Chapter 1: A Physics Toolkit

1 - The standard SI unit of mass is the \qquad .
A) kilometer
B) kilogram
C) pound
D) kilomole

2 - If one were to divide 3.90 by 7.2 , what would the answer be with the correct number of significant digits?
A) 0.54
B) 0.542
C) 1
D) 0.5417

3 - The valid digits in a measurement are called \qquad .
A) uncertain digits
B) significant digits
C) powers of 10
D) valid digits

4 - Solve the following problem and express the answer in scientific notation: $4.75 \times 10^{3} \mathrm{~kg}+8.24 \times 10^{3} \mathrm{~kg}$.
A) $1.299 \times 10^{3} \mathrm{~kg}$
B) $1.299 \times 10^{4} \mathrm{~kg}$
C) $1299 \times 10^{3} \mathrm{~kg}$
D) $12,990 \mathrm{~kg}$

5 - Convert 243 ng to its equivalent in kilograms.
A) $2.43 \times 10^{-10} \mathrm{~kg}$
B) $2.43 \times 10^{-11} \mathrm{~kg}$
C) $2.43 \times 10^{9} \mathrm{~kg}$
D) $2.43 \times 10^{-7} \mathrm{~kg}$

6 - The multiplier for SI units with the prefix pico is \qquad .
A) 10^{-15}
B) 10^{-12}
C) 10^{-9}
D) 10^{-6}

7 - The SI base unit of length is the \qquad .
A) foot
B) meter
C) kilometer
D) candela

8 - In order to convert a quantity expressed in one unit into the same quantity in a different unit, use a(n) \qquad .
A) calculation coefficient
B) notation factor
C) conversion factor
D) algebraic quantity

9 - The multiplier for SI units with the prefix mega is \qquad
A) 10^{6}
B) 10^{9}
C) 10^{12}
D) 1,015

10 - Convert 57.7 kg to grams.
A) $5.77 \times 10^{5} \mathrm{~g}$
B) $5.77 \times 10^{3} \mathrm{~g}$
C) $5.77 \times 10^{4} \mathrm{~g}$
D) $5.77 \times 10^{6} \mathrm{~g}$

11 - Combinations of SI base units are called \qquad .
A) significant units
B) base units
C) calculated units
D) derived units

12 - Which of the following operations would yield an answer of 0.5417 to the correct number of significant digits?
A) $3.900 / 7.200$
B) $3.9000 / 7.20$
C) $3.900 / 7.20$
D) $3.9000 / 7.2000$
13 - The multiplier for SI units with the prefix micro is \qquad .
A) 10^{-15}
B) 10^{-12}
C) 10^{-9}
D) 10^{-6}
14 - Convert 1.45 km to meters.
A) $14.5 \times 10^{3} \mathrm{~m}$
B) $1.45 \times 10^{-3} \mathrm{~m}$
C) $0.145 \times 10^{-3} \mathrm{~m}$
D) $1.45 \times 10^{3} \mathrm{~m}$
15 - The multiplier for Sl units with the prefix femto is \qquad .
A) 10^{-15}
B) 39733
C) 10^{-9}
D) 10^{-6}
16 - The standard SI unit of time is the \qquad -
A) minute
B) hour
C) millisecond
D) second
17 - The multiplier for SI units with the prefix deci is \qquad .
A) 10^{1}
B) 10^{2}
C) 10^{-1}
D) 10^{-2}
18 - The apparent shift in the position of an object when it is viewed from different angles is caused by \qquad .
A) imprecise measurement
B) inaccuracy
C) parallax
D) faulty instruments
19 - In the figure below, if a fourth student measured the spring's length to be $14.2 \pm 0.2 \mathrm{~cm}$, would this agree with any of the other students' measurements?
A) Yes, it agrees with only student 1 .
B) Yes, it agrees only with student 3
C) Yes, it agrees with students 1 and 3 .
D) No.
20 - \qquad describes how well the results of an experiment agree with the standard value.
A) Significance
B) Accuracy
C) Certainty
D) Precision

21 - \qquad describes the degree of exactness in a measurement.
A) Precision
B) Significance
C) Certainty
D) Accuracy
22 - The property of a straight line on a graph that is the ratio of the vertical difference between two points to the horizontal difference between the same two points is the \qquad _.
B) rise
C) intercept
D) tangent

