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17
System Reliability Modeling

To design, analyze, and evaluate the reliability and maintainability characteristics of 
a system, there must be an understanding of the system’s relationships to all the 
subsystems, assemblies, and components. Many times, this can be accomplished 
through logical and mathematical models of the system that show the functional 
relationships among all the components, the subsystems, and the overall system. The 
reliability of the system is a function of the reliabilities of its components and building 
blocks.

17.1  Reliability Block Diagram

Engineering analysis of the system has to be conducted in order to develop a reliability 
model. The engineering analysis consists of the following steps:

1.	 Develop a functional block diagram of the system based on physical principles 
governing the operations of the system.

2.	 Develop the logical and topological relationships between functional elements 
of the system.

3.	 Determine the extent to which a system can operate in a degraded state, based 
on performance evaluation studies.

4.	 Define the spare and repair strategies (for maintenance systems).

Based on the preceding analysis, a reliability block diagram is developed, which can 
be used to calculate various measures of reliability and maintainability. The reliability 
block diagram (RBD) is a pictorial way of showing the success or failure combina-
tions for a system. A system reliability block diagram presents a logical relationship 
of the system, subsystems, and components. Some of the guidelines for drawing these 
diagrams are as follows:
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1.	 A group of components that are essential for the performance of the system 
and/or its mission are drawn in series (Figure 17.1).

2.	 Components that can substitute for other components are drawn in parallel 
(Figure 17.3).

3.	 Each block in the diagram is like a switch: it is closed when the component it 
represents is working and is opened when the component has failed. Any closed 
path through the diagram is a success path.

The failure behavior of all the redundant components must be specified. Some of 
the common types of redundancies are:

1.	 Active Redundancy or Hot Standby.  The component has the same failure rate as 
if  it was operating in the system.

2.	 Passive Redundancy, Spare, or Cold Standby.  The standby component cannot 
fail. This is generally assumed for spare or shelf  items.

3.	 Warm Standby.  The standby component has a lower hazard rate than the oper-
ating component. This is usually a realistic assumption.

This chapter describes how to design, analyze, and evaluate the reliability of a 
system based on the parts, assemblies, and subsystems that compose a system. Most 
of the concepts in this chapter are explained using one level of the system hierarchical 
process. For example, we will illustrate how to compute system reliability if  we know 
the reliabilities of the subsystems. Then the same methods and logic can be used to 
combine assemblies of the subsystem, and so on.

17.2  Series System

In a series system, all subsystems must operate successfully if  the system is to function 
or operate successfully. This implies that the failure of any subsystem will cause the 
entire system to fail.

The reliability block diagram of a series system is shown in Figure 17.1. The reli-
ability of each block is represented by Ri(t) and the times to failure are represented 
by TTF(i). The units need not be physically connected in series for the system to be 
called a series system.

System reliability can be determined using the basic principles of probability theory. 
We make the assumption that all the subsystems are probabilistically independent. 
This means that whether or not one subsystem works does not depend on the success 
or failure of other subsystems.

Figure 17.1  Series system representation.
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Let us first consider the static case. Let Ri be the reliability of the ith subsystem, 
i = 1, 2, . . . , n. Let Es be the event that the system functions successfully and Ei be 
the event that each subsystem i functions successfully (i = 1, 2, . . ., n). Then

	 R P E P E E ES S n= [ ]= ∩ ∩ ∩[ ]1 2 � 	 (17.1)

because the system will function if  and only if  all the subsystems function. If  all the 
events Ei, i = 1, 2, . . . , n, are probabilistically independent, then

	 R P E P E P E P E RS n i

i

n

i

i

n

= [ ] [ ] [ ]= [ ]=
= =
∏ ∏1 2

1 1

� . 	 (17.2)

Equation 17.2 can be generalized for time-dependent or dynamic reliability models. 
If  we denote the time to failure random variable for the ith subsystem by Ti, i = 1, 
2, . . . , n. Then for the series system, the system reliability is given by

	 R t P T t T t T tS n( )= >( )∩ >( )∩ ∩ >( )[ ]1 2 � . 	 (17.3)

If  we assume that all the random variables, Ti, i = 1, 2, . . . , n, are independent, then

	 R t P T t P T t P T tS n( )= >( ) >( ) >( )1 2 � . 	 (17.4)

Hence, we can state the following equation:

	 R t R t R t R t R tS n i

i

n

( )= ( )⋅ ( ) ( )= ( )
=
∏1 2

1

� . 	 (17.5)

From Equation 17.2, it is clear that the reliability of the system reduces with an increase 
in the number of subsystems or components in the series system (see Figure 17.2).

Assume that the time-to-failure distribution for each subsystem/component of a 
system is exponential and has a constant failure rate, λi. For the exponential distribu-
tion, the component reliability is

	 R t ei
ti( )= λ . 	 (17.6)

Figure 17.2  Effects of part reliability and 
number of parts on system reliability in series 
configuration.
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Hence, the system reliability is given by:

	 R t R t e eS i

i

n
t

i

n t
i

i
i

n

( )= ( )= =
∑

=

−

=

−










∏ ∏ =

1 1

1λ
λ

. 	 (17.7)

The system also has an exponential time-to-failure distribution, and the constant 
system failure rate is given by:

	 λ λS i

i

n

=
=
∑

1

, 	 (17.8)

and the mean time between failures for the system is

	 MTBF= =

=
∑

1 1

1

λ
λS
i

i

n
. 	 (17.9)

The system hazard rate is constant if  all the components of the system are in series 
and have constant hazard rates. The assumptions of a constant hazard rate and a 
series system make the mathematics simple, but this is rarely the case in practice.

For the general case, taking the log of both sides of Equation 17.5, we have

	 ln ln .R t R tS i

i

n

( )= ( )
=
∑

1

	 (17.10)

Also recall that

	 R t h d
t

( )= − ( )





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
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	 (17.11)

which means that

	 h d R t
t

τ τ( ) =− ( )∫
0

ln 	 (17.12)

or

	 h t
d
dt

R t( )=− ( )ln . 	 (17.13)

Applying this to Equation 17.10, we have

	 h t h tS i

i

n

( )= ( )
=
∑

1

. 	 (17.14)

Thus, the hazard rate for the system is the sum of the hazard rates of the subsystems 
under the assumption that the time-to-failure random variables for all the subsystems 
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are independent, regardless of the form of the pdf’s for the time-to-failure random 
variables for all the subsystems.

Example 17.1

An electronic system consists of two parts that operate in series. Assuming that fail-
ures are governed by a constant failure rate λi for the ith part, determine (1) the system 
failure rate, (2) the system reliability for a 1000-hour mission, and (3) the system mean 
time to failure (MTTF).

