SN Ratios for Continuous Variables

12.1. Introduction
 239

12.2. Zero-Point Proportional Equation 241
12.3. Reference-Point Proportional Equation 247
12.4. Linear Equation 250
12.5. Linear Equation Using a Tabular Display of the Orthogonal Polynomial Equation 254
12.6. When the Signal Factor Level Interval Is Known 256
12.7. When Signal Factor Levels Can Be Set Up 260
12.8. When the Signal Factor Level Ratio Is Known 262
12.9. When the True Values of Signal Factor Levels Are Unknown 264
12.10. When There Is No Signal Factor (Nondynamic SN Ratio) 264
Nominal-the-Best, Type I 265
Nominal-the-Best, Type II 267
Smaller-the-Better 268
Larger-the-Better 269
Nondynamic Operating Window 269
12.11. Estimation of Error 271
12.12. Double Signals 275
12.13. Split Analysis: When There Is No Noise 284
Split Analysis for Two-Level Orthogonal Array 284
Split Analysis for Mixed Orthogonal Arrays 286
References 289

12.1. Introduction

From a quality engineering viewpoint, continuous variables are far more important then classified attributes, as described in Chapter 11. The SN ratios of continuous variables are used much more frequently than those of classified attributes. SN ratios for continuous variables are classified as follows:

1. When the true values of the signal factor are known
a. Zero-point proportional equation
b. Reference-point proportional equation
c. Linear equation
2. When the level interval values are known
3. When the ratio of the signal factor level values is known
4. When the true values of the signal factor levels are unknown
5. When there is no signal factor (nondynamic characteristics)
a. Nominal-the-best characteristic
b. Smaller-the-better characteristic
c. Larger-the-better characteristic
d. Nondynamic operating window

The following explanation is based on an experiment done under the assumption that at each level of the control factor, there is one signal factor and the remaining factors are noise factors. It is assumed that the data shown in Table 12.1 are given. That is, for true signal value, $M_{i}(i=1, \ldots, k), r_{0}$ experiments are repeated and data $y_{i j}\left(j=1, \ldots, r_{0}\right)$ are obtained. y_{i} is the sum of data for signal M_{i}.

The value of the SN ratio obtained here is given in terms of the antilog value, and to apply it as a characteristic value for analysis of the effect of control factors, it is transformed into a decibel value, which is equal to 10 times the common log of the SN ratio in terms of the antilog value: $10 \log \eta(\mathrm{~dB})$. Selection of the correct SN ratio for a study is based on engineering objectives and viewpoints. It is important for an engineer to understand the function of a product or process and his or her objectives for the study. Once a proper SN ratio is selected, the calculation can be made by using the equations in this chapter or by inputting the data to the software. To simplify the explanation, only one control factor, and usually, one level of the factor, is used in the examples.

When the true values of a signal factor are known, there are basically three types: zero-point proportional equation, reference-point proportional equation, and linear equation. In such cases, the linear effect of the signal factor can be calculated accurately. The error variance is estimated by including the deviation from the linearity (or nonlinear portion) into the error term. Different equations are used depending on the ideal functional relationship considered to exist between the input

Table 12.1
Signal factor and data

Signal	M_{1}	M_{2}	M_{3}	...	$M_{\text {k }}$
Data	y_{11}	y_{21}	y_{31}	\ldots	$y_{k 1}$
	y_{12}	y_{22}	y_{32}	\cdots	$y_{k 2}$
	!	\vdots	!	!	!
	$\underline{y_{1 \gamma_{0}}}$	$\underline{y_{2 \gamma_{0}}}$	$y_{3 \gamma_{0}}$...	$y_{\text {kro }}$
Total	y_{1}	y_{2}	y_{3}	...	y_{k}

(signal factor) and the output (response data). Following are typical functional relations.

1. Zero-point proportional equation. In this case, $y=0$ when $M=0$:

$$
y=\beta M
$$

2. Reference-point proportional equation. In this case, the ideal relationship is expressed by the proportional equation that goes through a particular point, $M=M_{s}$:

$$
y-\bar{y}_{s}=\beta\left(M-M_{s}\right)
$$

3. Linear equation. In this case, the ideal relationship is expressed by the linear equation between M and y :

$$
y=m+\beta(M-\bar{M})
$$

12.2. Zero-Point Proportional Equation

A zero-point proportional equation is used most frequently. In this case the input is equal to zero and the output "must" pass through the origin based on the situation considered by the engineer. It must be noted that the selection of an SN equation is not based on "how the response looks."

For example, Figure $12.1 a$ is an example of the voltage-current relationship of a dc motor study in a company. Since the regression line does not pass through the origin, as can be seen from Figure 12.1 b, to improve quality the engineers tried to use a linear equation. The engineers said that based on their design, there is no current until the voltage reaches 1.5 V . However, this conclusion is misleading because, ideally, even when voltage is as low as 0.1 V , current is flowing.

Therefore, the zero-point proportional equation must be used for this case, as shown in Figure 12.1c. Any deviation from the regression line in the figure then becomes an error.

Table 12.2 shows the inputs and outputs of a measurement experiment. The inputs are the samples whose true values are known; these are the levels of the signal factors. The outputs are the results measured.

An explanation of symbols used is as follows:

$$
\begin{array}{ll}
M_{1}, M_{2}, \ldots, M_{k}: & \text { true values of samples } \\
y_{11}, y_{12}, \ldots, y_{1} r_{0}: & \text { results of measuring } M_{1} \\
y_{21}, y_{22}, \ldots, y_{2} r_{0}: & \text { results of measuring } M_{2} \\
y_{1}, y_{2}, \ldots, y_{k}: & \text { total of measurements at } M_{i}
\end{array}
$$

where r_{0} is the number of data points in each signal level.
There are $k r_{0}$ observations in Table 12.2. Reading from y_{11} to $y_{1} r_{0}$ shows the results of measuring sample M_{1}. Variation among $k r_{0}$ pieces of data is caused by different samples and repetitions. Variation caused by different samples includes the following components: a linear portion, a quadratic portion, and a higherorder portion.

Figure 12.1
Voltage-current relationship

Variation caused by repetitions is a type of noise factor. In many studies, a compounded noise factor is set and observed rather than just observing simple repetitions. Since an SN ratio is determined from two parts, a desirable portion and a harmful portion, the data must be decomposed as follows:

$$
\begin{aligned}
\text { total variation }= & \text { variation caused by linear portion }+ \text { variations } \\
& \text { caused by other portions }
\end{aligned}
$$

Table 12.2
Reading from a measurement system

Signal Factor	\boldsymbol{M}_{1}	$\boldsymbol{M}_{\mathbf{2}}$	\ldots	$\boldsymbol{M}_{\boldsymbol{k}}$
Reading	y_{11}	y_{21}	\ldots	$y_{k 1}$
	y_{12}	y_{22}	\ldots	$y_{k 2}$
	$\underline{y_{1 \gamma_{0}}}$	$\underline{y_{2 \gamma_{0}}}$	\ldots	$\overline{y_{k \gamma_{0}}}$
Total	y_{1}	y_{2}	\ldots	y_{k}

In the case of a zero-point proportional equation, when the signal is zero, the output must be zero. In a measurement system, if a sample to be measured contains no ingredient, the measured result must read zero. Here the ideal function is expressed as

$$
\begin{equation*}
y=\beta M \tag{12.1}
\end{equation*}
$$

where y is the output, β the slope of the response line or the regression coefficient, and M the signal.

In reality, there are errors in observations, and the data in Table 12.2 are expressed by

$$
\begin{equation*}
y_{i j}=\beta M_{i}+e_{i j} \tag{12.1a}
\end{equation*}
$$

where $i=1,2, \ldots, k$ and $j=1,2, \ldots, r_{0}$.
Equation (12.1a) is expressed as a series of simultaneous equations with one unknown, β. The value of β is selected so as to minimize the total of the squares of differences between the right and left sides of the equation (the least squares method):

$$
\begin{equation*}
S_{e}=\left(y_{11}-\beta M_{1}\right)^{2}+\left(y_{12}-\beta M_{1}\right)^{2}+\cdots+\left(y_{k 00}-\beta M_{k}\right)^{2} \tag{12.2}
\end{equation*}
$$

The value of β that minimizes S_{e} is given by

$$
\begin{equation*}
\beta=\frac{1}{r_{0} r}\left(M_{1} y_{1}+M_{2} y_{2}+\cdots+M_{k} y_{k}\right) \tag{12.3}
\end{equation*}
$$

where

$$
\begin{equation*}
r=M_{1}^{2}+M_{2}^{2}+\cdots+M_{k}^{2} \tag{12.4}
\end{equation*}
$$

and r_{0} is the total number of measurements under M_{i}.
To decompose the data in Table 12.2, S_{T}, the total variation, is first calculated from the squares of $k r_{0}$ pieces of data. The symbol f denotes the degrees of freedom:

$$
\begin{equation*}
S_{T}=y_{11}^{2}+y_{12}^{2}+\cdots+y_{k v_{0}}^{2} \quad \text { and } f=k r_{0} \tag{12.5}
\end{equation*}
$$

The variation caused by the linear effect, denoted by S_{β}, is given by

$$
\begin{equation*}
S_{\beta}=\frac{1}{r_{0} r}\left(M_{1} y_{1}+M_{2} y_{2}+\cdots+M_{k} y_{k}\right)^{2} \quad \text { and } f=1 \tag{12.6}
\end{equation*}
$$

The error variation S_{e}, including the deviation from linearity, V_{e}, is

$$
\begin{equation*}
S_{e}=S_{T}-S_{\beta} \text { and } f=k r_{0}-1 \tag{12.7}
\end{equation*}
$$

The error variance V_{e} is the error variation divided by its degrees of freedom:

$$
\begin{equation*}
V_{e}=\frac{S_{e}}{k r_{0}-1} \tag{12.8}
\end{equation*}
$$

The definition of this SN ratio is

$$
\begin{equation*}
\eta \rightarrow 10 \log \frac{\beta^{2}}{\sigma^{2}} \tag{12.9}
\end{equation*}
$$

To calculate the SN ratio of equation (12.9), the error variance V_{e} calculated in equation (12.8) is used to estimate σ^{2} in equation (12.9). To estimate β^{2}, a correction is necessary. Statistically, S_{β}, the variation caused by the linear effect, has the following content:

$$
\begin{equation*}
E\left(S_{\beta}\right)=r_{0} r \beta^{2}+\sigma^{2} \tag{12.10}
\end{equation*}
$$

where E is the expected value as defined in statistics.
When data are repeatedly collected in the same way for an infinite number of times and their S_{β} value is calculated each time, the average of an infinite number of S_{β} values is denoted by $E\left(S_{\beta}\right)$. The term σ^{2} designates the error contained in the data, such as experimental error or measurement error. What is needed to calculate the SN ratio is the use of β^{2} as the numerator. Therefore, the SN ratio in decibel units (dB) is calculated as

$$
\begin{equation*}
\eta=10 \log \frac{\left(1 / r_{0} r\right)\left(S_{\beta}-V_{e}\right)}{V_{e}} \quad \mathrm{~dB} \tag{12.11}
\end{equation*}
$$

The sensitivity in decibel units is calculated as

$$
\begin{equation*}
S=10 \log \frac{1}{r_{0} r}\left(S_{\beta}-V_{e}\right) \tag{12.12}
\end{equation*}
$$

Example 1 [1]

In this example, the SN ratio of a newly developed displacement gauge is calculated. The value of displacement that was used as the signal is measured with another displacement gauge, which is believed to be accurate. The readings given in Table 12.3 were obtained from the measurement calculated twice by different testing personnel. A zero-point proportional equation was assumed, since the output, y, of the displacement gauge is zero when the displacement, M, is zero.

