
35

Chapter 2

Software Quality Engineering: A Practitioner’s Approach, First Edition. Witold Suryn.
© 2014 the Institute of Electrical and Electronics Engineers, Inc.
Published 2014 by John Wiley & Sons, Inc.

Software Quality Engineering:
Making It Happen

Making quality happen in a real, industrial development requires organized
knowledge, obtained either through years of practical experiments or in the
educational process. Such knowledge, to be complete, should encompass practi-
cal approaches to software quality engineering, beginning with necessary basic
concepts, then requirements, design, implementation, and V&V, finishing with
managerial decisions relative to the whole process. All these subjects are dis-
cussed in following chapters.

2.1  BASIC CONCEPTS OF SOFTWARE QUALITY

In Section 1.1.1, when discussing software quality in the real world, we asked the
following two questions:

• Who, between the user and the supplier, is supposed to be an expert, especially
in a subject so difficult to define as quality?

• Should not it be the supplier who solicits, identifies, and defines required
quality attributes (from working with the user) and then later develops a
software product that exhibits them?

Among the numerous rationales for these questions, one seems to be of special
importance: the basic concepts of software quality are rather unknown within the
community of information technology users, and, what is much worse, are some-
times also unknown or neglected by the community of developers. It then seems
appropriate to introduce the readers of this book to some basic notions required to
obtain a view of the nature and objectives of software quality engineering.

36 Chapter 2 Software Quality Engineering: Making It Happen

2.1.1  Software Quality Engineering Nature  
and Definition

An engineering process can basically be expressed in terms of a problem and its
resolution. In other words, an engineer is a knowledgeable person, who through his
or her education supported by experience is able to understand (i.e. investigate,
identify, and break down) a problem and deliver a solution that resolves it. To be an
engineer means to be a problem solver, as shown in Fig. 2.1.

To be an engineer means also something else. As was once said by our friend,
a Polish scientist and engineer, “an engineer is neither a profession nor a career, it
is a way of thinking.” This very true observation, when used in our daily practice,
will differentiate creators from repeaters. In software engineering such differentia-
tion may prevail upon the success or the failure of the project, not necessarily only
in terms of technical results but also as a solution that may satisfy the user, create
a new, market-leading product, or just advance the technology.

The most known definition of engineering is the one proposed and published
by The Accreditation Board for Engineering and Technology [2]. It states: “Engi-
neering is the profession in which a knowledge of the mathematical and natural
sciences, gained by study, experience, and practice, is applied with judgment to
develop ways to utilize, economically, the materials and forces of nature for the
benefit of mankind.”

In a smaller scale but still in a similar way, the definition of software engineer-
ing has been proposed and further published by IEEE CS in its broadly known
standard IEEE 610.12 [3]:

1. The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application
of engineering to software,

2. The study of approaches as in (1).

Figure 2.1 Engineering a solution (adapted from [1]).

Software Quality Engineering: Making It Happen 37

Finally, a definition of software quality engineering that complements the one from
IEEE 610.12 has been developed and proposed in [4]:

1. The application of a continuous, systematic, disciplined, quantifiable
approach to the development and maintenance of quality of software prod-
ucts and systems; that is, the application of quality engineering to
software,

2. The study of approaches as in (1).

What should be added to this definition of software quality engineering to make
it something more than just a theoretical divagation is the subject of its applicability
within the life cycle of the software (product or system). Among the results of the
worldwide research on software engineering fundamental principles published in [5]
one very important engineering idea has been identified and further recognized as
the “fundamental principle candidate”: “Manage quality throughout the life cycle as
formally as possible.”

This idea translates into a practical approach that is of fundamental value to
building software of quality, the approach that is “known” but largely neglected
within software development industry: building quality into software is an engineer-
ing effort that must be active throughout the whole life cycle of software to bring
required results.

The same statement bears also the importance that directly influences the defini-
tion of software quality engineering presented earlier. To comply with the require-
ment of continuity, the new definition of software quality engineering shall state:

1. The application of a continuous, systematic, disciplined, quantifiable ap -
proach to the development and maintenance of quality throughout the whole
life cycle of software products and systems; that is, the application of quality
engineering to software,

2. The study of approaches as in (1).

In this book all further mentions of the “software quality engineering definition”
will refer to the above text.

2.1.2  Objects of Software Quality Engineering

What exactly is an object of software quality engineering in the twenty-first
century? Is it a collection of lines of code that should do something and should
do it correctly? Or perhaps a collection of software modules that, when linked
together, are able to deliver a service? Going further, one may guess that the
quality should also apply to large, multipart software structures, but is that all
and where is the limit? To answer this very basic question, one other must be
asked: what constitutes real software (a product) that would be accepted by the
buyer/user? One of the best-known definitions of such a product was published
in Reference 6:

38 Chapter 2 Software Quality Engineering: Making It Happen

Software is (1) instructions (computer programs) that when executed provide desired
function and performance, (2) data structures that enable the programs to adequately
manipulate information, and (3) documents that describe the operations and use of the
programs.

In the twenty-first century this definition is still valid, but not wide enough, as it
does not encompass all the richness of developed products, their actual applications,
and related user expectations. The contemporary “software products” vary from
simple, off-the-shelf (OTS) software to global sophisticated systems, their applica-
tions range from text processing to space flight control, and their users may represent
individuals as well as international behemoths of organizations.

The notion that would better correspond to such a reality is a system. The system
may be very complex or not but it contains both technical and nontechnical elements
(Fig. 2.2) that offer completeness of what is required and should be delivered to a
customer to obtain his or her satisfaction.

Based on a generic definition that could be found in most popular dictionaries,
a software system can be defined as: “A collection of functionally arranged software
components, related artifacts, resources and services that are organized to accom-
plish a predefined goal by processing information.”

Either of the two representations clearly indicates that a system is a combination
of software (with all its intrinsic complexity) and the additional elements required
by the user to execute his or her tasks effectively, efficiently, and with satisfaction.

What is then a customer’s satisfaction? Will the user be satisfied by the product
that has a richness of functionalities but every now and then freezes, or produces the
infamous blue screen, or just restarts uncontrollably, losing the user’s data? Will this
user congratulate his or her supplier if the system is stone-rigid but misses half of
the requested functionalities? Will the supplier be fully paid if the system comes

Figure 2.2 Components of a system.

Software Quality Engineering: Making It Happen 39

without proper documentation and training? Any one of those cases will result in a
seriously dissatisfied customer and a possibility of losing the market. The only situ-
ation that may create a fully satisfied client is when the system exhibits requested
services complemented by appropriate quality and accompanied by good and com-
plete documentation, professional service, and training.

If this is true and both previously presented descriptions define what constitutes
a delivered product, what would be the objects of software quality engineering? To
identify these objects it may prove fruitful to define the perspectives from which a
software system quality may be perceived. ISO 9126-1 [7] proposes three distinctive
views that correspond well to three most popular categories of stakeholders:

• Internal quality represents the perspective of the developer and maintainer
(later in the life cycle of a system)

• External quality represents the perspective of the maintainer, operator, and
partially of the end user (in its usability aspect)

• Quality in use represents the perspective of the end user.

These views can also be very easily linked to the phases of a generic model of the
development process:

• Internal quality is crucial in construction phase

• External quality plays the biggest role in design and later, from the system
tests phase until the system is decommissioned

• Quality in use should be observed in the requirements definition phase and
then again from the system tests phase until the system is decommissioned.

Finally, using the same three views we can identify the “physical targets” of
software quality engineering:

• Internal quality operates on code (developed or being developed) and related
artifacts such as source documents, architecture, documentation, plans, and
results of unitary tests

• External quality operates on running executables in so-called technical envi-
ronment (operation and maintenance), related artifacts such as architecture,
operation documentation, manuals, plans and results of system tests, and
related services such as operation and maintenance training

• Quality in use operates on the ready product in its business environment (both
emulated and real) and related artifacts such as all user manuals and services
(application and usage training).

Taking all these aspects into consideration it can be then said, without the risk
of serious omission, that the real object of software quality engineering is a software
system with all its components, but that undergoes quality engineering appropriate
to and required by the actual phase of its life cycle and corresponding to perspectives
of stakeholders that participate in this phase.

40 Chapter 2 Software Quality Engineering: Making It Happen

2.1.3  Quality Models

Quality models present an approach to tie together different quality attributes with
basic objectives to:

• Help understand how the several facets of quality contribute to the whole

• Emphasize clearly that software quality is much more than simply faults and
failures

• Help identify and define quality requirements

• Help to navigate through the map of quality characteristics, subcharacteristics,
and appropriate measures (measurement formulas and scales)

• Help to define an evaluation profile (what precisely should be evaluated).

Software quality engineering calls for a formal management of quality throughout
the full lifecycle of software or a system. In order to support this requirement, a
quality model should have the ability to support both the definition of quality require-
ments and their subsequent evaluation. This can be explained by referring to the
manufacturing perspective of quality, which states that quality is conformance to
requirements. A quality model that is to be used in the definition of quality require-
ments should help in both the specification of quality requirements and the evalua-
tion of software quality.

IEEE Standard 1061–1998 [8] defines this as a top-to-bottom and bottom-to-top
approach to quality:

• From a top down perspective the [quality] framework facilitates:
○ establishment of quality requirements factors, by customers and managers

early in a system’s life cycle
○ communication of the established quality factors, in terms of quality sub-

factors, to the technical personnel
○ identification of metrics that are related to the established quality factors

and quality sub-factors.

• From a bottom up perspective the [quality] framework enables the managerial
and technical personnel to obtain feedback by:
○ evaluating the software products and processes at the metrics level
○ analyzing the metric values to estimate and assess the quality factors.

Since early 1970s there have been continual attempts to create a valid, broadly
accepted quality model. Some of the latest works in the subject propose a generic,
customizable quality model (such as GEQUAMO [9]), which enables any stake-
holder to construct his or her own model depending on the requirements. More
recently, a survey amongst practitioners from the UK, Greece, Egypt, and Cyprus
presented in Reference 10 indicated the importance placed on product quality

Software Quality Engineering: Making It Happen 41

characteristics, resulting in the proposition of enhancements to the existing quality
models (such as adding two new characteristics of extensibility and security to ISO/
IEC 9126 quality model).

These observations indicate the existence of disagreements, or different views,
in both the research community and the industry on the subject of software quality.
The goal of a quality model is, in essence, to provide an operational definition of
quality. Although specific definitions have been established for given contexts, there
is no consensus as to what constitutes quality in the general sense in software
engineering.

From the software quality engineering perspective, for a quality model to be
useful it should:

• Support the five different perspectives of quality as defined by Kitchenham
and Pfleeger [11] (see Section 1.1)

• Be usable from the top to the bottom of the life cycle as defined by IEEE
Standard 1061–1998 [8], that is, should allow for defining quality require-
ments and their further decomposition into appropriate quality characteristics,
subcharacteristics, and measures

• Be usable from the bottom to top of the lifecycle as defined by IEEE Standard
1061–1998 [8], that is, should allow for required measurements and subse-
quent aggregation and evaluation of obtained results.

Several quality models were developed in the course of past three decades, some
of them recognized mostly by the scientific community, others also gaining recogni-
tion within the industry. The most widely known models, presented further in
this chapter, are those of McCall, Boehm, Dromey, ISO/IEC 9126, and ISO/IEC
25010.

2.1.3.1  McCall’s Quality Model
McCall [12] introduced his quality model in 1977 (Fig. 2.3) in response to the
observable need to define quality in some usable and orderly manner. In McCall’s
model, each quality factor on the higher level of the figure represents an aspect
of quality that is not directly measurable. On the lower level are the measurable
properties that can be evaluated in order to quantify the quality in terms of the
factors. McCall proposes a subjective grading scheme ranging from 0 (low) to 10
(high); unfortunately, many of the metrics defined by McCall can be measured
only subjectively. Furthermore, some of the factors and measurable properties,
such as traceability and self-documentation, are not really definable or even mean-
ingful at an early stage for nontechnical stakeholders. From this perspective this
model does not satisfy the criteria outlined in the IEEE Standard 1061–1998 [8]
for a top-to-bottom approach to quality engineering. Also, as it emphasizes the
product perspective of quality to the detriment of the other perspectives, it is not
entirely usable in software quality engineering according to the earlier stated
requirements.

F
ig

ur
e

2.
3

M
cC

al
l’s

 q
ua

lit
y

m
od

el
 (

ad
ap

te
d

fr
om

 [
1]

 a
nd

 [
12

])
.

42

Software Quality Engineering: Making It Happen 43

2.1.3.2  Boehm’s Quality Model
Boehm’s quality model [52] improves upon the work of McCall, however, as
Fig. 2.4 shows, this quality model loosely retains the factor-measurable property
arrangement.

If the semantic of McCall’s model is used as a reference, the quality factors in
Boehm’s model can be defined as portability, reliability, efficiency, human engineer-
ing, testability, understandability, and modifiability. These factors can be decom-
posed into measurable properties such as device independence, accuracy, and
completeness. Portability is somewhat incoherent in this classification as it acts both
as a top-level component of general utility and as a factor that possesses measurable
attributes.

It is interesting to note that in opposition to McCall’s model, Boehm’s model
is divided in a hierarchy that at the top addresses the concerns of end-users and at
the bottom is of interest to technically inclined personnel. The measurable properties
and characteristics concentrate on highly technical details of quality while general
utility is composed of as-is utility, maintainability, and portability [14] and tries to
answer the questions:

• How well (easily, reliably, efficiently) can I use the software system as-is?

• How easy is it to maintain (understand, modify, and retest)?

• Can I still use it if I change my environment?

Figure 2.4 Boehm’s quality model (adapted from [1] and [13]).

44 Chapter 2 Software Quality Engineering: Making It Happen

Although this model is a step forward, the characteristics general utility and as-is
utility are far too generic and imprecise to be useful for defining verifiable require-
ments, which gives the model, similarly to McCall’s, rather limited application in
practical software quality engineering.

2.1.3.3  Dromey’s Quality Model
Dromey’s model [15] takes a different approach to software quality than the two
previously presented models. For Dromey, a quality model should clearly be based
upon the product perspective of quality:

What must be recognized in any attempt to build a quality model is that software does
not directly manifest quality attributes. Instead it exhibits product characteristic that
imply or contribute to quality attributes and other characteristics (product defects) that
detract from the quality attributes of a product. Most models of software quality fail to
deal with the product characteristics side of the problem adequately and they also fail to
make the direct links between quality attributes and corresponding product characteris-
tics. [15]

Following this approach, Dromey has built a quality evaluation framework
that analyzes the quality of software components through the measurement of
tangible quality properties (Fig. 2.5). Each artifact produced in the software life
cycle can be associated with a quality evaluation model. Dromey gives the fol -
lowing examples of what he means by software components for each of the different
models:

• Variables, functions, statements, and so on can be considered components of
the implementation model

• A requirement can be considered a component of the requirements model

• A module can be considered a component of the design model.

According to Dromey, these components all possess intrinsic properties that can be
classified into four categories:

• Correctness: Evaluates if some basic principles are violated.

• Internal: Measures how well a component has been deployed according to its
intended use.

• Contextual: Deals with the external influences by and on the use of a
component.

• Descriptive: Measures the descriptiveness of a component (e.g., does it have
a meaningful name?).

These properties are used to evaluate the quality of the components. This is illus-
trated in Fig. 2.6 for a variable component present in the implementation model.

It seems obvious from the inspection of the previous figures that Dromey’s
model is focused on the minute details of quality. This is stated explicitly:

Software Quality Engineering: Making It Happen 45

What we can do is identify and build in a consistent, harmonious, and complete set of
product properties (such as modules without side effects) that result in manifestations of
reliability and maintainability. [15]

For Dromey, the high-level characteristics of quality will manifest themselves
if the components of the software product, from the individual requirements
to the programming language variables, exhibit quality-carrying properties. This

Figure 2.5 Dromey’s quality model (adapted from [15]).

Figure 2.6 Dromey’s quality evaluation of a variable component (adapted from [15]).

46 Chapter 2 Software Quality Engineering: Making It Happen

hypothesis can easily be contested. If all the components of all the artifacts produced
during the software life cycle exhibit quality-carrying properties, will the resulting
product manifest characteristics such as maintainability, functionality, and others?

The following analogy will be useful in answering this question: If you buy
the highest quality flour, along with the highest quality apples and the highest
quality cinnamon, will you automatically produce an apple pie that is of the
highest quality?

The answer is obviously negative. In addition to quality ingredients, at least
three more elements are needed in order to produce an apple pie of high quality:

• A recipe (i.e., an overall architecture and an execution process). Dromey
acknowledges this by identifying process maturity as a desirable high-level
characteristic. However, it is rather briefly mentioned in his publications on
the subject.

• The consumer’s tastes must be taken into account. In order for the result to
be considered of high quality by the consumer, it needs to be tuned to his or
her tastes. This is akin to what is commonly called user needs in software
engineering. User needs are completely ignored by Dromey.

• Someone with the qualifications and the tools to properly execute the recipe.

Although Dromey’s work is interesting from a technically inclined stakeholder’s
perspective, it is difficult to see how it could be used at the beginning of the
lifecycle to determine user quality needs. In Reference 15, Dromey states that
software quality “must be considered in a systematic and structured way, from the
tangible to the intangible.” By focusing too much on the tangible, Dromey over-
looked the aspects allowing one to build a model that is meaningful for stakehold-
ers typically involved at the beginning of the lifecycle. Therefore, this model is
rather unwieldy to specify user quality needs and it fails to qualify as useful for
software quality engineering according to the established requirements. This does
not mean that it cannot be useful later on as a checklist for ensuring that product
quality is up to standards. It can definitely be classified as a bottom-to-top approach
to software quality.

2.1.3.4  ISO/IEC 9126 Quality Model
In 1991, the International Organization for Standardization (ISO) introduced a stan-
dard named ISO/IEC 9126 (1991): Software product evaluation – Quality charac-
teristics and guidelines for their use. This standard aimed to define a quality model
for software and a set of guidelines for measuring the characteristics associated with
it. ISO/IEC 9126 quickly gained IT specialists’ interest; however, some important
problems were associated with its first release:

• There were no guidelines on how to provide an overall assessment of quality

• There were no indications on how to perform measurements of the quality
characteristics

• The model reflected mostly a developer’s view of software.

Software Quality Engineering: Making It Happen 47

In order to address these concerns, ISO/IEC JTC1 committee SC7 began working
on a revision of the standard, creating in time its new, four-part version:

• ISO/IEC 9126-1: defines an updated quality model [7].

• ISO/IEC 9126-2: defines a set of external measures [16].

• ISO/IEC 9126-3: defines a set of internal measures [17].

• ISO/IEC 9126-4: defines a set of quality in use measures [18].

The new quality model defined in ISO/IEC 9126-1 recognizes three aspects of
software quality and defines them as follows:

• Quality in use:

Quality in use is the user’s view of the quality of the software product when it is
used in a specific environment and a specific context of use. It measures the extent
to which users can achieve their goals in a particular environment, rather than
measuring the properties of the software itself. [18]

• External quality:

External quality is the totality of characteristics of the software product from an
external view. It is the quality when the software is executed, which is typically
measured and evaluated while testing in a simulated environment with simulated
data using external metrics. [16]

• Internal quality:

Internal quality is the totality of attributes of a product that determine its ability
to satisfy stated and implied needs when used under specified conditions.
Details of software product quality can be improved during code implementa -
tion, reviewing and testing, but the fundamental nature of the software product
quality represented by the internal quality remains unchanged unless rede -
signed. [17]

The ISO/IEC 9126 internal and external quality model (Fig. 2.7) is a three-layer
model composed of quality characteristics, quality subcharacteristics, and quality

Figure 2.7 ISO/IEC 9126 internal and external quality model (adapted from [7]).

• suitability
• accuracy
• interoperability
• security
• functionality
 compliance

• maturity
• fault tolerance
• recoverability
• reliability
 compliance

• understandability
• learnability
• operability
• attractiveness
• usability
 compliance

• time behavior
• resource
 utilization
• efficiency
 compliance

• analyzability
• changeability
• stability
• testability
• maintainability
 compliance

• adaptability
• installability
• coexistence
• replaceability
• portability
 compliance

Internal and External Quality

Functionality Usability Effciency Maintainability PortabilityReliability

48 Chapter 2 Software Quality Engineering: Making It Happen

measures. More than 200 measures of internal and external quality were proposed
as part of the standard. It is important to note that the measures do not make an
exhaustive set, which means that other measures can also be used.

The part of the model dedicated to an end user, called further quality in use
(Fig. 2.8), is a two-layer model composed of characteristics and quality measures.
Theoretically, internal quality, external quality and quality in use are linked together
in a predictive model shown in Fig. 2.9.

This prediction relationship states that once the requirements are established
and software construction is underway, the quality model can be used to predict the
overall quality. In reality, no model may claim to follow perfectly this prediction
mechanism. In case of ISO/IEC 9126, the links between internal and external quality
seem rather obvious, as they share the same model, however the links between
external quality and quality in use are more of a cause–effect nature and as such are
much more difficult to predict, especially when the prediction begins on the internal
quality level.

Figure 2.8 ISO/IEC 9126 quality in use model (adapted from [7]).

Quality in Use

Safety SatisfactionProductivityEffectiveness

Figure 2.9 Relationships between the different aspects of quality (adapted from [7]).

Software Quality Engineering: Making It Happen 49

It is interesting to see how the three aspects of quality defined in ISO/IEC 9126
relate to five perspectives of quality defined by Kitchenham and Pfleeger:

• ISO/IEC 9126-4, which defines quality in use, is directly related to the user
and value-based perspectives. The definition of the user perspective of quality
states that it is concerned with the appropriateness of a product for a given
context of use. Quality in use is defined as the capability of the software
product to enable specified users to achieve specified goals in specified con-
texts of use. The relationship between the two is clear. Quality in use and the
value-based perspective of quality are linked essentially through the satisfac-
tion characteristic. This characteristic inherently recognizes that quality can
have a different meaning and/or value for different stakeholders. Satisfaction
levels can thus be set according to those levels of perception.

• ISO/IEC 9126-3, which defines internal quality, and ISO/IEC 9126-2, which
defines external quality, are directly related to both the manufacturing and
product perspectives. The definitions of the quality characteristics functional-
ity and reliability can be linked with the manufacturing perspective of quality.
Reliability, usability, efficiency, maintainability, and portability are all inher-
ent characteristics of the product and a manifestation of the product perspec-
tive of quality.

The presented analysis of the ISO/IEC 9126 model shows (Fig. 2.10) that four out
of the five Kitchenham/Pfleeger perspectives of quality are addressed, but does ISO/
IEC 9126 address the transcendental perspective of quality? At this point, the fol-
lowing statement could be in order: As the transcendental perspective of quality
cannot be defined, it cannot be explicitly implemented in a software product.
However, the transcendental aspect of quality will emerge when a holistic approach
to quality engineering is taken.

So, is the quality model of ISO/IEC 9126 useful for software quality engineer-
ing? The simple conclusion is yes. Besides being useful for software quality engi-
neering, the ISO/IEC 9126 model brings several important practical benefits:

• It is a “consensus” model. It was developed by specialists from the interna-
tional community of software engineering and as such has international
recognition.

• It takes an incremental approach to software quality that begins with quality
in use, something that is easy to grasp for nontechnical stakeholders, and ends

Figure 2.10 Relationships between ISO/IEC 9126 and the perspectives of quality.

50 Chapter 2 Software Quality Engineering: Making It Happen

with internal quality, something with which more technically inclined stake-
holders will feel more comfortable.

• It offers a comprehensive set of suggested measures that allow for the assess-
ment of software quality.

The model in its latest version together with all accompanying standards has now
been publicly available for almost a decade, which, in the life of software quality,
is a very long period without substantial modifications. Taking this into consider-
ation, ISO/IEC JTC1 SC7 undertook in the early 2000s an effort to modernize its
whole set of quality-related standards. As the result the development of a new series
of standards, ISO/IEC 25000 SQuaRE—System and software quality requirements
and evaluation [19], was initiated in 2001, with the chief document among them
being ISO/IEC 25010—Systems and Software Quality Models [26].