The failure rates of the parts for this problem are given by:

λ1
66 5 10= . failures/ hours

λ2
626 0 10= . .failures/ hours

Solution:
For a constant failure rate, the reliability Ri for the ith part has the form:

R t e ei

d
t

i

t

i( )=
∫

=
−

−
λ τ

λ0 .

The reliability, RS, of  the series system is

R e es

t
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s i
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n

i
i

n

s=
∑
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=

−
−

=

=

∑

λ
λ

λ λ

1

1

,

for a series system with parts assumed to have a constant failure rate. Substituting the 
given values:

λS = 32 5 106. ./ hours

The reliability for a 1000-hour mission is thus:

R eS 1000 0 96832 5 10 10006

( )= =− ×( )×. . .

The MTTF for the system is:

MTTF

hours

= ( ) = =

=

∞

−

∞

∫ ∫R t dt e dts
t

s
s

0 0

1

30 770

λ λ

, .

Example 17.2

Two subsystems of a system functionally operate in series and have the time to failure 
random variable with the pdfs given by
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where ηi is the parameter for the pdf for the ith subsystem. Time is measured in hours. 
We want to answer the following five parts.

(a)	 Find the system hazard function, hS(t).

(b)	 Find the system reliability function, RS(t).

(c)	 Find the pdf, fS(t), for the time to failure for the system.

(d)	 If  η1 = 300 hours and η2 = 400 hours, find RS(20 hours).

(e)	 For the values in (d) find t* such that RS(t*) = 0.90.

Solution:
We can easily notice that fi(t) is a Weibull distribution with

β η η β= =2 2 1, ( ) ./
i

So, the reliability function and the hazard function for each subsystem are
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(a)	 Find the system hazard function, hS(t). Using Equation 17.14, we have

h t h t
t t t

S i

i
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2

1 2η η η
,

where 1/η = 1/η1 + 1/η2.

(b)	 Find the system reliability function, RS(t).

From part (a), and using Equation 17.5, we have
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(c)	 Find the system pdf, fS(t).
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(d)	 If  η1 = 300 hours and η2 = 400 hours, find RS (20 hours). First, 1/η = 1/η1 + 
1/η2 = 1/300 + 1/400, so η = 171.4 hours.

Now,

R
t

S 20
2

20
2 171 4

0 3113

2

( )= −







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×











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=
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exp
.

. .

η

(e)	 For the values in (d), find t* such that RS(t*) = 0.90:
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17.3  Products with Redundancy

Redundancy exists when one or more of the parts of a system can fail and the system 
will still be able to function with the parts that remain operational. Two common 
types of redundancy are active and standby. In active redundancy, all the parts are 
energized and operational during the operation of a system. In active redundancy, 
the parts will consume life at the same rate as the individual components.

In standby redundancy, some parts do not contribute to the operation of the 
system, and they get switched on only when there are failures in the active parts. In 
standby redundancy, the parts in standby ideally should last longer than the parts in 
active redundancy.

There are three conceptual types of standby redundancy: cold, warm, and hot. In 
cold standby, the secondary parts are shut down until needed. This lowers the number 
of hours that the part is active and typically assumes negligible consumption of useful 
life, but the transient stresses on the parts during switching may be high. This transient 
stress can cause faster consumption of life during switching. In warm standby, the 
secondary parts are usually active, but are idling or unloaded. In hot standby, the 
secondary parts form an active parallel system. The life of the hot standby parts are 
assumed to be consumed at the same rate as active parts.

17.3.1  Active Redundancy

An active redundant system is a standard “parallel” system. That fails only when  
all components have failed. Sometimes, the parallel system is called a 1-out-of-n or 
(1, n) system, which implies that only one (or more) out of n subsystems has to operate 
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Figure 17.4  Effect of part reliability and 
number of parts on system reliability in an 
active redundant system.
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Figure 17.3  Active redundant system.

R1 (t)

R2 (t)

Rn (t)

for the system to be operational or functional. Thus, a series system is an n-out-of-n 
system. The reliability block diagram of a parallel system is given in Figure 17.3.

The units need not be physically connected in parallel for the system to be called a 
parallel system. The system will fail if  all of the subsystems or all of the components 
fail by time t, or the system will survive the mission time, t, if  at least one of the units 
survives by time t. Then, the system reliability can be expressed as

	 R t Q ts s( )= − ( )1 , 	 (17.15)

where Qs(t) is the probability of system failure, or

	

Q t R t R t R t

R t

S n

i

i

n

( )= − ( )[ ]× − ( )[ ]× × − ( )[ ]

= − ( )[ ]
=
∏

1 1 1

1

1 2

1

�

,
	 (17.16)

under the assumption that the time to failure random variables for all the subsystems 
are probabilistically independent.

The system reliability for a mission time, t, is

	 R t R tS i

i

n

( )= − − ( )[ ]
=
∏1 1

1

. 	 (17.17)

For the static situation or for an implied fixed value of t, we have an equation similar 
to Equation 17.2, which is given by

	 R RS i

i

n

= − −[ ]
=
∏1 1

1

. 	 (17.18)

Figure 17.4 shows the effect of component reliability on system reliability for an active 
parallel system for a static situation.
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We can use Equation 17.2 and Equation 17.18 to calculate the reliability of systems 
that have subsystems in series and in parallel. This is illustrated in Example 17.3.

Example 17.3

The reliability block diagram of a system is given in Figure 17.5. The number in each 
box is the reliability of the component. This system has nine components. Find the 
reliability of the system.

Solution:
We can consider the top, consisting of five components, as subsystem A and the 
bottom with four components as subsystem B. Then, using step by step Equation 17.2 
and Equation 17.18, we have

RA = − − −( ) − − − =[ . ][ ( . ) . ][ ( . )( . )] .0 90 1 1 0 70 1 0 75 1 1 0 85 1 0 65 0 788794

RB = − − × − × =[ [ . . ][ . ]] . . ,1 1 0 95 0 99 1 0 75 0 80 0 7881

and because A and B are in parallel, we have

R R RS = − − − = − − − =1 1 1 1 1 0 788794 1 0 7881 0 955245( )( ) ( . )( . ) . .A B

After we know the system reliability function from Equation 17.17, the system 
hazard rate is given by:

	 h t
f t

R t
S

S

S

( )=
( )
( )

, 	 (17.19)

where fS(t) is the system time-to-failure probability density function (pdf). The mean 
life, or the expected life, of the system is determined by:

	 E T R t R t dtS S i

i

n

[ ]= ( )= − − ( )( )










∞

=

∞

∫ ∏∫
0 10

1 1 , 	 (17.20)

where TS is the time to failure for the system.
For example, if  the system consists of two units (n = 2) with an exponential failure 

distribution with constant failure rates λ1 and λ2, then the system mean life is given 

Figure 17.5  Reliability block diagram 
for series-parallel system.
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by Equation 17.21. Note that the system mean life is not equal to the reciprocal  
of the sum of the component’s constant failure rates, and we can prove that the  
hazard rate is not constant over time, although the individual unit failure rates are 
constant.