The ANOVA is done as follows:

$$
\begin{align*}
S_{T} & =65^{2}+74^{2}+\cdots+197^{2}=131,879 & (f=6) \tag{12.13}\\
\gamma_{0} \gamma & =(2)\left(30^{2}+60^{2}+90^{2}\right)=25,200 & \\
S_{\beta} & =\frac{[(30)(139)+(60)(283)+(90) \times(405)]^{2}}{\gamma_{0} r} & \tag{12.14}\\
& =\frac{57,600^{2}}{25,200}=131,657.14 & (f=1) \\
S_{e} & =S_{T}-S_{\beta}=131,879-131,657.14=221.86 & (f=5) \tag{12.15}\\
V_{e} & =\frac{S_{e}}{5}=\frac{221.86}{5}=44.37 & \tag{12.16}
\end{align*}
$$

The results are summarized in Table 12.4

Table 12.3
Displacement and displacement gauge data

	Displacement $\boldsymbol{M}(\boldsymbol{\mu m})$		
Reading (mV)	$\mathbf{3 0}$	60	$\mathbf{9 0}$
R_{1}	65	136	208
R_{2}	$\frac{74}{139}$	$\frac{147}{283}$	$\frac{197}{405}$
Total			

The SN ratio is

$$
\begin{equation*}
\eta=\frac{(1 / 25,220)(131,657.14-44.37)}{44.37}=0.1177 \tag{12.18}
\end{equation*}
$$

This was transformed into a decibel value:

$$
\begin{equation*}
\eta=10 \log (0.1177)=-9.29 \mathrm{~dB} \tag{12.19}
\end{equation*}
$$

The estimated value of the sensitivity coefficient was

$$
\begin{equation*}
\hat{\beta}=\frac{57,600}{25,200}=2.285 \tag{12.20}
\end{equation*}
$$

and the relationship between M and y was

$$
\begin{equation*}
y=2.285 M \tag{12.21}
\end{equation*}
$$

Example 2 [2]

In Example 1, the SN ratio of one product (or one condition) is calculated. When there is a control factor with two levels (two conditions), two SN ratios are calculated for comparison. In the present example two quantitative cadmium microanalysis methods, dithizone extraction-atomic absorption spectrophotometry and

Table 12.4
ANOVA table for zero-point proportional equation: Displacement gauge

Factor	\boldsymbol{F}	\boldsymbol{S}	\boldsymbol{V}	$\boldsymbol{E}(\boldsymbol{V})$
β	1	$131,657.14$	$131,657.14$	$\boldsymbol{\sigma}^{2}+\gamma_{0} \gamma \boldsymbol{\beta}^{2}$
e	5	221.86	44.37	$\boldsymbol{\sigma}^{2}$
Total	$\frac{5}{6}$	$\frac{131,879.00}{}$		

DDTC extraction-atomic absorption spectrophotometry, were compared. Control factor levels A_{1} and A_{2} denote the two methods, respectively.

- Signal factor: cadmium content, M

$$
\begin{array}{ll}
M_{1}: & 1 \mathrm{ppm} \\
M_{2}: & 2 \mathrm{ppm} \\
M_{3}: & 3 \mathrm{ppm} \\
M_{4}: & 4 \mathrm{ppm} \\
M_{5}: & 5 \mathrm{ppm}
\end{array}
$$

Noise factor: measuring personnel, R_{1} and R_{2}
Table 12.5 shows the results of measurement.

1. $S N$ ratio of A_{1} :

$$
\begin{array}{rlr}
S_{T}= & 12.0^{2}+11.0^{2}+\cdots+54.0^{2}=12,907.50 \\
& {[(1)(23.0)+(2)(45.5)+(3)(67.0)} \\
S_{\beta}= & \frac{+(4)(86.5)+(5)(106.0)]^{2}}{(2)\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}\right)} \\
= & \frac{1191.0^{2}}{110}=12,895.28 \\
S_{e}= & 12,907.50-12,895.28=12.22 \tag{12.24}
\end{array}
$$

From this result, Table 12.6 is obtained.

$$
\begin{equation*}
\eta=10 \log \frac{\frac{1}{10}(12,895.28-1.36)}{1.36}=10 \log (86.2)=19.36 \mathrm{~dB} \tag{12.25}
\end{equation*}
$$

2. $S N$ ratio of A_{2} : A similar calculation is done and Table 12.7 is obtained.
$\eta=10 \log \frac{\frac{1}{10}(1,539.38-0.35)}{0.35}=10 \log (39.97)=16.02 \mathrm{~dB} \quad$ (12.26)
Compared to the DDTC extraction method $\left(A_{2}\right)$, the dithizone extraction method $\left(A_{1}\right)$ is better by 3.34 dB .

Table 12.5
Quantitative cadmium microanalysis data

	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	Total
$A_{1} \quad R_{1}$	12.0	23.0	33.0	42.5	52.0	328.0
	11.0	22.5	34.0	44.0	54.0	
Total	23.0	45.5	67.0	86.5	106.0	
$A_{2} \quad R_{1}$	3.5	7.0	10.5	14.5	18.0	
	4.0	7.5	12.0	15.5	19.5	
Total	7.5	14.5	22.5	30.0	37.5	112.0

Table 12.6
ANOVA table of quantitative cadmium microanalysis data of A_{1}

Factor	\boldsymbol{f}	\boldsymbol{S}	\boldsymbol{V}	$\boldsymbol{E}(\boldsymbol{V})$
β	1	$12,895.28$	$12,895.28$	$\boldsymbol{\sigma}^{2}+(2)\left(1^{2}+2^{2}+\cdots+5^{2}\right)$
e	$\frac{9}{10}$	$\frac{12.22}{12,907.50}$	1.36	σ^{2}
Total				

12.3. Reference-Point Proportional Equation

In a measuring system, there are two types of calibration: point calibration and slope calibration. For example, a watch measures time. We correct our watches by the standard time signal. Another example is a bathroom scale, on which an adjusting knob can be used to calibrate the reading to zero when nobody steps on the scale. These are examples of point calibration.

In old-style (mechanical and nonquartz) watches, there was a pace-adjusting slide inside the watch. The slide was used to adjust the pace. This is called slope calibration (adjustment).

In point calibration, the reference point could be either the zero point or some other point. However, it often happens that a small section in the entire range of measurement is used for a particular application and that range is quite far from the zero point. In such a case, it would be better to select a reference point within the range for calibration rather than using the zero point, because by doing so, the error after calibration becomes smaller.

In reference-point calibration, a standard, M_{s}, is used as the reference point. Measurements are conducted and the average is calculated to be \bar{y}_{s}. The ideal relationship between the readings and the signals is

$$
\begin{equation*}
y-\bar{y}_{s}=\beta\left(M-M_{s}\right) \tag{12.27}
\end{equation*}
$$

Table 12.8 shows the data after reference-point calibration. As noted above, first the average of the r_{0} readings at the reference point, $y_{s 1}, y_{22}, \ldots, y_{5 \gamma_{0}}$ is calculated:

$$
\begin{equation*}
\bar{y}_{s}=\frac{\left.y_{s 1}+y_{s 2}+\cdots+y_{s \gamma_{0}}\right)}{r_{0}} \tag{12.28}
\end{equation*}
$$

Table 12.7
ANOVA table of quantitative cadmium microanalysis data of A_{2}

Factor	\boldsymbol{f}	\boldsymbol{S}	\boldsymbol{V}	$\boldsymbol{E}(\boldsymbol{V})$
B	1	1539.38	1539.38	$\boldsymbol{\sigma}^{2}+100 \beta^{2}$
e	$\frac{9}{10}$	$\frac{3.12}{1542.50}$	0.35	$\boldsymbol{\sigma}^{2}$
Total	10			

Table 12.8
Data after reference-point calibration

Signal	$M_{1}-M_{s}$	$M_{2}-M_{s}$...	$M_{k}-M_{s}$
Reading	$y_{11}-\bar{y}_{s}$	$y_{21}-\bar{y}_{s}$...	$y_{k 1}-\bar{y}_{s}$
	$y_{12}-\ldots \bar{y}_{s}$	$y_{22}-\bar{y}_{s}$	\ldots	$y_{k 2}-\ldots \bar{y}_{s}$
	$y_{1 \gamma_{0}}-\bar{y}_{s}$	$y_{2 \gamma_{0}}-\bar{y}_{s}$...	$y_{k \gamma_{0}}-\bar{y}_{s}$
Total	y_{1}	y_{2}	\ldots	y_{k}

The slope or the linear coefficient, β, is also called the sensitivity coefficient. It is given as:

$$
\begin{equation*}
\beta=\frac{1}{r_{0} r}\left[y_{1}\left(M_{1}-M_{s}\right)+y_{2}\left(M_{2}-M_{s}\right)+\cdots+y_{k}\left(M_{k}-M_{s}\right)\right] \tag{12.29}
\end{equation*}
$$

where

$$
\begin{equation*}
r=\left(M_{1}-M_{s}\right)^{2}+\left(M_{2}-M_{s}\right)^{2}+\cdots+\left(M_{k}-M_{s}\right)^{2} \tag{12.30}
\end{equation*}
$$

The proportional equation is

$$
\begin{equation*}
y-\bar{y}_{s}=\beta\left(M-M_{s}\right) \tag{12.31}
\end{equation*}
$$

For calculation of the SN ratio, the total variation, S_{T}, is

$$
\begin{equation*}
S_{T}=\text { total of square of } y_{i j}-\bar{y}_{s}=\sum_{i=1}^{k} \sum_{j=1}^{r_{0}}\left(y_{i j}-\bar{y}_{s}\right)^{2} \quad\left(f=k r_{0}\right) \tag{12.32}
\end{equation*}
$$

The linear effect of the signal, S_{β}, is

$$
\begin{equation*}
S_{\beta}=\frac{1}{r_{0} r}\left[y_{1}\left(M_{1}-M_{s}\right)+y_{2}\left(M_{2}-M_{s}\right)+\cdots+y_{k}\left(M_{k}-M_{s}\right)\right]^{2} \quad(f=1) \tag{12.33}
\end{equation*}
$$

The error variation, S_{e}, is

$$
\begin{equation*}
S_{e}=S_{T}-S_{\beta} \quad\left(f=k r_{0}-1\right) \tag{12.34}
\end{equation*}
$$

Example [1]

The SN ratio of an analyzer that measures olefin density was calculated. Standard solutions of four different densities were used. The analyzer was used after the reference-point proportional equation, with 5% standard solution as the reference point. The data in Table 12.9 were obtained after measurement was conducted by two different testing personnel.