2.1.3.5  ISO/IEC 25010 SQuaRE Systems and Software  
Quality Models
ISO/IEC 25010 [20] continues the approach used in the development of ISO/IEC
9126 and similarly to it proposes two distinct perspectives, each of which has its
own model. The first perspective is related to the use of the software or system with
the model called quality in use model, the second is related to the system or software
itself and has its system/software product quality model.

The quality in use model is composed of five characteristics (see Fig. 2.11) and
eleven measures. The objective of this model is to define characteristics that relate
to the outcome of interaction between the user and the system in a given context of
use. In simpler terms, quality in use model refers to business use of the system, the
context that is intended as information technology-free. This model is applicable to
the complete human-computer system, including both computer systems in use and
software products in use. The comparison of ISO/IEC 9126 and ISO/IEC 25010
quality in use models shows that the newest edition has not only one characteristic
more but also several new related measures.

Figure 2.11 ISO/IEC 25010 quality in use model (adapted from [20]).

Effectiveness

• effectiveness

Efficiency

• efficiency

Satisfaction

• usefulness
• trust
• pleasure
• comfort

Freedom form risk

• economic risk
 mitigation
• health and safety
 risk mitigation
• environmental
 risk mitigation

Context coverage

• context
 completeness
• flexibility

Quality in use

Software Quality Engineering: Making It Happen 51

The product quality model is composed of eight characteristics, which are
further subdivided into subcharacteristics that relate to static properties of software
and dynamic properties of the system or software, if that is the case (Fig. 2.12).

In comparison with ISO/IEC 9126 internal and external quality model, the ISO/
IEC 25010 product quality model uses different terminology that, however, keeps a
similar meaning:

• Static corresponds to internal and applies to the software under development
(not being executed or run)

• Dynamic corresponds to external and applies to a system or software being
actually executed, but not within the operation context (for this there is the
quality-in-use model).

Due to this similarity, further in this book both terminologies will be used
alternately.

As can be easily found, the ISO/IEC 25010 product quality model not only has
more characteristics than its predecessor but also some subcharacteristics were added
or modified.

The standard indicates several important practical-application features:

• “the characteristics defined by both models are relevant to all software prod-
ucts and computer systems”

• “characteristics and subcharacteristics provide consistent terminology for
specifying, measuring and evaluating system and software product quality”

• “they also provide a set of quality characteristics against which stated quality
requirements can be compared for completeness.”

The intended application of both presented quality models is principally the
support for specification of quality requirements and evaluation of software and
software-intensive computer systems from different perspectives, such as those of
the developers, acquirers, or independent evaluators. From a development perspec-
tive, using quality models brings several tangible benefits, among them help in
identifying software and system requirements, validating the comprehensiveness of
a requirements definition, identifying software and system design objectives, iden-
tifying software and system testing objectives, or identifying acceptance criteria for
a software product and/or software-intensive computer system. From a software
quality engineering perspective, three benefits are crucial:

• Definition of quality requirements

• Identification of measures of quality characteristics in support of these
requirements

• Establishment of acceptance criteria.

As the ISO/IEC 9126 quality model has earlier been classified as useful for soft -
ware quality engineering, its modernized version, ISO/IEC 25010, is also recognized
as such.

F
ig

ur
e

2.
12

IS

O
/I

E
C

 2
50

10
 p

ro
du

ct
 q

ua
lit

y
m

od
el

 (
ad

ap
te

d
fr

om
 [

20
])

.

Fu
nc

tio
na

l
su

ita
bi

lit
y

•
fu

nc
tio

na
l

 c
om

pl
et

en
es

s
•

fu
nc

tio
na

l
 c

or
re

ct
ne

ss
•

fu
nc

tio
na

l
 a

pp
ro

pr
ia

te
ne

ss

P
er

fo
rm

an
ce

ef
fic

ie
nc

y

•
tim

e
be

ha
vi

or
•

re
so

ur
ce

 u
til

iz
at

io
n

•
ef

fic
ie

nc
y

 c
om

pl
ia

nc
e

C
om

pa
tib

ili
ty

•
co

ex
is

te
nc

e
•

in
te

ro
pe

ra
bi

lit
y

U
sa

bi
lit

y

•
ap

pr
op

ria
te

ne
ss

 r
ec

og
ni

za
bi

lit
y

•
le

ar
na

bi
lit

y
•

op
er

ab
ili

ty
•

us
er

 e
rr

or
 p

ro
te

ct
io

n
•

us
er

 in
te

rf
ac

e
 a

es
th

et
ic

s
•

ac
ce

ss
ib

ili
ty

R
el

ia
bi

lit
y

S
ys

te
m

/S
o

ft
w

ar
e

P
ro

d
u

ct
Q

u
al

it
y •

m
at

ur
ity

•
av

ai
la

bi
lit

y
•

fa
ul

t t
ol

er
an

ce
•

re
co

ve
ra

bi
lit

y

S
ec

ur
ity

•
co

nf
id

en
tia

lit
y

•
no

n-
re

pu
di

at
io

n
•

ac
co

un
ta

bi
lit

y
•

au
th

en
tic

ity

M
ai

nt
ai

na
bi

lit
y

•
m

od
ul

ar
ity

•
re

us
ab

ili
ty

•
an

al
yz

ab
ili

ty
•

m
od

ifi
ab

ili
ty

•
te

st
ab

ili
ty

P
or

ta
bi

lit
y

•
ad

ap
ta

bi
lit

y
•

in
st

al
la

bi
lit

y
•

re
pl

ac
ea

bi
lit

y

52

Software Quality Engineering: Making It Happen 53

2.1.4  Quality Measurement

Measurement requires both particular knowledge and commitment. As measurement
activities are too often considered in software engineering to be nonproductive, or
worse, disturbing the already nervous rhythm of development, to execute the mea-
surement an organization must take a “conscious” decision to dedicate and assign
resources, budget, and time to it. One of the most well-known measurement pro-
cesses addressing these concerns (organizational view) has been developed and
proposed by ISO/IEC JTC1 Subcommittee 7 (SC7)—System and Software Engi-
neering. The model published in the international standard ISO/IEC 15939 is shown
in Fig. 2.13 [21].

As can be noticed, the first and foremost activity required when intending to
execute measurement on the organization level is the commitment. The very funda-
mental question, however, is: Why measure? What are the benefits of measuring in
software engineering? The most-known outcomes are:

• Effective and precise communication

• Means to control and supervise projects

• Quick identification of problems and their eventual resolutions

• Taking complex decisions based on data, not on guesses

• Rational justification of decisions.

Although this approach is principally of an organizational nature, it requires in its
executive part (“plan and perform measurement process”) particular, technical
knowledge. The measurement process, to render valid and usable results, should be
executed in a professional and scientifically sound manner. Again, ISO/IEC JTC1

Figure 2.13 Software measurement process model (adapted from [21]).

Technical and
Management

Processes

Plan the
Measurement

Processes

Management
Commitment

Evaluate
Measurement

Measurement Experience Database

Perform the
Measurement

Processes

Planning
Information

Information
Products &

Performance
Measures

Information Products
&

Evaluation Results

Improvement Actions

Information Needs Information Products

54 Chapter 2 Software Quality Engineering: Making It Happen

SC7 has proposed a generic measurement model (Fig. 2.14) that gained international
acceptance and quickly became the best practice in the domain of software measure-
ment. The model helps to transit from the point of identification of measurable
attributes, through measurement methods and analysis activities, to finally reach the
phase of information product. This last result is the most important outcome of the
whole process, as it is used to take a decision.

In software quality engineering, measurement is a pivotal concept. In other
words, quality cannot be effectively engineered without measurement as measure-
ment makes the only objective means to verify the presence of quality in a developed
software product.

This rather obvious statement gained its formal representation in both academic
and industrial research, resulting in development and publication of three
measurement-dedicated parts of one of the most well-known international standards
dedicated to software quality: ISO/IEC 9126. For the same reasons for which the

Figure 2.14 Generic measurement model from ISO/IEC 15939 (adapted from [21]).

Software Quality Engineering: Making It Happen 55

quality model from ISO/IEC 9126 was modified and replaced by the one from ISO/
IEC 25010, the measures published in ISO/IEC 9126-2, -3, and -4 are being actually
revised and updated to reflect the rapid evolution in information technologies. The
new standards from the ISO/IEC 25000 SQuaRE series proposing the measures for
quality in use (ISO/IEC 25022) and product quality (ISO/IEC 25023) are expected
to be publicly available in 2014.

Both measures (called in ISO/IEC 9126 “metrics”) and measurement processes
presented in the standard adhere closely to the generic measurement process pub-
lished in ISO/IEC 15939, which guarantees their professional soundness. Figure
2.15 illustrates how quality measures being taken following this generic process
relate to the structure of the quality model published in ISO/IEC 9126-1 and ISO/
IEC 25010.

The most important issue arises, however, when a software quality engineer
attempts to really measure the quality. His or her primary concerns usually are:

Figure 2.15 Relationship between quality measures and quality model from ISO/IEC 9126 and
ISO/IEC 25010 (adapted from [22]).

56 Chapter 2 Software Quality Engineering: Making It Happen

• What to measure

• How to measure

• Where to seek support (practical or scientific).

One of ways to address these concerns would be to use as a practical, widely
“digested” support what is offered in ISO/IEC 9126. The standard proposes three
distinctive perspectives of analyzing the quality of a software product (internal
quality, external quality, and quality in use) discussed in earlier chapters of this book,
associates with each of these perspectives a large amount of measures to choose
from, and gives some recommendations about how to interpret obtained results. It
also, as is shown in Fig. 2.16, positions quality perspectives and their measures
against each other both in requirement definition and implementation phases.

This statement may create a false impression that ISO/IEC 9126 is the solu -
tion to all pains a software quality engineer may suffer. It is then very important
to repeat that ISO/IEC 9126 is being in fact replaced (as of the date of publica -
tion of this book) by a new series of software quality specialized standards
called ISO/IEC 25000 SQuaRE—Software Product Quality Requirements and
Evaluation, which offers to the user not only the quality model and associated mea-
sures but also enhanced support in guidance, measurement practice, evaluation, and
management.

Figure 2.16 Software product quality life cycle and related measures (adapted from [22]).

Software Quality Engineering: Making It Happen 57

2.1.5  Quality Evaluation

The evaluation of software product quality is important to both the acquisition and
development of software. The essential parts of the software quality evaluation
process are:

• The quality model

• The method of evaluation

• Software measurement

• Supporting tools.

For anyone attempting to execute a software quality evaluation, it is important
to remember that an evaluation never goes alone. It must be coupled with mea-
surement designed and tailored precisely to purposes of the evaluation. It is also
important to realize that an evaluation is a complex task that should follow a
well-defined process and plan. A model for such a process (Fig. 2.17) has been
developed by ISO/IEC JTC1 SC7 and published in ISO/IEC 25040 [23] as the part
of ISO/IEC 25000 SQuaRE series of standards and as the modernization of the
model published in ISO/IEC 14598-1 Information Technology—Software Product

Figure 2.17 ISO/IEC 25040 SQuaRE model for generic software quality evaluation process
(adapted from [23]).

58 Chapter 2 Software Quality Engineering: Making It Happen

Evaluation—General Overview [24]. Even if in the industrial practice the evaluation
can be conducted from different perspectives (such as that of a developer, acquirer,
or independent evaluator), all of them follow this model, as it represents the generic
approach to quality evaluation.

The ultimate purpose of any evaluation it to obtain reliable information allow-
ing for making a wise and justified decision in actual situation. In software quality
the “actual situation” often refers to the type of intermediate or final software
product to be evaluated, which in turn points to the stage in the life cycle and the
purpose of the evaluation. For a software product in its context of use, quality in
use should be evaluated, for a software product as a part of a system in operation
external (or dynamic) quality should be evaluated and, finally, static artifacts of
a software product in development would require an evaluation of internal (or
static) quality.

A professionally conducted evaluation would require a good plan in order to
achieve its goals within predefined time and budget. Some elements, such as the
following, should be taken into consideration when building such a plan:

• Participants involved in the evaluation

• Budget

• Expected evaluation outcome (or information products)

• Schedule and milestones

• Responsibilities of participants

• Evaluation methods, tools, and standards

• Management of the evaluation project.

Within the evaluation process itself, the first and rather important activity is estab-
lishing evaluation requirements with the objective of defining software product
quality requirements that are the subject of the quality evaluation. This definition
should additionally take into account such criteria as evaluation budget, target date
for the evaluation, purpose of the evaluation, and criticality of the software product.

Evaluation requirements are further translated into a specification of an evalu-
ation. The purpose of the evaluation specification is to define the set of measures to
be applied to the software product and its components during measurement activities
as well as assessment criteria. This includes:

• Selecting measures

• Establishing rating levels for measures

• Establishing criteria for assessment.

In other words, a specification indicates what and how to measure, the targeted (or
reference) values for measures, and how to interpret (assess) the results.

Before the actual execution, similarly to what happens in a development process,
the evaluation has to be designed. The purpose of such a design is principally to
adjust the evaluation plan through considering the measurement to be applied. This
is achieved through:

Software Quality Engineering: Making It Happen 59

• Documenting evaluation methods

• Rescheduling evaluation actions.

In this moment an evaluation is fully prepared and the execution may begin. The
objective of this phase is to obtain evaluation results from measuring the software
product as defined in the evaluation specification and as planned in the evaluation
plan. The selected measures are applied to the software product and components,
resulting in values on the measurement scales. The measured values are mapped into
the rating level scale as established (see an example in Fig. 2.18). Assessment is
then applied, where rated levels are summarized in the form of performance levels
of quality characteristics being the subject of the evaluation. The result is a statement
of the extent to which the software product meets quality requirements.

Further, in a decisional process the summarized quality may be complemented
by other aspects such as time and cost. Finally, a managerial decision is made based
on the managerial criteria. The result of a managerial decision may be the acceptance
or rejection of a software product, modification of release plan, or even withdrawing
from the production.

2.2  ENGINEERING OF SOFTWARE QUALITY

The quality of a software product or system does not come automatically as a result
of the development process. Quite often to the contrary, the development process is
a culprit for continuous deterioration of final quality of software. Especially the
processes that possess “quick fix” actions tend to dramatically diminish quality of
their outcome, as they neither pay enough attention to identifying quality require-
ments nor take enough time to make the quality happen. It is then rather important
to understand that obtaining quality in a software product or system is an engineering

Figure 2.18 Example of an evaluation scale (adapted from [53]).

60 Chapter 2 Software Quality Engineering: Making It Happen

effort, quite similar in its form and objectives to developing a product or system
and as such should have adequate ramifications, resources, processes, models, and
practices.

To help the presentation of subjects discussed in following chapters, a simplified
pattern of practical steps to follow based on software life cycle phases proposed in
ISO/IEC 15288:2008 [25] is introduced in the following.

Discovery Phase. In this phase, the basic two sets of requirements should be
identified and defined:

• Functional and nonfunctional requirements of the product

• Quality in use requirements.

It is important to note here that according to the model of software quality life cycle
defined in both ISO/IEC 9126-1 and ISO/IEC 25010 (Fig. 2.16), the requirements
of quality in use contribute to specifying external (dynamic) quality requirements,
which in turn contribute to specifying internal (static) quality requirements. This
indicates that the attributes of quality in use have a direct impact on the technical
and technological decisions that will have to be made when the development process
starts. This requires that quality in use characteristics be analyzed, applicable mea-
sures identified, and target values for each of them assigned. The ISO standard that
can be applied to complete this task is ISO/IEC 9126–4 quality in use metrics [18]
or ISO/IEC 25022 [26], when published.

Quality in use requirements help define success criteria of a new software
product only if their final set and respective targeted values are the major milestone
and contributor in the definition of functional and nonfunctional requirements of the
future software product with the user perception of the software product quality
already “sewn” into the overall definition.

Requirements Analysis Phase. In this phase, the applicable quality require-
ments define external (dynamic) and internal (static) quality attributes of the software
product to be developed. The ISO standards supporting this phase are ISO/IEC
9126–2 external quality metrics [16], ISO/IEC 9126–3 internal quality metrics [17],
or ISO/IEC 25023 [27], when published.

It has to be stressed here that, as will be further discussed in Section 2.2.1, the
attributes of both external and internal quality identified in this phase are only direct
descendants of quality in use requirements, and as such are not a complete list of
all quality requirements necessary for a given software or system. A simple illustra-
tion of this limitation would be the following question: What is the chance of iden-
tifying a particular static (internal) quality requirement applied, for example, to the
level of code complexity when talking to the customer about his or her business
needs? Obviously slim to none, but this requirement may eventually need to be
defined, and the place for it is further in the project life cycle.

Architectural Design Phase. In this phase, the requirements identified in previ-
ous phases undergo a scrutiny from two different perspectives: feasibility and com-
pleteness. The feasibility analysis has the objective of sifting wishful thinking from
hard reality. Not every quality in use requirement can be translated into obtainable

Software Quality Engineering: Making It Happen 61

external (dynamic) quality attribute(s), be it due to technological constraints or
budgetary ones. On the other hand, the analysis of dynamic (external) quality
requirements obtained in the way of decomposing quality in use requirements, when
they are confronted with the functional architectural design, may prove them incom-
plete. So the discussion between the software quality engineer and the architect may
help identify the requirements that could not have been seen on the level of negotia-
tions with the user. This part of the architectural design phase helps finalize the list
of dynamic quality requirements. What happens to static quality requirements? As
they share the quality model with dynamic quality requirements, they can be much
more easily further identified and detailed, but the list still would not be complete.
To finalize the list, the program design part of the architectural design phase has to
be taken into consideration. On this level the static (internal) quality requirements
obtained through decomposition of dynamic quality requirements should be exposed
to exactly the same scrutiny of feasibility and completeness, however this time in
discussions with the developers.

The final set of requirements has to be transformed now into a set of engineering
“to dos” that can be communicated to the engineering staff (architects, testers,
developers).

This phase has a rather limited support from published ISO standards, however,
quality models and quality measures come in handy, especially as tools helping
scrutinize quality requirements.

Implementation Phase. This phase as the first in the whole life cycle creates
a product that can be measured and evaluated. The created product is intermediate
and changes many times before becoming a ready-to-use solution, but exactly due
to this fact it is critical to measure and evaluate its quality. Every iteration with
measured and evaluated quality produces indications yielding further improvements.
Measurement of internal (static) quality (and, if needed, external quality) attributes
defined in the requirements analysis phase are supported by the ISO/IEC 9126–2
and -3 [16, 17] and ISO/IEC 25023 [27], when published.

The process of measurement and evaluation of the quality of the developed
software (or system) is supported, depending on the position of the evaluating entity,
by ISO/IEC 14598-3 process for developers [28], 14598-4 process for acquirers
[29], 14598-5 process for evaluators [30], ISO/IEC 25040 Evaluation process [23],
and ISO/IEC 25041 Evaluation guide for developers, acquirers, and independent
evaluators [31]. Whenever it is possible, the use of the last two documents is
recommended.

The measurement and evaluation are also supported by the documentation
modules published in ISO/IEC 14598-6 [32] and ISO/IEC 25042 Evaluation modules
[33], when published.

The results of measurements of chosen quality attributes are compared with
target values assigned to them in previous phases and the conclusions are presented
to development teams as the corrective measures of improvement.

The objective of the Integration Phase is to link all components of the software
or system and verify that they are able to correctly communicate. It is useful to keep
in mind that the final result of the integration phase is not the system or software

62 Chapter 2 Software Quality Engineering: Making It Happen

yet, it is still the collection of components that simply know how to talk to each
other. From the perspective of quality engineering the possible interventions should
be analyzed through the process of integration tests. The tests usually find two cat-
egories of reasons for wrong behavior of structures of modules being linked: internal,
related to module architecture or coding, and external, more related to higher level
architecture that puts the modules together. If the terms “external” and “internal”
are replaced respectively by “dynamic” and “static,” the areas of possible quality
engineering interventions appear obvious. The integration phase marks the only
moment at which static and dynamic quality may be measured and verified at the
same time, but due to the nature of the phase itself only a few attributes can be taken
in account. Similarly to the architectural design phase, this phase has rather limited
support from published ISO standards, but of course quality models and quality
measures are in recommended use.

Verification Phase. The product is integrated and stakeholder’s functional,
nonfunctional, and external (dynamic) quality requirements have to be satisfied in
this phase. The process of the evaluation requires a similar procedure as internal
(static) quality evaluation in the previous phase and is being similarly well supported
by standardization instruments (ISO/IEC 9126-2 [16] or ISO/IEC 25023 [27], when
published).

The results of measurements of external quality attributes are compared with
target values assigned to them in previous phases and the resulting conclusions are
presented as the corrective measures of improvement. The feedback may be directed
to different phases of the process depending on the level of the severity of discrepan-
cies between required and obtained external quality.

The Validation Phase moves the software product to the business level, where
the user validates its usefulness for conducting his business, usually with no regard
to technicalities. This means that quality in use requirements have to be satisfied
“here and now.” The process of the evaluation of quality in use requires the same
procedure as external quality evaluation and is being equally well supported by
standardization instruments. The only difference is in using ISO/IEC 9126 – Part 4
[18] instead of ISO/IEC 9126 – Part 2, or ISO/IEC 25022 instead of ISO/IEC 25023,
when published.

The results of measurements of quality in use attributes are compared with target
values assigned to them in previous phases. The resulting conclusions may be used
as the corrective measures of improvement. The feedback may be directed to differ-
ent phases of the process depending on the level of the severity of discrepancies
between required and obtained quality in use.

The Transition Phase has the purpose “to establish a capability to provide
services specified by stakeholder requirements in the operational environment” [25].
The processes of this phase end when a fully operational instance of the software
or product is installed in the production environment of the user. The possible inter-
ventions of quality engineering are rather scarce, principally limited to particular
quality attributes, such as installability or portability.

The Operation and Maintenance Phase is the longest phase of the life of a
system or software. During this phase the system is exposed to the harshest tests,

Software Quality Engineering: Making It Happen 63

which are not only long and continuous but also much more “creative” than the ones
designed by the tester of the developing organization. In practice anything and
everything may happen when a group of normal, IT-uninterested users begin to
execute their duties (and their habits) so, in fact, every category of software quality
engineering intervention may be called to action in one moment or the other, depend-
ing on the type of the event.

For example, the real change in the user’s productivity (quality in use) when
using the system will manifest itself after some time, the resource utilization
(dynamic quality) may prove inefficient under the stress of too many real (not simu-
lated) concurrent users, the maintainability of the code (static quality) may show
inadequate when too many interventions (to comply with user critics or require-
ments) need to be applied.

Measurement and evaluation of quality in the operation and maintenance phase
make sense, especially if we take into consideration that validation and verification
phases where quality is being measured and evaluated for the first time happen
in relatively short periods of time with limited exploration opportunities (e.g., a
limited number of users), however, the important question in this case would be
“how long?”

The structure “product-user” usually reaches its level of stability after few
months of exploitation so it makes sense to conduct relatively frequent quality mea-
surements and evaluations through a similar period. Further, equally frequent mea-
surement efforts probably would not deliver substantial data due to the “routinization”
of interaction between the user and the product, but a professional approach to the
maintenance of the system requires at least monitoring (periodic verification) of
quality in use and dynamic quality. The measurement and evaluation procedure for
quality in the operation and maintenance phase would be the same as proposed for
all other phases. The evaluation results can be useful both immediately (evolutional
role of maintenance process) and in a long-term perspective, when a new product
or its release will be considered.

Some concise advice on how to apply software quality engineering along the
phases of the generic system life cycle is proposed in the Consolidated Quality Life
Cycle (CQL) model, discussed more in detail in Section 2.3.5.