	 E TS[ ]= + −
+

1 1 1

1 2 1 2λ λ λ λ
. 	 (17.21)

Example 17.4

Consider an electronics system consisting of two parts with constant failure rates as 
given below:

λ1
66 5 10= . failures/ hours

λ2
626 0 10= . .failures/ hours

Assume that failures are governed by a constant failure rate λi for the ith part. 
Determine:

(a)	 The system reliability for a 1000-hour mission

(b)	 The system MTTF

(c)	 The failure probability density function

(d)	 The system “failure rate.”

Solution:
For a constant failure rate, the reliability Ri of  the ith part has the form:

R t ei
ti( )= −λ .

For a parallel system:

R t e e e eS
t

i

t t ti( )= − −( )= + −− ( )

=

− − − +( )∏1 1
1

2
1 2 1 2λ λ λ λ λ .

The failure probability density function is:

f t
d R t

dt
e e eS

S t t t( )=−
( )[ ]
= + − +( )− − − +( )λ λ λ λλ λ λ λ

1 2 1 2
1 2 1 2 .

Substituting numbers in the equation for system reliability, we get the answer for part 
(a):

RS 1000 0 99352 0 97434 0 96802 0 99983( )= + − =. . . . .

The MTTF (part b) for the parallel system is

MTTF hoursS SR t dt= ( ) = + −
+( )

=
∞

∫
0

1 2 1 2

1 1 1
161 538

λ λ λ λ
, .
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The failure probability density function (part c) for the parallel system is

f t
d R t

dt

e e

S
S

t

( )=−
( )[ ]

= × + ×− − × − − ×− −
6 5 10 26 0 106 6 5 10 6 26 0 106 6
. .. . tt te− × − − × −

32 5 10 6 32 5 10 6
. ..

The system hazard rate for the parallel system is given by:

h t
f t

R t
S

S

S

( )=
( )
( )

.

The system failure rate for the parallel system (part (d)) can be obtained by substitut-
ing the results in the equation stated above. We will find that hS(t) is a function of 
time and is not constant over time.

If  the time to failure for all n components is exponentially distributed with MTBF 
θ, then the MTBF for the system is given by

	 E T
i

S

i

n

[ ]=
=
∑ θ

1

. 	 (17.22)

Here, θ = MTBF for every component or subsystem. Thus, each additional compo-
nent increases the expected life of the system but at a slower and slower rate. This 
motivates us to consider standby redundant systems in the next section.

17.3.2  Standby Systems

A standby system consists of an active unit or subsystem and one or more inactive 
(standby) units that become active in the event of the failure of the functioning unit. 
The failures of active units are signaled by a sensing subsystem, and the standby unit 
is brought to action by a switching subsystem. The simplest standby configuration is 
a two-unit system, as shown in Figure 17.6. In general, there will be n number of units 
with (n − 1) of them in standby.

Let us now develop the system reliability models for the standby situation with two 
subsystems. Let fi(t) be the pdf for the time to failure random variable, Ti, for the ith 
unit, i = 1, 2, and fS(t) be the pdf for the time to failure random variable, TS, for the 
system. Let us first consider a situation with only two units under the assumption that 
the sensing and the switching mechanisms are perfect. Thus, the second unit is switched 
on when the first component fails. Thus, TS = T1 + T2, and TS is nothing but a con-
volution of two random variables. Hence,

Figure 17.6  Stand-by system.
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	 f t f x f t x dxS

t

( )= ( ) −( )∫ 1 2

0

. 	 (17.23)

Similarly, if  we have a primary active component and two standby components, we 
have

	 f t f y f x y f t x dydxS

xt

( )= ( ) −( ) −( )∫∫ 1 2 3

00

. 	 (17.24)

We can evaluate Equation 17.23 when both T1 and T2 have the exponential distribu-
tion as below:

	 f t e e dx e eS
x t x

t

t( )= =
−

+
−

− − −( ) − −∫ λ λ
λλ
λ λ

λλ
λ λ

λ λ λ λ
1 2

0
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1 2

2 1

1 2 2 1tt. 	 (17.25)

From Equation 17.25, we have

	 R t f x dx e eS S

t

t t( )= ( ) =
−

+
−

∞

− −∫
λ
λ λ

λ
λ λ

λ λ1

1 2

2

2 1

2 1 . 	 (17.26)

The MTBFS, θS, for the system is given by

	 θ
λ λ

S = +
1 1

1 2

, 	 (17.27)

as is expected since TS = T1 + T2 and E[TS] = E[T1] + E[T2].
When the active and the standby units have equal constant failure rates, λ, and the 

switching and sensing units are perfect, the reliability function for such a system is 
given by

	 R t e tS
t( )= +( )−λ λ1 . 	 (17.28)

We can rewrite Equation 17.26 in the form

	 R t e e eS
t t t( )= +

−
−( )− − −λ λ λλ

λ λ
1 2 11

1 2

, 	 (17.29)

or as shown in Equation 17.30, where AR(2) is the contribution to the reliability value 
of the system by the second component

	 R t e ARS
t( )= +−

( )
λ1

2 . 	 (17.30)

This can easily be generalized to a situation where we have one primary compo
nent and two or more standby components. For example, if  we have one primary 
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component and (n − 1) standby components, and all have exponential time to failure 
with a constant failure rate of λ, then the system reliability function is given by

	 R t e t iS
t i

i

n

( )= ( )−

=

−

∑λ λ !.
0

1

	 (17.31)

17.3.3  Standby Systems with Imperfect Switching

Switching and sensing systems are not perfect. There are many ways these systems 
can fail. Let us look at a situation where the switching and sensing unit simply fails 
to operate when called upon to do its job. Let the probability that the switch works 
when required be pSW. Then, the system reliability for one primary component and 
one standby is given by

	 R t R t p f x R t x dxS SW

t

( )= ( )+ ( ) −( )∫1 1 2

0

. 	 (17.32)

When the main and the standby units have exponential time-to-failure distributions, 
we can use Equation 17.30 to develop the following equation:

	 R t e p ARS
t

SW( )= +−
( )

λ1
2 . 	 (17.33)

Now, let us generalize Equation 17.32, where the switching and sensing unit is 
dynamic and the switching and sensing unit starts its life at the same time the active 
or the main unit starts its life. Let TSW denote the time to failure for the switching and 
sensing unit, where its pdf and reliability functions are denoted by fSW(t) and RSW(t), 
respectively. Then the reliability of the system is given by

	 R t R t f x R x R t x dxS SW

t

( )= ( )+ ( ) ( ) −( )∫1 1 2

0

. 	 (17.34)

If  the time to failure of the switching and sensing unit follows an exponential dis-
tribution with a failure rate of λSW, then Equation 17.34 reduces to

	 R t R t f x e R t x dxS
x

t

SW( )= ( )+ ( ) −( )−∫1 1 2

0

λ . 	 (17.35)

If  we consider a special case where both the main unit and the standby units have 
exponential time-to-failure distributions with parameter λ, then Equation 17.35 
reduces to

	 R t e e tS
t

SW

tSW( )= + −( )











≥− −λ λλ

λ
1 1 0, . 	 (17.36)
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Example 17.5

Suppose the constant failure rates for both the main and the standby units are con-
stant and are given by λ = 0.02 per hour, and the constant failure rate of the switching 
and sensing unit is λSW =  0.01 per hour. Find the reliability of this system for an 
operating time of 50 hours.

