Chapter 1: A Physics Toolkit

ndard SI unit of mass is the
ndard SI unit of mass is the

- A) kilometer
- B) kilogram
- C) pound

D) kilomole

2 - If one were to divide 3.90 by 7.2, what would the answer be with the correct number of significant digits?

A) 0.54

B) 0.542

C) 1

D) 0.5417

3 - The valid digits in a measurement are called ______.

- A) uncertain digits
- B) significant digits
- C) powers of 10
- D) valid digits

4 - Solve the following problem and express the answer in scientific notation: 4.75×10^3 kg + 8.24×10^3 kg.

A) 1.299x10³ kg

- B) 1.299×10⁴ kg
- C) $1299 \times 10^3 \text{ kg}$
- D) 12,990 kg

5 - Convert 243 ng to its equivalent in kilograms.

A) 2.43×10⁻¹⁰ kg

- B) 2.43×10⁻¹¹ kg
- C) 2.43×10⁹ kg
- D) 2.43×10⁻⁷ kg

6 - The multiplier for SI units with the prefix pico is _____.

A) 10⁻¹⁵

B) 10⁻¹²

C) 10⁻⁹

D) 10⁻⁶

7 - The SI base unit of length is the _____.

A) foot

B) meter

C) kilometer

D) candela

8 - In order to convert a quantity expressed in one unit into the same quantity in a different unit, use a(n) ______.

- A) calculation coefficient
- B) notation factor
- C) conversion factor
- D) algebraic quantity

9 - The multiplier for SI units with the prefix mega is _____.

A) 10^6

B) 10⁹

C) 10¹²

D) 1,015

10 - Convert 57.7 kg to grams.

A) $5.77 \times 10^5 \text{ g}$

- B) 5.77×10^3 g
- C) 5.77×10^4 g

D) 5.77×10^6 g

11 - Combinations of SI base units are called ______.

- A) significant units
- B) base units

- C) calculated units
- D) derived units

12 - Which of the following operations would yield an answer of 0.5417 to the correct number of significant digits?

AL SHABHANA SCHOOL	PHYSICS G1	0 : GENERAL I	REVISION : SEM 1, 2018-2019			
A) 3.900/7.200	B) 3.9000/ 7.20	C) 3.900/7.20	D) 3.9000 / 7.2000			
13 - The multiplier for SI units with the prefix micro is						
A) 10 ⁻¹⁵	B) 10 ⁻¹²	C) 10 ⁻⁹	D) 10 ⁻⁶			
14 - Convert 1.45 km to meters	14 - Convert 1.45 km to meters.					
A) 14.5×10 ³ m	B) 1.45×10 ⁻³ m	C) 0.145×10 ⁻³ m	D) 1.45×10 ³ m			
15 - The multiplier for SI units	with the prefix femto	is				
A) 10 ⁻¹⁵	B) 39733	C) 10 ⁻⁹	D) 10 ⁻⁶			
16 - The standard SI unit of tim	e is the					
A) minute	B) hour	C) millisecond	D) second			
17 - The multiplier for SI units	with the prefix deci is	5				
A) 10 ¹ B)	10 ²	C) 10 ⁻¹	D) 10 ⁻²			
18 - The apparent shift in the p	osition of an object v	vhen it is viewed from different	angles is caused by			
A) imprecise measurement	B) inaccura	cy C) parallax	D) faulty instruments			
19 - In the figure below, if a found other students' measurements?		ed the spring's length to be 14.2	±0.2 cm, would this agree with any of the			
A) Yes, it agrees with only stude		B) Yes, it agrees only with stude	Mini Lab Data			
C) Yes, it agrees with students	1 and 3.	D) No.	(E) 15.0			
C) Yes, it agrees with students 1 and 3. D) No. 20 describes how well the results of an experiment agree with the standard value.						
value.		, -	5 14.0			
A) Significance	B) Accuracy	C) Certainty	13.7			
D) Precision			1 2 3 Student			
21 describes the degree of exactness in a measurement.						
A) Precision	B) Significance	C) Certainty	D) Accuracy			
22 - The property of a straight line on a graph that is the ratio of the vertical difference between two points to the horizontal						
difference between the same to	wo points is the					
			MR: ABDELKHALEK			

