
1

Chapter 1

Software Quality Engineering: A Practitioner’s Approach, First Edition. Witold Suryn.
© 2014 the Institute of Electrical and Electronics Engineers, Inc.  
Published 2014 by John Wiley & Sons, Inc.

Why Software Quality 
Engineering?

Quality has become a critical attribute of software products as its absence produces 
financial, health, and sometimes life losses. At the same time the definition, or scope, 
of the domain of software quality has evolved continuously from a somewhat techni-
cal perspective to a perspective that embraces human aspects such as usability and 
satisfaction.

An increasing business-related recognition of the importance of software quality 
has also made software engineering’s “center of gravity” shift from creating an 
engineering solution toward satisfying the stakeholders. Such a shift very clearly 
reflects the trend within the community of stakeholders who more and more often 
say: “I do not want to know about bits and bytes. I want a solution that satisfies my 
needs.” The critical word here is “satisfaction,” for it covers both functional and 
quality perception of the software solution being used.

Development organizations confronted with such an approach are, in general, 
not entirely prepared to deal with it even if their engineers are adequately educated. 
Moreover, if the education is there, it is quite often acquired through experience 
rather than a regular educational process, as the software engineering curricula being 
offered, with few exceptions [1], do not emphasize the importance of teaching soft-
ware quality engineering.

One of practical responses to such a situation was the development of Software 
Engineering Body of Knowledge (SWEBOK) [2]. SWEBOK seeks to provide the 
knowledge that allows universities to build such educational programs that will allow 
producing professionals able to stay abreast of the fast-moving industry, but it also 
adds a scientific and innovative component to best practices. The continuation of 
this approach is this book.

So let’s ask the question, “why software quality engineering?” as three partial 
questions:



2      Chapter 1  Why Software Quality Engineering?

•	 Why software?  Because in contemporary social life software, systems and 
services rendered by software are omnipresent, beginning with the watches 
we wear, ending with nuclear electricity plants or spaceships.

•	 Why quality?  Because if these instances of software work without the required 
quality we may be late, dead, or lost in space.

•	 Why engineering?  As in every technical domain, it is engineering that trans-
forms ideas into products, it is the verified and validated set of “to-dos” that 
help develop the product that not only has required functionalities but also 
executes them correctly.

To make this picture complete, another question should be asked: why at all? There 
is in fact only one reason: the user. Despite decades of evolution of information 
technology and its tools, the user still faces risky, unreliable, and quite often unintel-
ligent products that far too often waste his or her time or money, and wear off his 
or her patience. So quality engineering applied to software, systems, and related 
services is intended to assist developers in building good, intelligent, and reliable 
products; to help users request and verify their quality needs; and for those who 
want to use software as easily as they use a dishwasher, to shield against faulty 
products and unprofessional suppliers.

1.1  SOFTWARE QUALITY IN THE REAL WORLD

For the users, a software product more and more often corresponds to a black box 
that must effectively support their business processes. As a consequence of this 
natural approach, business needs become a driving force of quality software product 
development and a stakeholder moves to the position of a car buyer and user rather 
than an involuntary expert in software engineering. And what he or she perceives at 
the end corresponds to expressed satisfaction at using a software product that pos-
sesses both required functionalities and required quality. When one of them is 
missing, a painful process of improvements and negotiations takes place to often 
end by changing the supplier and replacing the product with one that is mature 
enough do its job well on both accounts.

What exactly constitutes the quality of a product is often the subject of hot 
debate. The reason the concept of quality is so controversial is that there is no 
common agreement on what it means. For some it is “degree to which a set of inher-
ent characteristics fulfills requirements” [3], whereas for others it can be synony-
mous with “customer value,” or even “defect levels” [4]. A possible explanation as 
to why any of these definitions could not win a consensus is that they generally do 
not recognize different perspectives of quality, such as for instance the five proposed 
by Kitchenham and Pfleeger [5]:

•	 The transcendental perspective deals with the metaphysical aspect of quality. 
In this view of quality, it is “something toward which we strive as an ideal, 
but may never implement completely.”



Why Software Quality Engineering?      3

•	 The user perspective is concerned with the appropriateness of the product for 
a given context of use.

•	 The manufacturing perspective represents quality as conformance to require-
ments. This aspect of quality is stressed by standards such as ISO 9001 [6] 
or models such as the Capability Maturity Model [7].

•	 The product perspective implies that quality can be appreciated by measuring 
the inherent characteristics of the product.

•	 The final perspective of quality is value-based. This perspective recognizes 
that the different perspectives of quality may have a different importance, or 
value, to various stakeholders.

One could argue that in a world where conformance to ISO and IEEE standards 
is increasingly present in contractual agreements and used as a marketing tool, all 
the perspectives of quality are subordinate to the manufacturing view. This predomi-
nance of the manufacturing view in software engineering can be traced back to the 
1960s, when the U.S. Department of Defense and IBM gave birth to Software 
Quality Assurance [8]. This has led to the belief that adherence to a development 
process, as in manufacturing, will lead to a quality product. The corollary to this 
belief is that process improvement will lead to improved product quality.

This opinion is not shared unanimously, as some parts of both industry and 
academia find it inaccurate or at least flawed. For example, G. Dromey states:

The flaw in this approach [that you need a quality process to produce a quality product] 
is that the emphasis on process usually comes at the expense of constructing, refining, 
and using adequate product quality models [9].

Kitchenham and Pfleeger reinforce this opinion by stating:

There is little evidence that conformance to process standards guarantees good products. 
In fact, the critics of this view suggest that process standards guarantee only uniformity 
of output [5].

Furthermore, data available from Agile [4] projects show that high quality is attain-
able without following a manufacturing-like approach.

However, some studies conducted at Raytheon [10] and Motorola [11] showed 
that there is indeed a correlation between the maturity level of an organization as 
measured by the Capability Maturity Model (CMM) and the quality of the resulting 
product. These studies provide data on how a higher maturity level (as measured by 
the CMM) can lead to:

•	 Improved error/defect density (i.e., the error/defect density lowers as maturity 
improves)

•	 Lower error rate

•	 Lower cycle time (time to complete parts of the lifecycle)

•	 Better estimation capability.



4      Chapter 1  Why Software Quality Engineering?

From these results, one could conclude the quality can be improved by following a 
mature process. Studies of the development of lifecycle models presented by Geor-
giadou [12] indicate that the maturity of the development process is reflected by the 
emphasis and allocation of testing and other quality assurance activities. The study 
demonstrated that the more mature the process and its underlying life cycle model, 
the earlier the identification of errors in the deliverables. However, these measured 
improvements are directly related to the manufacturing perspective of quality. There-
fore, such quality improvement efforts fail to address the other perspectives of 
quality. This might be one of the reasons for the perception of the “quality problem” 
as one of the main failings of the software engineering industry. Furthermore, studies 
show that improvement efforts rooted in the manufacturing perspective of quality 
are difficult to scale down to smaller projects and/or smaller teams [13, 14]. Indeed, 
rather than being scaled down in smaller projects, these practices tend to be not 
performed at all.

Over recent years, researchers have proposed new approaches and models that 
try to encompass more perspectives of quality than just the manufacturing view. 
Geoff Dromey [9, 15] proposed such a model in which the quality of the end product 
is directly related to the quality of the artifacts that are a by-product of the process 
being followed. The reasoning is that if quality artifacts are correctly designed and 
produced throughout the life cycle, then the end product shall manifest attributes of 
good quality. This approach can clearly be linked to the product perspective of 
quality with elements from the manufacturing view. This is certainly a step from the 
manufacturing-only approach, but it fails to view the engineering of quality as a 
process that covers all the perspectives of quality. In Pfleeger and Atlee [16], the 
reader can find valid arguments against approaches that focus only on the product 
perspective of quality:

This view [the product view] is the one often advocated by software metrics experts; 
they assume that good internal quality indicators will lead to good external ones, such 
as reliability and maintainability. However, more research is needed to verify these 
assumptions and to determine which aspects of quality affect the actual product’s use.

All of this may be true to a certain extent, but what ultimately counts is a customer’s 
yes said after the delivery is finalized.

Another absolutely natural trend observable within the “population of IT cus-
tomers” is the desire to be properly served without having to become proficient in 
information technology. A customer just wants to buy, learn how to use, and then 
simply use a software product, just as he or she does with a car or a TV. This boils 
down to an extended (or shall we just say “professional and mature”) responsibility 
of a software supplier, who now has to know not only what the customer is able to 
express, but also what the customer does not know that he or she knows. And then, 
when all questions are asked and answered, the supplier must continue on his or her 
way until the product is built and delivered to the customer’s satisfaction.