Table 12.9
Measured olfefin density data

	Density $M(\%)$			
Reading	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$
R_{1}	5.2	10.3	15.4	20.1
R_{2}	5.0	10.1	15.5	20.3

First, preparatory data processing was performed. The average of data at $M_{s}=$ 5% is

$$
\begin{equation*}
\bar{y}_{s}=\frac{5.2+5.0}{2=5.1} \tag{12.35}
\end{equation*}
$$

and after subtracting this value from each datum, reference-point calibration was done. The result is shown in Table 12.10.
The ANOVA is done as follows:

$$
\begin{align*}
S_{T} & =0.1^{2}+(-0.1)^{2}+\cdots+15.2^{2}=722.35 \tag{12.36}\\
\gamma_{0} \gamma & =(2)\left(0^{2}+5^{2}+10^{2}+15^{2}\right)=700 \tag{12.37}\\
S_{\beta} & =\frac{[(0)(0)+(5)(10.2)+(10)(20.7)+(15)(30.2)]^{2}}{700} \\
& =\frac{711^{2}}{700}=722.1729 \\
S_{e} & =S_{T}-S_{\beta}=722.35-722.1729=0.1771 \\
V_{e} & =\frac{S_{e}}{7}=0.1771 .7=0.0253 \tag{12.39}
\end{align*}
$$

Table 12.10
Olefin density data after reference-point calibration

	Density $\boldsymbol{M}(\%)$			
	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$
$M-M_{s}$	0	5	10	15
Reading after calibration R_{1}	0.1	5.2	10.3	15.0
R_{2}	$\underline{-0.1}$	$\frac{5.0}{10.2}$	$\frac{10.4}{20.7}$	$\frac{15.2}{30.2}$
Total	0.0	10.		

The result is summarized in Table 12.11.
The SN ratio is

$$
\begin{equation*}
\eta=\frac{(1 / 700)(722.1729-0.0523)}{0.0253}=40.76 \tag{12.41}
\end{equation*}
$$

The decibel transformation of the SN ratio is

$$
\begin{equation*}
\eta=10 \log (40.76)=16.10 \mathrm{~dB} \tag{12.42}
\end{equation*}
$$

The sensitivity, S_{β}, is

$$
\begin{equation*}
\eta=10 \log \frac{1}{700}(722.1729-0.0523)=10 \log (1.0316) \tag{12.43}
\end{equation*}
$$

The estimate of the linear coefficient is

$$
\begin{equation*}
\hat{\beta}=\sqrt{1.0316}=1.015 \tag{12.44}
\end{equation*}
$$

The function of M and y is determined as

$$
\begin{equation*}
y-5.1=1.015(M-5) \tag{12.45}
\end{equation*}
$$

12.4. Linear Equation

This is the case in which a linear relationship without a particular restriction is expected between the signal factor and the output responses. In zero-point proportional equations, the regression line must pass through the origin. In referencepoint proportional equations, the line passes through the reference point and the reference data, as shown in Figure 12.2.

Which case should be used depends on the objective of the study or on the ideal function of the product or process to be studied. When there is no specific restriction on the input/output relationship shown by a regression line, a linear equation may be used. In a study of an injection molding process, we are not interested in the area in which the injection pressure is equal to zero, and whether the regression line passes through the origin is not our concern. In such a case, a linear equation may be used.

Table 12.11

ANOVA table of the reference-point proportional equation of olefin density

Factor	\boldsymbol{f}	\boldsymbol{S}	\boldsymbol{V}	$\boldsymbol{E}(\boldsymbol{V})$
β	1	722.1729	722.1729	$\boldsymbol{\sigma}^{2}+\gamma_{0} \boldsymbol{\gamma} \boldsymbol{\beta}^{2}$
e	$\overline{8}$	0.1771	0.0253	$\boldsymbol{\sigma}$
Total	$\overline{8}$	722.3500		

Figure 12.2
Three different cases of equations

Linear Equation

From the results in Table 12.2, a linear equation is given as

$$
\begin{equation*}
y-m+\beta(M-\bar{M})+e \tag{12.46}
\end{equation*}
$$

where m is the average and e is the error. Parameters m and β are estimated by

$$
\begin{align*}
& m=\bar{y} \tag{12.47}\\
& \beta=\frac{1}{r_{0} r}\left[y_{1}\left(M_{1}-\bar{M}\right)+y_{2}\left(M_{2}-\bar{M}\right)+\cdots+y_{k}\left(M_{k}-\bar{M}\right)\right] \tag{12.48}
\end{align*}
$$

where

$$
\begin{align*}
\bar{M} & =\frac{M_{1}+M_{2}+\cdots+M_{k}}{k} \tag{12.49}\\
r & =\left(M_{1}-\bar{M}\right)^{2}+\left(M_{2}-\bar{M}\right)^{2}+\cdots+\left(M_{k}-\bar{M}\right)^{2} \tag{12.50}
\end{align*}
$$

and r_{0} is the number of repetitions under each signal factor level.
It must be noted that in the case of the linear equation, the total variation, S_{T}, is calculated by subtracting S_{m} from the total of the squares of individual data. In this case, S_{T} shows the variation around the mean:

$$
\begin{align*}
S_{T}= & y_{11}^{2}+y_{12}^{2}+\cdots+y_{k r_{0}}^{2}-S_{m} \quad\left(f=k r_{0}-1\right) \tag{12.51}\\
S_{m}= & \frac{\left(\sum_{i j}\right)^{2}}{k r_{0}} \tag{12.52}\\
S_{\beta}= & \frac{1}{r_{0} r}\left[y_{1}\left(M_{1}-\bar{M}\right)+y_{2}\left(M_{2}-\bar{M}\right)+\cdots+y_{k}\left(M_{k}-\bar{M}\right)\right]^{2} \\
& (f=1) \tag{12.53}\\
S_{e}= & S_{T}-S_{\beta} \tag{12.54}\\
V_{e}= & \frac{1}{k r_{0}-2} S_{e} \tag{12.55}
\end{align*}
$$

The SN ratio is

$$
\begin{equation*}
\eta=10 \log \frac{\left(1 / r_{0} r\right)\left(S_{\beta}-V_{e}\right)}{V_{e}} \tag{12.56}
\end{equation*}
$$

Example [1]

In an injection molding process of a plastic product, using the injection pressure as the signal factor controls the dimensions of the plastic product. To obtain the SN ratio for such a system, the molding injection pressure was altered, and the data given in Table 12.12 were obtained by measuring the dimensions of two molded products. In this case, a linear relationship with no particular restriction was assumed.

Table 12.12
Dimension measurement data for plastic injection molding

	Pressure $\left(\mathbf{k g}_{\mathbf{t}} / \mathrm{cm}^{2}\right)$			
	$\mathbf{3 0}$	$\mathbf{4 0}$	50	60
$M-\bar{M}$	-15	-5	5	15
Data (mm) R_{1}	4.608	4.640	4.682	4.718
R_{2}	$\frac{4.590}{9.198}$	$\frac{4.650}{9.290}$	$\frac{4.670}{9.352}$	$\frac{4.702}{9.420}$
Total				

Table 12.12 also shows the value of $M_{i}-\bar{M}$ that was used in the ANOVA. Here $\bar{M}=45$. ANOVA was performed as follows:

$$
\begin{align*}
S_{T}= & 4.608^{2}+4.590^{2}+\cdots+4.702^{2}=173.552216 \quad(f=8) \tag{12.57}\\
S_{m}= & \left(\frac{9.198+\cdots+9.420}{8}\right)^{2}=\frac{37.26^{2}}{8} \\
= & 173.538450 \quad(f=1) \tag{12.58}\\
\gamma_{0} \gamma= & (2)\left[(-15)^{2}+(-5)^{2}+5^{2}+15^{2}\right]=1000 \tag{12.59}\\
S_{\beta}= & \frac{[(-15)(9.198)+\cdots+(15)(9.420)]^{2}}{1000} \\
& =\frac{3.64^{2}}{1000}=0.0132496 \quad(f=1) \tag{12.60}\\
S_{e}= & S_{T}-S_{m}-S_{\beta}=173.552216-173.538450 \\
& -0.0132496=0.00051564 \quad(f=6) \tag{12.61}\\
V_{e}= & \frac{S_{e}}{6}=\frac{0.005164}{6}=0.0000861 \tag{12.62}
\end{align*}
$$

The calculation results are summarized in Table 12.13.
The SN ratio and the results of decibel transformation are

$$
\begin{align*}
\eta & =\frac{(1 / 1000)(0.0132496-0.0000861)}{0.0000861}=0.1529 \tag{12.63}\\
& =10 \log (0.1529)=-8.155 \mathrm{~dB} \tag{12.64}
\end{align*}
$$

Table 12.13
ANOVA table: Linear equation for plastic injection molding

Factor	\boldsymbol{f}	\boldsymbol{S}	\boldsymbol{V}	$\boldsymbol{E}(\boldsymbol{V})$
m	1	173.538450	173.538450	$\boldsymbol{\sigma}^{2}+(4)\left(2 \boldsymbol{\sigma}_{m}^{2}\right)$
β	1	0.0132496	0.0132496	$\boldsymbol{\sigma}^{2}+\gamma_{0} \gamma \beta^{2}$
e	6	0.0005164	0.0000861	$\boldsymbol{\sigma}^{2}$
Total	$\overline{8}$	$\frac{173.552216}{}$		

The estimates of the mean value, m, and sensitivity coefficient, β, are

$$
\begin{align*}
& \hat{m}=\frac{37.26}{8}=4.6575 \tag{12.65}\\
& \hat{\beta}=\frac{3.64}{1000}=0.00364 \tag{12.66}
\end{align*}
$$