2.2.1  Software Quality Requirements

The first and often most difficult point of software quality engineering projects
is the identification of quality requirements. It has already been stated in this book
that the user (or, more widely, the stakeholder) is rarely, if ever, in a position to
discuss all these “-ities” with which the subject of quality is infested. If we asked
an average, IT-illiterate software system user what would be his or her requirements
for quality, it is very probable that the answers would be, “I want quality to be high”
or “No blue screens, no freezing, absolutely no lost or corrupted data.” A “no blue
screens” answer is in fact not entirely bad, as a good quality engineer would link it
quickly to one of the “-ities,” namely to reliability, but an “I want quality to be high”

64 Chapter 2 Software Quality Engineering: Making It Happen

answer is hopeless and requires serious digging in order to identify the quality
components, or aspects that would altogether constitute “high quality” as seen by
our interlocutor. In the majority of real cases, digging is what happens during the
process of software quality requirement definition.

2.2.1.1  What Are Quality Requirements?
Before discussing software quality requirements, it is important to define require-
ment as opposed to need. As M. Azuma stated (personal communication):

Needs for a product are expectations of stakeholders for the effects of the product when
it is actually operated, which means such actions to the software product as development,
distribution, release, installation, use and maintenance.

Going further, needs may be divided into stated needs and implied needs and both
should be transformed into requirements. The difference between needs and require-
ments may be illustrated by the following definition: “Requirements are the external
specification of specific needs that a product is expected to satisfy.”

Figure 2.19 illustrates relationship between needs and requirements. Stakehold-
ers’ needs (stated and implied) are collected and identified, then transformed in
functional and quality requirements.

In Guide to SWEBOK [34], “software quality” refers to user requirements or
levels of fitness for use or customer satisfaction. In all these definitions, the same
key point is considered: requirements and stakeholder needs. Furthermore, when
defining software quality fundamentals, the guide points out the ability of the

Figure 2.19 Relationship between needs and quality requirements (adapted from [34]).

Software Quality Engineering: Making It Happen 65

software engineer to understand quality concepts when developing or maintaining
software. It also denotes the prime importance of customer’s requirements, which
include quality requirements: “the software engineer has a responsibility to elicit
quality requirements which may not be explicit at the outset and to discuss their
importance as well as the level of difficulty in attaining them.”

On the other hand, the guide defines nonfunctional software requirements as
“the ones that act to constrain the solution, also sometimes known as constraints or
quality requirements.”

Emergence of software quality requirements as a separate category began some-
where in the last decade when requirement engineering encountered difficulties in
capturing all of the types (such as functional, performance, organizational, or
quality). First, the difficulty was associated with the nonfunctional requirements and
supplementary requirements, which where attached to functional requirements.
Later, nonfunctional requirements were associated with quality requirements, where
more research concentrated on their modeling and representation and on negotiation
of conflicts between different categories of requirements.

As the result, as is indicated in Reference 35, “identifying quality requirements
that can be elicited, formalized and further evaluated in each phase of full software
product lifecycle became a crucial task in the process of building a high quality
software product.”

2.2.1.2  Elicitation, Identification, and Definition of  
Quality Requirements
Quality requirements may possess distinctive features that differentiate them from
other categories of requirements, but there is one important tool that all of them
usually share: the identification/formalization process. This process tool [36], as
shown in the example in Fig. 2.20, identifies all phases or actions necessary to

Figure 2.20 Process of formalization of requirements (adapted from [36]).

66 Chapter 2 Software Quality Engineering: Making It Happen

produce a valid and reliable list or requirements, despite their nature. If properly
followed, the process produces a full dossier associated with requirements, begin-
ning with solid knowledge of the application domain (understanding the application
sector helps in identifying requirements), through collection, classification, and
prioritization of requirements ending by an agreed and accepted list of valid and
feasible requirements.

Before, however, the interception and identification of quality requirements
occur it is necessary to know the perspectives (or categories) of quality in which
these requirements will be sought and placed, when found. What immediately comes
to mind is the application of a quality model, treated in this situation as a “menu”
helping to set up the research area. There is, of course, a freedom of choice from
different existing models; however, the practical decision must take into account the
existence of verification mechanisms associated with the model of choice, the exis-
tence of measures that will allow for verification of the realization of identified
quality requirements. From this perspective the earlier discussed models from ISO/
IEC 9126 and ISO/IEC 25010 seem to be some of the better choices, and as such,
they will be further used in this chapter.

It is perhaps worthwhile to position quality requirements (based on our choice
of quality model) within the overall structure of software requirements. In most cases
the requirements definition phase begins with discussions at a high level of abstrac-
tion, sometimes called “business vision,” where stakeholders express their require-
ments in business, service, and quite often usability-related terms. It is then the
responsibility of an analyst to “translate” such nontechnical information into a tech-
nical representation useful in development project. As presented in Fig. 2.21, this
translation may produce three immediate categories of requirements: functional,
nonfunctional (quality excluded), and quality requirements. It is to be stressed that

Figure 2.21 Decomposition of software requirements.

Stakeholders’
Requirements

Functional and
Nonfunctional
Requirements

Quality Requirements

Impact?

Quality in Use

External Quality

Internal Quality

Operational
Quality

Software Quality Engineering: Making It Happen 67

the traditional categorization of quality requirements (usually only few, arbitrarily
chosen) as “nonfunctional” is replaced here by a separate, distinctive category of
quality requirements. The latter may be further broken down, according to ISO/IEC
9126 and ISO/IEC 25010, into quality in use, external (dynamic), and internal
(static) quality requirements. In case of massive deployment of a software product
it may be worthwhile to consider the fourth category of quality requirements—
operational quality requirements. This category, based on definitions published by
QuEST Forum in TL 9000 standards [37], identifies quality attributes associated
with statistical parameters of software usage. TL 9000—Quality Management
System Measurement Handbook proposes four categories of requirements and/or
measurements applicable to software products:

• Common measurements: referring to number of problems reported, response
time, overdue problem responsiveness, and on-time delivery

• Hardware and software measurements: referring to system outage

• Software measurements: referring to software installation and maintenance

• Service measurement: referring to service quality.

Again, a software engineer is absolutely free to choose his or her quality require-
ments decomposition schema, but if this decision is not supported by measures, the
choice is void.

One of the important questions a software engineer may ask when beginning a
development project could be: Why should quality requirements be treated sepa-
rately and what makes them different from all other types of requirements? The
simple answer is: Although (ideally speaking) functional and nonfunctional require-
ments could be complete and “frozen” before actually any development starts
(Fig. 2.22), the quality requirements are, in fact, partial.

Let us examine what categories of quality requirements can be identified when
discussing with a stakeholder his “business vision”:

Figure 2.22 Ideal execution of functional requirement definition.

68 Chapter 2 Software Quality Engineering: Making It Happen

• Operational quality requirements. If the software product to be developed is
planned for a large population of users, this category is valid and the analyst
may seek more details to identify related requirements. If developed software
is personalized, singular, or will be deployed in small quantity, this category
is void, as no statistically valid data will be available.

• Quality-in-use requirements. As this category represents purely application
context-oriented quality requirements, the “business vision” is a good and
usually rich source of information. Most quality-in-use requirements could
and should be identified in this phase.

• External (dynamic) quality requirements. This perspective of quality refers
to a software product that is complete and operational, but observed from
a technical perspective (like that of a technical support or maintenance
team). As the software product does not physically exist yet and a business
vision-oriented stakeholder is usually not able to give enough information
to immediately identify external quality requirements, these requirements
must be sought either through “deduction” from quality in use require -
ments (results are always partial) or further in the development cycle, when
more technical information is available (such as high- and mid-level archi-
tectural design). There is, however, one very interesting exception: usability.
This quality characteristic is classified in ISO/IEC 9126 as “external”
(or dynamic in ISO/IEC 24010) but in several facets it represents end user
concerns and can be clearly expressed by a stakeholder in the phase of “busi-
ness vision.” For example, as stated originally in the standard, “an external
learnability [metric] should be able to assess how long users take to learn
how to use particular functions, and the effectiveness of help systems and
documentation,” which can be expressed very early in the requirements defini-
tion phase.

• Internal (static) quality requirements. This perspective of quality applies to
static artifacts such as code, low-level design, and documentation, and there
is little chance to gather any useful information from a business vision-
oriented stakeholder. To identify external quality requirements, these require-
ments must be sought either through “deduction” from external quality
requirements (results are often relatively rich) or further in the development
cycle, when more technical information is available (e.g., detailed program
design).

This analysis (presented in Fig. 2.23), by illustrating a rather specific nature of
quality requirements signals that software quality engineering processes, may con-
siderably differ from those associated with classical software development.

2.2.1.3  From a Requirement to a Measure
When asking a software engineer from the industry the most difficult part of the
effort to “engineer” quality into a software product, one may receive responses like
these (quoted from the author’s experience):

F
ig

ur
e

2.
23

Si

m
pl

ifi
ed

 s
of

tw
ar

e
qu

al
ity

 r
eq

ui
re

m
en

ts
 i

de
nt

ifi
ca

tio
n/

de
fin

iti
on

 p
ro

ce
ss

.

D
om

ai
n

un
de

rs
ta

nd
in

gR
eq

ui
re

m
en

ts
va

lid
at

io
n

R
eq

ui
re

m
en

ts
co

lle
ct

io
n

C
on

fli
ct

re
so

lu
tio

n

C
la

ss
ifi

ca
tio

nP
rio

rit
iz

at
io

n
E

lic
it

re
qu

ire
m

en
ts

Q
ua

lit
y

in
 u

se
,

op
er

at
io

na
l

qu
al

ity
, s

om
e

ex
te

rn
al

 a
nd

in
te

rn
al

 q
ua

lit
y

re
qu

ire
m

en
ts

en
tr

y

en
tr

y

en
tr

y

R
eq

ui
re

m
en

ts
de

fin
iti

on
 a

nd
sp

ec
ifi

ca
tio

n

R
em

ai
ni

ng
ex

te
rn

al
 a

nd
in

te
rn

al
 q

ua
lit

y
re

qu
ire

m
en

ts

R
em

ai
ni

ng
in

te
rn

al
 q

ua
lit

y
re

qu
ire

m
en

ts

Fr
ee

ze
 r

eq
ui

re
m

en
ts

D
es

ig
n

C
on

st
ru

ct
io

n

D
el

iv
er

y

D
om

ai
n

un
de

rs
ta

nd
in

gR
eq

ui
re

m
en

ts
va

lid
at

io
n

R
eq

ui
re

m
en

ts
co

lle
ct

io
n

C
on

fli
ct

re
so

lu
tio

n

C
la

ss
ifi

ca
tio

nP
rio

rit
iz

at
io

n

R
eq

ui
re

m
en

ts
de

fin
iti

on
 a

nd
sp

ec
ifi

ca
tio

n

D
om

ai
n

un
de

rs
ta

nd
in

gR
eq

ui
re

m
en

ts
va

lid
at

io
n

R
eq

ui
re

m
en

ts
co

lle
ct

io
n

C
on

fli
ct

re
so

lu
tio

n

C
la

ss
ifi

ca
tio

nP
rio

rit
iz

at
io

n

R
eq

ui
re

m
en

ts
de

fin
iti

on
 a

nd
sp

ec
ifi

ca
tio

n

69

70 Chapter 2 Software Quality Engineering: Making It Happen

• Identification and further definition of quality requirements

• Translating requirements into something tangible and verifiable (let us call it
“measures”)

• Making it happen, which translates into methods, processes, and sometimes
even banal recipes of developing software systems that actually have quality
in them

• Verifying that required quality is in fact there (let us call it “evaluation”).

The fact that the definition of quality requirements is on this list of answers raises
another question: Is it really so difficult to “squeeze” from a business story the
information required to at least start defining quality requirements?

To answer this question we will use the results of an experiment repeated con-
tinuously for last eight years, in which software engineering masters students par-
ticipating in the software quality engineering course at École de technologie
supérieure (Montreal, Canada) are asked to identify within a 30-minute period as
many quality requirements as possible from a simple business vision story presented
by a windows manufacturer. To make the story even more realistic, the manufacturer
is absolute ignorant in anything even loosely related to IT.

The windows manufacturer presented his business vision by indicating services
that are required from his new IT system:

A. Control manufacturing process 24/7

B. Allow for ERP-type production supervision

C. Control and manage export of ready products, including adding new offices
in other countries

D. Offer an online ordering service

E. Offer an online follow-up service for active orders.

The results obtained during the experiment were very similar in all eight sessions:

• When identifying applicable quality categories, the students with no exception
ruled out the operational and internal quality, focusing on quality in use and
external quality

• In the first 15 minutes of the experiment, most of them identified the require-
ment of reliability (service A), security (services D and E), and portability
(service C)

• In the next 10 minutes they added learnability, understandability, and main-
tainability (referring to customer’s IT ignorance and international expansion
ambitions)

• In the last 5 minutes they additionally identified productivity (service B),
recoverability (all services), and adaptability (service C).

As amazing as these results may be, they are neither exhaustive nor complete but
still they carry an interesting indicator: they suggest that the real problem in software
quality requirements identification and definition may not entirely be due to the

Software Quality Engineering: Making It Happen 71

unquestionable complexity of the subject. It may partially lay in missing “quality
engineering awareness,” still so typical to the contemporary IT industry. This com-
plicated sentence may also be rephrased in less formal and friendlier way: It is not
so complicated; just give it a chance and try!

Well, if they tried and succeeded, there still is some work to do before a software
product exhibits real quality: the identification of quality attributes and correspond-
ing measures that should be applied and later measured in course of the development
project.

It has to be stated clearly that there is no recipe for choosing the measures, but
the challenge is smaller while requirements are known. It resembles in some sense
deciding what one will eat when going to a restaurant. If the requirements were “cold
seafood” the client would not go to “Texas Steakhouse” but rather to a Japanese
restaurant and seek sushi.

2.2.1.4  Stabilizing Software Quality Requirements
Even in a software development “wonderland,” where all functional requirements
are valid, complete, and frozen before any development starts, the quality require-
ments would be in a far from wondrous state. As we discussed in Section 2.2.1.2,
the nature of quality requirements is complex not only from the static structural point
of view but also from the dynamic temporal perspective. Figure 2.24, presenting a
high-level static structure of quality requirements, indicates that some of require-
ments can be identified explicitly through cooperation with the user/customer, while
the others are the derivatives to be sought through the application of proper quality
models and techniques of breaking into component parts related to these models.
Although it sounds reliable, this formula applied alone will unfortunately not render
the complete and fully usable set of requirements.

Figure 2.24 High-level static structure of quality requirements.

Stakeholder Requirements

Functional Requirements Nonfunctional Requirements

Technical (Nonfunctional)
Requirements

Development
Process

Quality Requirements

Operational Quality Requirements by Model
(TL 9000, others)

Operational Requirements by Model
(McCall, Boehm, Dromey, ISO/IEC 9126,

ISO 25000)

72 Chapter 2 Software Quality Engineering: Making It Happen

To understand why, let us create a little experiment. If our quality structure is
based on the model from ISO/IEC 9126 (i.e., internal, external, and quality in use)
and our project is in the phase of requirements definition, can we obtain useful and
usable answers to the following, quality-related questions:

• What would be the level of the functional implementation completeness
acceptable to the user? (A quality attribute from internal quality.)

• What level of restoration effectiveness would the customer consider satisfy-
ing? (A quality attribute from external quality.)

• What would be the mean response (task execution) time the user would be
willing to accept as satisfying? (A quality attribute from external quality.)

In all three cases the answer to our principal question is negative. The reasons can
be classified as follows:

• Educational. It is very probable that our interlocutor will have no adequate
knowledge to deal with subject of the asked questions.

• Technical. The subjects of the questions are far too technically detailed to be
addressed without a considerable amount of additional data obtained prior to
any attempt to answer them.

• Temporal. The required additional data previously mentioned is physically
unavailable in this phase of the project.

As a conclusion, one has to face a hard fact: completing the definition of quality
requirements requires an additional elicitation effort further down in the develop-
ment process. In this effort, a quality engineer will have to investigate the technical
elements of the design, construction, and tests in order to obtain the missing data
that will help to identify remaining and interrelate all quality requirements from
different levels of technical complexity and further specify the details requested for
their implementation (Fig. 2.25).

Stabilizing requirements produced through such a complicated process already
seems difficult, but the level of difficulty will rise again when we analyze the com-
plexity of interactions (and particular interests related to them) a quality engineer
has to deal with in the whole process. To illustrate this complexity we will analyze
the diagram presented in Fig. 2.26.

At the very beginning of the whole process a quality engineer may, should, or
shall have direct interactions with representatives of the customer and his or her
own organization on both higher technical and nontechnical levels. Every one of
those participants will have his or her particular objectives strongly influencing the
overall view of the quality. In simplified terms, a nontechnical user will seek quality
elements supporting his or her core business, while a technical user will be inter-
ested more in seamless and flawless maintenance, and both most likely will try to
get all of this with a minimal budget. Technical and nontechnical analysts will rely
on the quality engineer in identifying and defining any and all of quality require-
ments that may emerge, trying at the same time to obtain as much of a budget as
possible. In the case of strong limitations of the budget, the quality-related issues

Software Quality Engineering: Making It Happen 73

may become a hard nut to crack, for the “feature aspect” will start to fight for
upper hand.

Further in the process, the principal players with whom the quality engineer
will interact are still the analysts, then developers and testers and, last but not least,
a business case controller. The analysts will be interfaced in further definition of
higher-level quality requirements and their preliminary break down while the inter-
action with developers will be needed to define mid- and low-level (technical) quality
requirements. The interventions of business case controller should be (unfortunately)
expected whenever a budget-related issue emerges. As reality shows, the first area
considered for possible budget cuts is often quality.

We may say now that, in a nutshell, the stabilization of quality requirements
depends on:

• Business expertise and eventual technical proficiency of the representatives
of the customer. The higher both of them are, the better the chances for reach-
ing stable cooperation and efficient exchange of information.

Figure 2.25 Temporal perspective of quality requirements.

Quality in Use
Requirements

Operational
Quality

Requirements

External Quality
Requirements

Internal Quality
Requirements

Design

Measures

Code Tests

Quality Design
(What)

Quality Development
(How)

Quality V&V
(Measurement)

Requirements

Figure 2.26 Interactions of a quality engineer in the process of quality requirements definition.

74 Chapter 2 Software Quality Engineering: Making It Happen

• Professional expertise of supplier’s technical and nontechnical specialists. The
higher both of them are, the bigger the chance for lasting validity of existing
quality requirements.

• Technical and analytical professionalism and negotiation skills of the quality
engineer.

• Maturity and quality of supplier’s internal processes. Internal processes may
facilitate or kill the internal cooperation and as a result influence the efficiency
of engineering quality into the product.

• Completeness and stability of functional requirements, as they are strongly
related to quality requirements.

• Quality of high- and low-level design, as both are required to further specify
related quality requirements.

• Completeness and quality of the design of tests with which quality measure-
ments and verification should (will) be merged.

These points make just a short list of the most important issues that the quality
engineer could take into account when trying to reach some stability in his area of
expertise and responsibility. It has, however, to be firmly stated that the reality of
defining quality requirements may and probably will require much wider actions
before these requirements may be considered “frozen.”

2.2.1.5  Quality of Quality Requirements
The very basic set of attributes describing quality of any type of requirements has
been known for decades now, and can be expressed through the following criteria:

• Correct

• Coherent

• Complete

• Feasible

• Necessary

• Verifiable

• Traceable.

In this regard quality requirements are not different from the others, however their
specificity demands further discussion. One of possible ways of specifying quality
of quality requirements is to evaluate them through the application of conformance
conditions defined in the international standard ISO/IEC 25030—Software Engi-
neering: Software Product Quality Requirements and Evaluation (SQuaRE)—
Quality Requirements [38].

In essence, ISO/IEC 25030 identifies the set of conditions to be satisfied in order
to obtain valid and robust quality requirements. After these conditions, the require-
ments should:

Software Quality Engineering: Making It Happen 75

• Be uniquely identified

• Be traceable to stakeholder requirements

• Take all relevant stakeholder quality requirements into consideration

• Be associated with a chosen quality model. If the model is ISO/IEC 9126 or
ISO/IEC 25010, software quality requirements should be categorized as:
○ quality in use requirements,
○ external/dynamic quality requirements, or
○ internal/static quality requirements

• Be specified in terms of a software quality measure and associated target value

• Have identified clear relations between required functions of the software and
quality requirements applicable to them

• Have known criteria applied for selecting quality measures

• Have identified acceptable tolerances of target values, and

• Be linked logically and functionally to the operational profile (also known as
context of use).

There are practical considerations that could be recommended to allow for further
improvements of quality of requirements. One of them is developing and maintaining
a list of quality measures being used, which, after certain time of accumulation,
would create a rich and reliable experience base.

Another important point in obtaining quality of requirements is making them
verifiable. Any requirement that cannot be objectively proven satisfied (or to the
contrary) is in fact a void statement, which in turn invokes a condition that they be
defined in measurable terms.

The identified requirements, even if correct and verifiable, may stay in conflict.
In order to understand the nature of such a conflict and to find its solution (if it
exists), an understanding of the underlying quality model is often mandatory. There
are practical data indicating that, for example, a high reliability requirement, a high
maintainability requirement, and a high efficiency requirement may be difficult to
implement simultaneously. Solving identified conflicts between quality requirements
may call for adding new or changing existing requirements. These interventions
should be traceable to original quality requirements or the project will run very
quickly into serious trouble.

Quality requirements should also be reviewed and approved. This particular
condition refers to both validation and commitment, as on one hand quality require-
ments may be part of a contractual agreement so we want them to be those we all
find important, feasible, and pertinent, and on the other hand it is wise to have
decision makers and purse keepers consciously on our side. Also, the approval
of quality requirements by the developing organization implies that the organiza -
tion has the ability (technically, managerially, and financially) to meet these
requirements.

Last but not least, quality requirements should be documented in a format that
not only allows for free and effective discussions with participants of different levels

76 Chapter 2 Software Quality Engineering: Making It Happen

of technical proficiency, but also makes them manageable by (or in) a configuration
and change management system.

2.2.1.6  SOQUAREM: The Method for Software Quality  
Requirements Engineering
The IT industry needs reliable data about quality requirements to adequately evaluate
systems and their architecture. The task is not easy due to nature of these require-
ments and the fact that existing quality requirements management methods usually
deal either with one quality requirement aspect (e.g., formal design analysis frame-
work [FDAF] for security or performance aspect [39–42]) or were developed for a
specific type of software (e.g., embedded software). There is, however, a common
key question related to all these methods: How does one identify quality require-
ments from the original source requirements of a system, user, and business? This
step seems to be often simplified or bypassed by simple interviews or questionnaires,
but experience shows that this is a fundamental task required to ensure the correct,
operational, and properly detailed definition of quality attributes. The other very
important condition often overlooked when quality requirements subject is discussed
is their traceability to business requirements (discussed more in detail in Section
2.2.5). In strict business terms, anything untraceable to business goals (needs,
requirements) is done for free. And that is the very basic hypothesis lying at the
foundations of the SOQUAREM method.

Quality requirements emerged in the two last decades as the result of evolving
technology and the increasing need for higher-quality software. The importance of
quality requirements was “discovered” when software developers were faced with
returned software and unsatisfied users. Problems of maintenance and costs forced
the software engineering community to put emphasis on these requirements and
develop quality requirements management methods. Business goal-oriented methods
such as MOQARE (Misuse Oriented Quality Requirements Engineering) [43, 44]
and ATAM (Architecture Tradeoff Analysis Method) [45] use business goals as main
drivers in the software quality engineering process. MOQARE is based on a very
interesting concept of misuse, where quality requirements are sought in the context
of a threat to a given quality attribute and in consequence, the greatest amount of
damage they may invoke if not satisfied. The method is applicable to quality require-
ments derived from business goals, however, due to its complexity, it may be difficult
to be used in a fast-paced industrial environment. ATAM, developed by Software
Engineering Institute of Carnegie Mellon University, supports evaluation of given
architectural alternatives with respect to quality requirements (attributes) and iden-
tification of tradeoffs and sensitive risks early in the development process. The
method focuses principally on eliciting architecture-centered quality attributes at the
architectural level and offers a detailed description of quality scenario concepts,
utility trees, and architectural styles, but there is no visible passage to quality require-
ments and measures necessary in further phases of a system life cycle. Goal-oriented
methods such as ASPIRE [46] use goal graph structure as driving force to elicit and
refine nonfunctional requirements. The method is a structured process for eliciting

Software Quality Engineering: Making It Happen 77

complete and measurable instances of quality attributes and is dedicated to embed-
ded systems. In the ASPIRE approach, the quality goals are not derived from busi-
ness goals and the tailoring stage is not supported by context-rich scenarios. The
Soft Goal Notation approach [47, 48] is applicable to all types of quality require-
ments, but it is focused on the documentation and negotiation of quality require-
ments, not on their elicitation and traceability to business goals. Aspect-oriented
methods such as FDAF are based on an aspect-oriented paradigm concept to define
quality attributes and aspects that cannot be described in the real time version of
unified modeling language (UML). FDAF framework proposes the extensions to
UML notation but offers no support to identification, representation, or documenta-
tion problems at the requirements level.