A) slope	B) rise	C) intercept	D) tangent		
23 - Extrapolating for spring, how long we		nass of 45.0 g were hung on the	Length of a Spring for Different Masses		
A) 17.3 cm	B) 576 cm	16.0			
C) 3.6 cm	D) 46.1 cm		(E) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F		
24 - What value is c	alculated by dividing rise b	y run?			
A) acceleration of a	moving object exhibiting ι	uniform motion	14.0 b = 13.7 run		
B) angular velocity			0 5 10 15 20 25 30 35 Mass (g)		
C) the slope of a stra	aight line				
D) the angle of a str	aight line		Length of a Spring		
25 - In the figure be	low, what is the physical m	neaning of the value for b?	for Different Masses		
A) It is the distance	from the bottom of the spr	ing to the suspended mass.	16.0		
B) It is the length of	the spring when no masse	s are suspended from it.	(E) # 15.0 rise		
C) It is the length of	the spring when the exper	iment is over.	14.0		
D) It is the distance	from the top of the spring	b = 13.7			
Chapter 2: Repro	esenting Motion		0 5 10 15 20 25 30 35 Mass (g)		
1 - A(n)	is a series of images of a m	oving object that records its posi	tion after equal time intervals.		
A) frame	B) operational definitio	n C) motic	on diagram D) association		
2 - The vector that r	epresents the sum of two o	or more vectors is called the	·		
A) displacement	B) speed	C) res	ultant D) direction		
3 - In the particle me	odel, the of the	object are (is) ignored.			
A) internal motions	B) motion	diagram C) po	sition D) acceleration		
4 - The length of the position vector on a motion diagram is proportional to the					
A) distance of the ol	bject from the origin	B) distan	ce of the object from the vertical intercept		
			MR: ABDELKHALEK		

AL SHABHANA SCHOOL PHYSICS G10: GENERAL REVISION: SEM 1, 2018-2019

AL SHABHANA SCHOO	L PHYSICS (310: GENERAL	REVISION: SEM 1, 2018-2019		
C) average speed		D) velocity			
5 - A motion diagram is a seri	5 - A motion diagram is a series of images of a moving object that records its position after				
A) 1/30 s B) equal	time intervals	C) it comes to rest	D) an acceleration		
6 - The is the poin	nt at which all variab	oles in a coordinate system have z	zero magnitude.		
A) axis	B) origin	C) intercept	D) coordinate system		
7 - Which of the following co	rrectly describes the	e displacement of an object that r	noves from position di to df?		
A) $\Delta d = df - di$	B) $v = \Delta d/\Delta t$	C) $\Delta df = di - df$	D) $\Delta d = df + di$		
8 - Which of the following is	not a scalar quantity	v?			
A) 314.7 g B) 6	150 km southwest	C) 25°C	D) 2 hours 27 minutes		
9 - To subtract two vectors, _	·				
A) reverse the direction of the	e second vector and	then add them	B) use the equation $R_2 = A_2 - B_2$		
C) use the same process as fo	or adding them, ther	change the sign of the final valu	e		
D) subtract 180° from $ heta$, the	n use the Law of Co	sines			
10 - Displacement is a chang	e in				
A) speed	B) position	C) distance	D) velocity		
11 - The magnitude of a vector	or is always	.			
A) a positive quantity	B) equal to the d	lirection C) equal to the	displacement D) a negative quantity		
12 - When an object is in motion, its must change.					
A) position	B) shape	C) size	D) acceleration		
13 - Two displacements are e	equal when				
A) the two magnitudes and d	irections are the sar	ne B) the	B) the two directions are the same		
C) they end at the same point		D) the	y begin at the same point		
14 - The difference between	ti and tf is the	·			
			MR: ABDELKHALEK		