The equation relating M and y is

$$
\begin{equation*}
y=4.6575+0.00364 \quad(M-45) \tag{12.67}
\end{equation*}
$$

12.5. Linear Equation Using a Tabular Display of the Orthogonal Polynomial Equation

When the intervals for signal factor level are set equal, the SN ratios can easily be calculated. Table 12.14 is part of a tabular display of Chebyshev's orthogonal polynomial equation. Although the table can be used to calculate linear, quadratic, or higher-order terms, only the linear term is used in the SN ratio calculation. (Note: This table is used only when level intervals are equal.) In the table,

$$
\begin{align*}
b_{1} & =\text { linear term } \\
b_{2} & =\text { quadratic term } \\
b_{i} & =\frac{W_{1} A_{1}+\cdots+W_{k} A_{k}}{r_{0} \lambda S h^{i}} \tag{12.68}\\
h & =\text { level interval } \\
n_{e} \text { of } b_{i} & =r_{0} S h^{2 i} \tag{12.69}\\
S_{b i} & =\frac{\left(W_{1} A_{1}+\cdots+W_{k} A_{k}\right)^{2}}{r_{0} \lambda^{2} S} \tag{12.70}
\end{align*}
$$

Table 12.14
Orthogonal polynomial equationa ${ }^{\text {a }}$

No. of Levels:	$k=2$	$k=3$		$k=4$			$k=5$			
Coefficients:	b_{1}	b_{1}	b_{2}	b_{1}	b_{2}	b_{3}	b_{1}	b_{2}	b_{3}	b_{4}
W_{1}	-1	-1	-1	-3	1	-1	-2	2	-1	1
W_{2}	1	0	-2	-1	-1	3	-1	-1	2	-4
W_{3}		1	1	1	-1	-3	0	-2	0	6
W_{4}				3	1	1	1	-1	-2	-4
W_{5}							2	2	1	1
$\lambda^{2} S$	2	2	6	20	4	20	10	14	10	70
λS	1	2	2	10	4	6	10	14	12	24
S	1/2	2	2/3	5	4	9/5	10	14	72/5	288/35
λ	2	1	3	2	1	10/3	1	1	5/6	35/12

${ }^{a}$ Level intervals must be equal.

From Table 12.2 the SN ratio and the linear coefficient are calculated as follows:

$$
\begin{array}{ll}
S_{T}=y_{11}^{2}+y_{12}^{2}+\cdots+y_{k 0}^{2}-S_{m} & \left(f=k r_{0}-1\right) \\
S_{m}=\frac{\left(y_{11}+y_{12}+\cdots+y_{k 0}\right)^{2}}{k r_{0}} & (f=1) \\
S_{\beta}=\frac{\left(W_{1} y_{1}+W_{2} y_{2}+\cdots+W_{k} y_{k}\right)^{2}}{r_{0} \lambda^{2} S} & (f=1) \\
\beta=\frac{W_{1} y_{1}+W_{2} y_{2}+\cdots+W_{k} y_{k}}{r_{0} \lambda S h} & \\
S_{e}=S_{T}-S_{\beta} & \left(f=k r_{0}-2\right) \\
V_{e}=\frac{S_{e}}{k r_{0}-2} & \\
\eta=10 \log \frac{\left(1 / r_{0} \lambda^{2} S h^{2}\right)\left(S_{\beta}-V_{e}\right)}{V_{e}} & \tag{12.77}
\end{array}
$$

To calculate S_{β} and β, the values of $W_{1}, W_{2}, \ldots, W_{k}$ are found from Table 12.6 under column b_{1} corresponding to the signal factor level, $k . h$ is the level interval of the signal factor. $A_{1}, A_{2}, \ldots, A_{k}$ in Table 12.14 correspond to $y_{1}, y_{1}, \ldots, y_{k}$ in Table 12.2.

Example

The example in Table 12.12 can be calculated easily by use of Table 12.14. From the table,

$$
\begin{align*}
k & =4 \\
r_{0} & =2 \\
h & =5 \\
W_{1} & =-3 \tag{12.78}\\
W_{2} & =-1 \\
W_{3} & =1 \\
W_{4} & =3 \\
\lambda^{2} S & =20
\end{align*}
$$

S_{β} is calculated by

$$
\begin{align*}
S_{\beta} & =\frac{\left(-3 y_{1}-y_{2}+y_{3}+3 y_{4}\right)^{2}}{20 \gamma_{0}} \\
& =\frac{[(3)(9.198)-9.290+9.352+(3)(9.420)]^{2}}{(20)(2)} \\
& =0.0132496 \tag{12.79}
\end{align*}
$$

and

$$
\begin{align*}
\eta & =10 \log \frac{\left(1 / r_{0}\left(\lambda^{2} S\right) h^{2}\left(S_{\beta}-V_{e}\right)\right.}{V_{e}} \\
& =10 \log \frac{\left[1 /(2)(20)\left(5^{2}\right)\right](0.0132496-0.0000861)}{0.0000861} \\
& =10 \log (0.1529)=-8.155 \mathrm{~dB} \tag{12.80}
\end{align*}
$$

12.6. When the Signal Factor Level Interval Is Known

If the signal factor level interval is known, the linear effect can be calculated without knowing the signal factor's true values. In a chemical analysis, we try to set the levels of the content of a certain ingredient.

Suppose that there is a sample containing a certain ingredient, such as the alcohol content in soybean sauce, but its true value is unknown. To set up levels as signal, the following samples are prepared: M_{1} : unknown sample containing x
percent alcohol, $M_{2}: M_{1}$ plus 3% alcohol, $M_{3}: M_{1}$ plus 6% alcohol, and $M_{4}: M_{1}$ plus 9% alcohol. Thus, the signal-factor levels M_{1}, M_{2}, M_{3}, and M_{4} have equal level intervals. Chebyshev's table of the orthogonal polynomial equation can be used to calculate the linearity and thus the SN ratios.

From Table 12.15 , the SN ratio of this case is calculated as follows:

$$
\begin{align*}
& S_{T}=y_{11}^{2}+y_{12}^{2}+\cdots+y_{34}^{2}-S_{m} \quad(f=11) \tag{12.81}\\
& S_{m}=\frac{\left(y_{11}+y_{12}+\cdots+y_{34}\right)^{2}}{12} \tag{12.82}
\end{align*}
$$

and the following definitions apply:
\square Level interval: $h=3$
\square Number of levels: $k=4$
\square Number of repetitions: $r_{0}=3$
From Table 12.14,

$$
\begin{array}{rlll}
W_{1} & =-3 & W_{2}=-1 & W_{3}=1
\end{array} W_{4}=3
$$

so

$$
\begin{align*}
& S_{\beta}=\frac{\left(W_{1} A_{1}+W_{2} A_{2}+W_{3} A_{3}+W_{4} A_{4}\right)^{2}}{r_{0}\left(\lambda^{2} S\right)} \\
& =\frac{\left(-3 y_{1}-y_{2}+y_{3}+3 y_{4}\right)^{2}}{(3)(20)} \quad(f=1) \tag{12.83}\\
& S_{e}=S_{T}-S_{\beta} \quad(f=10) \tag{12.84}\\
& V_{e}=\frac{S_{e}}{10} \tag{12.85}\\
& \eta=10 \log \frac{\left(1 / r_{0} \lambda^{2} S h^{2}\right)\left(S_{\beta}-V_{e}\right)}{V_{e}} \tag{12.86}
\end{align*}
$$

Table 12.15
Equal level interval

Sample	$M_{1}=x$	$M_{2}=x+3 \%$	$M_{3}=x+6 \%$	$M_{4}=x+9 \%$
Reading	y_{11}	y_{12}	y_{13}	y_{14}
	y_{21}	y_{22}	y_{23}	y_{24}
	$\underline{y_{31}}$	$\underline{y_{32}}$	y_{33}	$\underline{y_{34}}$
Total	y_{1}	y_{2}	y_{3}	y_{4}

Example [3]

Table 12.16 shows the measuring results of an electronic balance for chemical analysis. Each raw data point is multiplied by 1000 and M_{1} is used as a reference point. Signal factor levels are set as follows:

$$
\begin{array}{ll}
M_{1}=x & M_{1}-M_{1}=0 \\
M_{2}=x+h & M_{2}-M_{1}=h \\
\quad \vdots & \vdots \\
M_{k}=x+(k-1) h & M_{k}-M_{1}=(k-1) h
\end{array}
$$

Since M_{1} was used as a reference point $\left(M_{s}\right), M_{1}$ is subtracted from M_{1}, M_{2}, \ldots, M_{k} to obtain the signal factor levels in Table 12.17 b . The average of reading corresponding M_{1}, denoted by \bar{y}_{s}, is calculated as

$$
\begin{equation*}
\bar{y}_{s}=\frac{120,585.7+120,584.6+120,585.9}{3}=120,585.4 \tag{12.88}
\end{equation*}
$$

The following calculations are made for the zero-point proportional equation.
Total variation:

$$
\begin{equation*}
S_{T}=0.3^{2}+(-0.8)^{2}+\cdots+38.4^{2}=7.132 .19 \quad(f=15) \tag{12.89}
\end{equation*}
$$

Table 12.16
Measuring results of an electronic balance

(a) Raw Data Signal						
Noise			$\begin{gathered} M_{2} \\ x+h \end{gathered}$	$\begin{gathered} M_{3} \\ x+2 h \end{gathered}$	$\begin{gathered} M_{4} \\ x+3 h \end{gathered}$	$\begin{gathered} M_{5} \\ x+4 h \end{gathered}$
N_{1}	120.		120.5938	120.6018	120.6132	120.6206
N_{2}	120.		120.5933	120.6026	120.6117	120.6213
N_{3}	120.		120.5914	120.6041	120.6095	120.6238
(b) Tranformed Data						
	Signal					
Noise	$M_{1} \stackrel{0}{-} M_{s}$	$M_{2} \stackrel{h}{-M_{s}}$	$\stackrel{2 h}{M_{3}-M_{s}}$	$\stackrel{3 h}{M_{4}-M_{s}}$		Linear Equation
	$M_{1} 0.3$	$\mathrm{M}_{2} 8.4$	$M_{3}-M_{\text {s }}$	$M_{4} 27.8$		$L_{1}=265.4 \mathrm{~h}$
N_{2}	-0.8	7.9	17.2	26.3	35.9	$L_{2}=264.8 \mathrm{~h}$
N_{3}	0.5	6.0	18.7	24.1	38.4	$L_{3}=269.3 \mathrm{~h}$
Total	$y_{1}=0.0$	$y_{2}=22.3$	$y_{3}=52.3$	$y_{4}=78.2$	$y_{5}=108.9$	

Note: $L_{1}=(0)(0.3)+h(8.4)+2 h(16.4)+3 h(27.8)+4 h(35.2)=265.4 h$.