Similarly to mathematics, the most important part of software and software 
quality engineering is to understand the problem. Whatever comes after is the result 



Why Software Quality Engineering?      5

of knowledge applied to this understanding and, if we make an assumption that such 
knowledge exists, the final outcome makes the “executable form” of what was 
understood. The graveness of this statement is expressed by different kinds of sta-
tistics showing billion-dollar losses resulting from bad or incomplete understanding 
of the problem called a software product (a simple search on Google brings up 
thousands of hits on this subject). In case of software quality, the situation is even 
more dire, as the primary source of information, a customer, is usually able to at 
least signal his or her “functional” needs, but in the majority of situations is not 
knowledgeable enough to identify or discuss in precise terms the quality requested 
from the product under discussion. When it comes then to analyzing why something 
bad happened, customers blame suppliers (which is understandable) but the suppliers 
do not stay behind. From a purely professional point of view, one might ask: “Is that 
fair?” Who, between the user and the supplier, is supposed to be an expert, especially 
in a subject so difficult to define as quality? Should not it be the supplier who follows 
the process from Fig. 1.1 (with the customer having his or her “stated, implied or 
unaware” needs), in order to solicit, identify, and define required quality attributes 
and then later develop a software product that exhibits them? This question is a 
keynote and the main subject of this book.

1.1.1  Consumer Perspective

When a car manufacturer asks a customer about his or her opinion on the vehicle 
the latter uses or was using, the manufacturer, in fact, asks about an overall percep-
tion of the car in question, including both functionalities and the quality associated 
with them. In the case of software and even more in the case of software systems, 
the overall perception (or satisfaction) is heavily influenced by the verifiable exis-
tence of quality. During his many years of working in the IT industry and then 
teaching at a university, the author had the unique chance to ask the following 
question to IT professionals, students, and customers: “What would you be more 
inclined to accept, a system with a rich set of functionalities but with lower quality 
or the one with limited functionalities but with high quality?” The choice was in 
99% of cases the same: the second. Interesting that the choice was identical even 

Figure 1.1  From “stated, implied, and unaware” needs to fully defined software product (based on 
personal communication of M. Azuma).

All
Stakeholders’

Needs

State, Implied or
Unaware

Research
Identification

Collected and
Identified

Stakeholder’s
Needs

(business-oriented)

Quality in Use
Requirements
(selected and

specified needs)

Functional
Requirements

Selection
Specification

External
Quality

Requirements

Internal
Quality

Requirements

Influence

Functional
Design



6      Chapter 1  Why Software Quality Engineering?

if the interviewed persons were from different sides of the IT market “barricade,” 
suppliers and users. Obviously, the choice becomes less firm when suppliers return 
to their workstations (or we would have only high quality and bug-free software) 
but still, such unanimity may be interpreted as a good sign. The choice may sound 
“generic” as the reaction, but its real context varies for a supplier and a consumer 
and even inside these categories, as in the case of an individual and a corporate 
consumer.

1.1.1.1  Individual Consumer
In the majority of cases the individual consumer is a person with no face and no 
name. Unfortunately, the consumer quite often has no rights, too. The simple fact 
that almost every software on the planet before installation requires the acceptance 
of license terms that virtually free the manufacturer from any responsibility makes 
the existence of quality an extra effort that has in mind the good reputation of the 
supplier rather than the well being of the user. Currently, no known legal case initi-
ated by an individual user against an IT giant has been won. The most common 
individual user reaction to a software malfunction is “reboot, and pray it works a bit 
longer.” So, in a way, it is the user who is responsible for his or her own misery, for 
instead of (massively) protesting, even suing, the consumer tends to sit tight and stay 
quiet. There is also another perspective from which the subject may be looked at: 
how big is the population of faceless and disenfranchised users who experience 
serious troubles with individual user-targeted software? How many of us stretch the 
application to its limits and how many just float in the main and central current of 
available functionalities? From what we may observe, the latter category is domi-
nant, or the risk of huge financial losses would motivate the suppliers better. What 
could (or should) be done then to assure the minimal, acceptable quality of any 
software for a Mr. John Doe? One of the emerging options is the certification of IT 
products for the individual user market. The real value of the certification is however 
linked to the existence of real consequences, be they financial, legal, or even only 
hitting someone’s reputation. If the customer was inclined not to buy a noncertified 
IT product, the supplier would be motivated enough to see quality as an obligation, 
not as an option. The certification itself could be applied de jure or de facto, depend-
ing on the level of pressure a given society would decide to apply. One of the most 
important aspects of “quality for John Doe” is the identification and definition of 
what exactly constitutes the minimal, acceptable quality level. This definition would 
then become a pass/fail criterion used in the certification process. The very interest-
ing beginnings of activities aiming to increase individual consumer IT products’ 
quality can be observed in several countries such as France (Infocert [17]) and 
Poland (SASO [18]), or on an international level (Quality Assurance Institute [19]). 
Even if none of them is officially sanctioned as government requested, the market 
itself reacted in surprisingly positive way. In case of SASO Poland, several local IT 
corporations requested the possibility to begin certification process, finding it the 
obvious option for proving the reliability of their products and, in consequence, 
enhancing their market reach.



Why Software Quality Engineering?      7

1.1.1.2  Corporate Consumer
Corporate consumers may not always have one, identifiable face but in most cases 
they have recognizable power to demand and obtain. The fact of being “corporate” 
does not limit this category of IT customers to using only big IT structures, be it a 
system developed on demand or an individualized suite (like the ones from SAP or 
Oracle). On the contrary, simpler office applications play a substantial role in cor-
porate world even if they are not used to serve business-critical processes.

From the perspective of IT proficiency, corporate consumers may be put in two 
distinctive categories: pure users and user-operators. Pure users are those who make 
the customers of system integration organizations (SIOs) such as HP Enterprise 
Services (formerly Electronic Data Systems (EDS)) or Oracle. Their business phi-
losophy is “focus on what we know how to do and pay for required specialized 
services.” In many cases the corporate customer of an SIO not only pays for the 
system, its installation, and required user training, but also pays for further operation 
and maintenance. Such a business arrangement, popularly known as outsourcing, 
seems to be a win-win solution for all involved. In theory everybody does what he 
or she knows best; the user focuses on his or her core business without the burden 
of having his or her own IT team, and the SIO runs the system with all required 
professionalism and responsibility. What is the place of (in this case) system quality 
engineering in it?

The simple fact of separating business processes and activities from the running 
IT machine that supports them puts the whole quality engineering responsibility on 
the side of a supplier (e.g., an SIO). The customer pays, among other things, to be 
able to express his or her needs and to be correctly understood using principally the 
taxonomy natural to his or her business. In consequence, a somehow trivial statement 
of “I will open a new facility in Japan that has to operate 24/7” will have to be 
translated into a set of precise functional and quality requirements for the supporting 
IT system by a supplier, who further should initiate a series of technical meetings 
where the customer’s functional and quality needs are explained, negotiated, under-
stood, and finally agreed upon. The difficulty of this challenge gets bigger when a 
discussion of quality takes place. Although questions concerning functional aspects 
of the system are usually easily understood and answered by an IT-unfamiliar user, 
a question such as “what are your usability requirements?” may raise a few brows. 
So the supplier not only has to identify his or her customer’s quality requirements, 
but also has to explain them, verify them, and get the fully informed customer’s 
approval, and then engineer them into the system.

The corporate customer’s supplier’s responsibility does not end with installing 
the system, training the staff, and turning the key in the ignition. As the parties are 
known by name and bound by elaborate contracts, the repercussions of missing 
quality may be traced back and legal and financial consequences can eventually be 
imposed on the guilty party. If an outsourcing contract has been signed, the respon-
sibility for the system and its quality stays on the side of the supplier for the length 
of the contract.

In case of user-operators the quality engineering problem may be slightly less 
difficult, as this category of corporate customers is usually “IT-savvy.” The biggest 



8      Chapter 1  Why Software Quality Engineering?

challenge in the whole process of engineering quality, the identification and defini-
tion of quality requirements, may eventually be achieved through discussions in 
domain-specific language and applying domain-specific models and knowledge 
(e.g., using the ISO/IEC 25000 series of standards [20]), so the road to a correct 
understanding of quality needs for the given system is shorter and faster.

Then, after the installation and all required training, the system usually goes 
under the operation and daily maintenance of the user’s IT team, with the supplier 
granting the support and warranty for a given period. Analyzing the responsibility 
for quality engineering in this type of situation brings a three-phase view: in the 
phase of the development and transition, it is supplier’s sole responsibility; in the 
phase of the user’s operation covered by supplier’s warranty, the responsibility is 
“distributed” and creates the majority of conflicting situations because there is more 
than one entity manipulating the system; and in the phase of the whole remaining 
system life time the responsibility for engineering quality is entirely the user’s.

One may ask, “what engineering of the quality may take place when system is 
in its operation phase?” More of this subject will be discussed in Chapter 2.

1.1.2  Supplier Perspective

The supplier’s ultimate justification for developing any product is the profit, usually 
calculated in terms of the return on investment (ROI). It is widely known and 
accepted that developing functionalities of the system or software requires appropri-
ate budget, but it is much less publicly obvious that engineering the quality into 
these functionalities costs money as well, and that it is not cheap. There is another 
aspect of quality that makes it “a child of a lesser god” in eyes of a developer: too 
often its presence or absence manifests itself after a considerably long time of opera-
tion. With the quality of a system or software it is like with a pair of shoes: their 
“functionalities,” such as shape, color, and size, can be seen immediately, but verify-
ing their “qualities,” such as real quality of materials used or comfort in use, requires 
time and operation (walking a few kilometers) to be applied.