Summarizing, some most important limitations of existing quality requirements
management methods would be:

• Lack of processes and models describing identification, break down, and
representation of quality requirements

• Lack of structured methods or techniques to identify quality requirements.

In fact, the majority of the discussed methods deal only partially or not at all with
criteria related to identification, decomposition, representation, conflict analysis,
documentation, and derivation of quality attributes from business goals, and so on.
For example:

• None of the methods fully supports the identification of quality requirements

• Most of the methods are not based on a recognized, with international con-
sensus, quality standard (such as ISO/IEC 9126 or ISO/IEC 25000)

• ASPIRE does not take into account the concept of business goals

• MOQARE and ATAM do not take into account the concept of quality standard
and the task of quality integration with functional requirements

• MOQARE does not take into account the task of conflict analysis.

The Software Quality Requirements Engineering Method, or SOQUAREM [49,
50], has been developed as the response to these concerns, attempting to deliver
support to systematic identification of quality requirements at the definition phase
of the software development life cycle and their further transition to measureable
and verifiable quality characteristics.

Dedicated to address all types of quality requirements, it is based on business
context elements, scenario concepts and, at the time of development, on ISO/IEC
9126 standard to infer the related quality attributes. Business goals are main drivers
of the SOQUAREM process. They are identified by applying two business-related
concepts, the Business Motivation Model (BMM) and Business Context Table
(BCT), used as starting points in the derivation process to identify quality require-
ments and deliver detailed quality attributes. Traceability of these requirements to
their original source is modeled in a utility tree.

78 Chapter 2 Software Quality Engineering: Making It Happen

Introduced by the Business Rules Group [51], the BMM is designed to “provide
a structure for developing, managing, and communicating business plans in an orga-
nized manner.” It has been proposed by the Object Management Group as a simple
and compact standard that provides a metamodel for enterprise-specific motivation
models.

Business Context Table (BCT) describes fundamental questions about elements
of business context. It structures and details items of BMM business context accord-
ing to the following keyword questions: how, what, why, and who.

A utility tree links (traces) every identified and classified “necessary” quality
attribute to its originating business goal. It is structured in three levels:

• Business level: where stated business goals and their refined business goals
are represented. Priority of the related refined business goal is also
represented.

• Quality attributes level: where derived quality attributes are represented from
detailed business goals. The actor responsible for achieving quality attribute
is also represented at this level.

• Scenarios level: where the meaning and role of derived quality attributes are
detailed with (use case) scenarios.

SOQUAREM, being the business goals-centric, stakeholder-centered and scenarios-
oriented method, is organized around two levels (Fig. 2.27):

• The business goals level, which consists of:
○ identifying important business goals from BMM and BCT
○ specific rules that are to be used to refine business goals
○ consensus and free dialogue sessions used to confirm the refined business

goals with stakeholders and domain experts

• The system quality attributes level, where:
○ quality attributes are derived from the business goals according to the

quality standard ISO/IEC 9126 and linkage rules
○ quality attributes are operationalized by using the scenarios template
○ quality attributes scenarios are analyzed for possible conflicts and consoli-

dated by using prioritizing techniques
○ consensus sessions are used to confirm quality attributes scenarios with

stakeholders
○ utility tree describing traceability of quality attributes is produced

• quality attributes are linked to use case model by using mapping rules.

Figure 2.28 presents key concepts involved in the main activities of SOQUA-
REM process. The first activity related to identifying and refining business goals
uses the concepts of BMM, BCT, free dialogue session, consensus session and state-
ment, and refinement rules. The next activity, addressing derivation of quality attri-
butes from the refined business goals, applies BMM and BCT, quality scenarios
description, quality standard ISO/IEC 9126, linkage rules, consensus session, and

Software Quality Engineering: Making It Happen 79

prioritizing techniques. Two last activities, dealing with documentation and repre-
sentation of quality attributes, use quality attributes template and utility tree.

The SOQUAREM structure is organized in steps and uses various techniques
and tools (such as heuristics, mathematical and intuitive modeling, and catalogs of
nonfunctional requirements methods inherited from the soft goal notation), quality
standards, and verification rules. Stakeholders and domain experts are involved
during process operation. Techniques used are either informal, heuristic, or semifor-
mal. The informal ones are consensus, free dialogue session, scenario descriptions,
and template. Scenario descriptions are used to detail the meaning of quality attri-
butes and make them operational. Heuristic techniques use descriptive methods to
help clarify the business goals and identify quality attributes. Semiformal methods

Figure 2.27 High conceptual levels of SOQUAREM.

80 Chapter 2 Software Quality Engineering: Making It Happen

use UML modeling to represent the operational parts of the quality attribute (actions
undertaken to achieve it) and to link them to the functional requirements (represented
in the use case model). Mathematical methods, such as as utility tree, impact matrix,
and weighted methods, are used to represent quality attributes and resolve conflicts
among them. Verification rules are used during the whole process to regulate the
operation process and are subdivided into: statement rules to define business goals,
refinement rules to refine business goals into refined business goals, linkage rules to
derive quality attributes from business goals, and mapping rules to link quality
attributes to the functional process by the use case model.

The SOQUAREM process model is divided into six conceptual steps for defin-
ing and refining business goals, deriving, operationalizing, analyzing, documenting,
and representing quality attributes and finally for linking quality attributes to the
functional process. These steps use various quality requirements elicitation tech-
niques (questionnaire, consensus session, BMM, scenarios, prioritization, utility
tree, and templates). Potential inputs of the process are BMM, BCT, and domain
experts. Main participants are quality engineer, domain experts and selected
stakeholders.

Figure 2.28 Description of SOQUAREM concepts.

Free dialogue

Refinement
rules

Business
motivation model

Business
context table

Consensus
session

Scenarios
template

Prioritization
technique

ISO/IEC 9126
ISO/IEC 25000

Linkage rules

Quality
attributes
template

Document quality
attributes

Link quality attributes to
use case model

Derive quality atttributes
from business goals

Identify business goals
and refine business

goals

SOQUAREM process phasesSOQUAREM concepts

Represent quality
attributes

Quality
attributes utility

tree

Software Quality Engineering: Making It Happen 81

SOQUAREM process model (Fig. 2.29) is represented as:

Step 1: State and identify the business goals: define relevant elements of busi-
ness context such as business goals and business domain.

Step 2: Refine business goals: business goals are detailed according to addi-
tional business information such as organizational culture, regulations and
guidelines, technological constraints, and business strategies to achieve busi-
ness goals.

Step 3: Link business goals to the corresponding quality attributes: detailed
business goals are used to derive the quality attributes by using ISO/IEC 9126
quality standard and linkage rules.

Step 4: Build quality attributes scenarios by using the scenarios template and
the consensus session techniques to infer the right quality attributes.

Step 5: Analyze conflicts among QAs and consolidate them by using prioritiza-
tion methods.

Step 6: Link quality attributes to the functional requirements process by updat-
ing the initial use case model with additional information about QAs.

As illustrated by Fig. 2.30, in the logic of the SOQUAREM process model,
quality attributes are identified from business goals with elements of business context
such as BMM and BCT being used to help identify them and further refine them
into refined business goals. Later, quality attributes are linked to refined business

Figure 2.29 SOQUAREM process model.

82 Chapter 2 Software Quality Engineering: Making It Happen

goals by using scenarios and quality standard ISO/IEC 9126. They are also inte-
grated into the functional process by means of mapping rules, use cases, and business
domain models. Traceability from business requirements to system specifications is
realized by mapping business context elements to quality attributes of system level
in two ways:

• Business goals are refined into sub goals and linked to quality attributes

• Influencers (external and internal) are mapped to actors responsible for achiev-
ing quality attribute.

The main objective of the SOQUAREM process is to build a bridge between busi-
ness level elements and system level ones and allow more interaction between
stakeholders, software people, and domain experts during consensus and free dia-
logue sessions.

There are some interesting aspects differentiating SOQUAREM from other
existing methods that deserve attention:

• More interaction with stakeholders and domain experts during consensus and
free dialogue sessions

• Use of intuitive modeling and motivation of business in the derivation process
of quality attributes

• Structured derivation of quality goals from business goals by using BCT and
BMM)

Figure 2.30 Logic of SOQUAREM process model.

Software Quality Engineering: Making It Happen 83

• Derivation step of quality attributes from business goals is fully described in
SOQUAREM

• Use of scenarios at the requirements level to resolve terminology problems
and infer the correct quality attributes

• Use of verification rules such as statement rules to define business goals,
refinement rules to refine business goals, linkage rules to derive quality attri-
butes from business goals, and mapping rules to link quality attributes to the
FRs model

• Use of globally recognized ISO/IEC 9126 as quality standard for SOQUA-
REM process

• Use of quality template to specify and document quality attributes

• Use of prioritizing methods (impact matrix and weighted method) to resolve
conflicts among quality attributes.

In its standard-related part, SOQUAREM refers to ISO/IEC 9126, but as this stan-
dard slowly becomes obsolete and is being gradually replaced by the documents
from ISO/IEC 25000 series, the updated version of the method should be expected
to be publicly available soon.

2.2.2  Software Quality Design

The leading idea that software quality engineering is an effort similar to that of
software development implies that quality itself is a “product” being subject to
interventions if not identical to then at least resembling those from the development
process. In the previous chapter we discussed the first of them, quality requirements
definition and specification, indicating where and in what this activity differs from
classic functional requirements specification. The next logical step is then the design
of quality. This subject will be discussed in a close relationship with system design
efforts.

2.2.2.1  What Is the Design of Quality?
Quality design is the phase in which the quality engineer translates quality require-
ments gathered earlier into his or her technical representations (or, in simpler form,
executable to-dos) applicable in the next phases. But unfortunately it is not so simple.
The results of the quality design process also have to be:

• Applicable immediately in the software/system design phase, no matter the
development model chosen

• Further refined and complemented to descend to the level required in a con-
struction phase.

To explain this idea, let us analyze the situation presented in Fig. 2.31, where two
processes, system and quality engineering, meet in their respective design phases.

84 Chapter 2 Software Quality Engineering: Making It Happen

System design, following the convention proposed in Reference 1, is an activity
that aims “to determine a set of components and inter-component interfaces that
satisfy a specified set of requirements.” The following important keywords (and their
respective notions) can be withdrawn from the above statement:

• System. This keyword has a connotation of a complete, functioning entity,
seen through its externally observable behavior.

• Decomposition. The process of “dismantling” the one complex solution into
a set of interrelated smaller but simpler subsolutions (components).

• Component. A functional smaller entity, subsystem, or piece of software that
together with the other components shall constitute a system.

• Inter-component interfaces. For the sake of our analysis, the word interactions
would be preferable as wider. The interactions make the real bloodstream of
a system, through which the components communicate.

When analyzing these notions one can easily notice that all four of them have strong
quality dependences. Our system may or may not exhibit requested quality; the
decomposition that leads to architecture may but does not have to automatically have
the quality high; the components, similarly to the system, may be of low or high
quality; and finally the interactions are also subject to such an evaluation. In this
sense the design of quality means identifying, specifying, and indicating to the
development team all quality-related to-dos that should be taken care of in the system
design phase. To see it clearer let us imagine a fictitious discussion between a quality
engineer (Bob) and an architect (Frank):

Bob: From my quality requirements definition phase I have identified the fol-
lowing, system-level quality attributes: system availability has to be
minimum 98%, the mean recovery time should not exceed 1 min/failure
and the customer requests that the relative user efficiency be at least 0.9.

Frank: Well, it sounds okay, but what I am supposed to do with it?

Figure 2.31 System and quality design interaction.

Business Requirements

Functional and Nonfunctional
Requirements Analysis and

Definition

Quality Requirements Analysis
and Definition

System Design System QUALITY Design

To the next phases

Software Quality Engineering: Making It Happen 85

Bob: These attributes have the following impact on your design: the availability
of 98% means that the system must be available 59 minutes out of every
operational hour at any time, so your design should strive to exhibit high
reliability. One of the options you may take into account is using stable
technologies and enhanced application of reuse. The recovery time below
1 min/failure may request applying super efficient recovery algorithms
together with extra fast hardware. Finally, user efficiency of 0.9 and above
translates into such a functional user interface and online help design that
there will be virtually no difference in operation between and average
user and an expert.

This example illustrates the way in which system and quality engineering could
interact to build a quality product from very beginning. To systematize this direction
of the cooperation one should proceed as shown in Fig. 2.32.

As it has been stated in sections discussing requirement definition, it is a rare
situation where all quality requirements are complete before reaching the phase of
construction. The main reason for such a situation is missing data. The design phase
is the first place where existing quality requirements can be verified and eventually
modified if necessary, but first and foremost they can be developed to the level that
will allow for completing quality design, which, among others, means building the
personalized quality model. The first part of the process allowing for reaching this
stage is shown in Fig. 2.33.

The system-level quality design may require several iterations before it reaches
its complete and stable state. As can be seen in Fig. 2.33, these iterations are wide
in a sense that they also run through system design process. The logic of such an
approach is the following:

• Quality-related technical elements introduced into the system design (arrow,
A) may induce changes in the design itself. Even if not, in a professional

Figure 2.32 Engineering process for introducing quality into system design.

Quality requirement analysis
and definition

Identification of quality
attributes applicable on the

system level.

For example in ISO 9126 from quality
in use and external quality, or

operational quality attributes from
TL9000.

Specification of technical
elements related to identified

quality attributes

Communication
with

development team

86 Chapter 2 Software Quality Engineering: Making It Happen

practice the whole design always goes through the verification and validation
process.

• The results of verification and validation of the design will be used to
update the corresponding design of quality (arrow B). Updating means both
adjusting the already existing design and adding the elements that resulted
from the system design. This part is crucial for finalizing quality design.

• The updated quality design should go through its own verification and valida-
tion process. Its results may require another intervention on the level of system
design (arrow A).

• And so on until both designs are verified, validated, as complete as possible
in their actual reality, and corresponding.

The principal exchange of data allowing for effective system and quality design runs
through channels represented by arrows A and B. The functioning of the channel A
has been illustrated earlier in this section in the form of the discussion between a
quality engineer Bob and his system counterpart, Frank. To illustrate channel B we
will use the same formula, except this time the discussion will be originated by Frank
(system design side).

Figure 2.33 Completing system-level quality design.

A

B

OK? OK?

Function and Nonfunctional
Requirements Analysis and Definition

System design

System design stable System-level quality design stable

To program-level
quality design

To program
design

no no

yesyes

Quality Requirements Analysis and
Definition

Specification of technical elements
related to identified quality attributes

Quality design verification and
validation

Design verification
and

validation

Software Quality Engineering: Making It Happen 87

Frank: When designing our system I have learned that the chances for reuse are
slim at best as the system is rather new, that some of core services of the
system cannot be developed without applying the latest 5G (fifth genera-
tion) tools and that in order to keep the mean recovery time not exceeding
1 min/failure I will have to use the newest hardware, not yet matured in
large public use.

Bob: These decisions may have some impact on quality design. They will have
to be analyzed further, but as for now I can indicate the following: the
requirement of 98% availability may not be possible to fulfill as the
technology to be used is not stable enough. This requirement will have
to be redefined and most probably renegotiated. Applying hardware not
yet matured in large public use invokes the issue of user’s safety. The
minimal safety level requested in our sector of operation is X, and your
design will have to comply with it. After verifying and validating these
new aspects I will return to you with updated quality-related technical
elements.

What happened during this discussion is the update of quality design that follows
the impact of the constraints applied to the system design. Applying the most modern
technology, inevitable if we want to satisfy core functional requirements, invokes an
elevated risk and in turn may make unrealistic 98% availability. This will have
to be reconsidered on all levels, from technical to business. Using hardware that
has not yet matured in a large public use introduces a new quality aspect and its
related requirement, safety, which would probably not have emerged had the hard-
ware been mature. Finally, the validation and verification that is required in order to
update the quality design opens a new iteration leading hopefully to a better quality
of the system.

The next step of quality design is the design of program quality. The process of
the design is similar to this on system level (Fig. 2.34), except program design
applies principally to code and its related documentation, or in other words to static
artifacts of the development. What is important to note is the fact that program
quality design inherits from system quality design. In simpler terms, the code must
possess such quality attributes that, when composed together, will make the whole
system satisfy the quality requirements.

To understand it better let us take an example based on the ISO 9126 quality
model and measures. If a system-level quality attribute (or a subcharacteristic, as it
is termed in ISO 9126) from the external quality category is interoperability, which
implies that the system should be able to effectively communicate with the external
world, then the program-level quality attribute should be sought in the internal
quality category and have interoperability connotations. In the case of ISO 9126,
this internal quality subcharacteristic is also interoperability, and implies that the
program should be able to communicate effectively with its external world. Such an
inheritance is relatively easy to follow and applies in quality design in the case of
the external–internal quality relationship within ISO 9126 (both categories share the
same quality model); however, it will not be helpful when program quality design

88 Chapter 2 Software Quality Engineering: Making It Happen

must subdue to quality in use attributes. The only link between quality in use and
program quality is logic of consequences. For example, the quality in use attribute
economic productivity cannot be linked in any automated way to any program quality
(internal quality) attributes, but intuitively we know that a system built from badly
designed and coded program modules will most probably be slow, ineffective, and
failure-prone, which in turn will prohibit any productivity from happening.

The step of quality design allowing for the real control of the engineering results
is the choice (identification and rationale) of measures that should be taken in order
to evaluate the quality of developed system and the assignment of target values
against which the measurement results will be compared. It is obvious that these
measures are direct logical descendants of the design, but the choice once again is
not automatic. ISO/IEC 9126, for example, contains over 200 measures associated
with its quality model characteristics and subcharacteristics, and it is difficult
to imagine all of them classified “indispensable” and even more difficult to see
them all taken without creating serious bottlenecks in the project. The same limita-
tion applies to quality attributes (characteristics and subcharacteristics) constituting
our design of quality. We will rarely, if ever, be interested in all possible quality
attributes from the quality model we chose for our project. So, on the level of quality

Figure 2.34 Completing program-level quality design.

System-level design

Program design

Design verification
and

validation

Quality design verification and
validation

Specification of technical elements related
to identified program quality attributes

OK? OK?
no no

yes

To measurementTo construction

yes

Program design stable Program-level quality design stable

A

B

Software Quality Engineering: Making It Happen 89

design, we also choose what is most important to obtain and what is less important,
creating, as has already been mentioned, the quality model personalized for our
project. This leads us back to the question asked in the title of this section: What is
quality design?

To answer this question we will introduce a concept of personalized quality
implementation map. As on the real, geographic map, we will find there the informa-
tion required to get to the point of our destination, except instead of having full
content, we will only have what is needed in our trip. The personalized quality
implementation map in its basic form contains (Fig. 2.35):

• Quality requirements for the developed system

• A project-personalized quality model resulting from quality requirements

• Quality attributes descending from the quality model

• Quality-related technical elements (development to-dos) corresponding to
quality attributes

• Quality measures linked to quality attributes

• Target values mapped to quality measures.

To make the map and the quality design complete some complementary elements
should be added:

• Quality measurement process, planning, and methods

• Quality evaluation process, planning, and methods

• Evaluation results analysis and interpretation methods

• Methods, planning, and criteria for evaluation of the quality of accompanying
documentation and services

• Tools.

Figure 2.35 Personalized quality implementation map.

Functional and
Nonfunctional
Requirements

System
design

Program
design

Program
quality

technical
elements

Program
quality
design

Program
quality

attributes

Program
quality

measures

Program
quality
target
values

System
quality

technical
elements

System
quality
design

System
quality

attributes

System
quality

measures

System
quality
target
values

Quality Requirements

Personalized Quality Model

90 Chapter 2 Software Quality Engineering: Making It Happen

Once such a map is properly constructed, a quality engineer has all the required tools
(and also some decisive power) to effectively participate in a creation of a “blue
screen-free” and professional software system.

It can be noticed that the procedures applied in quality design in consecutive
phases of the system (or software) life cycle look similar. In fact, they follow a
common process and use the common set of normative support documents (of the
choice of the designer). Figure 2.36 presents a generic model of a quality design
process that can be easily used by quality designers when passing from one phase
of the life cycle to the next.

Figure 2.36 Generic quality design process.

Software Quality Engineering: Making It Happen 91

Of course, the model is applicable only in the phases that are either purely of
the design nature (architectural design, program design) or at least have some design
notion in them (requirements definition, construction). To use this generic process,
the designer has to fill up a few introductory blanks in the model. And so:

• Phase has to be replaced by the real phase of the life cycle in which the design
shall take place. Example: program design phase.

• Quality data required for a given phase of life cycle have to be replaced by
input data from the previous phase. Example: quality in use requirements as
input data for system design phase.

• Quality definition standards should be chosen according to the phase in which
design is to take place. Example: ISO/IEC 9126-4 or ISO/IEC 25022 when
quality in use is the subject.

The last general comment concerning the design of quality would be as follows: in
a real industrial environment there usually is no time for elaborate exercises of
developing proprietary quality models and measures. It is then recommended and
helpful to use as much as possible what is already developed, taking into account
the simple fact that designing a very good meal is faster and more secure with a
menu in hand than when doing it from scratch, especially when the menu is graced
by a large, possibly international consensus.

The example of using ISO/IEC 9126 as a quality design menu illustrates this
approach with one important correction: it should be replaced by the ISO/IEC 25000
SQuaRE series the first moment the standards are fully published.

2.2.2.2  Practical Aspects of Designing Quality into a Software Product
Quality design, similarly to any design effort, depends on requirements and their
completeness, feasibility, and quality. Having said so, we can identify the first practi-
cal aspect of quality design as the validation of requirements coming to us. It would
be prudent to discuss the actual set of quality requirements with analysts and design-
ers in order to obtain their early, technically oriented feedback before actually any
design begins. Such a consultation may prove fruitful for all involved if we keep in
mind the mutual influence of both designs. This recommendation holds its value
further down the development process, when we repeat similar activities applied to
program (quality) design.

Another important practical aspect of quality design is its testability, understood
as the basis for developing early test scenarios. For example, the quality attribute
“recoverability” implies the existence of mechanisms, both soft and hard, that, when
implemented, will satisfy the need of the particular level of recoverability. It is then
possible in the design stage to identify a scenario or scenarios in which we will
check how the system behaves after the failure, define the stimuli used to provoke
failures, and even classify/prioritize the types of failures we would be interested in.

Quality design neither is nor should be executed without some kind of structural
foundations making a framework for the overall effort. Usually as such a framework
we explore quality models; however, the practical aspect of this point is measures.

92 Chapter 2 Software Quality Engineering: Making It Happen

One could ask the very valid question of why the models from ISO/IEC 9126 and
ISO/IEC 25010 are so recommended. Are they really the best we could lay our hands
on? This book is not the place to offer such an ultimate opinion, but what surely
may be said is that these models come with measures. Again, we may divagate
whether these measures are the best or not, but at least the quality engineer is
not left empty-handed. The decision of applying other existing models or even of
developing our own quality model will inevitably invoke the need for designing
the measures and associated with them methods of evaluation, analysis and
interpretation.