Table 12.17
COD values of wastewater

(a) Raw Data Signal					
Sample	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}
R_{1}	9.3	25.0	43.3	61.9	81.5
R_{2}	11.3	27.0	44.5	63.1	80.6
R_{3}	10.4	27.7	45.2	62.0	79.4
(b) Transformed Data					
Sample	$\begin{gathered} M_{1} \\ -0.5(\beta-\alpha) \end{gathered}$	$\begin{gathered} M_{2} \\ -0.25(\beta-\alpha) \end{gathered}$	$\begin{gathered} M_{3} \\ 0 \end{gathered}$	$\begin{gathered} M_{4} \\ 0.25(\beta-\alpha) \end{gathered}$	$\begin{gathered} M_{5} \\ 0.5(\beta-\alpha) \end{gathered}$
R_{1}	-35.0	-19.3	-1.0	17.6	37.2
R_{2}	-33.0	-17.3	0.2	18.8	36.3
R_{3}	-33.9	-16.6	0.9	17.7	35.1
Total	-101.9	-53.20	0.1	54.1	108.6

Effective divider:

$$
\begin{equation*}
r=0^{2}+h^{2}+(2 h)^{2}+(3 h)^{2}+(4 h)^{2}=30 h^{2} \tag{12.90}
\end{equation*}
$$

Variation of linear term:

$$
\begin{align*}
S_{\beta} & =\frac{1}{\gamma_{0} \gamma}\left[y_{1}\left(M_{1}-\bar{M}_{s}\right)+\cdots+y_{5}\left(M_{5}-\bar{M}_{s}\right)\right]^{2} \\
& =\frac{\left(L_{1}+L_{2}+L_{3}\right)^{2}}{(3)\left(30 h^{2}\right)}=\frac{(799.5 h)^{2}}{(3)\left(30 h^{2}\right)}=7102.225 \quad(f=1) \tag{12.91}
\end{align*}
$$

Variation of linear term due to noise:

$$
\begin{align*}
S_{N \beta} & =\frac{L_{1}^{2}+L_{2}^{2}+L_{3}^{2}}{30 h^{2}}-S_{\beta} \\
& =\frac{(264.4 h)^{2}+\left(265.8 h^{2}\right)+(269.3 h)^{2}}{30 h^{2}}-S_{\beta} \\
& =7102.623-S_{\beta}=0.398 \quad(f=2) \tag{12.92}
\end{align*}
$$

For the calculation of $S_{N \beta}^{\prime}$, see Section 12.11.)
Error variation:

$$
\begin{equation*}
S_{e}=S_{T}-S_{\beta}-S_{N \beta}=29.567 \quad(f=12) \tag{12.93}
\end{equation*}
$$

Error variance:

$$
\begin{equation*}
V_{e}=\frac{29.567}{12}=2.464 \tag{12.94}
\end{equation*}
$$

Pooled total error variance:

$$
\begin{equation*}
V_{N}=\frac{0.398+29.567}{14}=2.140 \tag{12.95}
\end{equation*}
$$

The linear coefficient is calculated from equation (12.29):

$$
\begin{align*}
\beta & =\frac{1}{\gamma_{0} \gamma}\left[y_{1}\left(M_{1}-\bar{M}_{s}\right)+y_{2}\left(M_{2}-\bar{M}_{s}\right)+\cdots+y_{5}\left(M_{5}-\bar{M}_{5}\right)\right] \\
& =\frac{\left(L_{1}+L_{2}+L_{3}\right) h}{(3)\left(30 h^{2}\right)}=\frac{8.883}{h} \\
& \approx \frac{8.883}{10}=0.8883 \tag{12.96}
\end{align*}
$$

where $h=0.01$ (unit: grams) is used. The following SN ratio is calculated using $h=10$ (unit: milligrams):

$$
\eta=10 \log \frac{\left[1 /(3)(30)\left(10^{2}\right)\right](7102.225-2.140)}{2.140}=10 \log (0.369)=-4.33 \mathrm{~dB}
$$

Sensitivity is given by

$$
\begin{align*}
S & =10 \log \frac{1}{(3)(30)(10)^{2}}(7102.225-2.140) \\
& =10 \log (0.789)=-1.03 \mathrm{~dB} \tag{12.98}
\end{align*}
$$

In this example, pooled error variance $\left(V_{N}\right)$ is used as the dominator in the calculation of SN ratio instead of using unpooled error variance. (This is discussed further in Section 12.11.)

12.7. When Signal Factor Levels Can Be Set Up

Although the true values of signal factor levels are unknown, their intervals can be set up correctly. Consider creating a level with a particular chemical content. Two samples, A and B, of content α and β percent, respectively, are prepared, and samples with different content ratios are prepared by mixing these two samples. If the levels are taken by setting $A: B=0.2: 0.8$ for $M_{1}, A: B=0.4: 0.6$ for M_{2}, and so on, the following will be obtained:

$$
\begin{align*}
& M_{1}=0.2 \alpha+0.8 \beta=(1-0.8) \alpha+0.8 \beta=\alpha+0.8(\beta-\alpha) \\
& M_{2}=\alpha+0.6(\beta-\alpha) \\
& M_{3}=\alpha+0.4(\beta-\alpha) \tag{12.99}\\
& M_{4}=\alpha+0.2(\beta-\alpha) \\
& M_{5}=\alpha
\end{align*}
$$

The levels of such a signal factor have the same interval, $0.2(\beta-\alpha)$. Even if the values of α and β are not known accurately, the equal-interval relationship between the adjacent levels is maintained. A level setting of this type is effective in experiments that check sample measurement errors.

Example [3]

Table 12.17 shows the measuring results of chemical oxygen demand (COD) values from the wastewater of a factory. Two different water samples were mixed to set the following signed factor levels:

$$
\begin{align*}
& M_{1}=\alpha \\
& M_{2}=0.75 \alpha+0.25 \beta \\
& M_{3}=0.50 \alpha+0.50 \beta \tag{12.100}\\
& M_{4}=0.25 \alpha+0.75 \beta \\
& M_{5}=\beta
\end{align*}
$$

The results of the table were transformed using M_{3} as the reference point. The average at M_{3} is calculated as

$$
\begin{equation*}
\bar{y}_{s}=\frac{43.3+44.5+45.2}{3}=44.3 \tag{12.101}
\end{equation*}
$$

Total variation:

$$
\begin{equation*}
S_{T}=(-35.0)^{2}+(-33.0)^{2}+\cdots+35.1^{2}=9322.43 \quad(f=15) \tag{12.102}
\end{equation*}
$$

Signal factor level interval:

$$
\begin{equation*}
h=0.25(\beta-\alpha) \tag{12.103}
\end{equation*}
$$

[The table of orthogonal polynomial equation (Table 12.14) is needed for calculation.]

Effect divider:

$$
\begin{equation*}
r=(-2)^{2}+(-1)^{2}+0^{2}+1^{2}+2^{2}=10 \tag{12.104}
\end{equation*}
$$

Variation of linear effect:

$$
\begin{align*}
S_{\beta} & =\frac{[(-2)(-101.9)-(-53.20)+54.1+(2)(108.6)]^{2}}{3 r} \\
& =\frac{528.3^{2}}{(3)(10)}=9303.3630 \quad(f=1) \tag{12.105}
\end{align*}
$$

Error variation:

$$
\begin{equation*}
S_{e}=S_{T}-S_{\beta}=9322.43-9303.3630=19.067 \quad(f=14) \tag{12.106}
\end{equation*}
$$

Error variance:

$$
\begin{equation*}
V_{e}=\frac{19.067}{14}=1.3619 \tag{12.107}
\end{equation*}
$$

SN ratio:

$$
\begin{align*}
\eta & =10 \log \frac{(1 / 3 r)\left(S_{\beta}-V_{e}\right)}{V_{e}}=\frac{[1 /(3)(10)](9303.3630-1.3619)}{1.3619} \\
& =10 \log (227.67)=23.57 \mathrm{~dB} \tag{12.108}
\end{align*}
$$

Sensitivity:

$$
\begin{align*}
S & =10 \log \frac{1}{(3)(10)}(9303.3630-1.3619) \\
& =10 \log (310.07)=24.91 \mathrm{~dB} \tag{12.109}
\end{align*}
$$

12.8. When the Signal Factor Level Ratio Is Known

There are times when the absolute value of signal factor levels is not accurately known, but the ratio of the level values can be established accurately. In such a case, the base value of the comparison does not need to be known as long as the proportions to the base value are known (e.g., a geometrically progressing level case or a case where M_{1} is a certain times larger than M_{2}). This is because the linear effect of the signal factor can be calculated accurately as long as the relation among signal factor levels is known.

For example, when the SN ratio is calculated for a method measuring the content ratio of a chemical compound, diluting the sample of certain content by $\frac{1}{2}, \frac{1}{4}$, and $\frac{1}{8}$ can create levels with a common ratio of $\frac{1}{2}$. Further, if a scale is used, it is possible to divide a mass into $\frac{1}{2}$, and by repeating this, the levels with a common ratio of $\frac{1}{2}$ can be arranged.

Although the absolute values of levels are also unknown in this case, it is not practical to assume a reference-point proportional equation between M and y, since the distance between the zero point and the maximum level point, M_{2}, is divided into ratio intervals to create the levels. The following two cases are appli-
cable in practice: (1) a zero-point proportional equation or (2) a linear equation. In either case, the signal-factor-level values are transformed into x times the value M_{s}, which is used as the base:

$$
M_{i}^{\prime}=\frac{M_{i}}{M_{s}}
$$

Specifically, the transformation is done as follows:

$$
\begin{aligned}
M_{1} & \rightarrow M_{1}^{\prime} M_{s} \\
M_{2} & \rightarrow M_{2}^{\prime} M_{s} \\
\quad & \\
M_{k} \rightarrow & M_{k}^{\prime} M_{s}
\end{aligned}
$$

The value M_{s}, which is used as the base, can be chosen arbitrarily. The maximum level value is generally used. The transformed level value, M^{\prime}, is used for the remaining calculation.