Solution:
Using Equation 17.36, we have

R e eS 50 1
0 02
0 01

1

0 6574

0 02 50 0 01 50( )= + −( )











=

− × − ×. ..
.

. .

Example 17.6

A B7XX plane has two similar computers onboard for flight control functions: one 
that is operational and the second as an active standby. The time to failure for each 
computer follows an exponential distribution with an MTBF of 4000 hours.

(a)	 Find the reliability of the computer system (consisting of both computers) for 
800 hours when the switching is perfect and the second computer is instanta-
neously switched on when the first computer fails. Also find the MTBF of the 
computer system.

Solution:
We have, using Equation 17.28,

θ

λ

λλ

=

= =

( )= +( )= +− − ×

4000

1
4000

0 00025

1 1 0 0000 00025 800

.

..R t e t eS
t 225 800 0 982477

1
0 0 0

×( )=

= +( ) = +−
∞

−
∞

−∫ ∫
.

MTBF e t dt e dt te dtt t tλ λ λλ λ
∞∞

∫
= + = =

1 1 2
8000

λ λ λ
hours.

(b)	 Find the MTBF of the computer system when the switching and sensing unit 
is not perfect and the switching mechanism has a reliability of 0.98 when it is 
required to function.

Solution:
We have

R t e p te

R t dt p

S
t

SW
t

S SW

( )= + ( )

= ( ) = + = + ∗

− −

∞

∫

λ λλ

λ λ
MTBF

0

1 1
4000 0 98 4. 0000 7920= hours.
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(c)	 Find the reliability of the computer system for 800 hours when the switching 
mechanism is not perfect and is dynamic. The time to failure for the switching 
mechanism also has exponential distribution with MTBF of 12,000 hours.

Solution:
We have

λ λ

λ
λ

λ λ

= =

( )= + −( )












(

− −

1
4000

1
12 000

1 1

800

SW

S
t

SW

t

S

R t e e

R

SW

,

))= + −( )[ ]=− × −e e0 00025 800 800 120001 3 1 0 977138. . .

Example 17.7

Consider a DC power supply consisting of a generator with a constant failure rate of 
λ1 = 0.0003 and a standby battery with a failure rate λ2 = 0.0005.

Assume that both the generator and the stand-by battery have exponential time  
to failure distributions. Assume that the switching circuit has a known reliability of 
0.98 for one switching operation. When the generator fails, then the switch turns  
on the standby battery. The reliability block diagram of the circuit is shown in  
Figure 17.7.

(a)	 Find the reliability of the above system for 15 hours of operation.

Solution:
Using Equation 17.32, we have

R t R t p f x R t x dx

e p e e

S SW

t

t
SW

x t x

( )= ( )+ ( ) −( )

= +

∫
− − − −(

1 1 2
0

1 1
1 1 2λ λ λλ ))

− − − −( )

−

∫

∫= +

= +
−

dx

e p e e dx

e p e

t

t
SW

t x
t

t
SW

0

1 1
0

1

2 1

1 2 1 2

1

λ λ λ λ

λ

λ

λ
λ λ

−− −−[ ]λ λ1 2t te .

Figure 17.7  Generator and standby battery 
system.

Generator

Stand-by
battery

S

λ1

λ2
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Hence,

R e e eS 15 0 98
0 0003

0 0005 0 0003
0 0003 15 0 0003 15 0( )= +

−
−− × − × −. . ..

.
. .

00005 15

0 99551 0 98 1 5 0 99551 0 992528

0 99989

×[ ]

= + × × −( )
=

. . . . .

. .

(b)	 Find the MTBF for the system.

Solution:

MTBF= ( ) = +
−

−[ ]












∞
− − −

∞

∫ ∫R t dt e p e e dtS
t

SW
t t

0

1

2 10

1 1 2λ λ λλ
λ λ

== +
−

−












= + = +

1 1 1

1 1 1
0 0003

0 98
1

0

1

1

2 1 1 2

1 2

λ
λ
λ λ λ λ

λ λ

p

p

SW

SW
.

.
.00005

5293 333= . .hours

17.3.4  Shared Load Parallel Models

A situation that is common in engineering systems and their design is called a shared 
load parallel model. In this case, the two parallel components/units share a load 
together. Thus, the load on each unit is half  of the total load. When one of the units 
fails, the other unit must take the full load. An example of a shared load parallel 
configuration is one in which two bolts are used to hold a machine element, and if  
one of the bolts fails, the other bolt must take the full load. The stresses on the  
bolt now will be doubled, and this will result in an increased hazard rate for the sur-
viving bolt.

Let f1h(t) and f2h(t) be pdfs for the time to failure for the two units under half  or 
shared load, and f1F(t) and f2F(t) be the pdfs under the full load for each unit, respec-
tively. In this case, we can prove that the pdf for the time to failure of the system is

	 f t f x R x f t x dx f x R x f t x dxS h h F

t

h h F

t

( )= ( ) ( ) −( ) + ( ) ( ) −( )∫ ∫1 2 2

0

2 1 1

0

.   (17.37)

The reliability function for the system if  both units are identical (such as identical 
bolts), where we have f1h(t) = f2h(t) = fh(t) and f1F(t) = f2F(t) = fF(t), can be shown as

	 R t R t f x R x R t x dxS h h h F

t

( )= ( )[ ] + ( ) ( ) −( )∫2

0

2 . 	 (17.38)

If  both fh(t) and fF(t) follow exponential distributions with parameters λh and λF, 
respectively, then it can be shown that the reliability function for the system is

	 R t e e eS
t h

h F

t th F h( )= +
−

−[ ]− − −2 22
2

λ λ λλ
λ λ

. 	 (17.39)
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Example 17.8

Consider a two-unit shared load parallel system where

f t th
e t( )= ≥−λ λ 0 pdf for time to failure under half load

f t e tF
t( )= ≥−5 05λ λ pdf for time to failure under full load

(a)	 Find the system reliability function

(b)	 Find the MTTF.