AL SHABHANA SCHOO	L PHYSICS	G10: GENERAL	REVISION : SEM 1, 2018-201	9	
A) displacement	B) velocity	C) time interval	D) average speed		
15 - To calculate the distance traveled continuously in a straight line,					
A) divide the distance traveled by the time needed to travel the distance					
B) subtract the cosine of the a	ingle between the	e starting and finishing positions f	rom the square of the distance traveled	I	
C) divide the change in veloci	ty by the time ov	er which the change occurs			
D) subtract starting position f	rom final position	1.			
16 - A(n) tells you	where the zero p	oint of the variable you are study	ng is located and the direction in whicl	n the	
values increase.					
A) coordinate system	B) orig	çin C) axis	D) intercept		
17 - On a position-time graph	n, run =				
Α) Δα	В) Δν	C) Δ_t	D) Δ d		
18 - On a position-time graph	n, rise =				
A) Δ d	B) Δ t	C) Δ s	D) $\Delta_{ m V}$		
19 - You and a friend leave school at the same time. You drive at a constant 5.5×10^1 km/h and your friend drives 7.0×10^1					
km/h. How long does it take each car to reach a mall that is 25 km from the school?					
A) you: 1 hour 40 minutes, your friend 36 minutes B) you: 2.2 hours, your friend: 2.8 hours					
D) you: 21 minutes, your friend: 27 minutes C) you: 27 minutes, your friend: 21 minutes					
20 - You drive a car for 2.0 h at 60 km/h, then for another 3.0 h at 85 km/h. What is your average velocity?					
A) 75 km/h ²	3) 73 km/h	C) 75 km/h	D) 73 km/h		
21 - The slope of the line tangent to the curve on a position-time graph at a specific time is the					
A) instantaneous acceleration	n B) in	stantaneous velocity C	average velocity D) displace	ement	

MR: ABDELKHALEK

AL SHABHANA SCHOOL PHYSICS G10: GENERAL

REVISION: SEM 1, 2018-2019

22 - Extrapolating from the graph below, where would the object be at t = 7 s?

- B) -15 meters
- C) 7 meters
- D) 10 meters

23 - The ______ is the ratio of the total distance traveled to the time interval.

A) displacement

B) average speed

C) acceleration

D) instantaneous velocity

- **24** Based on the graph below, what is the object's velocity at t = 4 s?
- A) 0 m/s
- B) 5 m/s
- C) -5 m/s
- D) 4 m/s
- **25** Which of the following equations can be used to find the position of an object moving at constant velocity?

B)
$$\Delta d = df - di$$

C)
$$df = di + vt$$

D)
$$\tan \theta = Ry/Rx$$

- **1** Refer to the following position-time graph to answer the questions 1-6
- 1. What is independent quantity?
- 2. What is dependent quantity?
- **3.** What is the position of the object at 6.0 s?
- **4.** How long does it take to travel from origin to 6.0 m?
- **5.** How far does the object travel for every second it is in motion?