In the case of a zero-point proportional equation, it is known that data $y=0$ if signal $M=0$. It is assumed that the signal factor, M, and data, y, are proportional. In other words, the relationship between M and y is assumed to be

$$
\begin{equation*}
y=\beta M \tag{12.110}
\end{equation*}
$$

The distance between levels is not equal, and the calculation formulations are the same as the case of a zero-point proportional equation. The linear effect of the signal factor is calculated using the transformed signal level value, M^{\prime}. For example, if the geometrically progressive levels have a common ratio of $\frac{1}{2}$ and the number of levels $k=4$, the following will result:

$$
\begin{align*}
M_{1}^{\prime} & =\frac{1}{8} \quad M_{2}^{\prime}=\frac{1}{4} \quad M_{3}^{\prime}=\frac{1}{2} \quad M_{4}^{\prime}=1 \tag{12.111}\\
S_{\beta} & =\frac{1}{\gamma_{0} \gamma}\left(\frac{1}{8} y_{1}+\frac{1}{4} y_{2}+\frac{1}{2} y_{3}+y_{4}\right)^{2} \tag{12.112}\\
r & =\left(\frac{1}{8}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{2}\right)^{2}+1^{2} \tag{12.113}
\end{align*}
$$

The alternative SN ratio, η^{\prime}, which is based on M_{s}, is given by

$$
\begin{equation*}
\eta^{\prime}=\frac{\left(1 / \gamma_{0} \gamma\right)\left(S_{\beta}-V_{e}\right)}{V_{e}} \tag{12.114}
\end{equation*}
$$

This SN ratio, which is calculated assuming that $M_{s}=1$, is not the minus square of the unit of the signal factor. However, this alternative SN ratio is sufficient if it is used only for comparison.

To obtain the SN ratio corresponding to the unit of the signal factor, we substitute M_{s} with the value expressed in terms of the signal factor unit and transform it according to the equation

$$
\begin{equation*}
\eta=\frac{\eta^{\prime}}{M_{s}^{2}} \tag{12.115}
\end{equation*}
$$

12.9. When the True Values of Signal Factor Levels Are Unknown

When the signal factor level values are not known accurately, the variation of samples with unknown values is used as the signal. Signal factor variation S_{M} is calculated, and the residual of the total variation, S_{T}, after subtracting S_{M}, is considered the error term. This is an expedient measure which assumes that a linear relationship holds between the signal M and the data y.

The method of decomposing the total variation is different depending on what is expected with the linear relationship, as in the following two cases:

1. Proportional equation: $S_{T}=S_{M}+S_{e}$
2. Linear equation: $S_{T}=S_{m}+S_{M}+S_{e}$

However, these two cases share a basic concept: Calculation of the effect, S_{M}, of the signal factor, M, and the general mean, S_{m}, as well as the degrees of freedom is different. The proportional equation is explained below.

The total variation is calculated similarly to the case in which the true value is known. The linear effect cannot be calculated since the signal factor true value is unknown. Therefore, the total effect, S_{M}, of M is considered the signal variation and is obtained as follows:

$$
\begin{array}{ll}
S_{T}=y_{11}^{2}+y_{12}^{2}+\cdots+y_{k r_{0}}^{2} & \left(f=k r_{0}\right) \\
S_{M}=\frac{y_{1}^{2}+y_{2}^{2}+\cdots+y_{k}^{2}}{r_{0}} & (f=k) \tag{12.117}
\end{array}
$$

In the case of a proportional equation, the degrees of freedom of the signal variation, S_{M}, is k. The error variation is calculated as follows:

$$
\begin{equation*}
S_{e}=S_{T}-S_{M} \tag{12.118}
\end{equation*}
$$

Since the degrees-of-freedom expression of the error term is

$$
\begin{equation*}
f_{e}=k r_{0}-k \tag{12.119}
\end{equation*}
$$

the error variance becomes

$$
\begin{equation*}
V_{e}=\frac{1}{k r_{0}-k} S_{e} \tag{12.120}
\end{equation*}
$$

The variance of signal factor is obtained as

$$
\begin{equation*}
V_{M}=\frac{1}{k} S_{M} \tag{12.121}
\end{equation*}
$$

The SN ratio is determined by

$$
\begin{equation*}
\eta=10 \log \frac{\left(1 / r_{0}\right)\left(V_{M}-V_{e}\right)}{V_{e}} \tag{12.122}
\end{equation*}
$$

12.10. When There Is No Signal Factor (Nondynamic SN Ratio)

One of the most important applications of the dynamic SN ratio is to improve the robustness of product or process functions within a certain output range. In a
group of products, each product has a different output. A process can produce different outputs for different products or components. It is therefore important to use dynamic SN ratios to develop a group of products or a process for manufacturing different components so that different outputs can easily be obtained.

Traditionally, only one output of a product or only one output in a process has been studied in research and development. Even today, most of the product or process development is being performed this way. In such a case, a nondynamic SN ratio may be used to improve robustness for only a specific or fixed target instead of the entire output range.

For example, a study was conducted to plate gold on the contact point of an electronic component. The target was to plate to a thickness of $50 \mu \mathrm{in}$. on the surface, also to reduce variability around $50 \mu \mathrm{in}$. using a parameter design approach. This is a nondynamic approach. The target may be $65 \mu \mathrm{in}$. for another component. Then another parameter design has to be conducted. But using a dynamic SN ratio, this plating process can be optimized within a certain range of thickness. After the completion of a dynamic approach, any plate thickness within that range can be manufactured without repeating the study for a different thickness every time. Thus, it is easy to understand that the dynamic approach is far more powerful and efficient than the nondynamic approach.

In a nondynamic SN ratio, there are two issues: (1) to reduce variability and (2) to adjust the average to the target. Once variability is reduced and adjusted to the target, there will be no more issues of moving or adjusting the target. It is seen that a nondynamic approach is useful for a specific product with a fixed output, in contrast to a dynamic approach, where the output can easily be adjusted within a range.

There are four types of nondynamic output response applications: nominal-thebest, smaller-the-better, larger-the-better, and nondynamic operating window. In nominal-the-best, there are two types, making a total of five.

Recall that in nominal-the-best, there is a fixed target: for example, the plating thickness of a component, the resistance of a resistor, or various dimensions of a product. There are typically upper and lower specification limits. Type I is the case where data are all nonnegative. In type II, data are a mixture of positive and negative values.

In two-step optimization for a nominal-the-best application, the first step is to maximize the SN ratio and thereby minimize variability around the average. The second step is to adjust the average to the target.

The nominal-the-best SN ratio is described as

$$
\begin{aligned}
\mathrm{SN} & =\frac{\text { desired output }}{\text { undesired output }} \\
& =\frac{\text { effect of the average }}{\text { variability around the average }}
\end{aligned}
$$

In nominal-the-best applications, the data are not negative. This is especially true if the output response is energy related, where zero input to the system should produce zero output; thus, there are no negative data.

Nominal-the-Best, Type I

Calculations for a nominal-the-best SN ratio are as follows. There are n pieces of data:

$$
\begin{equation*}
y_{1}, y_{2}, \ldots, y_{n} \quad(f=n) \tag{12.123}
\end{equation*}
$$

The average variation, S_{m}, is

$$
\begin{equation*}
S_{m}=\frac{\left(y_{1}+y_{2}+\cdots+y_{n}\right)^{2}}{n} \quad(f=1) \tag{12.124}
\end{equation*}
$$

The error variation, S_{e}, is

$$
\begin{equation*}
S_{e}=S_{T}-S_{m} \quad(f=n-1) \tag{12.125}
\end{equation*}
$$

The error variance, V_{e}, is the error variation divided by its degrees of freedom:

$$
\begin{equation*}
V_{e}=\frac{S_{e}}{n-1} \tag{12.126}
\end{equation*}
$$

The SN ratio, denoted by η, is given by

$$
\begin{equation*}
\eta=10 \log \frac{(1 / n)\left(S_{m}-V_{e}\right)}{V_{e}} \tag{12.127}
\end{equation*}
$$

The sensitivity, denoted by S, is given by

$$
\begin{equation*}
S=10 \log \frac{1}{n}\left(S_{m}-V_{e}\right) \tag{12.128}
\end{equation*}
$$

Example

In a tile manufacturing experiment, samples were taken from different locations in the tunnel kiln, with the following results: $10.18 \ldots 10.18 \ldots 10.12 \ldots 10.06$. . . 10.02 . . 9.98 . . . 10.20

Total variation:

$$
\begin{align*}
S_{T} & =y_{1}^{2}+y_{2}^{2}+\cdots+y_{7}^{2} \\
& =10.18^{2}+10.18^{2}+\cdots+10.20^{2} \\
& =714.9326 \quad(f=7) \tag{12.129}
\end{align*}
$$

Average variation:

$$
\begin{align*}
S_{m} & =\frac{\left(y_{1}+y_{2}+\cdots+y_{7}\right)^{2}}{7} \\
& =\frac{(10.18+10.18+\cdots+10.20)^{2}}{7} \\
& =714.8782 \quad(f=1) \tag{12.130}
\end{align*}
$$

Error variation:

$$
\begin{align*}
S_{e} & =S_{T}-S_{m} \\
& =714.9326-714.8782 \tag{12.131}\\
& =0.05437 \quad(f=6)
\end{align*}
$$

Error variance:

$$
\begin{equation*}
V_{e}=\frac{S_{e}}{6}=\frac{0.05437}{6}=0.007562 \tag{12.132}
\end{equation*}
$$

SN ratio:

$$
\begin{align*}
\eta & =10 \log \frac{(1 / n)\left(S_{m}-V_{e}\right)}{V_{e}} \\
& =10 \log \frac{(1 / 7)(714.8782-0.007562)}{0.007562} \\
& =10 \log (13504.9427)=41.37 \mathrm{~dB} \tag{12.133}
\end{align*}
$$

Sensitivity:

$$
\begin{align*}
S & =10 \log \frac{1}{n}\left(S_{m}-V_{e}\right) \\
& =10 \log \frac{1}{7}(714.8782-0.007562) \\
& =10 \log (102.1244)=20.09 \mathrm{~dB} \tag{12.134}
\end{align*}
$$

When the results of an experiment include negative values, the positive and negative values cancel each other, which makes the calculation of S_{m} meaningless.

Nominal-the-Best, Type II Therefore, the information regarding sensitivity, or average, cannot be obtained. The SN ratio calculated for this case shows variability only. It is less informative than type I.

Conceptually, the SN ratio gives the following information:

$$
\frac{\mathrm{SN}=1}{\text { variability around the average }}
$$

The SN ratio is calculated as follows where there are n pieces of data: y_{1}, y_{2}, \ldots, y_{n}. The error variation is

$$
\begin{equation*}
S_{e}=y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}-\frac{\left(y_{1}+y_{2}+\cdots+y_{n}\right)^{2}}{n} \quad(f=\mathrm{m}-1) \tag{12.135}
\end{equation*}
$$

The error variance is

$$
\begin{equation*}
V_{e}=\frac{S_{e}}{n-1} \tag{12.136}
\end{equation*}
$$

The SN ratio is denoted by

$$
\begin{align*}
\eta= & 10 \log \frac{1}{V_{e}} \\
& =-10 \log V_{e} \tag{12.137}
\end{align*}
$$

Example

For data points $1.25,-1.48,-2.70$, and 0.19 , the SN ratio is calculated as follows:

$$
\begin{align*}
S_{e}= & 1.25^{2}+(-1.48)^{2}+(-2.70)^{2}+0.19^{2} \\
& -\frac{(1.25-1.48-2.70+0.19)^{2}}{4} \\
= & 9.2021 \quad(f=3) \tag{12.138}\\
V_{e}= & \frac{S_{e}}{n-1}=\frac{9.2021}{3}=3.0674 \tag{12.139}\\
\eta= & -10 \log (3.0674) \\
= & -4.87 \mathrm{~dB} \tag{12.140}
\end{align*}
$$

Smaller-the-Better Smaller-the-better obtains when the objective is to minimize the output value and there are no negative data. In such a case, the target is zero. For example, we want to minimize the audible engine noise level or to minimize the number of impurities. These examples are easy to understand; however, they are used without success in many cases because such outputs are "symptoms." They are called downstream quality characteristics. As explained in Chapter 14, using symptoms as the output quality characteristics in a study is not recommended. It is better, instead, to use this type of SN ratio together with a larger-the-better SN ratio to construct an SN ratio for a nondynamic operating window.