These two elements make up the basic reasoning for quality-related decisions. 
In other words, if the quality is so expensive that it will make the price prohibitive 
or eat up the profit, it will be reduced to a passable minimum. If, further in this 
direction, its lack will not be immediately noticed or will not reach the “pain thresh-
old” of the user, it will also be reduced or even neglected. The third element in 
quality-related decision making is the famous time-to-market, the offspring of com-
petition. On one hand, the competition makes a supplier try to build a better product 
than the other suppliers, but on the other hand, it creates a strong time pressure to 
reach the market before the competitors, and that always requires compromises. 
Depending on the corporate philosophy and culture of the supplier, the compromises 
may be applied to both functionalities and quality or to quality only.

Financial influences are not the only ones that decide the final quality of a 
software product or system. Quality requires engineering knowledge comparable to 
that used in development, but this knowledge is far younger and still in dynamic 



Why Software Quality Engineering?      9

evolution. In Chapter 2, quality engineering processes and activities are discussed 
in detail, but to create a simple, common reference for the two following chapters, 
these processes are named here:

•	 Identification and definition of quality requirements

•	 Transformation of requirements into quality attributes of the future software 
or system

•	 Transformation of quality attributes into engineering “to-dos” that can be 
communicated to developers and further realized

•	 Identification and estimation of interdependencies between development and 
quality engineering activities

•	 Design of quality measurement (design of quality tests)

•	 Quality measurement

•	 Quality evaluation.

In conclusion, the supplier’s perspective on quality engineering is the result of 
a combination of financial constraints, software quality engineering knowledge 
existing in the organization, and the user’s tolerance to poor quality.

1.1.2.1  Off-the-Shelf Software Products
Off-the-shelf (OTS) software products are “software product(s) available for any 
user, at cost or not, and used without the need to conduct development activities” 
[21]. This definition of OTS indicates the main targeted user as the one discussed 
in Section 1.1.1.1, a nameless, faceless customer. The suppliers of OTS software 
face all quality-related dilemmas discussed previously, that is, cost, manifestation, 
knowledge, and time, and from what can be seen in the market, they do not deal 
with them too well. In their seventh decade, information technology companies still 
happen to deliver unreliable, poorly engineered, and sometimes surprisingly user-
unfriendly products. Why?

Besides a short budget, undemanding customers, and lack of required knowl-
edge, an OTS supplier is exposed to another challenge: a difficulty in communication 
with the users. A massive user is an unknown user, not reachable directly, and unfor-
tunately also rather IT-ignorant, so not helpful in identifying missing or required 
quality. Then how exactly is the OTS developer supposed to build a product of 
required quality if he or she cannot talk to his or her customers?

There are several possible approaches to helping the developer create an OTS 
product of correct and appreciated quality. Some of them are:

•	 Collecting users’ feedback through surveys

•	 Collecting detailed crash reports

•	 Sociological analysis of the targeted user groups

•	 Extrapolation.

In order to be effective, collecting users’ feedback in the domain of quality requires 
a considerable effort of design. The questionnaire cannot be too long because the 



10      Chapter 1  Why Software Quality Engineering?

responders will become disinterested, it cannot use specialized software quality 
vocabulary or concepts because it may be incomprehensible, it cannot be difficult 
in operation because it will discourage the user, but despite of all these constraints 
it has to bring the required information. Additionally, in the case of OTS developers 
that sell their product internationally the survey has to be localized, which means 
that it not only has to be properly translated but it also has to take into consideration 
the cultural context of the country in which it is being run. Another element that 
influences the usability of the survey is its statistical value. If any important decision 
about developing quality attributes and budget related to it is to be made, it cannot 
be based on partial or invalid information; in other words, it has to come from a 
statistically representative group of responders. If a software product is being sold 
in hundreds of thousands of copies, a few hundred replies to the survey will hardly 
constitute a statistically valid basis for any strategic decision.

Collecting crash reports seems to be a popular tool of getting real feedback, but 
sometimes its undisputable value is diminished by legal and financial reality. As the 
author began his adventure with IT technology in late 1970s, he has seen (and sur-
vived) hundreds, if not thousands, of different crash reports, blue screens, and event 
logs, trying in most cases to understand the information contained in them. The 
reports evolved from compressed, cryptic texts unavailable to the “uninitiated” to 
elaborate multi-page documents describing in almost-human language every detail 
of the crash. To appreciate the software quality engineering-related value of these 
reports it is important to stress something that may seem obvious: none of them 
contains the information of the type “the functionality Y is missing.” Crash reports 
are almost purely quality-related data that should help the developers make a very 
good next version/update/build of their product. Where is the problem, then?

In order to be of any use, the reports have to be transmitted to the developers. 
The majority of applications use fully or partially crash report generation and trans-
mission services of the operating system they reside upon, and these services are 
not free of charge. A considerable number of smaller developers never receive their 
reports because they simply cannot afford them.

Sociological analysis of the targeted user group is the tool that through dedi-
cated research helps identify the most important needs of this group within a pre-
defined domain. Applying it in software quality engineering brings information 
about customers’ needs for such characteristics as usability (ease of use, learnability, 
etc.) or quality in use (productivity, effectiveness, satisfaction, etc.). A good, simple 
illustration of such an analysis process would be the project to develop a text proces-
sor. Before making any technological and financial decisions about the quality of 
the new product, the developer would have to ask the following questions:

•	 Who is the targeted user (e.g., a mass user or a specialist)? In what country 
or region? In what sector of the market?

•	 What would be main application areas of the processor for each of the catego-
ries of the user?

•	 What quality attributes are associated with every identified application area 
of the processor?



Why Software Quality Engineering?      11

•	 Are all the attributes of the same weight or they can be prioritized? In how 
many and what priority levels?

•	 Which of these attributes are mandatory and which could be done later?

•	 What may happen in terms of product behavior if the mandatory attributes 
are absent?

•	 What would be foreseeable reactions of the targeted user to the lack of these 
attributes?

After having at least these few questions thoroughly answered, the developer may 
begin the decision process about design, technology, and budget for quality of the 
new product.

Extrapolation in terms of quality is an exercise, the objective of which is to 
identify successful quality attributes of the new (or being improved) product through 
observed reactions to existing and missing quality in products launched to date. 
Continuing the example of a text processor, it is quite possible to observe within, 
for example, five consecutive versions of the product the positive response to 
enhanced operability (“operability” measures the degree to which a product or 
system has attributes that make it easy to operate and control [22]). So, one of the 
important quality attributes in a new version would be observably increased operabil-
ity. Of course, nothing like global operability would make sense, so the developer 
will have to identify what functions/functionalities/services would be preferred to 
have increased operability. In text processing, one of the most important functions 
is change tracking, but this particular function in some existing processors is uncom-
fortable in use, unclear, unintuitive, and so on, so its operability is considerably low. 
The extrapolation in this case would indicate that to attract more customers to their 
product, the developers should pay particular attention to change tracking function 
and made it considerably more user friendly.

1.1.2.2  On-Demand Systems
This category of systems and software comprises products that require a user-specific 
intervention from a developer prior to their installation. Such an intervention can go 
from a simple adaptation of an office support system (a small-sized system integra-
tion effort), through a dedicated configuration of existing “suites” (such as Oracle’s 
“E-Business” [23] or SAP’s “Business One” [24]) to a complete, from-scratch 
development of a required solution.

No matter the size and complexity of the developer’s task, from a quality engi-
neering perspective the basic conditions are the same:

•	 A user is known

•	 Requirements are identifiable

•	 Required expertise should exist

•	 Responsibility is direct.

A known-user situation should at least help open direct communication channels, 
which in turn should allow for a professional investigation of customer’s real needs 



12      Chapter 1  Why Software Quality Engineering?

of quality in the future system. As was stated in Section 1.1, the user’s knowledge 
of quality engineering may be seriously limited, putting the majority of his or her 
justified quality requirements in the category of “unaware,” hence the term investiga-
tion. Nonetheless, the developer deals here with relatively precise situation: a known 
user, a known or at least analyzable and definable problem, an identifiable required 
area of expertise, and available technology.

An identifiable requirements situation assumes that within an effort of creating 
an appropriate solution for the customer there are means to extract all relevant 
information necessary for further definition of correct and complete quality require-
ments. Keeping in mind that they may fall in all three categories differentiated by 
the level of difficulty in obtaining them (“stated, implied, unaware”), it can be 
understood that the process itself may be lengthy, demanding several iterations and 
a particular effort in presenting, explaining, and justifying the identified require-
ments. And in case of systems developed on demand, this is a sole responsibility of 
the developer. For more details, go to Section 2.2.1.