AL SHABHANA SCHOOL PHYSICS G10: GENERAL **REVISION: SEM 1, 2018-2019** 6. If the object continues at this speed, when will the object reach 18.0 m? 50.0 2 - Luis goes for a walk. Sometime later, his friend Tai starts to walk after her. Their Luis 45.0 motions are represented by the position-time graphs. 40.0 a. How long had Luis been walking when Tai started his walk? 35.0 30.0 25.0 **b.** At what time and Position Tai will pass by the Luis? 20.0 15.0 10.0 c. Who is moving faster? How can you tell? 20.0 30.0 Time (s) 3 - Refer to the diagram below to answer the following questions a. What is the speed of the object during time interval 0 to 4 10 seconds?.... **b**. Describe the motion of the object during time interval 4 to 6 position (m) seconds. c. Compare the motion of the object during time interval 0 to 4 seconds to that from 6 to 10 seconds..... time (s) 4 - The graph in Figure depicts Jim's movement along a straight Position v. Time A . path. The origin is at one end of the path. 14.0 Write a story describing Jim's movements along the path that would 12.0 correspond to the motion represented by the graph. 10.0 Position (m) 8.0 6.0 B. When is Jim 6.0 m from the origin? 4.0 2.0 30.0 10.0 20.0 40.0 50.0 C . How much time passes between when Jim starts moving and when Time (s) he is 12.0 m from the origin? D. What is Jim's average velocity between 37.0 s and 46.0 s? MR: ABDELKHALEK

Chapter 3: Accelerated Motion

1 - ______ is the change in velocity divided by the time needed for the change to occur.

- A) Displacement
- B) Average velocity
- C) Average acceleration
- D) Speed

2 - Acceleration describes the rate of change in ______.

A) position

B) velocity

C) mass

D) gravity

3 - _____ means that equal displacements occur during successive equal time intervals.

- A) Average speed
- B) Uniform motion
- C) Average acceleration
- D) Uniform acceleration

4 - If a car travels 100 km in a straight line in the first hour of its trip, 100 km in a straight line in the next hour, and continues in this way, its motion is ______.

- A) accelerated
- B) dynamic
- C) irregular

D) uniform

5 - The slope of the line tangent to the curve on a velocity-time graph at a specific instant of time is the ______.

- A) average velocity
- B) instantaneous velocity
- C) instantaneous acceleration
- D) displacement

6 - A car moving north at 80 km/h turns and travels south at 65 km/h. What are the magnitude and direction of the change in velocity?

A) 145 km/h, south to north

B) 145 km/h, north to south

C) 25 km/h, north to south

D) 25 km/h, south to north

7 - If the motion in the figure below continued on at that same acceleration, what would the object's speed be at t = 10.00 s?

A) 25.0 m/s

B) 100.0 m/s

C) 50.0 m/s

D) 40.0 m/s

8 - How far does a car travel in 30.0 s while its velocity is changing from 50.0 km/h to 80.0 km/h at a uniform rate of acceleration?

A) $1.95 \times 10^3 \text{ m}$

B) 252 m

MR: ABDELKHALEK

C) 5.41×10²

- D) 1.08×10^3 m
- **9** In the figure below, what is the displacement of the object between 0.0 and 5.0 s?
- A) 75.0 m

B) 5.0 m

C) 150.0 m

- D) 30.0 m
- 10 A car with a velocity of 30 m/s accelerates uniformly at the rate of 2.0 m/s² for 10 s. What is its final velocity?

- A) 50 m/s^2
- B) 40 m/s^2

C) 40 m/s

- D) 50 m/s
- 11 How long will it take an airplane at rest that accelerates uniformly at 2.5 m/s^2 to reach the ground velocity of $7.0 \times 10^1 \text{ m/s}$ that is required for take off?
- A) 28 s

B) 35 s

C) 11 s

D) 4 s

25.0

20.0

15.0

10.0

5.00

0.00

Velocity (m/s)

- **12** A car accelerates uniformily at a rate of 0.50 m/s^2 for $1.0 \times 101 \text{ s}$. Its final velocity is 23 m/s. What is the initial velocity?
- A) 18 m/s^2

B) 28 m/s

- C) 28 m/s^2
- D) 18 m/s
- 13 The a-t graph corresponding to the v-t graph below would be a _____.