Solution:

(a)	 With λh = λ and λF = 5λ, using Equation (17.39), we have:

R t e e e e eS
t t t t t( )= +

−
−[ ]= −− − − − −2 5 2 2 52

2 5
5
3

2
3

λ λ λ λ λλ
λ λ

.

(b)	 MTTF is given by:

MTTF= ( )

= −








=

∞

− −
∞

−
∞

∫

∫

R t dt

e e dt

e dt

S

t t

t

0

2 5

0

2

0

5
3

2
3

5
3

λ λ

λ∫∫ ∫−

= − =

−
∞2

3
5
3

1
2

2
3

1
5

7
10

5

0
e dttλ

λ λ λ
.

17.3.5  (k, n) Systems

A system consisting of n components is called a k-out-of-n or (k, n) system if  the 
system only operates when at least k or more components are in an operating state. 
The reliability block diagram (Figure 17.8) for the k-out-of-n system is drawn similar 
to the parallel system, but in this case at least k items need to be operating for the 
system to be functional.

In this configuration, the system works if  and only if  at least k components out of 
the n components work, 1 ≤ k ≤ n. When Ri = R(t) for all i, with the assumption 
that the time to failure random variables are independent, we have

(k,n)

Rn (t)

R1 (t)

R2 (t)

Figure 17.8  k-out-of-n system.
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	 R t
n

i
R t R tS

i n i

i k

n

( )=





 ( )[ ] − ( )[ ] −

=
∑ 1 , 	 (17.40)

and the probability of system failure, where Q(t) = 1 − R(t), is

	

Q t R t
n

i
Q t Q t

n

i

S S
i n i

i k

n

( )= − ( )= −





⋅ − ( )[ ] ⋅ ( )[ ]

=


−

=
∑1 1 1





⋅ − ( )[ ] ⋅ ( )[ ] −

=

−

∑ 1
0

1

Q t Q ti n i

i

k

.

	 (17.41)

The probability density function can be determined by

	 f t
dQ t

dt
S

S( )=
( )

, 	 (17.42)

and the system hazard rate is given by

	 h t
f t

R t
S

S

S

( )=
( )
( )

. 	 (17.43)

If  R(t) = e−t/θ, for an exponential case, the MTBF for the system is given by

	
θ
ii k

n

=
∑ . 	 (17.44)

The reliability function for the system is mathematically complex to compute in a 
closed form when the components have different failure distributions. We will present 
the methodology later on in this chapter to solve this problem.

Example 17.9

Compute the reliability of an active redundant configuration system with two out of 
three units (all with identical reliability R) required for success.

Solution:
In this case, n = 3 and k = 2. The reliability for a k-out-of-n active redundancy reli-
ability is obtained from Equation 17.40:

R R Q R Q

R R R R

out of

out of

2 3
2 1 3 0

2 3
2 3

3
1 2

3
0 3

3 1

=
( )( )

+
( )( )

= −( ) .+

!
! !

!
! !

PProbability

that all three

units will

succeed

Probability thatt

two units will

succeed and

one will fail
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Example 17.10

Consider a system that has eight components and the system will work if  at least any 
five of the eight components work (5-out-of-8 system). Each component has a reli-
ability of 0.87 for a given period. Find the reliability of the system.

Solution:

R
n

i
R R

i
R RS

i n i

i k

n
i i

i

=





 −( ) =






 −( )−

=

−

=
∑ 1

8
1 8

5

nn

∑

=





 ( ) +






 ( ) +

8

5
0 87 0 13

8

6
0 87 0 13

8

7
5 3 6 2. . . .






 ( ) +






 ( )

=

0 87 0 13
8

8
0 87 0 13

56 0 001

7 1 8 0. . . .

. 0095 28 0 007328 8 0 049043 0 328212

0 06132 0 205192

( )+ ( )+ ( )+
= + +

. . .

. . 00 392345 0 328212 0 98707. . . .+ =

17.3.6  Limits of Redundancy

It is often difficult to realize the benefits of redundancy if  there are common mode 
failures, load sharing, and switching and standby failures. Common mode failures are 
caused by phenomena that create dependencies between two or more redundant parts 
and which then cause them to fail “simultaneously.” Common mode failures can be 
caused by many things, such as common electric connections, shared environmental 
stresses, and common maintenance problems.

Load sharing failures occur when the failure of one part increases the stress level 
of other parts. This increased stress level can affect the life of the active parts. For 
redundant engines, motors, pumps, structures, and many other systems and devices 
in active parallel setup, the failure of one part may increase the load on the other 
parts and decrease their times to failure (or increase their hazard rates).

Several common assumptions are made regarding the switching and sensing of a 
standby system. Regarding switching, it is often assumed that switching is in one 
direction only, that switching devices respond only when directed to switch by the 
monitor, and that switching devices do not fail if  not energized. Regarding standby, 
the general assumption is that standby nonoperating units cannot fail if  not energized. 
When any of these idealizations are not met, switching and standby failures occur. 
Monitor or sensing failures include both dynamic (failure to switch when active path 
fails) and static (switching when not required) failures.

17.4  Complex System Reliability

If  the system architecture cannot be decomposed into some combination of series-
parallel structures, it is deemed a complex system. There are three methods for reli-
ability analysis of a complex system using Figure 17.9 as an example.

17.4.1  Complete Enumeration Method

The complete enumeration method is based on a list of all possible combinations of 
states of the subsystems. Table 17.1 lists 25 =  32 system states, which are all the 
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possible states of the system given in Figure 17.9 based on the states of the subsystems. 
The symbol O stands for “system in operating state,” and F stands for “system in 
failed state.” Letters in uppercase denote a unit in an operating state, and lowercase 
letters denote a unit in a failed state.

Each combination representing the system status can be written as a product of the 
probabilities of units being in a given state; for example, the second combination in 

Figure 17.9  A complex system.

A

B

C

D

E

Table 17.1  Complete enumeration example

System description System condition System status

All components operable ABCDE O
One unit in failed state aBCDE O

AbCDE O
ABcDE O
ABCdE O
ABCDe O

Two units in failed state abCDE F
aBcDE O
aBCdE O
aBCDe O
AbcDE F
AbCdE O
AbCDe O
ABcdE O
ABcDe O
ABCde O

Three units in failed state ABcde F
AbCde O
AbcDe F
AbcdE F
aBCde O
aBcDe O
aBcdE O
abCDe F
abCdE F
abcDE F

Four units in failed state Abcde F
aBcde F
abCde F
abcDe F
abcdE F

All five units in failed state abcde F
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Table 17.1 can be written as (1 − RA)RBRCRDRE, where (1 − RA) denotes the probabil-
ity of failure of unit A by time t. The system reliability can be written as the sum of 
all the combinations for which the system is in operating state, O, that is,

R R R R R R R R R R R R R R R R R

R R R R
S A B C D D E A B C D E A B C D E

A B C D

= + −( ) + −( )
+ −( )

1 1

1 RR R R R R R R R R R R

R R R R R R
E A B C D E A B C D E

A B C D E A

+ −( ) + −( )
+ −( ) −( ) + −(

1 1

1 1 1 )) −( )
+ −( ) −( )
+

+ −( ) −( ) −( )

R R R R

R R R R R

R R R R R

B C D E

A B C D E

A B C D

1

1 1

1 1 1

�

�

EE.