This may be considered a valid option (see Reference 52), but here again is a
catch. As long as such a custom method is used for internal, organization-proprietary
purposes all may work smoothly and effectively, but the complications begin when
we have to prove to the external evaluator (e.g., a user) that the quality actually is
there. Using a home-cooked method will rarely allow for market-recognized certi-
fication (like that of ISO 9001) and as the result the effort may undergo a painful
process of individual, often external verification.

Some of the biggest challenges in system and quality engineering are the inte-
gration procedures describing the way in which both efforts should melt into a
coherent and effective process. Depending on individual policies applied in organiza-
tions, these procedures may be more or less structured or disciplined, but all that
will boil down to three key elements: team structure, overlapping of knowledge, and
decisional power distribution. The development team that has no position reserved
for a quality engineer will be given the “quality-refusal” option, or, in other words,
the option of pushing aside quality aspects as “less important now.” The overlapping
of knowledge is a communication bridge between those who build and those whose
job is to help the builders do so well. The very basic knowledge of quality engineer-
ing notions should then be a part of the expertise required from developers, while a
good, working knowledge of the largely understood development subject is indis-
pensable in the expertise of a quality engineer. Last but surely not least is the
distribution of the decisional power within the development team. The quality engi-
neer having no power to influence the development effort when he can prove it
justifiable is a risky concept and an unforgivable waste of resources and budget. By
definition the quality engineer is there to help in making things better and making
better things, and positioning him or her as a powerless consultant will bring no
considerable profits, especially in the industrial environment, where the biggest
pressure is time to market and quality reflections often come too late, after the client
starts complaining.

2.2.2.3  Planning the Quality Verification
We have already stated that the effectiveness of quality engineering hides in the ability
to measure it and verify its compliance to requirements. Verifying whether quality is
actually there requires a specific approach that we can call a dual (or bifocal) perspec-
tive. This dualism comes from the following idea: the final quality of the system
results from quality in the phase and quality of the phase. Quality in the phase is what
we called an executable to-do, which, when executed, should bring required quality

Software Quality Engineering: Making It Happen 93

attributes to the system. Quality of the phase is a feature that says whether the phase
itself has been done properly. Let us look at the following simple example: the design
of a given system contains all required functions and functionalities, but the design
itself is, for lack of a less deprecating word, “fuzzy.” What are the chances that the
system developed following such a design will nevertheless exhibit the required
quality? Let us say “some,” but surely smaller than when a system follows a clear,
disciplined, and well-documented design. This applies equally well to the design of
quality itself and will be briefly discussed in the next chapter.

The two aspects of quality discussed here should be reflected in quality verifica-
tion and its planning together with their feasibility (or actual place within the devel-
opment cycle where the physical verification can take place). Instinctively we know
that the quality of the phase has to be verified in course of this phase, so its planning
has to be synchronized with the phase’s advancement, processes, and produced
artifacts. Things get more complicated when we should plan the verification of the
quality in the phase. Let us recall again the example from Section 2.2.2.1:

Bob: From my quality requirements definition phase I have identified the follow-
ing, system-level quality attributes: system availability has to be minimum
98%, the mean recovery time should not exceed 1 min/failure and the
customer requests that the relative user efficiency be at least 0.9.

The executable to-dos indicated in this example cannot be verified in the design
phase, as they require a running system to be measured, evaluated, and validated. A
similar situation will take place on any level of the design, be it business-related or
code-related: the verification of quality will require the existence of related artifacts
or all the effort is just another theoretical experiment of no larger, tangible value. To
help better grasp the importance of this statement, one can observe the approach
presented in Fig. 2.37, which, in a somehow simplified way, illustrates the method
we could use when planning quality verification.

Figure 2.37 Planning quality verification.

Quality
requirements,
Quality in use
tests definition

Requirements
Engineering

System/
Software
Design

System/software
quality design

External quality
test definition

System/software
quality verification
External quality

tests

system/
software quality
related artifacts

System/software
behavior quality

verification Quality
in use tests

system
behavior

System
Validation

Program
quality design.
Internal quality
test definition

Program
quality verification.

Internal quality
tests

Program
Design

Software Verification

System Verification

Coding
Program

related artifacts

validate

verify

correct

94 Chapter 2 Software Quality Engineering: Making It Happen

In case of the V-model from Fig. 2.37, the first product-related artifacts begin
to appear during coding (we do not take into account an accelerated development
of user documentation that in some cases can be undertaken) to further evolve into
system-related artifacts. Knowing the development model used in a particular project,
a quality engineer can, relatively early in the process, identify the moments and
places within the development cycle (sometimes with precision to real calendar
dates) where the artifacts required for quality verification will appear. This knowl-
edge should allow for creating a feasible verification plan containing at least the
following elements:

• Measurement plan defining when and where the measurements will be
taken

• The overall schedule

• Required human resources

• Tools and environment

• Budget

• Temporal distribution of usage of both human and material resources

• Changes and iterations management.

This content is merely a framework of what can be created in real situations,
which means that the organization caring for the quality of its product may build a
quality verification plan that is much more elaborate, detailed, and rich but, again,
it all will boil down to corporate policy- and budget-based quality objectives, long
and short-term plans and decisions.

2.2.2.4  Quality of Quality Design
Quality of quality design is just a question about how well the design itself was
done.

Before discussing the subject, let’s quickly recapitulate quality design product,
the personalized quality implementation map. The personalized quality implementa-
tion map basically covers:

• Quality requirements for the developed system

• The project-personalized quality model resulting from quality requirements

• Quality attributes descending from the quality model

• Quality-related technical elements (development to-dos) corresponding to
quality attributes

• Quality measures linked to quality attributes

• Target values mapped to quality measures.

The map, in order to be realizable, has to be accompanied by quality measure-
ment, evaluation, results analysis and interpretation processes, planning and methods,
and adequate tools and documentation. So what could go wrong? Pretty much
anything.

Software Quality Engineering: Making It Happen 95

The very basic set of attributes describing the quality of requirements can also
be almost unchanged when applied in verification of the quality of the quality design,
and can be expressed through asking the following questions: Is the design:

• Correct?

• Coherent?

• Complete?

• Feasible?

• Verifiable?

• Maintainable?

• Traceable?

A correct and complete quality design produces the personalized quality imple-
mentation map that properly addresses all identified quality requirements, and links
them to development artifacts on one hand and to the model and applicable measures
on the other. Finally, such a design correctly translates quality requirements and
attributes into engineering “to-dos” (objectives and tasks) that can be communicated
to, understood by, and executed by technical professionals.

A coherent quality design is not only easy to follow and understand, but also
follows the logical pattern recognized within the project. The very basis for obtaining
that coherence of the quality design is the application of a stable, logical quality
model. Once a logical transition path with clearly visible transition phases can link
every requirement and the results of its implementation, the majority of the quality
design coherence task is achieved.

A feasible quality design responds to feasible and reasonable quality require-
ments and produces technically feasible and financially justifiable engineering
to-dos. For example, a quality in use requirement of a 250% increase of productivity
may in itself be unfeasible, and, if accepted, will most probably lead to partially
unfeasible quality design, where the resulting engineering effort will not be techni-
cally possible or will invoke unjustifiable costs.

A verifiable quality design comes with measures that not only are correct and
appropriate but are also doable. While a feasible quality design delivers feasible
engineering to-dos, a verifiable design goes a step further and defines the measures
that are to be taken and evaluated in order to prove the correct realization of the
required engineering effort. If for some reason the identified measure is impossible
(cannot be taken), the part of the design related to it is unverifiable and has to be
properly addressed.

A maintainable quality design in this regard is no different from any design or
even document that will be used over time. So it has to be properly structured, if
required, modularized, documented in an appropriate format, and kept under the
supervision of change (or version) control tools. It also has to be modifiable without
losing its clarity and full traceability to requirements.

And, last but not least, a quality design must be traceable. Let’s recall here the
basic truth of traceability in business: anything untraceable to a business goal is done

96 Chapter 2 Software Quality Engineering: Making It Happen

for free and as such qualifies for immediate termination. A fully traceable quality
design has to exhibit at least one link from any of its components to at least one
business goal (objective or requirement). In simple terms, if the quality engineer
presents a developer with a particular, quality-related engineering to-do that requires
extra coding, he or she requires extra work that has a financial representation in
overall project spending. If this to-do cannot be traced back within quality design
to a given quality requirement and further to an originating business objective, this
effort will be recognized as unjustified spending, booked as a potential budget loss,
and immediately terminated. The Consolidated Traceability Model presented in
Section 2.2.5.2 has been developed to address this concern.

2.2.3  Software Quality Engineering Implementation

Software quality engineering implementation, strategically speaking, should be a
part of a bigger picture originating on a corporate strategy level. Ideally, the strategy
should define the main directives for processes (such as quality assurance processes),
engineering technologies and techniques, and required resources, and glue it all into
one coherent mechanism, of which individual instantiations would be used in every
project run by the organization. As is shown in Fig. 2.38, such an approach combines
three elements: strategy, processes, and engineering. Let’s analyze what happens
when one or more of these elements is missing.

Missing strategy is a frequently observable state of small and medium compa-
nies, particularly in their start-up phase (CMMI levels 1 and 2). Quite often, quality
assurance processes are not there yet too, so what are their chances of building a
software or system with the required quality? Similar to those of winning the war,
perhaps, but as long as they have soldiers who can use arms (engineering), they still
have a chance to win the battle.

Missing processes, with or without strategy, surely can make things messier
than required. Their lack may slow down the development, increase costs, decrease
productivity, and generally do a lot of secondary harm to the project itself, but again,
as long as the engineering force is there, the final product has the chances for good
quality.

Missing engineering is like trying to win the war having a superb strategy,
exceptional management and control processes, and no soldiers. There is practically
no chance to build a quality product if the required quality engineering knowledge
and skills are absent or too limited.

2.2.3.1  When Does the Implementation Start?
To answer this question, two different perspectives should be taken into consider-
ation: the organization and the project.

As was shown in Fig. 2.38, the engineering could and should be rooted in and
supported by an appropriate corporate strategy, so from organizational standpoint,
the real quality engineering implementation begins when the organization reaches
the adequate maturity level (e.g., CMMI levels 4 and 5, but sometimes level 3 is

Software Quality Engineering: Making It Happen 97

already sufficient). On these levels, instead of being treated as purely execution-type
activity applied on a project-by-project basis, quality engineering becomes a part of
a longer-term strategic plan with at least technical, technological, experience accu-
mulation and retention, and staffing perspectives taken into consideration. Also, the
presence of appropriate quality assurance processes is somehow linked to the matu-
rity of the organization and, when these processes are correct, it helps the engineer-
ing develop the product of required quality. Once these elements are taken care of,
the organization can claim that in its case, the software or system quality engineering
implementation is in place and operational.

From a project perspective, software quality engineering should start immedi-
ately, which means at the same moment when the first analysis of an opportunity
begins. The reasons for this hastiness are both technological and budgetary. As was
discussed in Section 1.2.1, almost every project on this planet has some budgetary

Figure 2.38 Relationship between strategy, processes, and engineering in software quality
engineering.

Corporate
Software Quality Strategy

Software Quality Engineering
Software Quality

Assurance Processes

SQA Process

Start

Attend Project
Preparation Activities

SQA planning

SQA plan enter
configuration library

Perform SQA activities
according to SQA plan

Project End

Perform SQA activities according to SQA plan
Attend
project

activities

Review/
audit

Report
periodically

Handle
deviations

98 Chapter 2 Software Quality Engineering: Making It Happen

constraints, within which functionality and quality have to find their proper and
justified places in order to create the required final product. The sooner we begin
analyzing quality needs that go with demanded functionalities, the greater are the
chances that the necessary budget will be identified and, when agreed upon, correctly
distributed. The feasibility constraint that is briefly discussed in the following is
also linked to the budget distribution subject as, for example, for some “quality
extravaganza” the requested budget may simply be too big to be accepted by the
customer.

The technological reason for implementing quality engineering as early as pos-
sible goes with the question: Will it be feasible? To understand this concern, let us
imagine a project where the requested functionalities invoke the application of the
most recent technologies. The eventual decision of applying them may render
the high reliability quality characteristic of the future system unfeasible from engi-
neering point of view, as usually very new technologies are unreliable by themselves,
so the products developed using them have even more chances of unsatisfactory
quality.

2.2.3.2  Quality Implementation within Development Activities
The discussion of software quality implementation within development activities can
go in different ways, depending on the choice of the system or software life cycle
model [53]. In this section, the structure of the quality implementation analysis will
be based on the generic model proposed in ISO/IEC 24748-1 Systems and software
engineering—Guide for life cycle management [54]. Chapter 4 of the ISO/IEC
24748 standard defines six stages (or phases) of a generic system life cycle:

• Concept

• Development

• Production

• Utilization

• Support

• Retirement.

The software or system quality will be further represented through ISO/IEC 9126
quality model, its measures and vocabulary, as at the moment of writing this book
ISO/IEC 25000 SQuaRE series is still incomplete (the standards defining measures
are under development).

2.2.3.2.1 Concept Stage
One of the main objectives of the concept stage is to assess new business opportuni-
ties and to develop preliminary system quality requirements and a feasible design
solution that meets these quality requirements.

As was discussed in Section 2.2.1, identifying quality requirements as thor-
oughly as possible is generally recognized as the first and most critical step in quality

Software Quality Engineering: Making It Happen 99

implementation for any project. This includes making sure that stakeholder’s needs
for quality are correctly and completely identified. Three categories of requirements
are expected:

• Functional

• Nonfunctional

• Quality requirements.

Of course, the latter is the most important from software quality engineering
perspective.

Let’s recall from Section 2.1.3 that, depending of the version of quality model
(ISO/IEC 9126-1 or ISO/IEC 25010), quality requirements can be further catego-
rized as:

• Quality in use requirements

• External/dynamic quality requirements

• Internal/static quality requirements.

In case of OTS software, a fourth category of operational quality requirement could
be taken into consideration.

In ISO/IEC 24784-1, the requirement analysis happens in the concept phase. At
this stage, the stakeholder/user’s quality needs have to be identified and elicited and
will contribute to specifying quality in use requirements, operational quality require-
ments for OTS software, external/dynamic quality requirements, and, in rare occa-
sions, internal/static quality requirements.

In the concept stage, as the concepts and the requirements are being developed,
trade-offs between functional, nonfunctional, quality requirements, and other project
constraints should be analyzed, documented, and possibly concluded. But let’s again
recall after Section 2.2.1: quality requirements usually are not fully defined at the
end of this stage. They require further elicitation, as trade-offs between functional,
nonfunctional, quality requirements, and design feasibility occur.

In this stage, a quality plan should be assembled with all quality-related activi-
ties defined, including types of reviews that should be carried out for each artifact
of the project. Ideally, the quality plan should be a guide for the whole quality engi-
neering effort throughout all following life cycle stages. The plan should additionally
cover classic quality assurance (QA), traditional verification and validation (V&V),
but also quality requirements analysis and design together with identification of
quality engineering activities (or engineering to-dos) that should be implemented
further in the system life cycle. The plan should also identify and appoint a quality
engineer.

Usually, the concept stage begins with the recognition of quality needs and
requirements for a new system or software, or for the modification of an existing
one, so the acquirer/user’s feedback to the system’s concept and expected system or
software quality attributes should be obtained during this activity.

100 Chapter 2 Software Quality Engineering: Making It Happen

One or more alternative concepts to meet the stakeholder needs or require -
ments should be developed, balancing functional, nonfunctional, and quality
requirements.

To ensure proper coverage of the projected system’s quality attributes, a quality
model should be selected and further applied. Quality characteristics and subchar-
acteristics elicited from the model and quality requirements should be formally
identified, along with selected measures to be later used in the system’s quality veri-
fication and validation.

One or more support systems for designing, measuring, and evaluating quality
should be identified and candidate solutions included in the evaluation of alternatives
in order to arrive at a balanced and integrated solution to operate and support the
system over its life cycle. A quality engineering approach should be selected,
planned, and integrated onto the other project plans.

The required concept stage outcome could be listed as:

• Quality model

• Quality engineering approach

• Quality plan

• Appointed quality engineer

• Quality baseline (attributes, requirements, and selected measures for quality
in use and external quality)

• Concepts (of operation, of support, etc.)

• Trade offs and other analysis results

• Quality engineer’s active participation in reviews

• Quality engineer’s active participation in change management

• Quality records.

2.2.3.2.2 Development Stage
Before beginning the architectural design, the requirements from the concept stage
should be refined properly, including quality requirements. Quality in use and exter-
nal quality attributes and requirements should be fully developed while internal
quality attributes and requirements may still be in a drafted state. All requirements
shall be “baselined,” which means identified, defined, and rendered official. It also
means that any change that may be necessary beyond this point requires a formal
process of revision and acceptance.

From the perspective of quality engineering, the system or software has to be
designed for quality. In other words, the developer should identify and use the proper
design techniques in order to meet the quality requirements, especially those related
to external quality. All quality requirements should be met by the resulting design,
which also means that all elements of the design that are responsible for exhibiting
required quality by the system (e.g., appropriate learnability) have to be in place in
this stage. The quality engineer should be involved in this task together with the
designers.

Software Quality Engineering: Making It Happen 101

Applicable quality measures should be identified and/or developed to allow later
control of the implementation of the quality requirements.

To ensure that all quality attributes were designed into a system or software and
will satisfy the quality requirements, the traceability between quality requirements
and design artifacts should be always observed. This traceability will help in ensur-
ing that no requirement is accidentally overlooked and that “gold plating” with
unnecessary features does not occur either.

The development stage begins with completing the elicitation of quality re -
quirements, then a design solution is produced for the new or modified system or
software. The design solution considers all requirements defined in the precedent
stage and those that have been refined in this stage. The development stage also
identifies quality attributes to be implemented during the production stage in the
form of internal quality requirements. Applicable measures should be defined and
proper mechanisms prepared to later measure and evaluate the resulting system or
software.

To ensure that all requirements (functional, nonfunctional, and quality require-
ments) are being taken into account, traceability should be formally established and
maintained. As a practical observation, not all software tools used in change control
process (traceability) are ready to deal with software/system quality requirements in
the same way they as they do with functional requirements.

The main objective of the development stage is to develop a system or software
that meets stakeholder functional and quality requirements, and that can be produced
(i.e., that is doable), tested, evaluated, operated, supported, and retired. The most
important outcomes of the development stage are:

• Quality baseline for this stage (quality in use, external and internal quality
attributes, requirements, and measures)

• Quality requirements traceability structure

• Design that meets the quality requirements

• Design that includes:
○ The main system or software
○ All supporting mechanisms (systems) required to measure and evaluate

quality

• Trade offs and other analysis results

• Quality engineer’s active participation in reviews

• Quality engineer’s active participation in change management

• Quality records.

2.2.3.2.3 Production Stage
“Production stage” is a concise term encapsulating several phases otherwise known
as implementation, integration, verification, validation, and transition in ISO/IEC
15288, or coding, unitary tests, integration tests, system tests, and user tests in the
majority of popular software engineering literature. Due to its vastness, this stage

102 Chapter 2 Software Quality Engineering: Making It Happen

shall consider the quality model selected and the complete baseline accumulated
from previous stages and perform quality activities according to the plans.

System or software internal/static, external/dynamic, and quality in use should
physically be implemented during this stage. Let’s recall, however, what was said
earlier about quality requirements: only those requirements that reflect the behavior
of the software or system are related to coding (Section 1.2.1). In consequence, the
production stage understood in these terms may not entirely satisfy the quality
requirements related, for example, to satisfaction as the latter combines the software
itself (functionality and quality) but also the quality of training, documentation, and
so on.

The role of quality engineer in this stage is particularly diversified, for he or
she not only should assist the developers in internal/static quality realization during
coding and unitary tests, but also should actively participate in the integration
process and execute appropriate quality measurements during all test phases. More
precisely, quality measurement should be:

• Properly designed as quality tests

• Executed in every stage where related artifacts are produced

• As unobtrusive as possible, which means embedded into main tests.

The last point requires an additional comment. The tests are a very important but
also a delicate period in the overall creation effort, so the smarter the test design,
the better the overall project results. Quality requirements are for the most part
linked to functionalities and their verification requires the existence of the related
artifacts, but exactly the same can be said about functional requirements. So in
most situations executing functional tests and quality tests separately would require
instantiating the same artifact twice. In some cases it may be as trivial as pushing
the “power” button, but it also can be imagined that measuring usability charac-
teristics of a given software or system requires a running instance of this system
and this may by much more complex than just pushing a button. Besides, it seems
more convenient to check the totality of a given functionality at once and in the
same usage context.

Consequently the internal, external, and early quality in use data coming from
the test suites defined earlier in test plans should be stored and made part of the
quality baseline. Measurement methods should follow standardized documentation
linked to the chosen quality model; a quality evaluation method should be selected
and executed, again, in connection with the quality model.

In order to assist the developers in obtaining the required quality during the
production stage, the quality engineer should use resulting data to continuously
evaluate in-production quality and communicate the obtained results and improve-
ment recommendations to the development team. He or she should also be respon-
sible for verification of consistency between internal/static, external/dynamic, and
quality in use.

Software Quality Engineering: Making It Happen 103

Again, a practical observation: the position of a quality engineer should be
associated with the appropriate decisional influence, or all the data and all resulting
recommendations will be pointless.

It is recommended that the data acquired during the production stage be further
used as reference when monitoring the quality in utilization and support stages. Joint
reviews for internal, external, and quality in use verification should be periodically
executed to ensure compliance with requirements and, if an organization applies a
quality management system, such quality records of every project should be
collected.

The expected outcomes of the production stage are:

• Updated quality baseline, with
○ internal, external, and quality in use attributes, requirements and measures
○ quality evaluation plan
○ implementation quality V&V (test and measurement) results

• Quality engineer’s active participation in reviews

• Quality engineer’s active participation in production process

• Quality engineer’s active participation in decisional process

• Quality engineer’s active participation in change management

• Quality records.

2.2.3.2.4 Utilization Stage
The ISO/IEC 24748-1 standard serving as the framework of this chapter mentions
“monitoring performance and identifying, classifying and reporting of anomalies,
deficiencies, and failures” [54] as basic activities of the stage, and that requires refer-
ence data (e.g., performance targets or deficiency levels).

It seems profitable then that a defined and sound quality attributes baseline (with
all required details) be used for this purpose. This baseline obviously should come
as the combined result from the concept, development, and production stages, be
used in the support and retirement stages, and be kept up to date during the complete
life of the system or software.

The performance of the system should be monitored and incidents and prob-
lems should be managed in a formal way because they are direct contributors to
the system owner/user’s satisfaction. Whenever applicable, user requests (such as
standard changes, help desk requests, or customer support) should also be managed
because of the effect they have on user satisfaction (quality in use). All the neces-
sary support systems required to manage quality activities such as measurement,
incidents, problems, events, request, and access should be in place (if possible
and feasible).

The utilization stage aims at efficiently delivering the services in accordance
with targeted quality in use attributes; however, external and internal quality attri-
butes should also be monitored, as they are direct contributors to perceived quality
in use.

104 Chapter 2 Software Quality Engineering: Making It Happen

Anomalies, deficiencies, and failures in delivering the services should be identi-
fied, recorded, classified, reported, and acted upon, with the prime objective of
restoring the services to their expected level and maximizing quality as it is perceived
by the system owner/user.

As mentioned earlier, the activities in this phase should use and maintain the
quality baseline (attributes, requirements, targets and selected measures, V&V data,
and quality-related data) that are shared with the other phases of the system’s life-
cycle in order to maintain the integrity of the product and its engineering effort.

Based on all quality attributes, the qualitative retirement criteria should be
established and further used to trigger the execution of the retirement stage.

The expected outcomes of the utilization stage are:

• Constant internal (if available), external, quality in use, and operational
quality monitoring

• Quality baseline, updated with the results from the quality in use and opera-
tional quality monitoring

• Proactive detection of service level breaches and product failures

• Incident management, if applicable

• Request fulfillment, if applicable

• Corrective and preventive actions

• Utilization-inducted change requests fed to the support phase

• Continuous and effective system operation

• Achieved system owner/user satisfaction

• Quality records

• Quality-related retirement criteria.