- B) line beginning at the origin with increasing positive slope
- C) straight vertical line
- D) straight horizontal line above the t axis
- 14 What is the minimum length runway needed to accommodate airplanes that can accelerate uniformly at 2.7 m/s^2 and must reach a ground velocity of 64 m/s before they can take off?
- A) 7.6×10^2 m
- B) 1.5×10² m

- C) 7.6×10^3 m
- D) 1.5×10^3 m
- 15 Find the uniform acceleration that would cause a car's velocity to change from 27 m/s to 45 m/s in a 6.0-s period.
- A) 3.0 m/s
- B) 18.0 m/s

C) 18.0 m/s^2

D) 3.0 m/s^2

20.0 m/s - 15.0 m/s 4.00 s - 3.00 s

5.00 m/s²

1.00 2.00 3.00 4.00 5.00

Time (s)

AL SHABHANA SCHOOL		TALIO (L	REVISION : SEWI 1, 2010-2015
4 - A race car travels on a stra	ight racetrack with a forward	velocity of 44 m/s a	nd slows at a constant rate to a velocity of 22
m/s over 11 s. How far does in		,	,
5 - A car with an initial veloci	ty of 24.5 m/s east has an acc	celeration of 4.2 m/s2	2 west. What is its displacement at the moment
that its velocity is 18.3 m/s ea			•
6 - You are driving a car, trave	eling at a constant velocity of	25 m/s along a strai	ght road, when you see a child suddenly run ont
the road. It takes 0.45 s for yo	u to react and apply the brak	es. As a result, the ca	r slows with a steady acceleration of 8.5 m/s2 in
the direction opposite your m	otion and comes to a stop. W	/hat is the total displa	acement of the car before it stops?
7 - Find the displacement of t	he objects represented by the	e following velocity-1	time graphs
_ 12]	12		ე ¹² ქ
(W) E 8.0-	(% 8.0+		(%) 8.0
<u>0</u> 4.0 €	3 4.0	-	4.0
² 0.0 ¹	i 0.0 -15	, , , , , i.o 8.o	0.0 4.0 8.0
0.0 4.0 6. Time (s)		e (s)	Time (s)
8 - A construction worker acc	identally drops a brick from	a high scaffold.	
a. What is the velocity of the b	orick after 4.0 s?		
b. How far does the brick fall	during this time?		

MR: ABDELKHALEK

AL SHABHANA SCHOOL PHYSICS G10: GENERAL

REVISION: SEM 1, 2018-2019

9 - A different rock is thrown with an initial upward speed of 20 m/s and the **graph** shown to the right is obtained

b. Is the rock being thrown on Earth?

c. What is the speed of the rock when it reaches its highest point?

e. What is the displacement of the rock when it reaches its highest point?....

قوانين عاشرعام ف 1					
1 - مدخل الى الفيزياء A Physics Toolkit					
Slope = $m = \frac{rise}{run} = \frac{\Delta y}{\Delta x}$	y = mx + b		$y = a x^2 + bx + c$	$y=\frac{a}{x}$	
F	REPRESENTING MOTI	لحركة ON	2 - وصف ا		
R = A + B	$\Delta t = t_f - t_i$	$Slop = \vec{v}_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$			
R = A - B	$\Delta X = x_f - x_i$	$\Delta t = t_f - t_i$			
Average Speed = $v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i} $ $x_f = vt + x_i$					
3 - الحركة المتسارعة Accelerated motion					
$a_{avg} = slop = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$	معادلات الحركة بعجلة ثابتة $v_f=v_i+a\ t \ v_f^2=v_i^2+2a\ \Delta x$		حركة للسقوط الحر	معادلات ال	
			$v_f = v_i + g t$		
			$v_f^2 = v_i^2 + 2g \Delta y$		
	$\Delta x = \frac{1}{2} (v_i + v_f) t$		$\Delta y = \frac{1}{2} (v_i +$	v_f) t	
	$\Delta x = v_i t + \frac{1}{2}$	$a t^2$	$\Delta y = v_i t + \frac{1}{2}$	$\frac{1}{2} g t^2$	
$g = -9.81 \text{ m/s}^2$					