Required expertise simply means all expertise necessary for making quality 
happen in a developed system (discussed in detail in Chapter 2). What is important 
in real-world development situations is the existence of this expertise. A very popular 
and equally incorrect perception of quality limits it to the equivalent of “tests” or 
“no bugs.” It is obvious that the crashless behavior of given software improves its 
use and increases the positive reception by a customer, but from the perspective of 
an overall quality, tests make only a part of the required expertise. To prove it is 
enough to analyze any domain-recognized software or system quality model, such 
as, for example, the most recent ISO/IEC 25010 [25] or even classical Boehm model 
[26, 27]. From this analysis it can be found that even (ideally) a bugless system may 
receive a low grade on quality because its productivity is not what was expected, or 
its use, be it business- or maintenance-related, is difficult, so slowing down the work 
and tiring the user. Further in this direction, the content of such a model brings the 
real structure of expertise required in quality engineering. If the model from ISO/
IEC 25010 is taken as the reference, the required expertise spans from applying 
quality to architecture, design or coding, software measurement, and security mecha-
nisms (internal/static quality), through operation and maintenance and all their 
related quality characteristics and attributes (external/dynamic quality), up to pro-
ductivity, psychometrics, and sometimes even psychology (usability, quality in use). 
And to that list, the ability to design, plan, and execute required measurements and 
evaluate the results has to be added. It is understandable then that in industrial reality, 
the full coverage of such an experience would be difficult to come by, but what 
seems to be a real problem is that this expertise in general is too scarce.

One of the most important elements of on-demand development is the direct 
responsibility of the developer to his or her customer. Together with a properly 
constructed contract, it gives to both the customer and the supplier the tools to 
demand and obtain (or pursue, if need be), even if the demands are not exactly of 
the same nature. On one hand the imperfections in requested quality of the delivered 
system can be directly traced back to the supplier, properly proven and reacted upon 
in an appropriate legal, financial, or technical way. On the other hand, if the reasons 



Why Software Quality Engineering?      13

for such a situation are rooted in, for instance, lack of cooperation from the customer, 
it can also be proven helping the supplier even the odds.

1.2  COST OF QUALITY

In the following chapters, the cost of quality will be discussed from two different 
perspectives: how to position the costs of engineering quality into software or a 
system in the overall project budget, and how much the consequences of missing 
quality may cost.

The first perspective (Section 1.2.1) analyzes the financial ramifications and 
challenges that the process of engineering quality into the largely understood infor-
mation technology domain faces in the real, industrial world.

The second perspective (Section 1.2.2) attempts to answer a very important 
question: what might happen if the quality is not there?

1.2.1  Economic Ramifications of Software  
Quality Engineering

When undertaking the challenge of engineering quality into software, one could take 
into consideration a few basic facts from life:

•	 Everything in software engineering boils down to the user’s satisfaction

•	 Satisfaction is conditional to the overall behavior of the system, with software 
products in the first place

•	 The behavior of any software product is perceived through features and 
quality

•	 Features and quality of software product are expressed through 
requirements

•	 Any behavior-related requirement for software product may only be realized 
through code.

Having these points in mind, let us open the discussion about financial ramifica-
tions of engineering quality into software or system with the following statement: 
In most development projects, functionality and quality are natural enemies.

Is this really true? Unfortunately for all IT users, yes. There are in fact very rare 
situations where the project budget is open; in all other cases, the budget defines the 
battlefield where functionality and quality fight for an upper hand (Fig. 1.2).

As shown in Fig. 1.3, function–quality–cost (FQC) economic perspectives are 
merciless: no matter how big the budget is, there always will be competition between 
features and quality.

It translates into a financially valid fact illustrated in Fig. 1.4, implementing 
features and quality costs, so for a constant budget (C) more features (af) means less 
quality (bq). And the opposite is also true, however it is much more rare.



14      Chapter 1  Why Software Quality Engineering?

Figure 1.2  Functionality–quality battlefield.

Figure 1.3  Economic perspective of implementing features versus quality (FQC).

Feature

Cost

Quality

Figure 1.4  Theoretical model of financial competition between features and quality (FQC). 
a, b = investment levels; f = features; q = quality aspects.

Economic Perspective

Cost = aΣ features + bΣ quality aspects

Cost = af + bq

or



Why Software Quality Engineering?      15

The analysis of the model presented in Fig. 1.4 will immediately show that such 
a model, even if mathematically correct, is in fact purely theoretical. One can 
imagine a software product that will have features (their quantity is of no importance 
here) associated with the appropriate level of investment (af ≠ 0), but being devel-
oped with no regard to quality (bq = 0). It is however much more difficult to imagine 
a product having no features (af = 0), but exhibiting certain quality (bq ≠ 0). To 
correct this unrealistic representation the model has to take into account the fact that 
a software product that does not have at least a minimal, initial set of features does 
not exist. In the corrected model (Fig. 1.5), this initial set of features is represented 
by a0f0.

It is now easy to understand why in projects of a predefined budget, quality and 
functionality are enemies. And it is even easier to foresee the winner. From what 
can be observed in the market of software products, features continuously win, even 
if such victories quite often prove short-sighted. The first positive impressions based 
on functional richness quickly turn into disappointment or rage when the software 
starts producing “blue screens.”

So is a software quality engineer on a by-default-lost position? Well, such a 
position surely is not an easy or a comfortable one, but it is still manageable and 
gives chances of success, if only some thoughts from the following were taken into 
consideration:

•	 From the very beginning, negotiate functional requirements with quality 
requirements in mind. “Later” may be too late!

•	 Evaluate the list of features against the budget as soon as possible. This will 
be your first indication about a level of possible quality, and your first argu-
ment in renegotiating the FQC proportions.

•	 Any functionality has its quality counterpart. Find it!

•	 The quality counterpart may require development or any other form of 
“expenditures.” Take it into account when evaluating the project.

•	 Analyze well the existing FQC. If the quality part is considerably low, the 
project may quickly run into a high-risk scenario.

Figure 1.5  Corrected model of financial competition between features and quality (FQC). 
a0 = initial investment level; f0 = initial set of features; a, b = investment levels; f = features; 
q = quality aspects.

Economic Perspective

Cost = a0f0 + aΣ features + bΣ quality aspects

Cost = a0f0 + af + bq

or



16      Chapter 1  Why Software Quality Engineering?

•	 A new functionality may kill the overall quality of the product, so negotiate 
carefully.

•	 A new quality requirement rarely or never harms the product.

The economic ramifications discussed in this chapter represent the point of view 
related to a development process and effort and as such can be considered as internal. 
The external ramifications attempt to analyze financial aspects of engineering quality 
into software in its broader, social context, also known as the cost of missing quality.

1.2.2  Cost of Missing Quality

The fact that IT systems are essential for the majority of tasks in human society 
raises a question, very important to both IT users and IT suppliers: What are the 
consequences of missing quality of an IT system in active use?

Every system has to make compromises in several areas and quality attributes 
are no exception. Different systems are subjected to different risks as they have 
specific quality attributes, which usually are different from one system to the  
other. In the ideal world, every quality attribute would be at the highest level for 
every system, but in practice this is not possible. As the application areas of IT 
systems are diversified, decisions must be made regarding which quality attributes 
should be given what priority in terms of the possible impacts to this area. Also,  
for the same reason, the cost of missing quality is different from one application 
area to another.

To analyze the costs of missing quality, the first helping step is to categorize 
the IT system in question, as within every category there are quality attributes spe-
cific or “most valuable” to it. In real-life cases, such a basic analysis should be but 
the beginning of a much more exhaustive process, where an impact of the absence 
of each application area-related quality attribute of the system has to be identified 
and evaluated.

The objective of the evaluation is to demonstrate the consequences of missing 
quality to the decision makers within an organization and, by doing so, to help them 
make the correct technical and budgetary decisions and prioritize the quality attri-
butes for a system.

1.2.2.1  Cost Analysis-Based Approach
The missing quality cost (MQC) is translated into an impact on people and organiza-
tions, relative to the operation domain of the IT system. In this chapter, the MQC is 
analyzed applying Eppler and Helfert principles [28] with costs classified in two 
categories: direct and indirect.

Direct costs are directly linked to missing quality. They consist of the effects 
that are observable immediately after unfortunate events happen. Examples of direct 
costs are:

•	 Compensation for damages

•	 Physical injury and related compensations.



Why Software Quality Engineering?      17

Indirect costs are difficult to calculate, as they may not be visibly linked to 
missing quality. Consequently, it is often difficult to identify them and they may 
remain hidden for a long time or even never discovered. Some examples of indirect 
costs are:

•	 Lost reputation or market position

•	 Wrong decisions or actions

•	 Lost investment.

1.2.2.2  Impact Analysis-Based Approach
Missing an essential quality attribute in software usually costs both the customer 
and the supplier, however not necessarily in equal proportions. The customer can 
lose data or his or her business or even, in the worst case, be exposed to physical 
injuries to the extent of death. Other, less dramatic impacts may include the costs 
linked to technical support and the costs of wasted time in investigating the source 
of problems. In addition, the customer may also lose his or her credibility if, due to 
too-low quality of his or her IT system, he or she cannot meet his or her commit-
ments toward customers.