  (17.45)

After simplification, the system reliability can be represented as

	
R R R R R R R R R R R R R R

R R R R R R R R R R R
S B C D E A B C B C D B C E

B D E A C B C B D B

= − − −
− + + + + EE.

	 (17.46)

17.4.2  Conditional Probability Method

The conditional probability method is based on the law of total probability, which 
allows system decomposition by a selected unit and its state at time t. For example, 
system reliability is equal to the reliability of the system given that unit A is in its 
operating state at time t, denoted by RS|AS, times the reliability of unit A, plus the 
reliability of the system, given that unit A is in a failed state at time t, RS|AF, times 
the unreliability of unit A, or

	 R R A R R A QS S S A S F A=( )⋅ +( )⋅ . 	 (17.47)

This decomposition process continues until each term is written in terms of the reli-
ability and unreliability of each of the units.

As an example, consider the system given in Figure 17.9 and decompose the system 
using unit C. Then, the system reliability can be written as

	 R R C R R C QS S S C S F C=( )⋅ +( )⋅ . 	 (17.48)

If  the unit C is in the operating state at time t, the system reduces to the configura-
tion shown in Figure 17.10. Therefore, the system reliability, given that unit C is in  
its operating state at time t, is equal to the series-parallel combination as shown 
above, or

	 R C R RS S A B= − −( )⋅ −( )[ ]1 1 1 . 	 (17.49)

If  unit C is in a failed state at time t, the system reduces to the configuration given 
in Figure 17.11. Then the system reliability, given that unit C is in a failed state, is 
given by

	 R C R R Rs F B D E= ⋅ − −( )⋅ −( )[ ]1 1 1 . 	 (17.50)
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The system reliability is obtained by substituting Equation 17.49 and Equation 
17.50 into Equation 17.48:

R R C R R C Q

R R R R R
S S S C S F C

A B C B D

=( )⋅ +( )⋅
= − −( )⋅ −( )[ ]⋅ + ⋅ − −( )⋅ −1 1 1 1 1 1 RR RE C( )[ ]⋅ −( )1 .

  (17.51)

The system reliability is expressed in terms of the reliabilities of its components. 
Simplification of Equation 17.51 gives the same expression as Equation 17.46.

17.4.3  Concept of Coherent Structures

In general, the concept of coherent systems can be used to determine the reliability 
of any system (Barlow and Proschan 1975; Leemis 1995; Rausand and Hoyland 2003). 
The performance of each of the n components in the system is represented by a binary 
indicator variable, xi, which takes the value 1 if  the ith component functions and 0 if  
the ith component fails. Similarly, the binary variable φ indicates the state of the 
system, and φ is a function of x = (x1, . . . , xn).

The function φ(x) is called the structure function of the system. The structure func-
tion is represented by using the concept of minimal paths and minimal cuts. A 
minimal path is the minimal set of components whose functioning ensures the func-
tioning of the system. A minimal cut is the minimal set of components whose failures 
would cause the system to fail. Let αj(x) be the jth minimal path series structure for 
path Aj, j = 1, . . . , p, and βk(x) be the kth minimal parallel cut structure for cut Bk, 
k = 1, . . . , s. Then we have

Figure 17.10  System reduction when unit C is operating.

A

B

A

B

E

D

Figure 17.11  System reduction when unit C fails.
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	 α j i

i A

x x
j

( )=
∈
∏ , 	 (17.52)

and

	 βk i

i B

x x
k

( )= − −( )
∈
∏1 1 . 	 (17.53)

The structure function of the system using minimum cuts is given by Equation 
17.54, and the structure function using minimum cuts is given by Equation 17.55, as 
follows:

	 φ αx xj

j

p

( )= − − ( )[ ]
=
∏1 1

1

	 (17.54)

	 φ βx xk

k

s

( )= ( )
=
∏

1

. 	 (17.55)

Let us consider the following bridge structure given in Figure 17.12. For the bridge 
structure (Figure 17.12), we have four minimal paths and four minimal cuts, and their 
structure functions are given below:

α β
α β
α β

1 1 5 1 1 2

2 2 4 2 4 5

3 1 3 4

1 1 1

1 1 1

= = − −( ) −( )
= = − −( ) −( )
=

x x x x

x x x x

x x x 33 1 3 4

4 2 3 5 4 2 3 5

1 1 1 1

1 1 1 1

= − −( ) −( ) −( )
= = − −( ) −( ) −( )

x x x

x x x x x xα β .

Then the reliability of the system is given by

	 R P X E XS = ( )=[ ]= ( )[ ]φ φ1 , 	 (17.56)

where X is the random vector of the states of the components (X1, . . . , Xn).
We can develop the structure function by putting structure functions of minimum 

paths and minimum cuts in Equation 17.54 and Equation 17.55, respectively. When 
we do the expansion, we should remember that each xi is a binary variable that takes 
values of 0 or 1, and hence, xin  for any positive integer n is also a binary variable and 

Figure 17.12  Reliability block diagram of a bridge structure.
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takes the value of 0 or 1. If  we do the expansion using Equation 17.54 or Equation 
17.55, we can prove that the structure function for the system in Figure 17.12 is

	
φ x x x x x x x x x x x x x x x x x x x

x x x x x

( )= + + + − −

− −
1 5 1 3 4 2 3 5 2 4 1 3 4 5 1 2 3 5

1 2 4 5 1xx x x x x x x x x x x x2 3 4 2 3 4 5 1 2 3 4 52− + .
	 (17.57)

If  Ri is the reliability of the ith component, then we know that

	 R E X P Xi i i= [ ]= =[ ]1 , 	 (17.58)

and the system reliability for the bridge structure is given by

	
R RR RR R R R R R R RR R R RR R R

RR R R RR
S = + + + − −
− −

1 5 1 3 4 2 3 5 2 4 1 3 4 5 1 2 3 5

1 2 4 5 1 2RR R R R R R RR R R R3 4 2 3 4 5 1 2 3 4 52− + .
	 (17.59)

If  all Ri = R = 0.9, we have

	
R R R R RS = + − +
=

2 2 5 2

0 9785

2 3 4 5

. .
	 (17.60)

The exact calculations for RS are generally very tedious because the paths and the cuts 
are dependent, since they may contain the same component. Bounds on system reli-
ability are given by

	 P X P X P Xk

k

S

j

j

p

β φ α( )=[ ]≤ ( )=[ ]≤ − − ( )[ ]={ }
= =
∏ ∏1 1 1 1 1

1 1

. 	 (17.61)

Using these bounds for the bridge structure, we have, when Ri = R = 0.9, the upper 
bound, RU, on system reliability, RS, is

	
R R RU = − −( ) −( )
=

1 1 1

0 9973

2 2 3 2

. ,
	 (17.62)

and the lower bound, RL, is

	
R R RL = − −( )



 − −( )





=

1 1 1 1

0 9781

2 2 3 2

. .
	 (17.63)

The bounds on system reliability using the concepts of minimum paths and cuts can 
be improved.
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Example 17.11

Consider a system, shown in Figure 17.13, with six components, which has the fol-
lowing reliability block diagram.