A smaller-the-better SN ratio is calculated as

$$
\begin{equation*}
\eta=-10 \log \frac{1}{n}\left(y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}\right) \tag{12.141}
\end{equation*}
$$

Example

For data points $0.25,0.19$, and 0.22 , the SN ratio is calculated as

$$
\begin{align*}
\eta & =-10 \log \frac{1}{3}\left(0.25^{2}+0.19^{2}+0.22^{2}\right) \\
& =13.10 \mathrm{~dB} \tag{12.142}
\end{align*}
$$

Larger-the-better obtains when the intention is to maximize the output and there are no negative data. In such a case, the target is infinity. For example, we use this if we want to maximize the power of an engine or the strength of material. Similar to smaller-the-better, such quality characteristics are symptoms: downstream quality characteristics. A study of downstream quality characteristics will exhibit interactions between control factors; therefore, conclusions from the study cannot be reproduced in many cases. It is recommended that this type of SN ratio be used together with the smaller-the-better type to construct an SN ratio of a nondynamic operating window.

The calculation of a larger-the-better SN ratio is given by

$$
\begin{equation*}
\eta=-10 \log \frac{1}{n}\left(\frac{1}{y_{1}^{2}}+\frac{1}{y_{2}^{2}}+\cdots+\frac{1}{y_{n}^{2}}\right) \tag{12.143}
\end{equation*}
$$

Example

For data points 23.5, 43.1, and 20.8, the SN ratio is calculated as

$$
\begin{align*}
\eta & =-10 \log \frac{1}{3}\left(\frac{1}{23.5^{2}}+\frac{1}{43.1^{2}}+\frac{1}{20.8^{2}}\right) \\
& =28.09 \mathrm{~dB} \tag{12.144}
\end{align*}
$$

As described for smaller-the-better and larger-the-better, the approaches tend to be unsuccessful if the output quality characteristic is a symptom. However, if we can express a function using either smaller-the-better or larger-the-better characteristics, the results have a better chance of being reproduced. A nondynamic operating window combines smaller-the-better and larger-the-better SN ratios to express a function that moves in two opposite directions.

For example, the carriage of a copy machine needs to send the top sheet of paper on a pile to the next process. When the carriage fails to feed a sheet of paper, it is called a misfeed; when it feeds two or more sheets of paper, it is called a multifeed. The ideal function is that there be no misfeed or multifeed under any conditions of paper quality or use environment. The authors of this book have been promoting a method for checking the effect of noise using the signal if the input is a continuous variable.

The evaluation of carriage function can be done as follows: When friction between the paper and the carriage roller, which is pressed by a spring toward the paper, is used to feed paper, different spring strengths create different levels of pressure and thus different levels of paper-feeding force. If the pressure is zero, paper cannot be fed (Figure 12.3). As the pressure level is increased, the carriage starts feeding paper. If only one sheet of paper is fed, the pressure level is the threshold value of misfeed. Let x denote that value. A further increase in the pressure makes the carriage feed two or more sheets of paper. That pressure level, which is denoted as y, is the threshold value of multifeed. If two sheets of paper are fed as soon as the carriage starts feeding paper, $x=y$. Such a case is called a zero operating window. It suggested that a design that gives a large operating window

Larger-the-Better

Figure 12.3
Paper carriage function

is a good design and has developed a method of stability design called the operating window method.

It is possible to have $x=0$ or $y=\infty$, but these are not a problem. The important point is that the values of x and y change depending on the paper and environmental conditions. Based on noise factors such as paper size, weight, static electricity, water content, wrinkle size, room temperature, humidity, and power voltage, the following compounded noise factor is created using technical know-how and preparatory experiments (which are done under only one design condition).
N_{1} : standard condition
N_{2} : condition that is most likely to create misfeed
N_{3} : condition that is most likely to create multifeed
Under these three conditions, misfeeding threshold, value x, and doublefeeding threshold, value y, are obtained. According to the data in Table 12.18, the following two SN ratios are obtained by treating x as a smaller-the-better characteristic and y as a larger-the-better characteristic.

$$
\begin{align*}
& \eta_{x}=-10 \log \frac{1}{3}\left(x_{2}+x_{2}^{2}+x_{3}^{2}\right) \tag{12.145}\\
& \eta_{y}=-10 \log \frac{1}{3}\left(\frac{1}{y_{1}^{2}}+\frac{1}{y_{2}^{2}}+\frac{1}{y_{3}^{2}}\right) \tag{12.146}
\end{align*}
$$

Two SN ratios are obtained for each design (e.g., every condition of an inner orthogonal array to which control factors are assigned). By considering η_{x} and η_{y} as outside data at K_{1} and K_{2}, in contrast to the design condition, the main effect of the control factor is obtained from the sum of K_{1} and K_{2}. The key point is to maximize the sum, $\eta_{x}+\eta_{y}$.

Table 12.18

Two threshold values x and y

Characteristic Noise	Misfeed	Multifeed
N_{1}	x_{1}	y_{1}
N_{2}	x_{2}	y_{2}
N_{3}	x_{3}	y_{3}

Example

In a paper-feeding experiment, the responses selected were:
x : spring force required to begin feeding one piece of paper
y : spring force required to begin feeding two or more pieces of paper
The experimental objective was defined as:
\square Minimize x : x was treated as a smaller-the-better response.

- Maximize y : y was treated as a larger-the-better response.

Table 12.19 shows the results of one run in the L_{18} experiment.
The SN ratio is calculated as

$$
\begin{align*}
\eta= & \eta_{x}+\eta_{g} \\
= & -10 \log \frac{1}{3}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
& -10 \log \frac{1}{3}\left(\frac{1}{y_{1}^{2}}+\frac{1}{y_{2}^{2}}+\frac{1}{y_{3}^{2}}\right) \\
= & -10 \log \frac{1}{3}\left(30^{2}+50^{2}+50^{2}\right)-10 \log \frac{1}{3}\left(\frac{1}{50^{2}}+\frac{1}{80^{2}}+\frac{1}{100^{2}}\right) \\
= & 3.66 \mathrm{~dB} \tag{12.147}
\end{align*}
$$

12.11. Estimation of Error

Table 12.20 shows the results of a dynamic study. For the zero-point proportional equation, the SN ratio is given by

$$
\begin{equation*}
\eta=10 \log \frac{\left(1 / r_{0} r\right)\left(S_{\beta}-V_{e}\right)}{V_{e}} \tag{12.148}
\end{equation*}
$$

Table 12.19
Results of experiment

	\boldsymbol{x}	\boldsymbol{y}
N_{1}	30	50
N_{2}	50	80
N_{3}	50	100
	N_{x}	N_{y}

Table 12.20
Inputs and outputs

	\boldsymbol{M}_{1}	\boldsymbol{M}_{2}	\ldots	$\boldsymbol{M}_{\mathbf{k}}$	\boldsymbol{L}
N_{1}	y_{11}	y_{21}	\ldots	$y_{k 1}$	L_{1}
N_{2}	y_{12}	y_{22}	\ldots	$y_{k 2}$	L_{2}
\ldots	\ldots	\ldots	\ldots	\ldots	\cdots
N_{1}	$\underline{y_{11}}$	$\underline{y_{21}}$	\ldots	$y_{k 1}$	L_{1}
Total	y_{1}	y_{2}	\ldots	y_{k}	

Based on the concept of SN ratio, the total variation is decomposed as

$$
\text { total variation } \begin{align*}
\left(S_{T}\right) & =\text { useful part }+ \text { harmful part } \\
& =\text { proportional part }\left(S_{\beta}\right)+\operatorname{remaining} \operatorname{part}\left(S_{e}\right) \tag{12.149}
\end{align*}
$$

V_{e} in equation (9.148) is calculated from S_{e} in equation (12.149).
Table 12.20 includes various sources of variation. In addition to the proportional part of M, there are high-order terms of M, the main effect of N, and interactions between M and N. It is obvious that using the remaining part in equations (12.149) to calculate V_{e} is an overestimate of V_{e} to be used in the numerator in equation (12.148). Also, the V_{e} in the denominator should have a different notation to distinguish the V_{e} in the numerator.

In Table 12.20, $L_{1}, L_{2}, \ldots, L_{l}$ denote the linear effects at noise factor conditions $N_{1}, N_{2}, \ldots, N_{b}$, respectively. The difference between L 's is the variation caused by different noise factor conditions, or the interaction between L and N. The main interaction, the variation of linear effect caused by noise, is denoted by βN.

To avoid overestimation of V_{e}, the total variation in Table 12.20 is decomposed as shown in Figure 12.4. Following is the information for the decomposition of total variation, S_{T}, into S_{β}, S_{N}, and S_{e} from the results in Table 12.19.