The cost to the supplier is most often of a different nature than the cost to the 
client, but there are significant impacts as well. For example, the costs of technical 
support can be very high due to the number of clients requesting it. Other costs 
include handling a large number of customer complaints, development costs to fix 
bugs, and the costs of supporting multiple version of the same product. Finally, the 
supplier may be also be pursued by the law, or forced to pay penalties to the limits 
of bankruptcy or loss of the market.

1.2.2.3  Risk Analysis-Based Approach
Risk analysis is an essential tool in determining the MQC, as the cost itself is usually 
linked to an event that could (or should) happen as the consequence of missing 
quality. Moreover, as the place and time of the events related to missing quality may 
sometimes be difficult to determine, one of the better methods for evaluation of the 
cost of missing quality is the classical risk analysis approach.

The risk is characterized by its probability p (where 0 < p < 1), and impact L, 
also known as the potential loss (where L represents a quantity in measurable units, 
such as currency) [29].

Risk exposure (RE) is the product of the risk probability and its potential loss. 
This simple approach is further used when individual categories of IT systems are 
analyzed:

RE p L= ∗

Both probability p and impact L are strongly related to the level of criticality 
of the analyzed IT system. The most broadly known scale of the criticality in IT 
domain is the standardized IT system criticality levels schema published in the IEEE 
Standard for Software Verification and Validation [30]. The levels are:



18      Chapter 1  Why Software Quality Engineering?

Level A (Catastrophic)

•	 Continuous usage (24 hours per day)

•	 Irreversible environmental damages

•	 Loss of human lives

•	 Disastrous economic or social impact.

Level B (Critical)

•	 Continuous usage (version change interruptions)

•	 Environmental damages

•	 Serious threats to human lives

•	 Permanent injury or severe illness

•	 Important economic or social impact.

Level C (Marginal)

•	 Continuous usage with fix interruption periods

•	 Property damages

•	 Minor injury or illness

•	 Significant economic or social impact.

Level D (Negligible)

•	 Time-to-time usage

•	 Low property damages

•	 No risks on human lives

•	 Negligible economic or social impact.

1.2.2.4  Example
To illustrate the process of analyzing the consequences of missing quality, the fol-
lowing context based on real events (described in [31]) will be used:

•	 IT system application area: Nuclear power plant, system monitoring and 
synchronizing chemical and diagnostic data from primary (nuclear reactor) 
control systems.

•	 Quality subcharacteristic: Recoverability from reliability quality characteristic 
of ISO/IEC 25010 quality model [25].

Let’s further imagine that the objective of this analysis is to convince the decision 
makers that much more money has to be invested into quality in general and recover-
ability in particular.

The process in simple steps could go in the following manner:
Step 1: Identify the system behavior related to the targeted quality subcharac-

teristic or attribute. Recoverability represents the level of the ability of the system 



Why Software Quality Engineering?      19

to correctly recover from a serious disruption (be it a crash, an unscheduled shut-
down, or even a not entirely successful update).

Step 2: Identify the criticality level of the system. The important question in 
this step would be: What may happen when the system that monitors and synchro-
nizes sensitive chemical and diagnostic data from reactors recovers incorrectly? This 
question invokes a few more detailed questions, such as:

•	 What can be lost?

•	 What can be corrupted?

•	 What may happen if data or system states are corrupted (wrong)?

•	 What may happen if data or system states are lost?

It would be prudent to answer these questions applying the method of the worst-case 
scenario. In the case of the real events described in Reference 31, the corrupted 
(reset) data forced “safety systems to errantly interpret the lack of data as a drop in 
water reservoirs that cool the plant’s radioactive nuclear fuel rods. As a result, auto-
mated safety systems at the plant triggered a shutdown.” And this outcome can be 
considered very positive. In the worst-case scenario, the automated safety systems 
could interpret the wrong data in the opposite way (as a water overflow) and let the 
rods eventually melt down, causing a real disaster.

So what would be the criticality level of the analyzed system? It is not a system 
that directly controls the reactors but it should exhibit continuous usage capacity 
(with only version change interruptions), and it surely can invoke environmental 
damages, create serious threats to human lives, or important economic or social 
impact. So perhaps Level B? But what if the previously mentioned worst-case sce-
nario should happen? The high level recoverability of this system could help avoid 
eventual further negative consequences leading to a disaster by not sending the 
confusing data to systems that directly control the reactors. So perhaps Level A? 
This decision may be taken either from the perspective of required financial efforts 
(so most probably Level B) or social and environmental consciousness and respon-
sibility (so Level A), but whatever it will be, it requires a solid justification.

Step 3: Risk analysis. In this step the probability p, impact L, and risk exposure 
RE should be estimated in order to create information required in Step 4, cost esti-
mation. The probability of the occurrence of the negative events related to a low 
level of system recoverability can be obtained through active measurements, accu-
mulated historical data, or even observed trends in the system’s behavior. In an ideal 
situation, the analyzed system would be disconnected from active operation and 
undergo a series of experiments with controlled disruptions and measured outcomes. 
The probability p would be calculated as the ratio between the number of experi-
ments that created corrupted data after the recovery and the number of all experi-
ments. Of course, information obtained in such a way would be coarse, as not every 
corruption of data would automatically lead to melting of radioactive rods, but it 
would be a solid indicator nonetheless. In real life, such an indicator can be obtained 
by monitoring the system behavior over a given time period and calculating the ratio 
between disruptions that ended with corrupted data and all disruptions that took 



20      Chapter 1  Why Software Quality Engineering?

place. To perform a precise risk analysis the probability p should be, however, cal-
culated separately for each important category of impacts, such as what percentage 
of data corruption after recovery would provoke an event of false cooling water 
overflow indication.

Impact L has partially been analyzed in Step 2. In Step 3, the set of most impor-
tant impacts should be chosen and linked to their respective probabilities. To calcu-
late the risk exposure RE, both global and individual per impact, each impact should 
be translated into its mathematical representation, in its most trivial form, money. 
Then a simple multiplication p × L will give the values of risk exposure RE neces-
sary for the cost analysis performed in Step 4.

Step 4: Cost analysis. The RE values obtained in Step 3 are just dry numbers 
that do not represent the totality of costs associated with the absence of an identified 
quality attribute. They may be interpreted as direct or immediate costs but the full 
cost analysis has to take into consideration also indirect costs, nonmonetary costs, 
the risk context, and, last but not least, the cost of required improvements/
modifications of the system that would remedy the problem. To better explain this 
notion, let’s take the following hypothesis: the impact of melting the rods in one of 
the nuclear reactors would be a (sure) destruction of the environment in the radius 
of 50 miles for next 70 years, a (probable) loss of human lives, and a (sure) economi-
cal disaster to the surrounding community, but the probability of it all happening as 
a cause of low recoverability of the system is a small but firm 1.5%. At the same 
time, remedying the problem would require a considerable investment (quite often 
the case where the legacy systems are mixed with newer generation ones). Even if 
everything from the preceding list capable of being transformed into monetary value 
was transformed so, the resulting RE would be probably relatively low, plus an extra 
investment required to better the existing system as the counterargument; but should 
it be ignored?

Step 5: Convincing the decision makers. Imagine the following exposé of 
yours:

Ladies and Gentlemen,
The recent analysis of our system monitoring and synchronizing chemical and 

diagnostic data from primary (nuclear reactor) control systems shows that its quality, in 
particular its recoverability, is insufficient and requires immediate intervention.

This intervention will require $X of investment and Y months of work of our (our 
supplier’s) IT team.

The following are the data: during last N months the system went into the recovery 
state M times with (for example) 30% of occurrences of corrupted, after-recovery data. 
(For example) 1.5% of these occurrences are related to the reactor core cooling water 
control. We estimated the impact of possible overheating of the rods as a (sure) destruc-
tion of environment in the radius of 50 miles for next 70 years, a (probable) loss of 
human lives, and a (sure) economical disaster to the community around. The rough 
estimation of RE is $R but the overall cost, should this disaster happen, is much greater 
for the community, for the environment, and for our organization (insert here the list of 
nonfinancial consequences).



Why Software Quality Engineering?      21

Taking this information into consideration, please grant the resources required to 
improve the actual situation.

The above exposé is just an example or even a template that can easily be reused 
in most negative-motivation cases of “what we lose if we do not do it” type.

Another option is a positive-motivation approach, or “what we gain if we do it” 
philosophy. The general methodology is the same, but instead of counting the pos-
sible losses, the process focuses on gains that the addition of a missing quality 
attribute or improvement of an existing one may bring to the system and in conse-
quence to its creators, its users, and possibly to environment.

1.2.3  Some Important Quality Characteristics of 
Chosen Categories of IT Systems

In the report published in Reference 32, the authors proposed the taxonomy of most 
popular IT systems distributing them into four categories and eight subcategories 
(see Table 1.1). The discussion presented further in this chapter is based on this 
taxonomy.

1.2.3.1  Decision Support Systems
The main goal of decision support systems, as their name implies, is to help orga-
nizations and individuals in the process of decision making. Decision support 
systems usually combine data from different sources with sets of rules for analyzing 
them and, like all software, are subject to a set of common risks associated with the 
nature of software, but also possess several challenges of their own. A considerable 
percentage of decision support systems depend on external data sources, hence they 
are particularly sensitive to the quality of the data they receive to process. Another 
important issue that the decision support systems face are incorrect analysis 
algorithms.