The reliabilities of the components are as follows:

R1 0 95= .

R2 0 90= .

R3 0 80= .

R4 0 85= .

R5 0 75= .

R6 0 90= . .

(a)	 Find the exact reliability of the system using the series-parallel model.

Solution:

R R R

RR R R R R
S = ×

= − −( ) −( ) −( )[ ]× − −( ) −( )[ ]
= −

1234 56

1 2 3 4 5 61 1 1 1 1 1 1

1 1−− ×( ) −( ) −( )[ ]× − −( ) −( )[ ]
=

0 95 0 90 1 0 80 1 0 85 1 1 0 75 1 0 90

0 970

. . . . . .

. 7759.

(b)	 Find all the minimum paths and minimum cuts for the above system.

Solution:

Components for minimal paths Components for minimal cuts

1, 2, 5 5, 6
1, 2, 6 1, 3, 4
3, 5 2, 3, 4
3, 6
4, 5
4, 6

(c)	 Find the lower bound and the upper bound on the system reliability using the 
equations for the bounds on system reliability, which uses the minimum paths 
and minimum cuts.

Figure 17.13  Six component series-parallel model.

1 2

3
5

6

4
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Solution:
Using Equation 17.61, we have

R RR R RR R R R R R R R R RU = − −( ) −( ) −( ) −( ) −( ) −( )
=

1 1 1 1 1 1 11 2 5 1 2 6 3 5 3 6 4 5 4 6

11 1 0 95 0 90 0 75 1 0 95 0 90 0 90 1 0 80 0 75

1 0 8

− − ∗ ∗( ) − ∗ ∗( ) − ∗( )
∗ −

. . . . . . . .

. 00 0 90 1 0 85 0 75 1 0 85 0 90

0 999211

∗( ) − ∗( ) − ∗( )
=

. . . . .

. .

and

R R R R R R R R RL = − −( ) −( )[ ] − −( ) −( ) −( )[ ] − −( ) −( ) −1 1 1 1 1 1 1 1 1 1 15 6 1 3 4 2 3 44

1 0 25 0 10 1 0 05 0 2 0 15 1 0 1 0 2 0 15

0 97

( )[ ]
= − ∗[ ] − ∗ ∗[ ] − ∗ ∗[ ]
=

. . . . . . . .

. 00617.

Thus, the reliability bounds are 0.970617 ≤ RS ≤ 0.999211.
The lower bound is much better because there is less dependency between the 

minimum cuts (fewer components share different minimum cuts) than for minimum 
paths (where some components are part of several minimum paths).

Example 17.12

Consider a 4-out-of-5 system with the reliabilities of the five components as given 
below:

R1 0 90= .

R2 0 95= .

R3 0 85= .

R4 0 80= .

R5 0 75= . .

(a)	 Develop the structure function φ(x) for this 4-out-of-5 system.

Solution:
There are five minimum paths for this system. Hence, we can develop the structure 
function using minimum paths (Eq. 17.54):

φ x x x x x x x x x x x x x x x x x( )= − −( ) −( ) −( )× −( ) −1 1 1 1 1 11 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 xx x x x2 3 4 5( ),

which can be simplified as
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17.5  Summary

= − − − +( )
− − +

1 1

1
1 2 3 4 1 2 3 5 1 2 3 4 5

1 2 4 5 1 3 4 5 1

x x x x x x x x x x x x x

x x x x x x x x x x22 3 4 5 2 3 4 5

1 2 3 4 1 2 3 5 1 2 3 4 5

1

1 1

x x x x x x x

x x x x x x x x x x x x x x

( ) −( )
= − − − +( − 11 2 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 3 4 5 1 2 3

x x x x x x x x x x x x x

x x x x x x x x x x x x x

+ +

− − + 44 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4

x x x x x x x x x x x

x x x x x x x x x x x x x x x

+ −

+ − − 55 1 2 3 4 5 2 3 4 51+ ) −( )x x x x x x x x x

= − − − − − +( )× −1 1 3 11 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 1 2 3 4 5x x x x x x x x x x x x x x x x x x x x x x22 3 4 5x x x( )

= − − − − −(
+ −

1 1

3
1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5

1 2 3 4 5 2 3

x x x x x x x x x x x x x x x x

x x x x x x x xx x x x x x x x x x x x4 5 1 2 3 4 5 1 2 3 4 54 3+ − )

= + + + + −x x x x x x x x x x x x x x x x x x x x x x x x x1 2 3 4 1 2 3 5 1 3 4 5 2 3 4 5 1 2 4 5 1 2 3 4 54 .

(b)	 Find the system reliability with the reliability values of the components given 
above.

Solution:
Taking the expected value of the structure function, we can calculate the system reli-
ability as

R RR R R RR R R RR R R R R R R RR R R RR R R RS = + + + + −1 2 3 4 1 2 3 5 1 3 4 5 2 3 4 5 1 2 4 5 1 2 3 44 55

=( )( )( )( )+( )( )( )( )+( )0 90 0 95 0 85 0 80 0 90 0 95 0 85 0 75 0 90 0. . . . . . . . . .. . .

. . . . . . .

85 0 80 0 75

0 90 0 85 0 80 0 75 0 90 0 95 0

( )( )( )
+ ( )( )( )( )+( )( ) 885 0 75

4 0 90 0 95 0 85 0 85 0 75

0 5814 0 5451

( )( )
− ( )( )( )( )( )
= + +

.

. . . . .

. . 00 4590 0 4845 0 5130 1 744

0 8388

. . . .

. .

+ + −
=

17.5  Summary

The reliability of the system is a function of the reliabilities of its components and 
building blocks. To design, analyze, and evaluate the reliability and maintainability 
characteristics of a system, there must be an understanding of the system’s relation-
ships to all the subsystems, assemblies, and components. Many times this can be 
accomplished through logical and mathematical models. Engineering analysis of a 
system has to be conducted in order to develop a reliability model. Based on this 
analysis, a reliability block diagram is developed, which can be used to calculate 
various measures of reliability and maintainability. A reliability block diagram is a 
pictorial way of showing the success or failure combinations for a system. A system 
reliability block diagram presents a logical relationship of the system, subsystems, and 
components.