2.2.3.2.5 Support Stage
During this stage, the system or software is deployed and operational, and logistics
for operation and maintenance support should be already in place with the support
and maintenance quality plan established in previous stages.

For any given change request of any type, the change management plan
should also handle change requests coming from the quality engineering itself. Such
change requests may be triggered by the observation of the results of quality in use
measurement, for example. Quality-initiated changes within this phase should be
the object of a complete impact analysis just like any other change request. If an
organizational quality management system is in place, all these quality records
should be kept.

In the maintenance quality plan, the business quality measures should be used
as triggers to execute actions such as maintenance (perfective, adaptive, or preven-
tive) to control software aging resulting from declining quality. Also, quality require-
ment changes are relatively probable during the support stage and that is why the
quality engineer should have the decisional influence to propose and approve or
reject these changes.

Software Quality Engineering: Making It Happen 105

Finally, each time a change is accepted and implemented, the quality baseline
should be reviewed using the results from the complete business quality V&V and
quality implementation V&V. The processes for quality evaluation should be included
in the support quality plan.

Once the change is released, the quality engineer should perform an evaluation
of the updated system to make sure the stakeholders’ quality requirements are
still met.

All actions undertaken during this stage shall be governed by the established
support and maintenance quality plan.

The quality engineer should be responsible for the management and implemen-
tation of change requests affecting quality attributes, and should propose required
quality improvements and initiate them.

All approved and implemented changes to the system or software in this stage
should trigger measurement and evaluation of the resulting quality attributes to
ensure compliance with the quality requirements.

The expected outcomes of the support stage are:

• Quality engineer’s active participation in change management
○ requesting changes
○ assessing impacts on system/product’s quality
○ accepting/rejecting change requests
○ updating the quality baseline
○ reviewing releases’ results

• Quality engineer’s active participation in designing the change

• Quality engineer’s active participation in quality implementation V&V

• Up-to-date quality baseline (attributes, requirements and selected measures,
V&V data, quality in use data, etc.)

• Reduced risk of system premature aging

• Quality engineer’s active participation in reviews

• Updated quality records.

2.2.3.2.6 Retirement Stage
The retirement stage is executed to retire the existing system or software and eventu-
ally transfer its services to a new one, while preserving data quality, integrity and
security. ISO/IEC 2474-1 mentions the necessity of having the retirement enabling
(support) system before the retirement process actually begins. In most software-
intensive systems cases, the retirement enabling system will provide data conversion
and archival services, so security is a prime quality concern to be engineered in the
retirement enabling data archival system [55].

If data are to be kept, data quality must be managed so the retirement enabling
data conversion system must be properly engineered, that is, with the proper quality
engineering activities in order to preserve data integrity, suitability, and accuracy.
Compliance with applicable legal or ethical constraints is also required, and has a

106 Chapter 2 Software Quality Engineering: Making It Happen

broader scope than just privacy (e.g., escrow, records retention, grandfather clauses,
public records access, etc.).

If the existing system or software is to be replaced, its latest baseline of quality
attributes, quality requirements, and selected measures can be reused as an input for
the definition of the future system or software.

The retirement stage should also serve as an opportunity to collect a rather
unique set of data and lessons on quality throughout the system’s lifespan. It seems
profitable to integrate these data as a whole and feed them back to the organizational
quality management system, if such a system exists. A final and global post-mortem
review should also be performed if the existing system or software is to be replaced
by a new one. The lessons learned will provide priceless insights for the future
system development.

The retirement stage ensures a secure data disposal or archival is performed. If
data are to be carried over to a new replacement system, the retirement stage will
provide a data conversion system, which ensures that data quality and integrity are
preserved.

The quality in use, external, and internal quality attributes, requirements, and
selected measures baseline should be preserved for reuse in the replacement system’s
development; records and results can be integrated and synthesized as to provide
feedback to the organizational quality management system, if such a system exists,
and to the replacement system’s lifecycle phases if such is planned.

The expected outcomes of the retirement phase are:

• Data with the proper quality, integrity, and security

• Reusable quality attributes, requirements, and selected measures

• Lessons learned on product and process quality.

2.2.4  Software Quality V&V

V&V, or verification and validation, represent the software quality engineering
activities that correspond to system and user tests or, more popularly, to questions:
whether the system was built correctly and whether the correct system was built.

Let’s recall from the previous section: quality measurement should be:

• Properly designed as quality tests

• Executed in every stage where related artifacts are produced

• As unobtrusive as possible, which means embedded into main tests.

Although these three points are important, they do not cover all matter that makes
quality V&V. Before being executed, V&V should be carefully planned as different
quality attributes can be verified in different phases of the life cycle of a system or
software. For example, static (internal) quality can be only verified during the coding

Software Quality Engineering: Making It Happen 107

phase, as in preceding phases there is no code yet, but in the following phases the
code disappears into a running product. Going further in the same direction, the
dynamic (external) quality requires a running code, so the first moment any measure
may be taken is in the phase of system tests.

Now, when tests are designed and planned, their execution can take place, but
that activity requires additional preparations in the form of choosing measurement
techniques and tools and, of course, a proper form of documenting both tests and
their results.

After the measures are taken and documented, the quality engineer has at his
or her disposal data that in their raw form are completely meaningless. To turn them
into usable information, he or she has to apply appropriate evaluation and interpreta-
tion mechanisms. This process was in part discussed in Sections 2.1.4 and 2.1.5 and
will be continued in the next chapters.

The information obtained in the course of this process has value only if used,
which means it has to be analyzed from the perspective of the impact associated
with characteristics or behavior of the system or software it represents.

Finally, all the above effort would be booked on “loss” side in the project ledger
if no managerial reaction followed.

2.2.4.1  Designing, Planning, and Executing V&V
A very good initial step of the design of software quality V&V would be to take
ISO/IEC 25040 and ISO/IEC 25041 standards and, treating them as a quality evalu-
ator’s manual, identify what should be measured and when. ISO/IEC 25040 helps
in this process, assisting the quality engineer further in defining the scope of the
evaluation and developing an evaluation strategy.

Such an action would most probably achieve acceptable results, but would it be
smart? Why should the quality engineer design from scratch something that has
already been partially designed?

Section 2.2.2 discussed in detail the design of quality and in its conclusion
presented a personalized quality implementation map with all the identified and
required attributes and measures in place. This part already identifies what should
be done.

The next step is to decide how to verify it, so a practical question would be:
When should the design of tests begin?

The whole effort of identifying and defining quality requirements is the first
place where tests design could commence, which in the case of quality requirements
covers three consecutive phases of a system or software life cycle:

• Requirements identification and definition phase: quality in use and partially
external/dynamic quality

• System or software design: external/dynamic and partially internal/static
quality

• Program (or code) design: internal/static quality.

108 Chapter 2 Software Quality Engineering: Making It Happen

2.2.4.1.1 Example
In the requirements phase, one of the identified quality requirements was enhanced
user error protection (external/dynamic quality, characteristic “usability”). This
requirement, in practical terms, means that the developed system has to have excep-
tional control mechanisms over the user’s interactions with it, such as control of data
being input (limits, formats, etc.) or sequences of actions (such as “don’t let the
bomb go off before the missile is launched”). The design of a quality test for this
subcharacteristic would begin with identifying all user interactions that invoke data
input or sequences of actions. In the next step, for every of these interactions a
“stupid” test scenario could be identified and designed. By “stupid” we mean a
scenario that attempts to force incorrect, unprofessional, or simply a negligent user’s
behavior over the system. Now, to verify if the user error protection is really excep-
tional we would seek data on how many of these “stupid” scenarios succeeded (so
the control mechanisms failed) and against how many of them the system effectively
exhibited the necessary defense mechanisms.

If we combine this test design with the corresponding part of personalized
quality implementation map we have almost everything required for effective quality
V&V of this particular quality requirement:

• Test scenarios

• Quality attributes and corresponding measures

• Targeted values.

The same pattern could be applied to the requirements resulting in system design
and program design phases, with perhaps a small modification applicable in program
design phase. As was stated earlier, in the program (or code) design phase we face
static (internal) quality characteristics of the developed system, so the idea of sce-
narios would not work well here since there will be no “action,” just lines of code
on a screen or a page of paper. So instead of using the idea of test scenarios we
better apply the term of test content, where the conditions of the execution of a given
test can be defined. For example, the high-level quality requirement of enhanced
maintainability (external quality), after the whole process of decomposition, may
end on the program design level in a form of modification efficiency attribute (modifi-
ability subcharacteristic). This attribute has at least two facets:

• Evaluating time used for modifications against the quantity of these modifica-
tions, and/or

• Analyzing the conditions that would influence this efficiency, such as code
complexity.

The test content could then state: the design of the program should allow for as
many as possible modifications in as short as possible time. Well, imagine the face
of the developer if you ask him or her to help you execute such a test.

The other option for this test could state: since the modification efficiency is
closely linked to the complexity of the code architecture (design), it is required that

Software Quality Engineering: Making It Happen 109

the resulting code does not exceed the value X of the McCabe cyclomatic complexity
metric [56]. And this test can be executed in an unobtrusive way, through applying
static code analysis tools.

In the classical approach, the test phase is where the tests are designed,
planned, and executed, but with the technique presented here the quality engineer
arrives in this phase with the job at least partially done: the tests are identified and
designed in terms of test scenarios/contents, measures, and targeted levels. What
remains to be done still is to build for each test the full test case, which means at
least supplying the following information (based on the evaluation process from
ISO/IEC 25040):

• Test case ID (number, title)

• Originating quality requirement

• Test case purpose (quality attribute to be verified)

• Test case content or scenario

• Test execution procedures (these procedures should also take into account the
feature of unobtrusiveness of the test)

• Test environment

• Test schedule and planning

• Test tools and technology

• Test targeted values

• Pass/fail criteria

• Documentation of test data and evaluation results

• Additional comments.

The next step, the V&V execution, has to follow the test plan developed earlier,
the requirements and conditions defined in every test case, and, of course, the quality
evaluation process, which, in case of this book, is the one proposed in ISO/IEC
25040 and ISO/IEC 25041.

From a practical perspective, the quality V&V execution mirrors quality design
and quality test design processes and strictly follows the software quality life cycle
model discussed in Section 2.1.4. The tests of static/internal quality can be executed
only in the coding part of the production phase, the tests of dynamic/external quality
can be executed in majority in the system tests phase and partially in user tests phase,
and quality in use can only be tested in user test part.

2.2.4.2  Impact Analysis and Managerial Decisions
The execution of quality V&V produces data that are linked to identified quality
requirements and desired quality attributes of the system or software. The analysis
of these data has one, main purpose: identification of the impact associated with a
quality characteristic or the behavior it represents on the developed system or soft-
ware and the overall project.

110 Chapter 2 Software Quality Engineering: Making It Happen

Let’s begin with the impact on the system or software. Independently of the
phase where the tests were executed, the results may impact either only the phase
directly or propagate further into the life cycle, invoking modifications in a domino
effect. For example, if the modification efficiency discussed in the previous section,
evaluated indirectly through the McCabe metric, shows that the resulting code is too
complex to be easily modified, so in consequence maintained, the impact is local to
the phase and can be remedied through the program redesign/recoding/retesting
effort. But what will be the impact if this small deficiency is not remedied? In the
worst case scenario, weeks, months or even years after the system is put into utiliza-
tion, the costs of ongoing maintenance may suddenly spike up or, when worse comes
to worst, the whole operation of the organization may be put on hold because
required modification is too difficult and time-consuming to be executed
painlessly.

Further down the same line, if the previously discussed user error protection
proves inadequate during the external/dynamic quality tests, the impact will propa-
gate back to the coding phase, and eventually, depending on the severity of the
deficiency, to the design phase where all the against-user-error defense mechanisms
were conceived. So the correction may require partial redesign in one phase of the
life cycle, recoding in the other, and a new set of (usually regression) tests in all
phases that led to the manifestation of the inefficient user error protection. The
impact of letting this deficiency go uncorrected may vary from a strange date on the
letter to a friend to an explosion in a nuclear plant, and has to be analyzed rather
carefully (for the analysis of this perspective, refer to Section 1.2.2).

When the system or software finally gets to the phase of user tests, mostly
quality in use is verified and the impact of the deficiencies on this level is the biggest
in practically every direction. If the new system or software has been ordered to
remedy the decreasing effectiveness (accuracy and completeness with which users
achieve specified goals) of the organization’s staff and quality in use tests demon-
strate that this effectiveness is unsatisfactory, the impact may go back even to the
quality requirements definition level. For example, in the case where, technologically
speaking, the required increase of effectiveness is undoable (the best available
technology is not able to run “fast enough”), this requirement may require renegotiat-
ing. If the modification is possible, the reasons for effectiveness deficiency may
be hidden in the design (designed processes, data analysis algorithms, database
design, etc.), in technological choices (programming languages, operation systems,
etc.) or even in bad coding or inefficient utilization of resources such as RAM or
processors, so in the worst case scenario the whole life cycle may need to be partially
executed again, including retesting the effectiveness at the end. The impact of not
correcting an unsatisfactory level of effectiveness may end in a full-blown lose-lose
scenario, where the customer (user) loses credibility and his or her customer base
because the services (products) are not as satisfactory as the ones of his or her com-
petition, and the developer’s organization loses the customer, image, and position
on the market as unable to deliver the system or software of required, agreed, and
paid for quality. The simple process model helping this part of impact analysis is
presented in Fig. 2.39.

Software Quality Engineering: Making It Happen 111

In the context of the overall project, nothing that happens is without conse-
quences. Every negative result of quality V&V should (ideally) be reacted to and as
such should make the quality-related part of managerial process where the appropri-
ate decisions would be made. A simple way of illustrating this part of the process
would be to look at it from the perspective of the project financial landscape.

From a managerial and financial point of view, any quality deficiency in the
developed system or software can be defined by the following parameters:

• Severity

• Cost of correction

• Cost of negligence.

When the quality V&V results indicate quality deficiencies, with the exception
of internal quality corrections, nothing usually happens before getting the managerial
“go–no go” because, in case of “go,” money, time and resources must follow. What
makes a “go” part? The costs of negligence exceeding the costs of corrections and/
or high severity of the deficiency. What makes a “no go” part? The costs of correc-
tions exceeding the costs of negligence and low or medium severity of the
deficiency.

Figure 2.39 System or software quality deficiency impact analysis process.

112 Chapter 2 Software Quality Engineering: Making It Happen

If we look at this somehow simplistic way of making important managerial
decisions, we will probably suspect that it must be a rather popular technique, con-
sidering the quality of our contemporary IT products.

There is another important, managerial process-related aspect of quality V&V:
the detection of systemic errors in the overall quality engineering approach. The
continuous monitoring of quality V&V results and related impacts should, after some
time, help discover systemic reasons for recurring problems in achieving the required
quality in realized projects.

The recurrence of difficulties in engineering quality into the developed system
or software should, depending on their nature, trigger the revision of at least:

• The existing quality engineering expertise

• Human resources involved in quality engineering

• Basic quality engineering framework used in projects (quality models,
measures)

• Measurement and evaluation methods and processes

• Tools and technologies used in the quality engineering process

• Documentation of V&V passed, expertise accumulation, and usage of lessons
learned.

2.2.5  Additional Aspects of Software Quality 
Engineering

As was discussed in Section 2.1, obtaining the quality of a software product or
system is an engineering effort, quite similar in its form and objectives to that of
developing a product or system, and as such should have adequate ramifications,
resources, processes, models, and practices. From this perspective, the overall project
can have two strongly interlinked processes (development and quality engineering)
aiming at the same final objective, but sometimes operating on bases that can invoke
“conflicts of interests,” be it process-related, technical, technological, or budgetary
(see Section 1.2.1). Section 2.2.5.1 analyzes conflicts that can appear within the basic
change control process of a software project.

The strong relation between these processes invokes the subject of traceability,
but not only from the developed artifact to its originating functional requirement or
from a quality engineering to-do to its related quality requirement, but also the cross-
traceability that would link both processes into one harmonious structure, where the
existence of every project artifact can be justified by a complete path to its originat-
ing functional requirement and to related quality requirements. This subject is dis-
cussed in Section 2.2.5.2.

2.2.5.1  Conflict Identification and Resolution
Apart from the common duties of planning and managing a project, managing soft-
ware quality engineering also requires a considerably difficult duty of change and

Software Quality Engineering: Making It Happen 113

conflict management. The higher-than-usual level of difficulty of this task comes
from heavy interdependence between development and quality engineering pro-
cesses and their final results.

The diagram from Fig. 2.40 shows possible interactions and branching combina-
tions when a change request comes. If a change request is originated on the “func-
tional” (be it internal, from within the project, or external, from the customer) side
of the process, it does not rule out the impact on quality. On the contrary, an expe-
rienced quality engineer would rather suspect that such an impact exists and try to
verify and validate it. If this is the case, the same verification, validation, feasibility,
and (cross) impact analysis would have to be applied in both “functional” and
“quality” aspects. In case of a change request originating on the “quality” side of
the process, the software development engineer would have to be involved in evaluat-
ing the feasibility and impact of the required change, as most quality aspects are
demonstrated through the behavior of the code. In other words, any change request
will most probably impact both functional and quality aspects of the developed
system or software and they will have to be dealt with keeping in mind the overall
best possible result.

In this complex task, finding and solving conflicts is as natural as breathing. It
is rather obvious that these conflicts may emerge from any place within such a
complicated process so the following few examples are given only in an attempt to
illustrate the gravity of the problem (CA1 to CA4 refer to conflict points of origin
in Fig. 2.40):

• CA1—between functional and quality requirements

• CA2—between existing and new quality requirements

• CA3—on the level of the design of quality

Figure 2.40 Change and conflict management in software quality engineering.

114 Chapter 2 Software Quality Engineering: Making It Happen

• CA4—different conflicts related to technical aspects of implementation

• Conflicts related to business domain

• Conflicts related to budget

• Conflicts related to schedule

• Conflicts related to technology

• Conflicts related to resources.

Let’s briefly examine an example: a conflict between functional and quality
requirements (CA1 and CA4 in Fig. 2.40). Imagine the user’s new functionality
request coming somewhere in the middle of the project. The project is in motion,
requirements are known, the design is relatively stable, the balance between quality
and development efforts is set up, the budget is distributed. If the new requirement
is basically doable, the immediate concern is its eventual impact on quality, which
means how much more engineering effort will be required to accompany the new
functionality with at least minimal, acceptable quality, and is this new quality
requirement feasible? The first part of the conflict is usually rooted in resources and
budget. If resources are limited and budget is “inflexible,” the new functionality to
be realized will have to “steal” part of both from somewhere else, so either one of
existing developed functionalities will suffer (unlikely) or quality budget will be
shortened, so some part of the engineering effort will be put on hold. And here you
have a conflict.

The second part is related rather to technological consequences impacting
quality engineering within the given project. Imagine a quality requirement of
high maintainability of the developed system. This requirement translates mostly
into “all elegant, clear, low coupling, high cohesion, no shortcuts” type of system
or software realization. In the case of older database systems the high maintain-
ability would be paid by lower speed, so when the request coming from the
customer is a faster database, the maintainability will be first to suffer. And here
there is a conflict.

Now let’s play this card in the opposite direction. A customer’s requirement that
comes in the middle of the project is the enhanced maintainability. The customer’s
reasons for such a requirement may be to reduce future exploitation costs by main-
taining the system him- or herself or installing one of the system instances in the
country where the supplier has no presence. The potential echo on the development
side of the project may be immense, impacting design, coding, testing, documenta-
tion, and training and as such may be deemed unfeasible or too expensive for the
customer to accept it.

Every change request, independently of its nature and originator (the develop-
ment team or the customer), if accepted, will influence the overall schedule of the
project, quality engineering included. The schedule adjustments that would be
acceptable for the development side of the project may not be equally comfortable
for quality side, so this will require some kind of internal negotiation, and if the
results influence the overall project schedule, it may require negotiations with the
customer.

Software Quality Engineering: Making It Happen 115

Last but not least, a professional concern of the quality engineer is the tools that
might support change and conflict management process. The existing change control
and configuration management tools are mostly focused on functional and nonfunc-
tional aspects of the developed system or software and as such address in a limited
way the need for controlling the cross-dependences between development and
quality engineering. However, since these tools usually use a database of some type
as the system’s foundation, it should be possible to modify both record structures
and queries to better reflect the development–quality engineering dependence. The
following section presents the models that can be useful in introducing the required
modifications in these tools.

2.2.5.2  Traceability in Software Quality Engineering
Let’s recall the already mentioned important business and software engineering rule:
any software or system component that cannot be traced to at least one requirement
has been developed for nothing and the resources used to develop it must be booked
as a loss.

In the case of linking software quality engineering and development into one,
coherent traceability mechanism, the approach presented in Fig. 2.41 would help. It
shows in a simplified form the general idea of identifying any artifact within a project
by describing its traceability links.

The diagram in Fig. 2.41 could be read as follows: the development artifact A
is originated by a functional requirement B that is associated with quality require-
ment C that is translated into quality engineering “to-do” D that is applied to devel-
opment artifact A. In a correct traceability situation this phrase should be readable
forward and backward (just try it, for fun). If you find yourself in a situation where
this phrase goes in only one way (missing arrow or arrowhead), something is wrong
with the artifact you are observing.

The classic traceability approach, presented in its modified form in Fig. 2.42,
documents the links between generic phases of the development process and their
related by-products to requirements. These links must exist all in order to create a
functionally valid software product.

Applying at the same time the software quality implementation model SQIM
(Section 2.3.1), ISO/IEC 9126, ISO/IEC 25000, and the Consolidated Quality Life
Cycle (CQL) model (Section 2.3.5) allowed for creating a complementary model

Figure 2.41 Identifying an artifact within a project by describing its traceability links.

116 Chapter 2 Software Quality Engineering: Making It Happen

dedicated to quality traceability, where every link from the lowest level quality
measure could be traced to quality requirements (Fig. 2.43).

Merging the two models and adding an intermediate influence layer between
the two parts gives a consolidated traceability model (CTM) allowing for building
a complete functionality/quality traceability matrix (Fig. 2.44).

The model incorporates both technological and procedural structures helping to
identify the correspondence between the stage of development, related by-products,
associated quality elements (by-products or attributes), and requirements of all types.
For example, the phase of solution (system) design is associated with corresponding
system tests on the “development” side and with design of quality for the overall
system (so quality in use and partially external quality) and corresponding quality
measures on the “quality” side. The engineer can thus monitor the relationships
among all of them and then trace them back to their relevant requirements.

Finally, applying CTM in the conflict resolution process discussed in the previ-
ous section helps in both identifying and choosing applicable technical/engineering
solutions, and in analyzing eventual impacts of the conflict.

Figure 2.42 Modified traceability model for development process (DTM).

Figure 2.43 Modified quality traceability model (QTM).

Software Quality Engineering: Making It Happen 117

2.3  PRACTICAL CONSIDERATIONS

Everything what was discussed in previous sections had in the background a recur-
ring idea that quality engineering is a process similar to the one applied in develop-
ment and as such should have similar methodologies and tools, and should follow
a similar process model. Yes, but which model?

2.3.1  Software Quality Implementation  
Process Model SQIM

The definition of software quality engineering presented in Section 2.1.1 of this
chapter states: “The application of a continuous, systematic, disciplined, quantifiable
approach to the development and maintenance of quality throughout the whole life
cycle of software products and systems; that is, the application of quality engineering
to software.” In more practical terms, it indicates that quality to be attained cannot
be “made” here and there, a little bit today and some more tomorrow. In the matter
of fact, a good, recommended practice is to start engineering the quality at the same
second the development project is opened. This approach requires, however, a tool,
a method that will rule and control quality engineering activities in concert with
these of software development. Such a tool, called Software Quality Implementation
Model (SQIM), is presented in Fig. 2.45. The four basic hypotheses laid at founda-
tions of developing SQIM are:

Figure 2.44 Consolidated traceability model for software quality engineering.