In consequence, the important quality subcharacteristics found representative 
for decision support systems are accuracy, analyzability, and suitability [32]. These 

Table 1.1  IT Systems Taxonomy

Information System Categories Information System Subcategories

Transaction processing systems Transactional applications systems
Financial applications systems

Computer-based communication systems Telecommunication
Network management

Management information systems Management information systems
Information management systems

Expert systems Decision support systems
Industrial support (control) systems



22      Chapter 1  Why Software Quality Engineering?

three subcharacteristics may constitute the starting point for further analysis of 
quality required in a particular realization of a decision support system.

1.2.3.2  Industrial Support (Control) Systems
Industrial support (control) systems (ICSs) collect and process information related 
to industrial processes. A typical ICS consists of a series of sensors monitoring  
an industrial process and a software system to process the received data and make 
decisions required to properly execute the controlled process. In practice, most 
contemporary industrial processes use some kind of ICS. This category of systems 
varies from small and simple ones controlling noncritical processes to large and 
complex systems overseeing and running whole plants. The latter are particularly 
exposed to very high impacts if their ICSs do not perform as expected. Depending 
on the nature of the system, the impacts can be as great as irreversible damages to 
the environment, loss of human lives, and very high financial losses, thus, in general, 
it would be recommended to classify these systems at Level A of the scale presented 
in Section 1.2.2.

In consequence, the starting point for full quality analysis would be the quality 
subcharacteristics of testability, accuracy, fault tolerance, and adaptability [32].

1.2.3.3  Transaction Application System
By definition, a transaction is an individual and indivisible operation that in order 
to be considered completed has to be executed in its entirety. This condition is 
closely linked to the mechanism of rollback, the role of which is to get both ends 
of the transaction to its initial state, should the transaction fail. The most broadly 
known type of transaction processing is banking, where, for example, a transfer of 
funds from one account to the other is considered successful only when the recipi-
ent’s account sends the confirmation and the sender’s account receives it. In all other 
cases, rollback should secure the reliability of the transaction itself and force both 
accounts to their state from before the transaction. In more general terms, the trans-
action application system category consists of the systems that process information 
in a transactional way, ensuring that any transaction performed by them is completed 
or cancelled successfully. These systems also allow multiple users to manipulate the 
same data, usually distributed so their consistency is also of highest importance.

As the research in Reference 32 shows, the important quality characteristics 
found representative for transaction application systems are functionality, reliability, 
usability, and efficiency.

1.2.3.4  Financial Transaction Systems
A popular description of financial transaction that can be found on one of many open 
fora would be: “It is an event or condition under the contract between a buyer and 
a seller to exchange an asset for payment. In accounting, it is recognized by an entry 
in the books of account. It involves a change in the status of the finances of two or 
more businesses or individuals” [33].

The main goal of a financial transactions system is to automate the handling of 
financial operations. Some most popular examples of this type of systems are 



Why Software Quality Engineering?      23

purchase applications, loans management systems, mortgage management systems, 
systems to manage bank accounts, systems to manage credit card purchases, and 
systems to manage debit card purchases. In all cases, quality attributes (or subchar-
acteristics) of accuracy, maturity, and recoverability seem to be essential. These 
subcharacteristics can be further folded into two main quality characteristics for the 
financial transaction systems: functionality and reliability [32].

1.2.3.5  Network Management Systems
Network management systems manage, administer, and monitor networks on which 
organizations rely to carry data from node to node. These systems have to be interop-
erable, reliable, and tolerant to faults, as most of their users cannot afford to have 
communications seriously disrupted [34]. According to the research presented in 
Reference 32, the most important quality factors for this type of systems are fault 
tolerance, interoperability, and operability.

1.2.3.6  Telecommunication Systems
Telecommunication systems are the backbone of the telecom operator’s business 
model. They use huge infrastructures such as telecommunication towers, satellites, 
and undersea cables and regroup the operation, administration, maintenance, and 
provisioning functions. These management functions executed by large IT structures 
provide systems or networks with fault indication, performance monitoring, security 
management, diagnostic functions on traffic, configuration, billing, and user data 
provisioning. What has also to be taken into account is the fact that the existing 
telecommunication technology varies from older systems embedded in various types 
of hardware to modern, fully soft installations, and all of them have to cooperate 
and coexist in a productive manner. Quality characteristics that address these con-
cerns would be: functionality, reliability, usability, and efficiency [32].

1.2.3.7  Management Information Systems
Management information systems are primarily used by managers and business 
domain experts to make business forecasts and decisions. As these users usually have 
a limited IT proficiency, the ease of use is a key efficiency feature. From a business 
use perspective, management information systems provide data necessary for stra-
tegic decision making, with services such as:

•	 Generating financial statements, as well as inventory reports or sales status 
reports.

•	 Answering managers’ questions by offering different decision scenarios with 
their results.

•	 Supporting human resources-related decision making.

•	 Providing information for analysis and budget planning.

•	 Facilitating audits by giving complete audit trail.



24      Chapter 1  Why Software Quality Engineering?

The quality subcharacteristics important for these services are: functionality, usabil-
ity, and maintainability [32].

1.2.3.8  Information Management Systems
“Information management system” is a broad term that describes a multitude of 
systems of which the main objective is to manage information. Some of the subcatego
ries of these types of systems are content management systems, document management 
systems, digital asset management systems, or geographic information systems [35].

The common functionality of such systems is the ability to retrieve, store, and 
manipulate information. What is interesting is the fact that in many cases the critical 
risk factor that affects these systems is not related to the system infrastructure itself, 
but to the information they manage. In consequence, as found in Reference 32, the 
most important quality factors for this type of systems could be considered security, 
operability, accuracy, and changeability.

1.2.3.9  Practical Observations
One of interesting observations made in the course of analyzing the relationship 
between the category of an IT system and quality characteristics important for its 
use was the finding that missing “crown” quality attributes that characterize this 
category are not always the ones that make it fail. As some case studies have showed 
(see the Appendix, Case 11), the lack of a quality attribute off the main list (obvi-
ously wrongly seen as “minor”) sometimes may have a bigger impact than one 
considered “main.” This is why the idea discussed already in Section 1.2.2 will be 
repeated: In real-life cases, the analysis of typical-for-the-system quality attributes 
should be but the beginning of a much more exhaustive process, where an impact 
of the absence of each application area-related quality attribute of the system has to 
be identified and evaluated.

And finally, ensuring quality in software enhances operational effectiveness and 
helps accomplish strategic objectives of the organization:

•	 Developing modern, reliable, and environment-friendly solutions

•	 Keeping costs and spending low

•	 Keeping customers and adding new ones by giving a good service that meets 
and exceeds expectations.

If these goals are to be effectively achieved, software quality must make signifi-
cant progress in terms of its recognition and importance in the business world, where 
the costs associated with missing quality should be treated in more explicit, promi-
nent, and measurable ways.

1.3  QUALITY OF A SOFTWARE PRODUCT AS AN 
INDICATOR OF MATURITY

Is quality really an indicator of maturity? It is not an ultimate and always true evalu-
ation, but in most cases quality goes with maturity. Young, immature companies 



Why Software Quality Engineering?      25

usually cannot afford developing more than just a set of attractive functionalities, 
whereas mature organizations can develop quality too, so in this sense the level of 
quality observed in a software product is an indicator of the level of maturity of its 
developer. When evaluating the maturity of a software development organization, 
one can apply sophisticated methods and models such as CCMI, SPICE, or ISO 
9000 and still arrive at conclusions that may not entirely reflect the reality. All the 
best processes will not replace the tangible indicators of the real maturity: function-
alities and quality of the product. One may even say that because functionalities are 
always in a product and quality is only sometimes present, quality is a more restric-
tive indicator.

1.3.1  CMM/CMMI

The Capability Maturity Model (CMM) was born in 1990 as result of the research 
effort conducted by specialists from Software Engineering Institute (SEI) of Carn-
egie Mellon University [7]. Its next version, Capability Maturity Model Integration 
(CMMISM), is known in the industry as a best practices model. It combines practices 
of systems engineering (SE), software engineering (SWE), integrated process and 
product development (IPPD), and supplier sourcing (SS) disciplines. The CMMI is 
mostly used to “provide guidance for an organization to improve its processes and 
ability to manage development, acquisition, and maintenance of products and ser-
vices.” The CMMI (Table 1.2) was conceived to allow organizations to rely on a 
single model to evaluate their maturity and process capability, establish priorities for 
improvements, and help them improve their practices.

The CMMI is available for various combinations of disciplines in two represen-
tations: “staged” and “continuous.” The model is divided into process areas (PA), 
each of which contains a set of generic and specific practices (Fig. 1.6) that through 
their existence (or lack) may manifest the maturity of an organization. In search for 
references to quality in CMM/CMMI manual one immediately finds the following 
announcement: “[In CMM] the phrase ‘quality and process-performance objectives’ 
covers objectives and requirements for product quality, service quality, and process 
performance.”