23 - Extrapolating from the figure below, if a mass of 45.0 g were hung on the spring, how long would the spring be?
A) 17.3 cm
B) 576 cm
C) 3.6 cm
D) 46.1 cm

24 - What value is calculated by dividing rise by run?
A) acceleration of a moving object exhibiting uniform motion
B) angular velocity

C) the slope of a straight line
D) the angle of a straight line

25 - In the figure below, what is the physical meaning of the value for b ?
A) It is the distance from the bottom of the spring to the suspended mass.
B) It is the length of the spring when no masses are suspended from it.
C) It is the length of the spring when the experiment is over.
D) It is the distance from the top of the spring to the suspended mass.

Chapter 2: Representing Motion

1-A(n) \qquad is a series of images of a moving object that records its position after equal time intervals.
A) frame
B) operational definition
C) motion diagram
D) association

2 - The vector that represents the sum of two or more vectors is called the \qquad .
A) displacement
B) speed
C) resultant
D) direction

3 - In the particle model, the \qquad of the object are (is) ignored.
A) internal motions
B) motion diagram
C) position
D) acceleration

4 - The length of the position vector on a motion diagram is proportional to the \qquad .
A) distance of the object from the origin
B) distance of the object from the vertical intercept

2- Luis goes for a walk. Sometime later, his friend Tai starts to walk after her. Their motions are represented by the position-time graphs.
a. How long had Luis been walking when Tai started his walk?
b. At what time and Position Tai will pass by the Luis?
c. Who is moving faster? How can you tell?

3 - Refer to the diagram below to answer the following questions a. What is the speed of the object during time interval 0 to 4 seconds?
b. Describe the motion of the object during time interval 4 to 6 seconds
c. Compare the motion of the object during time interval 0 to 4 seconds to that from 6 to 10 seconds \qquad
4 - The graph in Figuredepicts Jim's movement along a straight A. path. The origin is at one end of the path. Write a story describing Jim's movements along the path that would correspond to the motion represented by the graph.
B. When is Jim 6.0 m from the origin?
\qquad
C. How much time passes between when Jim starts moving and when

\qquad
 he is 12.0 m from the origin?

Chapter 3: Accelerated Motion

1 - \qquad is the change in velocity divided by the time needed for the change to occur.
A) Displacement
B) Average velocity
C) Average acceleration
D) Speed

2 - Acceleration describes the rate of change in \qquad .
A) position
B) velocity
C) mass
D) gravity

3 - \qquad means that equal displacements occur during successive equal time intervals.
A) Average speed
B) Uniform motion
C) Average acceleration
D) Uniform acceleration

4 - If a car travels 100 km in a straight line in the first hour of its trip, 100 km in a straight line in the next hour, and continues in this way, its motion is \qquad .
A) accelerated
B) dynamic
C) irregular
D) uniform

5 - The slope of the line tangent to the curve on a velocity-time graph at a specific instant of time is the \qquad .
A) average velocity
B) instantaneous velocity
C) instantaneous acceleration
D) displacement

6 - A car moving north at $80 \mathrm{~km} / \mathrm{h}$ turns and travels south at $65 \mathrm{~km} / \mathrm{h}$. What are the magnitude and direction of the change in velocity?
A) $145 \mathrm{~km} / \mathrm{h}$, south to north
B) $145 \mathrm{~km} / \mathrm{h}$, north to south
C) $25 \mathrm{~km} / \mathrm{h}$, north to south
D) $25 \mathrm{~km} / \mathrm{h}$, south to north

7 - If the motion in the figure below continued on at that same acceleration, what would the object's speed be at $\mathrm{t}=10.00 \mathrm{~s}$?
A) $25.0 \mathrm{~m} / \mathrm{s}$
B) $100.0 \mathrm{~m} / \mathrm{s}$
C) $50.0 \mathrm{~m} / \mathrm{s}$
D) $40.0 \mathrm{~m} / \mathrm{s}$