In a series system, all subsystems must operate successfully if  the system is to func-
tion or operate successfully. This implies that the failure of any subsystem will cause 
the entire system to fail. Redundancy is a strategy to resolve this problem. 
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Redundancy exists when one or more of the parts of a system can fail and the system 
will still be able to function with the parts that remain operational. Two common 
types of redundancy are active and standby. In active redundancy, all the parts are 
energized and operational during the operation of a system. In standby redundancy, 
some parts do not contribute to the operation of the system, and they get switched 
on only when there are failures in the active parts. In standby redundancy, the parts 
in standby ideally should last longer than the parts in active redundancy. It is often 
difficult to realize the benefits of redundancy if  there are common mode failures, load 
sharing, and switching and standby failures. In addition to series systems, there are 
complex systems. If  the system architecture cannot be decomposed into some com-
bination of series-parallel structures, it is deemed a complex system. These two types 
of systems, series-parallel and complex, require different strategies for monitoring and 
evaluating system reliability.

Problems

17.1  The reliability block diagram of a system is given below. The number in each 
box is the reliability of the component. Find the reliability of the system.

0.99

0.75

0.85

0.91

0.70

0.86

0.80 0.70

0.950.90
A

B

C

Thus, A, B, and C are three subsystems that are in parallel.

17.2  The reliability block diagram of a system is given below. The number in each 
box is the reliability of the component. Find the reliability of the system.

0.95

0.75

0.85

0.90

0.93

0.80

0.950.90



403

Problems

17.3  There are three components, A, B, and C, and they are represented by different 
blocks in the following two reliability block diagrams. Both reliability block diagrams 
use the same component twice. Let the reliabilities of the components be denoted by 
RA, RB, and RC.

A B C

CBA

A

A B

B C

C

(a)	 Is there a difference in reliability between the two configurations when the failures 
or success of all the components are independent of each other? Which system 
configuration or reliability block diagram has higher reliability? Explain your 
answer.

(b)	 Which configuration is more susceptible to common mode failure and why? 
Assume that each component (A, B, and C) can fail primarily by different mecha-
nisms and those mechanisms are affected by different loads.

17.4  The reliability block diagram shown below is a complex system that cannot be 
decomposed into a “series-parallel” configuration. We want to determine the reliabil-
ity equation for the system using the conditional probability method. We have decided 
to use the component B for the decomposition. Draw the two reliability block dia-
grams that result from “B operating” and “B failed” conditions.

A B C

FED

17.5  Consider the system shown in the block diagram and derive an equation for the 
reliability of the system. RX denotes the reliability of each component in the system, 
where X is the name of the component. For stage 3 (four C components in parallel), 
and it is a two-out-of-four system, that is, two components need to operate for the 
system to operate.
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A

B

B

C

C

C

C

17.6  Derive (manually) the reliability equation of the system shown below. This is a 
complex dynamic system and the failure distribution for each component is shown in 
the table.

A

B D

C

E

Component Failure Distribution Parameter (in Hour or Equivalent)

A Weibull 3 parameter β = 3, η = 1000, γ = 100
B Exponential MTBF = 1000
C Lognormal Mean = 6, standard deviation = 0.5
D Weibull 3 parameter β = 0.7, η = 150, γ = −100
E Normal Mean = 250, standard deviation = 15

Find the following for this complex system:

(a)	 System reliability at 100 hours

(b)	 System reliability at 0 hours

(c)	 Failure rate at 1000 hours

(d)	 Time when wearout region begins (use the graph)

(e)	 How long does it take for 75% of the system to fail?

What happens to the results if  you switch the properties of component C and D?
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Problems

17.7  Consider a series system composed of two subsystems where the first subsystem 
has a Weibull time to failure distribution with parameters η = 2 and θ = 200 hours. 
The second subsystem has an exponential time to failure distribution with θ = 300 
hours. Develop the following functions for the system:

(a)	 Find the hazard rate function.

(b)	 Find the reliability function.

17.8  Consider a parallel system composed of two identical subsystems where the 
subsystem failure rate is λ, a constant.

(a)	 Assume a pure parallel arrangement and plot the reliability function using a 
normalized time scale for the abscissa as

′ =t tλ.

(b)	 Assume a standby system with perfect switching and plot this reliability function 
on the same graph.

(c)	 Assume that the standby system has a switch with a probability of failure of 0.2, 
and plot this reliability function on the same graph.

(d)	 Compare the three systems.

17.9  A system consists of a basic unit and two standby units. All units (basic and the 
two standby) have an exponential distribution for time to failure with a failure rate 
of λ =  0.02 failures per hour. The probability that the switch will perform when 
required is 0.98.

(a)	 What is the reliability of the system at 50 hours?

(b)	 What is the expected life or MTTF for the system?

17.10  Consider a two-unit pure parallel arrangement where each subsystem has a 
constant failure rate of λ, and compare this to a standby redundant arrangement that 
has a constant switch failure rate of λSW. Specifically, what is the maximum permis-
sible value of λSW such that the pure parallel arrangement is superior to the standby 
arrangement?

17.11  Consider a system that has seven components and the system will work if  any 
five of the seven components work (5-out-of-7 system). Each component has a reli-
ability of 0.92 for a given period. Find the reliability of the system.

17.12  Consider the following system, which consists of five components. The reli-
abilities of the components are as follows:

1

2

5

4

3
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R1 0 95= .

R2 0 95= .

R3 0 96= .

R4 0 85= .

R5 0 87= . .

(a)	 Find the exact reliability of the system using the concepts of series and parallel 
models.

(b)	 Find all the minimum paths and minimum cuts for the system.

(c)	 Find the structure function φ(x) using the minimum paths.

(d)	 Fine the structure function φ(x) using minimum cuts and show that you get the 
same answer as in part (c).

(e)	 Find an expression for the reliability of the system based on the structure function 
developed in part (c). Find the reliability using this equation and show that you 
get the same answer as you get in part (a).

(f)	 Find the lower bound, RL, and the upper bound, RU, on the system reliability 
using minimum paths and minimum cuts.

17.13  A system has four components with the following reliability block diagram:

1

2

3

4

The reliability of the four components is as follows:

R1 0 85= .

R2 0 95= .

R3 0 80= .

R4 0 90= . .

(a)	 Find the exact reliability of the above system using the concepts of series and 
parallel models.

(b)	 Find all the minimum paths and minimum cuts for the above system.
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Problems

(c)	 Find the structure function, φ(x), of the system using (1) minimum paths and (2) 
minimum cuts. Show that you get the same answer in both cases. Use the structure 
function to find the exact value of the system reliability.

(d)	 Find the lower bound and upper bound on system reliability with the above reli-
ability numbers of the components using all the minimum paths and minimum 
cuts.




