customer?

11.3  A beam with a tubular cross-section, shown in the figure below, is to be used in 
an automobile assembly.

t

r
Axis

To compute the stresses, the moment of inertia (I ) of the beam about the neural axis 
is calculated as

I r t= π 3 .
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Problems

The mean radius and thickness of the tubular cross-section have the following dimen-
sions with 3σ tolerances:

r

t

= ±
= ±

2 00 0 06

0 11 0 015

. .

. . .

Find the mean value of the moment of inertia and its standard deviation.

11.4  A random variable, Y, for a product is a function of three random variables, X1, 
X2, X3, and is given by

Y
X

X X
Y

X
X X

= =
4 41

2 3
2

1
1 2

2 3
2

or
/

.

(a)	 Find the expected value and the standard deviation of the random variable Y, 
given the following information on the 3σ tolerances for the variables using Tay-
lor’s series approximation:

X1 4 00 0 60= ±. .

X2 2 00 0 40= ±. .

X3 1 00 0 15= ±. . .

(b)	 The upper specification limit on Y is 5.00 and the lower specification limit is 
3.00. What percent of the products produced by this process will be out of 
specifications?

(c)	 The design team thinks that the percent of nonconforming products, as calculated 
in part (b), is relatively high. If  the tolerances can be reduced on only one random 
variable, which variable would you pick? Let us say that we can decrease the toler-
ances on the chosen random variable by half. What percent of the products will 
be out of specification with the new process?

11.5  A random variable, Y, which determines the function of a system, is a function 
of three other random variables, X1, X2, X3, and is given by

Y
X

X X
=

3 1

1
2

2
2

3

.

Find the expected value and the standard deviation of the random variable Y, given 
the following information using the first-order Taylor’s series approximation:

µ σ
µ σ
µ σ

X X

X X

X X

1 1

2 2

3 3

9 00 0 60

2 00 0 20

1 50 0 15

= =
= =
= =

. .

. .

. .

.

Also develop the 3σ tolerance limits for Y.
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11.6  Suppose a mechanism is made of three components with dimensions X1, X2, X3. 
The response of this mechanism, Y, is related to Xis by: Y = 2X1 + X2 − 3X3.

The 3σ tolerances on the dimensions are as follows:

X

X

X

1

2

3

5 00 0 18

4 00 0 12

2 00 0 15

= ±
= ±
= ±

. .

. .

. . .

All the dimensions, Xi, i = 1, 2, 3, follow the normal distribution.

(a) Find the mean and variance for the random variable Y, and specify its 3σ tolerance 
limits.

(b) If  the specification limits on the response, Y, of  this mechanism are 8.00 ± 0.50, 
what percentage of the mechanism will not meet these specifications?

(c) Another response, Z, of  the mechanism is given by:

Z
X X
X

= 1
2

2

3

.

Find the mean and variance of the random variable Z and specify its 3σ tolerance 
limits.