118 Chapter 2 Software Quality Engineering: Making It Happen

1. Engineering of quality into a software product is an effort that should be
conducted throughout the whole life cycle of software.

2. The process of quality engineering is in many points similar to a development
process, and it seems appropriate that it follows similar rules and applies
similar structures.

3. Since there exist several software development process models, SQIM is
based on most widely recognized and accepted one, the generic model pub-

Figure 2.45 Software Quality Implementation Model SQIM. OQ: operational quality (based on TL
9000); QiU: quality in use (from ISO/IEC 9126 and ISO/IEC 25010); EQ: External quality (from ISO/
IEC 9126 and ISO/IEC 25010); IQ: internal quality (from ISO/IEC 9126 and ISO/IEC 25010).

Software Quality Engineering: Making It Happen 119

lished in ISO/IEC 15288 – Information Technology – Life Cycle Manage-
ment – System Life Cycle Processes [25].

4. The quality model that SQIM adheres to is the one that is widely accepted
and recognized, the quality model from ISO/IEC 9126 and ISO/IEC
25010.

SQIM is organized in phases that correspond to phases of the generic develop-
ment process with indicated activities that are required from a software quality
engineer in order to attain quality in each of the phases. It can be noted that the
subject of complexity of software quality requirement definition is clearly addressed
in SQIM, offering to the reader guidance in what and when could and should be
identified and defined.

Further down, the model indicates engineering activities that should be imple-
mented in consecutive phases of development process in order to comply with
defined quality requirements.

Each phase of SQIM has its own set of activities and subprocesses that were
discussed in previous sections; however, a few clarifications of the correspondence
between SQIM and ISO/IEC 15288 life cycle model may help better execute the
quality implementation.

While requirement definition, analysis, and architectural (system) design phases
are basically the same in both models, SQIM additionally mentions the program
design phase and breaks down the implementation process from ISO/IEC 15288 into
coding and unitary tests. The objective of this differentiation is to allow for more
precise internal/static quality implementation and verification. In the program design
phase, the quality engineering “to-dos” are integrated into the overall code architec-
ture, in the coding phase they are realized, and in the unit test phase they are verified
as the part of unitary testing process. Another comment is required concerning the
phase of system tests and corresponding system quality implementation V&V.
Depending on the source, the phase of system tests either contains functional and
nonfunctional tests only, and then passes to transition and user tests phase (as it is
in ISO/15288, where verification phase leads to transition and validation), or it
contains user acceptance tests as well. In practice, the latter are sometimes done in
the third way, in two separate parts: part one, in a simulated user environment
installed in the developer’s premises where the representatives of the end user
execute the preliminary user test suite, and part two, when full acceptance tests are
run in a real operation environment after the transition (installation) of the system.

In SQIM, to more easily manage all these options, the system tests phase covers
all three categories of tests. Such compression in no way changes the required quality
engineering activities, as the basic difference between the sequences proposed in
ISO/IEC 15288 and SQIM is place of their execution. Quality in use tests that have
to be executed by the user in the validation phase of ISO/IEC 15288 are exactly the
same from the design and execution perspective if put in the “bigger” system test
phase of SQIM.

Having in mind the fact that in the industry life runs fast and engineers do not
always have time for profound studies, the “reader’s digest” version of SQIM has

120 Chapter 2 Software Quality Engineering: Making It Happen

been developed in form of the Consolidated Quality Life Cycle (CQL) model is
presented further in Section 2.3.5.

2.3.2  Software Quality Engineering Resources

Who within the organization that develops software or system should be responsible
for engineering quality into a final product? Should it be the architect, the developer,
the tester, or perhaps the project manager? Should an organization have a specialized
quality engineering group, or only one person, or maybe just a specialist who in the
morning wears a “quality hat” and in the afternoon a “test hat”? Should he or she
be a free electron who bothers “seriously working people” with unreal quality ideas
and demands, or be a full-blooded member of a development team? We will seek
the answer analyzing software quality implementation model SQIM from the previ-
ous section.

If we go through the left-hand side of the model, we see the classic passage
from phase to phase with dedicated specialists in each of them, thus we have archi-
tects, developers, testers, and so on. We know that the developer is better in coding
than the architect and that the latter may have some problems when put into a
hands-on testing team. So they are specialists in their domains, because we want
them to do best what they were hired to do.

If we go through the right-hand side of SQIM, we see a sequence of phases
where one specialist or a group of specialists in the same domain pass from one
phase to the next as the project advances, and the knowledge of this domain does
not always adhere well to the domains present in the left-hand side of the model.
So, to sum up, in a small or medium-size project, the left-hand side would require
three different specialists to be correctly executed, while right-hand side would
require only one, but with considerably different expertise. Let’s name again this
expertise:

• Working knowledge of quality engineering framework (quality models and
measures)

• Expertise in identifying and defining all quality requirements, those stated,
implied, and of which the customer is unaware

• Ability to translate requirements into attributes and measures,

• Ability to transform required attributes into engineering “to-dos” comprehen-
sible and executable by technical specialists

• Expertise in quality evaluation planning and design

• Expertise in designing, planning, and executing the quality tests

• Expertise in analyzing test results and drawing correct, quality engineering-
sound, and applicable conclusions

• Rather advanced negotiation skills.

If we add to this list the observation that some of the quality engineer’s duties may
be considered “annoying” by the specialists from left-hand side of the model, mixing

Software Quality Engineering: Making It Happen 121

the left- and right-hand sides’ responsibilities would probably lead to unrequired
results. Besides being (in a fashion) the creator of quality of the developed system
or software, the quality engineer is also its watchdog, and this requires sometimes
saying “no” to people who do not always see it as saving their skin. Sometimes
saying “sorry, the quality of this artifact is inadequate” may be met with an unfriendly
reaction that would create a conflict of interest if the same person did both develop-
ment and the critiques.

It seems rather obvious, then, that a quality engineer position should be given
to a quality engineer, trained and educated in this particular domain. Whether it
should be one or more specialists strictly depends on the size and complexity of the
project, but none should not be an option, unless one wishes to produce more blue-
screen-quality systems.

2.3.3  Synchronizing Software Quality Engineering with 
the Software Development Process

The subject of synchronization quality engineering with development activities
attempts to address the practical question of how to do it. On a more practical note,
should quality engineering-related activities be inscribed into continuous develop-
ment effort or rather be regular but discrete interventions?

There is no one, good answer to all these questions. A large, mature, and profes-
sional organization would most probably steer in direction of a specialized group,
with members being continuously involved in works of development teams, while
a startup could be more tempted by discrete solution with a part-time quality special-
ist. This all depends on the available resources and goals to be reached.

Whatever the decision, the person making it will have to take into consideration
the pros and cons of both discrete and continuous synchronization methods and
leverage them against the particular situation. When comparing both methods the
first impression may be that the discrete approach (e.g., Fig. 2.46) is rarely recom-
mendable. If the developed software is created for the first time (so has some R&D
taste) this impression has its merit, but when system is being continuously manu-
factured and sold for several years, most probably all the “secrets” are known by
heart by the development team and quality engineering may be quite effective even
if applied in form presented in Fig. 2.46.

Continuous synchronization between quality engineering and software
development processes (Fig. 2.47), while being much more resource consuming,
offers at the same time an incomparably higher level of controllability and
effectiveness.

The role of a software quality engineer in a continuous process is that of a
specialist who has to do his or her own work (quality-related engineering) before
acting as a member of a development team. In some phases of the project, this role
requires very active and sometimes aggressive participation (as in all design and
some test phases), while in some others it is reduced to assisting the developers or
supporting the testers (as in the coding phase).

122 Chapter 2 Software Quality Engineering: Making It Happen

Whatever the phase of the project, the quality engineer brings unique expertise
to the team, allowing the “nonquality” specialists develop software able to demon-
strate high quality and helping to maintain the budget and schedule.

2.3.4  Appling SQIM to Some Popular Life Cycle Models

The following four diagrams attempt to help the potential user of SQIM to map this
model to a development process of the most popular choice.

In the case of the V-model, the mapping to SQIM is straightforward (Fig. 2.48),
as the V-model itself is very closely linked to the model proposed in ISO/IEC 15288.
Mapping SQIM to the basic spiral model requires some repositioning of SQIM
phases in order to build the applicative links (Fig. 2.49). As the third quadrant
(“Develop, verify next-level product”) concentrates most of the engineering activi-
ties, corresponding phases of SQIM have to be concentrated accordingly.

In the prototyping model the application of SQIM requires only taking into
consideration the repetitive nature of each phase of this model. Each phase of SQIM
associated with its counterpart in prototyping model will have to run through the
same loops of verifying and validating before the obtained status will allow for
moving to the next phase (Fig. 2.50). While it may appear tiring, running the quality
engineering through all the “prototyping loops” may create excellent final results.

Last but not least, mapping SQIM to the incremental model can be reduced to
the choice from the three options previously discussed. The very nature of the incre-
mental model (Fig. 2.51) describes more the way in which a software product is

Figure 2.46 Example of discrete synchronization between quality engineering and software.

Software Quality Engineering: Making It Happen 123

being delivered than the way in which it is really developed. In other words, every
increment within the model may follow a different development process (like any
one from the three discussed here), still fully adhering to the definition of the
increment.

2.3.5  Consolidated Quality Life Cycle Model

The Consolidated Quality Life Cycle (CQL) model was created to help a software
quality engineer quickly identify and apply required normative and/or scientific

Figure 2.47 Continuous synchronization between quality engineering and software.

Analyze and Define
Requirements

Design QiU V&V

Define System QUALITY Attributes
(QiU, EQ)

Design EQ V&V

Define Program QUALITY
Attributes(IQ)

Design IQ V&V

Assist Testers
Measure and Evaluate IQ and

EQ where required

Assist Developers in Internal
Quality

Engineering

Functional, Nonfunctional and
Quality Requirenments Analysis

and Definition

Function, and Quality System
design

Program design
Function and Quality

Coding

Participate in

Participate in

Participate in

Support

and help

and execute

Participate in

Build QiU and EQ tests cases

External Quality Tests
Measurement. and Evaluation

Quality in Use Tests
Measurement. and Evaluation

Continuous QiU and EQ monitoring
Occasional QiU, EQ, and IQ

engineering interventions

Plan and execute

cooperate

System tests

Deployment

Unit and
Integration tests

Operation
and

Maintenance

PROCESS TASKS

TASKSPROCESS

Business Requirements

124 Chapter 2 Software Quality Engineering: Making It Happen

Figure 2.48 Mapping between V-model and SQIM.

Quality
Requirements
Analysis and

Definition

System Design
System Tests

Acceptance Tests

Program Design

Requirements
Analysis and

Definition

Business
QUALITY V & V
(EQ, QIU, and
OQ Meas. and

Eval.)

Program
QUALITY design

(IQ from EQ,
QIU, and OQ)

System
QUALITY
Design

(OQ, QIU,
and EQ)

System
QUALITY

Implementation
V & V

(QIU Meas. and
Eval.)

Information
System Quality
Implementation

V & V (EQ
Meas. and Eval.)

Program Quality
Implementation

V & V
(Internal Quality,
Meas. and Eval.)

Unitary & Integration Tests

Coding

Operation & Maintenance

V Model

Program Quality
Implementation
(Internal Quality

Engineering)

Figure 2.49 Mapping between spiral model and SQIM.

Determine Objectives
alternatives
constraints

Quality
Requirements
Analysis and

Definition

Business
QUALITY V & V

(EQ, QIU, and OQ
Meas. and Eval.)

Program
QUALITY design

(IQ from EQ,
QIU, and OQ)

System
QUALITY

Design (OQ,
QIU, and EQ)Evaluate alternatives

identify, resolve risks

Develop, verify
next-level product

Plan next phase

Requirements
Plan

Life Cycle plan
Concept of
Opetation

Proto-
type L

Risk
Analy-

sisREVIEW

System QUALITY
Implementation

V & V
(QIU, Meas. and

Eval.)

Information
System Quality
Implementation

V & V
(External Quality,
Meas. and Eval.)

Program Quality
Implementation

V & V
(Internal Quality,
Meas. and Eval.)

Program Quality
Implementation
(Internal Quality

engineering)

Software Quality Engineering: Making It Happen 125

support depending on the phase of a system life cycle in which the project actually is.
As the result, the software quality engineer may be able to identify and define quality
requirements and then, using the recommended references, identify measures that
serve best the purposes of the project. As helpful as it may be, the model still bears all
the characteristics of a menu, which implies that the correctness of the decisions based
on this menu depends on the user and the level of his or her professional knowledge.

Figure 2.50 Mapping between prototyping model and SQIM.

SYSRTEM
REQUIREMENTS

(sometimes
informal

or incomplete)
LIST OF

REVISIONS

PROTOTYPE
REQUIREMENTS

PROTOTYPE
DESIGN

PROTOTYPE
SYSTEM

DELIVERED
SYSTEM

TEST

LIST OF
REVISIONS

LIST OF
REVISIONS

Quality
Requirements

Analysis
and

Definition

System
QUALITY
Design

(OQ, QiU, EQ)

revise Prototype User/customer
review

Program
QUALITY design

(IQ from EQ,
QiU, and OQ)

Program Quality
Implementation
(Internal Quality

Engineering)

Business QUALITY
V&V

(EQ, QiU and OQ
Meas. and Eval.)

Program Quality
Implementation

V&V
(Internal
Quality

Meas. and Eval)

Information System
Quality

Implementation
V&V

(External Quality
Meas. and Eval.)

System QUALITY
Inplementation

V&V (QiU
Meas. and Eval.)

Figure 2.51 Mapping between incremental model and SQIM.

126 Chapter 2 Software Quality Engineering: Making It Happen

As can easily be found, the major contribution to the CQL model comes from
the ISO/IEC 9126, ISO/IEC 14598, and ISO/IEC TL9000 standards (Fig. 2.52). All
of those standards have been available for several years, with some of them being
adopted as national standards (ISO/IEC 9126 was adopted as the national standard
in Japan), which guarantees the appropriate base for the application and normative
support for CQL model. As both ISO/IEC 9126 and ISO/IEC 14598 are being gradu-
ally replaced by ISO/IEC 25000 SQuaRE series of standards, the CQL model also
evolves to keep its applicative value intact.

Due to the nature of the CQL model and its broad applicability, it was decided
to also consider other standards for their additional contribution. The ISO/IEC
15288:2007—System and Software Engineering—System Lifecycle Processes (Fig.
2.53) [25] and ISO/IEC 12207:2008—Information Technology—Software Lifecycle
Processes (Fig. 2.54) [57] were found to be important contributors to the final version
of CQL model. In both cases it was found crucial for CQL model to adhere to these
standards, as they represent the most recognized and stable modeling of the generic

Figure 2.52 Basic TL9000 model (adapted from [37]).

Figure 2.53 ISO/IEC 12207 software life cycle process (adapted from [57]).

Software Quality Engineering: Making It Happen 127

processes within software engineering domain. One of the additional important
arguments for applying the ISO/IEC 12207 and ISO/IEC 15288 models in CQL
model is the harmonization project being conducted within ISO/IEC JTC1 SC7,
having as the objective to align, synchronize, and modernize both standards so they
reflect the latest developments in the area of software engineering.

Finally, the following references were also considered as contributors to CQL:

• ISO/IEC 15939, Software Engineering—Software Measurement Process [21]

• Project Management Book of Knowledge [58]

• ISO 10006, Quality Management—Guidelines to Quality in Project Manage-
ment [59]

• Guide to the Software Engineering Body of Knowledge SWEBOK [34]

• Architecture Tradeoff Analysis Initiative [60].

These positions represent important references to CQL model auxiliary areas such
as software measurement processes (helpful in quality measurement and evaluation)
or project management.

The analysis conducted after the development of the first version of CQL indi-
cated that the model contained phases with little or no quality engineering standards
support. Figure 2.55 shows phases where normative support is nonexistent (“Transi-
tion” and “Integration”) and phases that are poor in terms of quality engineering
standards that could be securely applied (“Architectural Design”).

The next version of CQL model with the proposed additions resulting from the
aforementioned observations is presented in Fig. 2.56.

In the course of the development of the CQL model it has also been found that
while for the professionals, the CQL model is relatively simple and easy to follow,
for novices it may still remain difficult. In order to further support and simplify the
work of industry specialists responsible for software quality engineering, a CQL-ISO/

Figure 2.54 ISO/IEC 15288 system life cycle process (adapted from [25]).

F
ig

ur
e

2.
55

Ph

as
es

 o
f

C
Q

L
 m

od
el

 w
ith

 p
oo

r
or

 n
o

su
pp

or
t

fr
om

 q
ua

lit
y

en
gi

ne
er

in
g

st
an

da
rd

s.

T
L9

00
0

–
Q

ua
lit

y
M

an
ag

em
en

t S
ys

te
m

 M
ea

su
re

m
en

t H
an

db
oo

k:
 S

ec
tio

ns
: C

om
m

on
 M

ea
su

re
m

en
ts

, H
ar

dw
ar

e
an

d
S

of
tw

ar
e

M
ea

su
re

m
en

ts
,

S
of

tw
ar

e
M

ea
su

re
m

en
ts

, S
er

vi
ce

s
M

ea
su

re
m

en
ts

T
L9

00
0

–
Q

ua
lit

y
M

an
ag

em
en

t
S

ys
te

m
 R

eq
ui

re
m

en
ts

 H
an

db
oo

k
S

ec
tio

n:
 M

ea
su

re
m

en
t,

A
na

ly
si

s
an

d
Im

pr
ov

em
en

t

T
L9

00
0

–
Q

ua
lit

y
M

an
ag

em
en

t
S

ys
te

m
 R

eq
ui

re
m

en
ts

 H
an

db
oo

k
S

ec
tio

n:
 P

ro
du

ct
 r

ea
liz

at
io

n

IS
O

/IE
C

 9
12

6–
3

In
te

rn
al

 Q
ua

lit
y

R
eq

ui
re

m
en

ts

IS
O

/IE
C

 9
12

6–
2

E
xt

er
na

l Q
ua

lit
y

R
eq

ui
re

m
en

ts

IS
O

/IE
C

 9
12

6–
2

&
 3

E
xt

er
na

l &
 In

te
rn

al
Q

ua
lit

y
M

ea
su

re
m

en
ts

IS
O

/IE
C

 9
12

6–
2

E
xt

er
na

l Q
ua

lit
y

M
ea

su
re

m
en

ts

IS
O

/IE
C

 9
12

6–
4

Q
ua

lit
y

in
 U

se
M

ea
su

re
m

en
ts

IS
O

/IE
C

 1
45

98
 –

 P
ro

du
ct

 E
va

lu
at

io
n

–
P

ar
t 6

: D
oc

um
en

ta
tio

n
of

 E
va

lu
at

io
n

M
od

ul
es

IS
O

/IE
C

 1
45

98
 –

 P
ro

du
ct

 E
va

lu
at

io
n:

 P
ar

t 3
 –

 P
ro

ce
ss

 fo
r

D
ev

el
op

er
s;

 P
ar

t 4
 –

 P
ro

ce
ss

 fo
r A

cq
ui

re
rs

, P
ar

t 5
 –

 P
ro

ce
ss

 fo
r

E
va

lu
at

or
s

IS
O

/IE
C

 9
12

6–
4

Q
ua

lit
y

in
 U

se
R

eq
ui

re
m

en
ts

C
on

tr
ib

ut
io

n
F

lo
w

O
P

E
R

A
T

IO
N

A
L

 Q
U

A
L

IT
Y

 R
E

Q
U

IR
E

M
E

N
T

S

D
is

co
ve

ry
(S

W
 P

ro
d.

 D
ef

.)

R
eq

u
ir

em
en

ts
A

n
al

ys
is

R
eq

u
ir

em
en

ts
D

es
ig

n
 &

D
ev

el
o

p
m

en
t

O
p

er
at

io
n

 a
n

d
M

ai
n

te
n

an
ce

V
al

id
at

io
n

Tr
an

si
ti

o
n

V
er

ifi
ca

ti
o

n

A
rc

h
ite

ct
u

ra
l

D
es

ig
n

Im
p

le
m

en
ta

ti
o

n

In
te

g
ra

ti
o

n

O
P

E
R

A
T

IO
N

A
L

 Q
U

A
L

IT
Y

 M
E

A
S

U
R

E
M

E
N

T
S

128

F
ig

ur
e

2.
56

Im

pr
ov

ed
 C

Q
L

 m
od

el
.

T
L9

00
0

–
Q

ua
lit

y
M

an
ag

em
en

t S
ys

te
m

 M
ea

su
re

m
en

t H
an

db
oo

k:
 S

ec
tio

n:
 C

om
m

on
 M

ea
su

re
m

en
ts

, H
ar

dw
ar

e
an

d
S

of
tw

ar
e

M
ea

su
re

m
en

ts
,

S
of

tw
ar

e
m

ea
su

re
m

en
ts

, S
er

vi
ce

s
M

ea
su

re
m

en
ts

T
L9

00
0

–
Q

ua
lit

y
M

an
ag

em
en

t
S

ys
te

m
 R

eq
ui

re
m

en
ts

 H
an

db
oo

k
S

ec
tio

n:
 M

ea
su

re
m

en
t,

A
na

ly
si

s
an

d
Im

pr
ov

em
en

t

T
L9

00
0

–
Q

ua
lit

y
M

an
ag

em
en

t
S

ys
te

m
 R

eq
ui

re
m

en
ts

 H
an

db
oo

k
S

ec
tio

n:
 P

ro
du

ct
 r

ea
liz

at
io

n

IS
O

/IE
C

 9
12

6–
3

In
te

rn
al

 Q
ua

lit
y

R
eq

ui
re

m
en

ts

IS
O

/IE
C

 9
12

6–
2

E
xt

er
na

l Q
ua

lit
y

R
eq

ui
re

m
en

ts

IS
O

/IE
C

 9
12

6–
1,

2
an

d
3

E
xt

er
na

l a
nd

 In
te

rn
al

Q
ua

lit
y

M
ea

su
re

m
en

ts

IS
O

/IE
C

 9
12

6–
2

E
xt

er
na

l Q
ua

lit
y

M
ea

su
re

m
en

ts

IS
O

/IE
C

 9
12

6–
4

Q
ua

lit
y

in
 U

se
M

ea
su

re
m

en
ts

IS
O

/IE
C

 1
45

98
 –

 P
ro

du
ct

 E
va

lu
at

io
n

–
P

ar
t 1

: G
en

er
al

 O
ve

rv
ie

w
; P

ar
t 6

: D
oc

um
en

ta
tio

n
of

 E
va

lu
at

io
n

M
od

ul
es

IS
O

/IE
C

 1
45

98
 –

 P
ro

du
ct

 E
va

lu
at

io
n:

 P
ar

t 2
 –

 P
la

nn
in

g
an

d
M

an
ag

em
en

t;
P

ar
t 3

 –
 P

ro
ce

ss
 fo

r
D

ev
el

op
er

s;
 P

ar
t 4

 –
 P

ro
ce

ss
 fo

r A
cq

ui
re

rs
,

P
ar

t 5
 –

 P
ro

ce
ss

 fo
r

E
va

lu
at

or
s

IS
O

/IE
C

 9
12

6–
4

Q
ua

lit
y

in
 U

se
R

eq
ui

re
m

en
ts

C
on

tr
ib

ut
io

n
F

lo
w

O
P

E
R

A
T

IO
N

A
L

 Q
U

A
L

IT
Y

 R
E

Q
U

IR
E

M
E

N
T

S

D
is

co
ve

ry
(S

W
 P

ro
d.

 D
ef

.)