8 - How far does a car travel in 30.0 s while its velocity is changing from $50.0 \mathrm{~km} / \mathrm{h}$ to $80.0 \mathrm{~km} / \mathrm{h}$ at a uniform rate of acceleration?
A) $1.95 \times 10^{3} \mathrm{~m}$
B) 252 m

MR: ABDELKHALEK
C) 5.41×10^{2}
D) $1.08 \times 10^{3} \mathrm{~m}$
$9-\operatorname{In}$ the figure below, what is the displacement of the object between 0.0 and 5.0 s ?
A) 75.0 m
B) 5.0 m
C) 150.0 m
D) 30.0 m

10 - A car with a velocity of $30 \mathrm{~m} / \mathrm{s}$ accelerates uniformly at the rate of 2.0 $\mathrm{m} / \mathrm{s}^{2}$ for 10 s . What is its final velocity?

A) $50 \mathrm{~m} / \mathrm{s}^{2}$
B) $40 \mathrm{~m} / \mathrm{s}^{2}$
C) $40 \mathrm{~m} / \mathrm{s}$
D) $50 \mathrm{~m} / \mathrm{s}$

11- How long will it take an airplane at rest that accelerates uniformly at $2.5 \mathrm{~m} / \mathrm{s}^{2}$ to reach the ground velocity of $7.0 \times 10^{1} \mathrm{~m} / \mathrm{s}$ that is required for take off?
A) 28 s
B) 35 s
C) 11 s
D) 4 s

12 - A car accelerates uniformily at a rate of $0.50 \mathrm{~m} / \mathrm{s}^{2}$ for $1.0 \times 101 \mathrm{~s}$. Its final velocity is $23 \mathrm{~m} / \mathrm{s}$. What is the initial velocity?
A) $18 \mathrm{~m} / \mathrm{s}^{2}$
B) $28 \mathrm{~m} / \mathrm{s}$
C) $28 \mathrm{~m} / \mathrm{s}^{2}$
D) $18 \mathrm{~m} / \mathrm{s}$

13 - The a-t graph corresponding to the v-t graph below would be a \qquad .
A) straight line with a constant positive slope

B) line beginning at the origin with increasing positive slope
C) straight vertical line
D) straight horizontal line above the t axis

14 - What is the minimum length runway needed to accommodate airplanes that can accelerate uniformly at $2.7 \mathrm{~m} / \mathrm{s}^{2}$ and must reach a ground velocity of $64 \mathrm{~m} / \mathrm{s}$ before they can take off?
A) $7.6 \times 10^{2} \mathrm{~m}$
B) $1.5 \times 10^{2} \mathrm{~m}$
C) $7.6 \times 10^{3} \mathrm{~m}$
D) $1.5 \times 10^{3} \mathrm{~m}$

15 - Find the uniform acceleration that would cause a car's velocity to change from $27 \mathrm{~m} / \mathrm{s}$ to $45 \mathrm{~m} / \mathrm{s}$ in a 6.0 -s period.
A) $3.0 \mathrm{~m} / \mathrm{s}$
B) $18.0 \mathrm{~m} / \mathrm{s}$
C) $18.0 \mathrm{~m} / \mathrm{s}^{2}$
D) $3.0 \mathrm{~m} / \mathrm{s}^{2}$

16 - In the graph below, what is the total displacement of the object?
A) 75.0 m
B) 0 m
C) -25.0 m
D) 500.0 m

17-A 75-kg swimmer steps off a 10.0-m tower. What is the swimmer's velocity on hitting the water?
A) $-14.0 \mathrm{~m} / \mathrm{s}$
B) $27.1 \mathrm{~m} / \mathrm{s}$
C) $38.3 \mathrm{~m} / \mathrm{s}$
D) 0.25

18 - A ball falls freely from rest for 15.0 s . Calculate the ball's velocity after 15.0 s .
A) $-78 \mathrm{~m} / \mathrm{s}$
B) $78 \mathrm{~m} / \mathrm{s}$
C) $0 \mathrm{~m} / \mathrm{s}$
D) $-147 \mathrm{~m} / \mathrm{s}$