Figure 1.6  CMMI model components (adapted from [7]).



26      Chapter 1  Why Software Quality Engineering?

Table 1.2  Capability Maturity Model of SEI (adapted from [7])

Maturity Levels Process Areas

5. Optimizing Causal analysis and resolution
Organizational innovation and deployment

4. Quantitatively managed Quantitative project management
Organizational process performance

3. Defined Organizational environment for integration
Decision analysis and resolution
Integrated supplier management
Integrated teaming
Risk management
Integrated project management for IPPD
Organizational training
Organizational process definition
Organizational Process Focus
Validation
Verification
Product Integration
Technical Solution
Requirements Development

2. Managed Configuration management
Process and product quality assurance
Measurement and analysis
Supplier agreement management
Project monitoring and control
Project planning
Requirements management

1. Initial None

More detailed analysis will yield more than 400 references to “quality” within 
the CMM/CMMI manual, but all of them will bear the notion of a process that in 
one way or another should help create a software product of quality. A quick illustra-
tion of the presence of the subject of quality within the maturity levels could look 
as follows:

•	 Level 1: None

•	 Level 2: Specific objectives for the performance of the process (e.g., quality, 
time scale, cycle time, and resource usage)

•	 Level 3: Same as Level 2

•	 Level 4: The quality and process performance are understood in statistical 
terms and are managed throughout the life of the process



Why Software Quality Engineering?      27

•	 Level 5: Select and systematically deploy process and technology improve-
ments that contribute to meeting established quality and process-performance 
objectives.

What is then the link between the maturity of an organization and quality of its 
products? First and foremost: it is nonautomatic. The organization may have all best 
processes in place, be continuously certified ISO 9000, and still manufacture prod-
ucts that will not survive a day. The level of maturity could be compared to the 
knowledge of a battlefield—the deeper that knowledge is, the higher are the chances 
of victory. But they are still only chances, not certainty.

1.3.2  SPICE ISO 15504

Software Process Improvement and Capability Determination (SPICE) is an inter-
national initiative to support the development of an International Standard for Soft-
ware Process Assessment [36]. The first working draft was developed in June 1995, 
with the release to ISO/IEC for the normal process for development of international 
standards. In 1998 the documents were published as ISO/IEC TR 15504:1998—
Software Process Assessment. As of now, SPICE in its ISO/IEC 15504 international 
standard form has ten parts, the publishing of which spans over the last decade:

•	 Part 1: Concepts and vocabulary

•	 Part 2: Performing an assessment

•	 Part 3: Guidance on performing an assessment

•	 Part 4: Guidance on use for process improvement and process capability 
determination

•	 Part 5: An exemplar process assessment model

•	 Part 6: An exemplar system life cycle process assessment model

•	 Part 7: Assessment of organizational maturity

•	 Part 8: An exemplar process assessment model for IT service management

•	 Part 9: Target process profiles

•	 Part 10: Safety extension

SPICE, or ISO/IEC 15504 series of standards, provides a framework for the 
assessment of processes. This framework can be used by organizations involved in 
planning, managing, monitoring, controlling, and improving the acquisition, supply, 
development, operation, evolution, and support of products/services. Process assess-
ment examines the processes used by an organization to determine whether they are 
effective in achieving their goals. The results may be used to drive process improve-
ment activities or process capability determination by analyzing the results in the 
context of the organization’s business needs, identifying strengths, weaknesses, and 
risks inherent in the processes.



28      Chapter 1  Why Software Quality Engineering?

SPICE provides a structured approach for the assessment of processes for the 
following purposes:

•	 By or on behalf of an organization with the objective of understanding the 
state of its own processes for process improvement

•	 By or on behalf of an organization with the objective of determining the suit-
ability of its own processes for a particular requirement or class of 
requirements

•	 By or on behalf of one organization with the objective of determining the 
suitability of another organization’s processes for a particular contract or class 
of contracts.

The framework for process assessment proposed in SPICE is intended to facilitate 
self-assessment, provide a basis for use in process improvement and capability 
determination, take into account the context in which the assessed process is imple-
mented, produce a process rating, address the ability of the process to achieve its 
purpose, be used across all application domains and sizes of organization, and give 
the chance for an objective benchmark between organizations.

Through this, the organization is expected to become a capable organization 
that maximizes its responsiveness to customer and market requirements, minimizes 
the full life cycle costs of its products, and as a result maximizes end-user 
satisfaction.

As can be seen in Fig. 1.7, SPICE has two principal contexts for its use: process 
improvement and capability determination. The relationship between SPICE, process 
maturity, and software product quality is indirect and bears features such as these 
indicated when CMM/CMMI was discussed. Maturity and efficiency of processes 
existing in an organization that develops software make without doubt very impor-
tant foundations for the quality of product, but here the influence ends. The rest must 
be done by software engineers who know how to put quality into what they are about 
to produce.

1.3.3  SWEBOK

The purpose of the Guide to Software Engineering Body of Knowledge, called 
further SWEBOK, is “to provide a consensually-validated characterization of the 

Figure 1.7  Process assessment relationship (adapted from [36]).



Why Software Quality Engineering?      29

bounds of the software engineering discipline and to provide a topical access to  
the Body of Knowledge supporting that discipline.” To address this objective, the 
2004 edition of Body of Knowledge is subdivided into ten knowledge areas (KA) 
and “the descriptions of the KAs are designed to discriminate among the various 
important concepts, permitting readers to find their way quickly to subjects of  
interest” [2].

Among these ten knowledge areas, a KA dedicated to software quality has its 
distinctive place. Like all other KAs within SWEBOK, the software quality subject 
is broken down and then discussed in individual topics (15) (Fig. 1.8) grouped in 
four sections:

•	 Software Quality Concepts (SQC)

•	 Purpose and Planning of SQA and V&V (P&P)

•	 Activities and techniques for SQA and V&V (A&T)

•	 Other SQA and V&V Testing (OT).

As the content of the Software Quality KA of SWEBOK is rather voluminous, 
it cannot be discussed to its full extent in this chapter, however, some “reader’s 
digest” given below could help the reader identify the subjects of his or her particular 
interest and then further pursue them through the lecture of the full text of the guide.

In Software Quality Concepts, the guide discusses the issues linked to identifica-
tion and management of costs related to quality (and indirectly to its lack) and 
modeling of quality, stresses the importance of quality in the context of dependability 
of software products, and points out the existence of quality perspectives other than 
these “classical” perspectives perceived through the lenses of ISO/IEC 9126 series 
of standards [37 to 40].

Figure 1.8  Breakdown of topics for software quality (adapted from [2]).



30      Chapter 1  Why Software Quality Engineering?

Purpose and Planning of SQA and V&V analyzes planning and objectives of 
software quality assurance (SQA) and verification and validation (V&V) processes 
in the context of what, when, and how quality should be achieved.

Activities and Techniques for SQA and V&V tackles practicalities of SQA and 
V&V execution, presenting among the others static and dynamic techniques recom-
mended for these processes.

Measurement Applied to SQA and V&V presents basic notions of measurement 
theory and practice in context of software and software quality measurement.

As profound as may be the way in which SWEBOK discusses software quality, 
it still leaves some room for additional perspectives. One of them is the engineering 
perspective of making real quality happen (or, using simpler vocabulary, hands-on 
engineering interventions). This hypothesis lies at foundations of the research 
program conducted and published in 2006 [41] with the objective of evaluating each 
KA constituting SWEBOK in order to verify the level of representation of the subject 
of software quality engineering in this most prominent document of software engi-
neering domain.

As part of this research, the latest version of SWEBOK had been analyzed from 
the perspective of the core processes constituting the practices of software quality 
engineering. These core processes were identified through the analysis of software 
life cycle processes published in the standard ISO/IEC 12207: 1995 (the 2008 
version was still in redaction) [42] supported by the results of the research on soft-
ware engineering principles [43] and software quality implementation models (dis-
cussed further in Section 2.3.1).

The dedicated analysis methodology developed in order to execute the research 
program consisted of four phases, presented Fig. 1.9:

•	 Phase 1:  Analysis, validation, and, if necessary, addition of definitions of 
software quality engineering processes in Software Life Cycle (SLC) pro-
cesses and activities identified in ISO/IEC 12207.

•	 Phase 2:  Analysis, validation, adjustment (if necessary), and mapping of the 
set of basic processes of software engineering definitions identified in ISO/
IEC 12207 with the processes and activities described in respective KAs of 
SWEBOK.

•	 Phase 3:  Application and assessment of results of the mapping between the 
processes of software quality engineering identified in Phase 1 with the pro-
cesses and activities described in KAs of SWEBOK (Phase 2).

•	 Phase 4:  Identification and definition of applicable modifications to 
SWEBOK.