R
eq

u
ir

em
en

ts
A

n
al

ys
is

R
eq

u
ir

em
en

ts
D

es
ig

n
 &

D
ev

el
o

p
m

en
t

O
p

er
at

io
n

 a
n

d
M

ai
n

te
n

an
ce

V
al

id
at

io
n

Tr
an

si
ti

o
n

V
er

ifi
ca

ti
o

n

A
rc

h
ite

ct
u

ra
l

D
es

ig
n

Im
p

le
m

en
ta

ti
o

n

In
te

g
ra

ti
o

n

O
P

E
R

A
T

IO
N

A
L

 Q
U

A
L

IT
Y

 M
E

A
S

U
R

E
M

E
N

T
S

129

130 Chapter 2 Software Quality Engineering: Making It Happen

IEC 15288 mapping model has been created. The mapping model shown in Fig. 2.57
allows for easier referencing of development models and their related technical
processes to these applied in CQL model. The proposed CQL model will be dis-
cussed with the assumption that the software product does not exist yet.

Discovery Phase. This phase places the whole process on a business environ-
ment level, where three sets of requirements have to be identified and defined:

• Functional and nonfunctional requirements of the product

• Operational quality requirements, if applicable

• Quality in use requirements.

It is important to note here that according to the model of quality in software life
cycle defined in ISO/IEC 9126-1 and later in ISO/IEC 25010, the requirements of
quality in use contribute to specifying external quality requirements, which in turn
contribute to specifying internal quality requirements. This subprocess clearly indi-
cates that the attributes of quality in use have the direct impact on technical and
technological decisions that (will) have to be taken when the development process
starts. Continuing, the person responsible for defining new software product quality
attributes will have to analyze quality in use characteristics, identify applicable
measures, and assign target values for each of them. The ISO standards helpful when
completing this task are ISO/IEC 9126-4 quality in use metrics and ISO/IEC 25022,
when published.

It is also strongly recommended to refer in this and all consecutive phases of
CQL to ISO/IEC 9126-1 or ISO/IEC 25010 quality model to keep continuous refer-
ence between detailed measures and attributes, and their originating characteristics
and subcharacteristics.

Figure 2.57 CQL-ISO/IEC 15288 mapping model.

Software Quality Engineering: Making It Happen 131

Quality in use requirements help define success criteria of the new software
product; however, alone, they may not be sufficient to assure the product’s long-term
success in the market. If the developed software product is of the OTS category, so
dedicated to a massive user, such a success may be achieved when quality in use
comes together with, among others, fulfilled operational quality requirements. The
person responsible for defining new software product quality attributes will have to
analyze operational quality requirements, identify applicable measures, and assign
target values for each of them.

TL9000 Measurement Handbook [37] identifies four categories of requirements
and/or measurements applicable to massive-sale software products:

• Common measurements: referring to number of problems reported, response
time, overdue problem responsiveness, and on-time delivery

• Hardware and software measurements: referring to system outage

• Software measurements: referring to software installation and maintenance

• Service measurement: referring to service quality.

The final set of quality requirements obtainable in this phase and their targeted
values, comprising of both operational quality and quality in use requirements, will
then become the major milestone and contributor in the definition of functional and
nonfunctional requirements of the future software product.

Requirements Analysis Phase. As this phase produces the translation of
requirements (both quality and functional) from stakeholders’ perspective into tech-
nical and technological terms, the level of abstraction changes from “business” to
“system” and the environment changes to a system environment. In this environment
the applicable quality requirements define external and internal quality attributes of
software product.

The ISO standards helpful in this phase are:

• ISO/IEC 9126-2 external quality metrics

• ISO/IEC 9126-3 internal quality metrics

• ISO/IEC 25023 product quality measures, when published.

It has to be stressed here that the attributes of both external and internal quality being
defined in this phase are direct descendants of quality requirements previously set
up in the discovery phase, so the rule of traceability in software engineering is being
conserved.

Architectural Design. System and program design make the usual content of
this phase. As was discussed in Section 2.3.1 (SQIM), the quality design both on
system and program level should accompany the design of the system itself. The
results of this design should take form of engineering “to-dos” and be incorporated
into the overall design effort. From this perspective, the existing standardization
instruments offer a considerably usable, even if indirect, support. The ISO standards
helpful in this phase are:

132 Chapter 2 Software Quality Engineering: Making It Happen

• ISO/IEC 9126-2 external quality metrics

• ISO/IEC 9126-3 internal quality metrics

• ISO/IEC 25023 product quality measures, when published.

Also, to facilitate the creation of the personalized quality implementation map it is
recommended to use one of the available ISO quality model documents in order to
eliminate quality characteristics not required for the developed system (or
software).

Implementation Phase. Software coding and unit and integration testing
make the usual contents of this phase. From a software quality engineering perspec-
tive, the last adjustments to internal quality requirements take place in this phase
too. As the first in the whole life cycle, the implementation phase creates a product
that can be measured and evaluated. It is true that the created product is intermediate
and changes many times before becoming a ready-to-use solution, but due to this
fact it is critical to measure and evaluate its quality. The product is now in a develop-
ment environment and every iteration with measured and evaluated quality produces
indications yielding further improvements. This process is very well addressed by
appropriate standardization instruments that support measurement, documentation
and evaluation of internal quality (and, if needed, external quality). The recom-
mended procedure consists of:

• Measurements of internal and external quality attributes. Applicable docu-
ments are ISO/IEC 9126-2 and -3 and ISO/IEC 25023, when published.

• Documentation of measurements. Applicable documents are ISO/IEC 14598-6
documentation of evaluation modules or ISO/IEC 25042, when published.

• Evaluation of the quality of the intermediate products. Documents to be used,
depending on the position of the evaluating entity, include ISO/IEC 14598-3
process for developers, 14598-4 process for acquirers or 14598-5 process for
evaluators or ISO/IEC 25041.

The results of measurements of internal and external quality attributes are compared
with target values assigned to them in previous phases and the conclusions are pre-
sented to development teams as the corrective measures of improvement.

The Integration Phase due to its nature may invoke quality interventions either
on an internal/static or an external/dynamic level. During the phase itself the role of
the quality engineer is rather limited, however, the outcomes of the phase may
require his or her active involvement. A not-working integration may have sources
principally in code or in higher-level design, which means that quality engineer may
have to look back into what was wrongly done in both preceding phases, so the
standardization support valid for these phases is also valid for the integration phase.

The Verification Phase makes a perfect opportunity for evaluation of the ready-
to-use product quality in its system environment. In other words, the product is
integrated (supposedly complete) and should correspond to stakeholder’s functional
and nonfunctional requirements. This explicitly means that external quality require-
ments have to be satisfied in this phase. The process of the evaluation of external

Software Quality Engineering: Making It Happen 133

quality requires a similar procedure as internal quality evaluation and is being simi-
larly well supported by standardization instruments. The recommended procedure
consists of:

• Measurements of external quality attributes. Applicable documents are ISO/
IEC 9126-2 and ISO/IEC 25023, when published.

• Documentation of measurements. Applicable documents are ISO/IEC 14598–6
documentation of evaluation modules or ISO/IEC 25042, when published.

The results of measurements of external quality attributes are compared with target
values assigned to them in previous phases. The resulting conclusions are presented
to the development team as the corrective measures of improvement. The feedback
may be deployed to different phases of the process depending on the level of the
severity of discrepancies between required and obtained external quality.

The Transition Phase is a conveyor that transports the system or software from
the developer site to the customer’s operation environment. The phase itself can be
as trivial as taking a CD and installing the software on a PC or may require several
months of careful preparations before the actual system is up and running. From this
perspective it is rather difficult to identify precise activities that may be required
from a quality engineer, however, some quality parameters could be considered
common for most forms of the transition phase. The installability (degree of effec-
tiveness and efficiency with which a product or system can be successfully installed
and/or uninstalled in a specified environment) and coexistence (degree to which a
product can perform its required functions efficiently while sharing a common envi-
ronment and resources with other products, without detrimental impact on any other
product) will probably be the most frequent concerns of a quality engineer in the
transition phase. Consequently, the required standardization support will be ISO/IEC
9126-2 external quality or ISO/IEC 25023, when published.

The Validation Phase moves the software product back to the business level,
that is, to a business environment where satisfying the business requirements is the
most important and ultimate task of the product. The system returns to its “black
box” status (as it started in discovery phase) where the user validates its usefulness
for conducting his or her business, usually with no regard to technicalities.

This again explicitly means that quality in use requirements have to be satisfied
“here and now.” The process of the evaluation of quality in use requires the same
procedure as external quality evaluation and is being equally well supported by
standardization instruments. The recommended procedure consists of:

• Measurements of quality in use attributes. Applicable documents are ISO/IEC
9126-4 and ISO/IEC 25022, when published.

• Documentation of measurements. Applicable documents are ISO/IEC 14598–6
documentation of evaluation modules or ISO/IEC 25042, when published.

The results of measurements of quality in use attributes are compared with target
values assigned to them in previous phases. The resulting conclusions are presented
to development team as the corrective measures of improvement. The feedback may

134 Chapter 2 Software Quality Engineering: Making It Happen

be deployed to different phases of the process depending on the level of the severity
of discrepancies between required and obtained quality in use.

The Operation and Maintenance Phase is recognized theoretically as the
consecutive phase in the development process, while in fact this phase is defined by
its own rules. The most important aspects distinguishing the operation and mainte-
nance phase from all the previous phases are time and control level. The duration of
operation and maintenance cannot be planned (even if there are attempts to forecast
this period) and the phase itself is to a great extent driven by events. Last but not
least is the environment, a business environment that practically excludes any long-
term active experiments or measurements. But passive measurements are exactly
what is needed in this phase.

Operational quality measurements, if applicable, require data, which to be rep-
resentative have to be collected over relatively long period of time. In this case the
procedure uses the TL9000 Quality Management System Measurements Handbook
[38] in order to perform needed calculations and evaluate obtained operational
quality. Depending on the area of measurement and evaluation, the results can be
used immediately, for example, for improvements of the service quality, or in the
next round of product development, if the evaluation indicates weaknesses of the
product being in the field.

Applying measurements and evaluation of quality in use in the operation and
maintenance phase proves its very sense especially in cases of large and complicated
software products. The validation phase, where quality in use is being measured and
evaluated for the first time, takes place in a relatively short period of time with
limited exploration opportunities (e.g., a limited number of users), while the opera-
tion and maintenance phase offers natural circumstances with unlimited time and
exhaustive conditions of exploitation.

2.3.5.1  Applicability Considerations
The discussion of the cycle of identification, definition, measurement, and evaluation
of software product quality presented by the CQL model assumes the reader’s famil-
iarity with basic concepts used in ISO/IEC 14598 and ISO/IEC 9126 series. However,
in the case of lack of such familiarity, the user of the CQL model can remedy it by
reading the following guides making the part of ISO/IEC 25000 SQuaRE series [19]:

• ISO/IEC 25000—Guide to SQuaRE; provides the SQuaRE architecture
model, terminology, documents overview, intended users, and associated parts
of the series as well as reference models.

• ISO/IEC 25020—Measurement reference model and guide presents introduc-
tory explanation and a reference model that is common to quality measure
elements, measures of internal software quality, external software quality, and
quality in use.

Both TL9000 and ISO/IEC standards (9126 and 25000 series) offer the
process support for identification, definition, measurement, and evaluation of soft-
ware product quality. In the case of the TL9000 Quality Management System

Software Quality Engineering: Making It Happen 135

Requirements Handbook, the support processes are located on the corporate level.
In the case of ISO/IEC standards, the support is placed on the measurement process
management level and is being offered through planning and management dedicated
documents of ISO/IEC14598-2 and ISO/IEC 25001 [61].

The CQL model process does not need to be executed literally as presented,
that is, starting from the discovery phase and ending with the operation and
maintenance phase. It is the reader’s decision at which point to enter and at which
to exit the process, and thus which actions to undertake and execute and which
to neglect. However, such a decision must take into consideration the following
issues:

• When entering the process at a point different than the discovery phase, the
user takes the risk of omitting (or neglecting) the operational quality require-
ments and quality in use requirements in software product quality definition.
This may severely reduce the final quality of a software product.

• Entering the process at any point different than the discovery phase may
reduce flexibility of iterations within the model.

REFERENCES

1. Pfleeger SL, Atlee JM. Software Engineering: Theory and practice, 4th ed. Upper Saddle
River, N.J.: Prentice Hall, 2009.

2. ABET. www.abet.org.
3. IEEE Standard 610.12. IEEE Standard Glossary of Software Engineering Terminology.

New York: IEEE Computer Society, 1990.
4. Suryn W. “Ingénierie de la qualité logicielle.” École de Technologie Supérieure, Montréal,

Canada. Available at http://www.etsmtl.ca/Programmes-Etudes/Cours-horaires/Cours-
horaires-cycles-sup/Fiche-de-cours?Sigle=MGL842.

5. Bourque P, Dupuis R, Abran A, Moore JW, Tripp L, Wolff S. “Fundamental Principles
of Software Engineering: A Journey.” Journal of Systems and Software 2002; 62:
59–70.

6. Pressman RS. Software Engineering: A Practitioner’s Approach, 7th ed. New York:
McGraw Hill, 2010.

7. ISO/IEC 9126-1 Software Engineering – Product Quality – Part 1: Quality Model.
Geneva, Switzerland: International Organization for Standardization, 2001.

8. IEEE Standard 1061–1998. IEEE Standard for a Software Quality Metrics Methodology.
New York: IEEE Computer Society, 1998.

9. Georgiadou E. “GEQUAMO: A Generic, Multilayered, Customizable, Software Quality
Model.” Software Quality Control 2003; 11(4):313–323.

10. Siaka, KV, Georgiadou E. “PERFUMES: A Scent of Product Quality Characteristics.”
13th International Software Quality Management Conference; March 21–23, 2005,
Gloucestershire, Cheltenham, UK.

11. Kitchenham B, Pfleeger SL. “Software Quality: The Elusive Target.” IEEE Software
1996; 13(1):12–21.

12. McCall JA, Richards PK, Walters GF. “Factors in Software Quality.” Rome Air Develop-
ment Center Reports NTIS AD/A-049 014, NTIS AD/A-049 015 and NTIS AD/A-049

http://www.abet.org
http://www.etsmtl.ca/Programmes-Etudes/Cours-horaires/Cours-horaires-cycles-sup/Fiche-de-cours?Sigle=MGL842
http://www.etsmtl.ca/Programmes-Etudes/Cours-horaires/Cours-horaires-cycles-sup/Fiche-de-cours?Sigle=MGL842

136 Chapter 2 Software Quality Engineering: Making It Happen

016. Griffiths Air Force Base, New York: Rome Air Development Center Air Force
Systems Command.

13. Boehm BW, Brown JR, Kaspar JR, Lipow ML, MacCleod G. Characteristics of Software
Quality. New York: American Elsevier, 1978.

14. Boehm BW, Brown JR, Lipow ML. “Quantitative Evaluation of Software Quality.” In
2nd International Conference on Software Engineering, San Francisco. San Francisco:
IEEE Computer Society Press, 1976.

15. Dromey RG. “A Model for Software Product Quality.” IEEE Transactions on Software
Engineering 1995; 21:146–162.

16. ISO 9126-2 Software Engineering – Product Quality – Part 2: External Metrics. Geneva,
Switzerland: International Organization for Standardization, 2003.

17. ISO 9126-3 Software Engineering – Product Quality – Part 3: Internal Metrics. Geneva,
Switzerland: International Organization for Standardization, 2003.

18. ISO 9126-4 Software Engineering – Product Quality – Part 4: Quality in Use Metrics.
Geneva, Switzerland: International Organization for Standardization, 2004.

19. ISO/IEC 25000 System and Software Engineering – SQuaRE – Software Product Quality
Requirements and Evaluation. Geneva, Switzerland: International Organization for Stan-
dardization, 2005–2013.

20. ISO/IEC 25010 Systems and Software Engineering – Systems and Software Quality
Requirements and Evaluation (SQuaRE) – System and Software Quality Models. Geneva,
Switzerland: International Organization for Standardization, 2011.

21. ISO/IEC 15939 Systems and Software Engineering – Measurement Process. Geneva,
Switzerland: International Organization for Standardization, 2007.

22. ISO/IEC 25020 Systems and Software Engineering – Systems and Software Quality
Requirements and Evaluation (SQuaRE) – Measurement Reference Model and Guide.
Geneva, Switzerland: International Organization for Standardization, 2007.

23. ISO/IEC 25040 Systems and Software Engineering – Systems and Software Quality
Requirements and Evaluation (SQuaRE) – Evaluation Process. Geneva, Switzerland:
International Organization for Standardization, 2011.

24. ISO/IEC 14598-1 Information Technology – Software Product Evaluation – Part 1:
General Overview. Geneva, Switzerland: International Organization for Standardization,
1999.

25. ISO 15288 Systems and Software Engineering – System Life Cycle Processes. Geneva,
Switzerland: International Organization for Standardization, 2008.

26. ISO 25022 Systems and Software Engineering – Systems and Software Quality Require-
ments and Evaluation (SQuaRE) – Measurement of Quality in Use. Geneva, Switzerland:
International Organization for Standardization; document in development.

27. ISO 25023 Systems and Software Engineering – Systems and Software Quality Require-
ments and Evaluation (SQuaRE) – Measurement of System and Software Product Quality.
Geneva, Switzerland: International Organization for Standardization, document in
development.

28. ISO/IEC 14598-3 Software Engineering – Product Evaluation – Part 3: Process
for Developers. Geneva, Switzerland: International Organization for Standardization,
2000.

29. ISO/IEC 14598-4 Software Engineering – Product Evaluation – Part 4: Process for
Acquirers. Geneva, Switzerland: International Organization for Standardization, 1999.

30. ISO/IEC 14598-5 Information Technology – Software Product Evaluation – Part 5:
Process for Evaluators. Geneva, Switzerland: International Organization for Standardiza-
tion, 1998.

Software Quality Engineering: Making It Happen 137

31. ISO 25041 Systems and Software Engineering – Systems and Software Quality Require-
ments and Evaluation (SQuaRE) – Evaluation Guide for Developers, Acquirers and
Independent Evaluators. Geneva, Switzerland: International Organization for Standard-
ization, 2012.

32. ISO 14598-6 Software Engineering – Product Evaluation – Part 6: Documentation of
Evaluation Modules. Geneva, Switzerland: International Organization for Standardiza-
tion, 2001.

33. ISO 25042 Systems and Software Engineering – Systems and Software Quality Require-
ments and Evaluation (SQuaRE) – Evaluation Modules. Geneva, Switzerland: Interna-
tional Organization for Standardization, document in development.

34. Abran A, Moore JW, Bourque P, Dupuis R, editors. Guide to the Software Engineering
Body of Knowledge, 2004. Los Alamitos: IEEE Computer Society, 2004.

35. Suryn W, Abran A. ISO/IEC SQuaRE. “The Second Generation of Standard for Quality
of Software Products.” 7th IASTED International Conference on Software Engineering
and Applications, November 3–5, 2003. Marina del Rey, 2003.

36. Robertson S, Robertson J. Mastering the Requirements Process. Addison-Wesley, 1999.
37. TL9000 Quality Management System Measurements Handbook, Release 3.0. Plano:

QuEST Forum, 2001.
38. ISO 25030 Systems and Software Engineering – Systems and Software Quality Require-

ments and Evaluation (SQuaRE) – Quality Requirements. Geneva, Switzerland: Interna-
tional Organization for Standardization, 2007.

39. Dai L, Cooper K. “Modeling and Analysis of Non-functional Requirements as Aspects
in a UML Based Architecture Design.” 6th International Conference on Software Engi-
neering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks, May 23–25, 2005.
Towson, WA: IEEE Computer Society. 2005, pp. 178–183.

40. Dai L, Cooper K. “Process Definition for the Formal Design Analysis Framework Creating
an Aspect-Oriented Design Supporting Response Time Performance.” Technical Report
UTDCS-20-03. Department of Computer Science, University of Texas, Dallas, 2003.

41. Dai L, Cooper K. “Helping to Meet the Security Needs of Enterprises: Using FDAF to
Build RBAC into Software Architectures.” In 5th International Workshop on System/
Software Architecture, June 27, 2006, Las Vegas, pp. 790–796.

42. Cooper K, Dai L, Deng Y. “Performance Modeling and Analysis of Software Architec-
tures: An Aspect-Oriented UML Based Approach.” Journal of Science of Computer
Programming, System and Software Architectures 2005; 57(1):89–108.

43. Herrman A, Paech B. “MOQARE: Misuse-Oriented Quality Requirements Engineering.”
Requirements Engineering Journal 2007; 13(1):73–86.

44. Herrmann A, Kerkow D, Doerr J. Exploring the Characteristics of NFR Methods- A
Dialogue about Two Approaches. Berlin: Springer Verlag, 2007, pp. 320–334.

45. Kazman R, Klein M, Clements P. “ATAM: Method for Architecture Evaluation.” Techni-
cal Report CMU/SEI-2000-TR-004. Software Engineering Institution, Carnegie Mellon
University.

46. Dörr J, Kerkow D, Koenig T, Olsson T, Suzuki T. “Non-functional Requirements in
Industry: Three Case Studies Adopting an Experience-based NFR Method.” In 13th IEEE
International Requirements Engineering Conference; August 29–September 2, 2005,
Paris, pp. 373–384.

47. Chung L, Nixon BA. “Dealing with Non-functional Requirements: Three Experimental
Studies of a Process-Oriented Approach.” In 17th International Conference on Software
Engineering, April 24–28, 1995. Seattle, WA: IEEE, 1995.

138 Chapter 2 Software Quality Engineering: Making It Happen

48. Chung L, Nixon BA, Yu E. “Using Quality Requirements to Systematically Develop
Quality Software.” 4th International Conference on Software Quality; October 3–5, 1994,
McLean.

49. Djouab R, Suryn W. “SOQUAREM: Software Quality Requirements Engineering
Method.” 19th International Software Quality Management Conference, April 18–20,
2011. Loughborough University, UK, 2011.

50. Djouab R, Suryn W. “Applicability of SOQUAREM Method: An Illustrative Case Study.”
19th International Software Quality Management Conference, April 18–20, 2011. Lough-
borough University, UK, 2011.

51. Business Rules Group 2007. “Business Motivation Model Version 1.3.” Available at
http://www.businessrulesgroup.org/actvbrg.shtml.

52. Côté MA, Suryn W, Martin R, Laporte CY. “Evolving a Corporate Software Quality
Assessment Exercise: A Migration Path to ISO/IEC 9126.” Software Quality Professional
2004; 6(3):4–17.

53. Dutil D, Suryn W, Rose J, Thimot B. “Software Quality Engineering in the New ISO
Standard: ISO/IEC 24748 – Systems and Software Engineering – Guide for Life Cycle
Management.” In Third C* Conference on Computer Science and Software Engineering,
May 19–21, 2010. Montreal: Concordia University, 2010.

54. ISO/IEC 24748-1 Systems and Software Engineering – Life Cycle Management – Part
1: Guide for Life Cycle Management. Geneva, Switzerland: International Organization
for Standardization, 2010.

55. ISO/IEC 17799 Information Technology – Security Techniques – Code of Practice for
Information Security Management. Geneva, Switzerland: International Organization for
Standardization, 2005.

56. McCabe T, Butler CW. “Design complexity measurement and testing.” ACM 1989;
32(12):1415–1425.

57. ISOIEC 12207 Systems and Software Engineering – Software Life Cycle Processes.
Geneva, Switzerland: International Organization for Standardization, 2008.

58. A Guide to Project Management Body of Knowledge, 5th ed. Project Management Insti-
tute, 2012.

59. ISO/IEC 10006: Quality Management – Guidelines to Quality in Project Management.
Geneva, Switzerland: International Organization for Standardization, 1997.

60. Barbacci M, Jeromy Carriere S, Peter Feiler PH, Kazman R, Klein MH, Lipson HF,
Longstaff TA, Weinstock CB. “Steps in an Architecture Tradeoff Analysis Method:
Quality Attribute Models and Analysis.” Technical report May 1998. Pittsburgh: SEI.
Report number CMU/SEI-97-TR-029. Available from Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, www.sei.cmu.edu.

61. ISO 25001 Systems and Software Engineering – Systems and Software Quality Require-
ments and Evaluation (SQuaRE) – Planning and Management. Geneva, Switzerland:
International Organization for Standardization, 2007.

http://www.businessrulesgroup.org/actvbrg.shtml
http://www.sei.cmu.edu