19 - A tennis ball is dropped from 1.5 m above the ground, touches the ground for 0.008 s and rebounds to a height of 0.75 m . What is the ball's velocity when it hits the ground?
A) $-5.4 \mathrm{~m} / \mathrm{s}^{2}$
B) $-5.4 \mathrm{~m} / \mathrm{s}$
C) $-3.8 \mathrm{~m} / \mathrm{s}$
D) $3.8 \mathrm{~m} / \mathrm{s}^{2}$

20 - A bicycle rider travels 15 km in 1.25 hours. What is the rider's average speed?
A) $10.5 \mathrm{~km} / \mathrm{h}$
B) $13.75 \mathrm{~km} / \mathrm{h}$
C) $12 \mathrm{~km} / \mathrm{h}$
D) $22.5 \mathrm{~km} / \mathrm{h}$

21 - Displacement is a change in \qquad -
A) speed
B) position
C) velocity
D) distance

22 - A track runner begins running from the starting line and reaches his race pace of 4 -minutes per mile in 5 seconds. What is the runner's acceleration?
A) $1.33 \mathrm{~m} / \mathrm{s}^{2}$
B) $6.67 \mathrm{~m} / \mathrm{s}^{2}$
C) $0.05 \mathrm{~m} / \mathrm{s}^{2}$
D) $0.001 \mathrm{~m} / \mathrm{s}$

1- If a car accelerates (speeds up) uniformly from $5 \mathrm{~m} / \mathrm{s}$ to $15 \mathrm{~m} / \mathrm{s}$ in 2 seconds, calculate the car's acceleration?

2 - : If a bus retards (slows down) uniformly from $14 \mathrm{~m} / \mathrm{s}$ to $4 \mathrm{~m} / \mathrm{s}$ in 5 seconds, find the acceleration of the bus?

3 - An automobile starts at rest and accelerates at $3.5 \mathrm{~m} / \mathrm{s} 2$ after a traffic light turns green. How far will it have gone when it is travel in get $25 \mathrm{~m} / \mathrm{s}$?

9-A different rock is thrown with an initial upward speed of $20 \mathrm{~m} / \mathrm{s}$ and the graph shown to the right is obtained
a. What is the acceleration of the rock?
b. Is the rock being thrown on Earth?
c. What is the speed of the rock when it reaches its highest point?
e. What is the displacement of the rock when it reaches its highest point?

قو انين عاشر عام ف 1

1 - مدخل الى الفيزياء A Physics Toolkit

Slope $=m=\frac{\text { rise }}{r u n}=\frac{\Delta y}{\Delta x}$	$y=m x+b$	$y=a x^{2}+b x+c$	$y=\frac{a}{x}$

2 -وصف الحركة REPRESENTING MOTION

$\begin{aligned} & R=A+B \\ & R=A-B \end{aligned}$	$\begin{aligned} \Delta t & =\boldsymbol{t}_{\boldsymbol{f}}-\boldsymbol{t}_{\boldsymbol{i}} \\ \Delta \boldsymbol{X} & =\boldsymbol{x}_{\boldsymbol{f}}-\boldsymbol{x}_{\boldsymbol{i}} \end{aligned}$	$\boldsymbol{S l o p}=\vec{v}_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}$
Average Speed $=v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\left\|\frac{x_{f}-x_{i}}{t_{f}-t_{i}}\right\|$		$x_{f}=\boldsymbol{v} t+x_{i}$
Accelerated motion الحركة المتسارعة		
$a_{\text {avg }}=s l o p=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}$	معادلات الحركة بعجلة ثابتة	معادلات الحركة للسقوط الحر
	$\begin{gathered} v_{f}=v_{i}+a t \\ v_{f}^{2}=v_{i}^{2}+2 a \Delta x \\ \Delta x=\frac{1}{2}\left(v_{i}+v_{f}\right) t \\ \Delta x=v_{i} t+\frac{1}{2} a t^{2} \end{gathered}$	$\begin{aligned} v_{f} & =v_{i}+g t \\ v_{f}^{2} & =v_{i}^{2}+2 g \Delta y \\ \Delta y & =\frac{1}{2}\left(v_{i}+v_{f}\right) t \\ \Delta y & =v_{i} t+\frac{1}{2} g t^{2} \end{aligned}$
$\mathrm{g}=-9.81 \mathrm{~m} / \mathrm{s}^{2}$		