The results published in [41] take several pages of tables and definitions; 
however, some general conclusions that emerged from this research would be:

•	 Quality as engineering process is addressed in a limited form, to say the least

•	 The basic quality engineering activities such as quality requirements specifi-
cation or modeling are not recognized anywhere



Why Software Quality Engineering?      31

•	 Quality testing is discussed almost only in reference to V&V processes, while 
in fact real evaluation of software product happens all along the life cycle

•	 Practical aspects of engineering quality into a software product are entirely 
omitted, while their appearance would be helpful at least in Software Con-
struction KA.

Apart from a very basic conclusion about modifications that could enrich 
SWEBOK, one other of a more general nature comes to mind: software quality 
engineering, like its mother domain, software engineering, is still far from gaining 
stability and maturity and requires continuous research effort supported by wide 
cooperation with the IT industry.

The development works on SWEBOK are continued as a joint effort between 
the ISO/IEC JTC SC7 committee and the IEEE Computer Society, giving as the 
result several enhancements to its 2004 edition, including new KAs. The new edition 
is expected to be publicly available in 2014.

Figure 1.9  The architecture of the research methodology software quality engineering in SWEBOK 
[41].

All Knowledge
Areas of

SWEBOK

All SLC Processes
from

ISO/IEC 12207

Identify the Activities
in

SWQE

Activity 1Process 1KA 1

KA 2

KA 3

KA 10

Process 2

Process 3

Process N

Activity 2

Activity N

Phase 1:
Defining SWQE core

processes

Phase 3:
Applying and assessment of mapping

between SWQE constructs and SWEBOK

Phase 4:
Conclude the analysis and propose

modifications to SWEBOK

Phase 2:
Mapping ISO/IEC 12207

with SWEBOK

Activity 3



32      Chapter 1  Why Software Quality Engineering?

REFERENCES

  1.  École de technologie supérieure, education program in software quality. Montreal, 
Canada. Available at http://www.etsmtl.ca.

  2.  Abran A, Moore JW, Bourque P, Dupuis R, editors. Guide to the Software Engineering 
Body of Knowledge, 2004. Los Alamitos: IEEE Computer Society, 2004.

  3.  ISO 9000 Quality Management Systems—Fundamentals and Vocabulary. Geneva, Swit-
zerland: International Organization for Standardization, 2005.

  4.  Highsmith J. Agile Software Development Ecosystems. Addison Wesley, 2002.
  5.  Kitchenham B, Pfleeger SL. “Software Quality: The Elusive Target.” IEEE Software 

1996; 13(1):12–21.
  6.  ISO 9001 Quality Management Systems—Requirements. Geneva, Switzerland: Interna-

tional Organization for Standardization, 2008.
  7.  CMMI-SE/SW/IPPD/SS 2002. CMMI Team, Capability Maturity Model Integration  

for Systems Engineering, Software Engineering, Integrated Product and Process  
Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS), Version 1.1, Continuous 
Representation. Pittsburgh: Software Engineering Institute, Carnegie Mellon University, 
2002.

  8.  Voas J. “Assuring Software Quality Assurance.” IEEE Software 2003; 20(3):48–49.
  9.  Dromey RG. “Cornering the Chimera.” IEEE Software 1996; 13(1):33–43.
10.  Haley TJ. “Software Process Improvement at Raytheon.” IEEE Software 1996; 

13(6):33–41.
11.  Diaz M, Sligo J. “How Software Process Improvement Helped Motorola.” IEEE Software 

1997; 17(5):75–81.
12.  Georgiadou E. “Software Process and Product Improvement: A Historical Perspective.” 

International Journal of Cybernetics 2003; 1(1):172–197.
13.  Laitinen M. “Scaling Down Is Hard to Do.” IEEE Software 2000; 17(5):78–80.
14.  Boddie J. “Do We Ever Really Scale Down?” IEEE Software 2000; 17(5):79–81.
15.  Dromey RG. “A Model for Software Product Quality.” IEEE Transactions on Software 

Engineering 1995; 21:146–162.
16.  Pfleeger SL, Atlee JM. Software Engineering: Theory and Practice, 4th ed. Upper Saddle 

River: Prentice Hall, 2009.
17.  INFOCERT. http://www.infocert.org.
18.  SASO. http://www.saso.org.pl.
19.  Quality Assurance Institute. http://www.qaiglobalinstitute.com.
20.  ISO/IEC 25000 System and Software Engineering—SQuaRE—Software Product Quality 

Requirements and Evaluation. Geneva, Switzerland: International Organization for Stan-
dardization, 2005–2013.

21.  ISO/IEC 25051 Software Engineering—Software Product Quality Requirements and 
Evaluation (SQuaRE)—Requirements for Quality of Commercial Off-the-Self (COTS) 
Software Products and Instructions for Testing. Geneva, Switzerland: International Orga-
nization for Standardization, 2006.

22.  ISO/IEC 25023 Systems and Software Engineering—Systems and Software Quality 
Requirements and Evaluation (SQuaRE)—Measurement of System and Software Product 
Quality. Geneva, Switzerland: International Organization for Standardization; document 
in development.

23.  Oracle E-Business Suite. http://www.oracle.com/us/solutions/oos/e-business-suite/
overview/index.html.

http://www.etsmtl.ca
http://www.infocert.org
http://www.saso.org.pl
http://www.qaiglobalinstitute.com
http://www.oracle.com/us/solutions/oos/e-business-suite/overview/index.html
http://www.oracle.com/us/solutions/oos/e-business-suite/overview/index.html


Why Software Quality Engineering?      33

24.  SAP Business Suite. http://www54.sap.com/solution/lob/finance/software/business-suite 
-apps-hana/index.html.

25.  ISO/IEC 25010 Systems and Software Engineering—Systems and Software Quality 
Requirements and Evaluation (SQuaRE)—System and Software Quality Models. Geneva, 
Switzerland: International Organization for Standardization, 2011.

26.  Selby R, editor. Software Engineering: Barry Boehm’s Lifetime Contributions to Software 
Development, Management and Research. New York: Wiley/IEEE Press, 2007.

27.  Boehm BW, Brown JR, Kaspar JR, Lipow ML, MacCleod G. Characteristics of Software 
Quality. New York: American Elsevier, 1978.

28.  Eppler MJ, Helfert M. “A Framework for the Classification of Data Quality Costs and an 
Analysis of their Progression.” In International Conference on Information Quality; 
November 5–7, 2004. Cambridge: Massachusetts Institute of Technology, 2004.

29.  Fairley RE. Managing and Leading Software Projects. Hoboken, N.J.: Wiley IEEE Com-
puter Society, 2009.

30.  IEEE Standard 1012–2004. IEEE Standard for Software Verification and Validation. New 
York: IEEE Computer Society, 2004.

31.  Krebs B. “Cyber Incident Blamed for Nuclear Power Plant Shutdown.” The Washington 
Post, June 5, 2008.

32.  Suryn W, Trudeau PO, Mazzetti C. “Information Systems and their Relationship to 
Quality Engineering.” 17th Software Quality Management International Conference, 
April 6–8, 2009, Southampton, UK.

33.  “Financial transaction,” http://en.wikipedia.org/wiki/Financial_transaction.
34.  Boutaba R, Xiao J. “Network Management: State of the Art.” The International Federa-

tion for Information Processing 2002; 92:127–145.
35.  Robertson J. “Step Two Designs: Definition of Information Management Terms.” Avail-

able at http://www.steptwo.com.au/papers/cmb_definition/index.html. Accessed May 14, 
2013.

36.  ISO/IEC 15504 (SPICE) Information Technology—Process Assessment Series of Stan-
dards. Geneva, Switzerland: International Organization for Standardization, documents 
in development.

37.  ISO/IEC 9126-1 Software Engineering—Product Quality—Part 1: Quality Model. 
Geneva, Switzerland: International Organization for Standardization, 2001.

38.  ISO 9126-2 Software Engineering—Product Quality—Part 2: External Metrics. Geneva, 
Switzerland: International Organization for Standardization, 2003.

39.  ISO 9126-3 Software Engineering—Product Quality—Part 3: Internal Metrics. Geneva, 
Switzerland: International Organization for Standardization, 2003.

40.  ISO 9126-4 Software Engineering—Product Quality—Part 4: Quality in Use Metrics. 
Geneva, Switzerland: International Organization for Standardization, 2004.

41.  Suryn W, Stambollian A, Dormeux JC, Bégnoche L. “Software Quality Engineering—
Where to Find It in Software Engineering Body of Knowledge (SWEBOK).” 14th Soft-
ware Quality Management International Conference; April 10–12, 2006, Southampton, 
UK.

42.  ISO/IEC 12207 Information Technology—Software Life Cycle Processes. Geneva, Swit-
zerland: International Organization for Standardization, 1995.

43.  Bourque P, Dupuis R, Abran A, Moore JW, Tripp L, Wolff S. “Fundamental Principles 
of Software Engineering: A Journey.” Journal of Systems and Software 2002; 62:
59–70.

http://www54.sap.com/solution/lob/finance/software/business-suite-apps-hana/index.html
http://www54.sap.com/solution/lob/finance/software/business-suite-apps-hana/index.html
http://en.wikipedia.org/wiki/Financial_transaction
http://www.steptwo.com.au/papers/cmb_definition/index.html