Total variation:

$$
\begin{equation*}
S_{T}=y_{11}^{2}+y_{12}^{2}+\cdots+y_{k l}^{2} \quad(f=k l) \tag{12.150}
\end{equation*}
$$

Figure 12.4
Decomposition of variation

Linear effect:

$$
\begin{align*}
L_{1} & =M_{1} y_{11}+M_{2} y_{21}+\cdots+M_{k} y_{k 1} \\
L_{2} & =M_{1} y_{12}+M_{2} y_{22}+\cdots+M_{k} y_{k 2} \tag{12.151}\\
& \vdots \\
L_{l} & =M_{1} y_{1 l}+M_{2} y_{2 l}+\cdots+M_{k} y_{k l}
\end{align*}
$$

Variation of linear effect:

$$
\begin{align*}
S_{\beta} & =\frac{\left(M_{1} y_{1}+M_{2} y_{2}+\cdots+M_{k} y_{k}\right)^{2}}{\gamma_{0} \gamma} \\
& =\frac{\left(L_{1}+L_{2}+\cdots+L_{1}\right)^{2}}{\gamma_{0} \gamma}-S_{\beta} \quad(f=1) \tag{12.152}
\end{align*}
$$

where

$$
\begin{align*}
\gamma_{0} & =l \tag{12.153}\\
\gamma & =M_{1}^{2}+M_{2}^{2}+\cdots+M_{k}^{2} \tag{12.154}
\end{align*}
$$

Variation of L :

$$
\begin{equation*}
S_{L}=\frac{L_{1}^{2}+L_{2}^{2}+\cdots+L_{1}^{2}}{\gamma} \quad(f=l) \tag{12.155}
\end{equation*}
$$

Variation of β due to N :

$$
\begin{equation*}
S_{\beta N}=\frac{L_{1}^{2}+L_{2}^{2}+\cdots+L_{l}^{2}}{\gamma}-S_{\beta} \quad(f=l-1) \tag{12.156}
\end{equation*}
$$

Variation of error:

$$
\begin{equation*}
S_{e}=S_{T}-S_{\beta}-S_{\beta N} \quad[f=l(k-1)] \tag{12.157}
\end{equation*}
$$

Error variance:

$$
\begin{equation*}
V_{e}=\frac{S_{e}}{l(k-1)} \tag{12.158}
\end{equation*}
$$

Variation of the harmful part:

$$
\begin{equation*}
S_{N}=S_{T}-S_{\beta} \quad(f=k l-1) \tag{12.159}
\end{equation*}
$$

Variance of the harmful part:

$$
\begin{equation*}
V_{N}=\frac{S_{N}}{k l-1} \tag{12.160}
\end{equation*}
$$

SN ratio:

$$
\begin{equation*}
\eta=10 \log \frac{\left(1 / \gamma_{0} \gamma\right)\left(S_{\beta}-V_{e}\right)}{V_{N}} \tag{12.161}
\end{equation*}
$$

Example [4]

Table 12.21 shows the results of an experiment for a car brake. It is ideal that the input signal, the line pressure, is proportional to the output, the braking torque.

For this case, two noise conditions, labeled N_{1} and N_{2}, are determined by compounding a few important noise factors, so that
N_{1} : noise condition when the response tends to be lower N_{2} : noise condition when the response tends to be higher The noise factors are compounded into two levels:
$N_{1}: \quad 60^{\circ} \mathrm{F}$, wet, 80% worn pad
$N_{2}: 360^{\circ} \mathrm{F}$, dry, 10% worn pad

Another noise factor, Q, is torque variation:

$$
\begin{align*}
\quad Q_{1}: \text { maximum torque during braking } \\
Q_{2}: \text { minimum torque during braking }
\end{aligned} \quad \begin{aligned}
S_{T} & =4.8^{2}+0.9^{2}+5.8^{2}+0.8^{2}+8.5^{2}+\cdots+34.5^{2}=7342.36 \\
L_{1}= & (0.008)(4.8)+(0.016)(8.5)+(0.032)(20.4)+(0.064)(36.9) \tag{12.162}\\
= & 3.1888 \\
L_{2}= & (0.008)(0.9)+(0.016)(6.5)+(0.032)(13.2)+(0.064)(32.7) \\
= & 2.6264 \\
L_{3}= & (0.008)(5.8)+(0.016)(11.5)+(0.032)(25.0)+(0.064)(43.5) \\
= & 3.8144 \\
L_{4}= & (0.008)(0.8)+(0.016)(6.8)+(0.032)(16.2)+(0.064)(34.5) \\
= & 2.8416
\end{align*}
$$

Table 12.21
Results of experiment

	$\boldsymbol{M}_{\mathbf{1}}=\mathbf{0 . 0 0 8}$	$\boldsymbol{M}_{\mathbf{2}}=\mathbf{0 . 0 1 6}$	$\boldsymbol{M}_{\mathbf{3}}=\mathbf{0 . 0 3 2}$	$\boldsymbol{M}_{4}=\mathbf{0 . 0 6 4}$	\boldsymbol{L}
$N_{1} Q_{1}$	4.8	8.5	20.4	36.9	L_{1}
$N_{1} Q_{2}$	0.9	6.5	13.2	32.7	L_{2}
$N_{2} Q_{1}$	5.8	11.5	25.0	43.5	L_{3}
$N_{2} Q_{2}$	0.8	6.8	$\frac{16.2}{74.8}$	$\frac{34.5}{147.6}$	L_{4}
Total	$\overline{12.3}$	$\overline{33.3}$			

$$
\begin{align*}
S_{\beta} & =\frac{\left(L_{1}+L_{2}+L_{3}+L_{4}\right)^{2}}{\gamma_{0} \gamma} \\
& =\frac{(3.1888+2.6264+3.8144+2.8416)^{2}}{(4)(0.00544)} \\
& =7147.5565 \quad(f=16) \tag{12.164}\\
\gamma_{0} & =4 \\
\gamma & =0.008^{2}+0.016^{2}+0.032^{2}+0.064^{2}=0.00544 \tag{12.165}\\
S_{\beta N} & =\frac{L_{1}^{2}+L_{2}^{2}+L_{3}^{2}+L_{4}^{2}}{\gamma}-S_{\beta} \\
& =\frac{3.1888^{2}+2.6264^{2}+3.8144^{2}+2.8416^{2}}{0.00544}-S_{\beta} \\
& =148.5392 \quad(f=3) \tag{12.166}\\
S_{e} & =S_{T}-S_{\beta}-S_{\beta N} \\
& =7342.36-(7147.5565+148.5392) \\
& =46.2643 \quad(f=12) \tag{12.167}\\
V_{e} & =\frac{S_{e}}{(3)(4)}=\frac{46.2643}{12}=3.8544 \tag{12.168}\\
S_{N} & =S_{T}-S_{\beta}=7342.36-7147.5565 \\
& =194.8035 \quad(f=15) \tag{12.169}\\
V_{N} & =\frac{S_{N}}{(4)(4)-1}=\frac{194.8035}{15}=12.9869 \tag{12.170}\\
\eta & =10 \log \frac{\left(1 / \gamma_{0} \gamma\right)\left(S_{\beta}-V_{e}\right)}{V_{N}} \\
& =10 \log \frac{[1 /(4)(0.00544)](7147.5565-3.8554)}{12.9869} \\
& =44.03 \mathrm{~dB} \tag{12.171}
\end{align*}
$$

12.12. Double Signals

In the dynamic SN ratio study, the number of signal factors may not always be equal to 1 . For example, in a study of fine patterning for integrated-circuit fabrication, the ideal function is that current be proportional to voltage. It is also ideal that current be proportional to line width. The former is a product-related function, whereas the latter is manufacturing related. The study would become efficient if these two ideal functions were put together for study at the same time. This is
called concurrent engineering or simultaneous engineering: to develop product and process at the same time. The use of double signals makes it possible.

The ideal function for double signals would be

$$
\begin{equation*}
y=\beta M M^{*} \tag{12.172}
\end{equation*}
$$

where y is the current, β the regression coefficient, M the voltage, and M^{*} the line width.

Calculation of the SN ratio is done similarly by considering the combinations of M and M^{*} as one signal. Table 12.22 shows the layout of input/output for double signals with noise. By considering the product of M and M^{*} as one signal factor, L_{1} and L_{2}, the linear equations of the proportional term at N_{1} and N_{2}, respectively, are calculated as follows:

$$
\begin{align*}
L_{1} & =M_{1}^{*} M_{1} y_{11}+M_{1}^{*} M_{2} y_{12}+\cdots+M_{3}^{*} M_{k} y_{5 k} \tag{12.173}\\
L_{2} & =M_{1}^{*} M_{1} y_{21}+M_{1}^{*} M_{2} y_{22}+\cdots+M_{3}^{*} M_{k} y_{6 k}
\end{align*}
$$

Total variation, S_{T}, is decomposed as shown in Figure 12.5

$$
\begin{align*}
S_{T} & =y_{11}^{2}+y_{12}^{2}+\cdots+y_{6 k}^{2} \quad(f=6 k) \tag{12.174}\\
S_{\beta} & =\frac{\left(L_{1}+L_{2}\right)^{2}}{2 r} \quad(f=1) \tag{12.175}\\
r & =\left(M_{1}^{*} M_{1}\right)^{2}+\left(M_{1}^{*} M_{2}\right)^{2}+\cdots+\left(M_{3}^{*} M_{k}\right)^{2} \tag{12.176}\\
S_{\beta N} & =\frac{L_{1}^{2}+L_{2}^{2}}{\gamma}-S_{\beta} \quad(f=1) \tag{12.177}\\
S_{e} & =S_{T}-S_{\beta}-S_{\beta N} \quad(f=6 k-2) \tag{12.178}\\
V_{e} & =\frac{S_{e}}{6 k-2} \tag{12.179}\\
V_{N} & =\frac{S_{N}}{6 k-1} \tag{12.180}\\
\eta & =10 \log \frac{(1 / 2 r)\left(S_{\beta}-V_{e}\right)}{V_{N}} \tag{12.181}\\
S & =10 \log \frac{1}{2 r}\left(S_{\beta}-V_{e}\right) \tag{12.182}
\end{align*}
$$

Example [5]

In a laser welding experiment, the ideal function was defined as follows:

$$
y=\beta M M^{*}
$$

Table 12.22
Input/output table for double signals

		\boldsymbol{M}_{1}	\boldsymbol{M}_{2}	\ldots	$\boldsymbol{M}_{\boldsymbol{k}}$
M_{1}^{*}	N_{1}	y_{11}	y_{12}	\ldots	$y_{1 k}$
	N_{2}	y_{21}	y_{22}	\ldots	$y_{2 k}$
M_{2}^{*}	N_{1}	y_{31}	y_{32}	\ldots	$y_{3 k}$
	N_{2}	y_{41}	y_{42}	\ldots	$y_{4 k}$
M_{3}^{*}	N_{1}	y_{51}	y_{52}	\ldots	$y_{5 k}$
	N_{2}	y_{61}	y_{62}	\ldots	$y_{6 k}$

where y is the force, M the deformation, and M^{*} the welding length. The force at each deformation level was measured for each test piece of different welding length. Table 12.23 shows the results of one of the runs.

$$
\begin{align*}
L_{1} & =M_{1}^{\star} M_{1} y_{11}+M_{1}^{\star} M_{2} y_{12}+\cdots+M_{3}^{\star} M_{2} y_{52} \\
& =(2)(20)(149.0)+(2)(40)(146.8)+\cdots+(6)(40)(713.2) \\
& =338840 \tag{12.183}\\
L_{2} & =M_{1}^{\star} M_{1} y_{21}+M_{1}^{\star} M_{2} y_{22}+\cdots+M_{3}^{\star} M_{2} y_{62} \\
& =(2)(20)(88.6)+(2)(40)(87.0)+\cdots+(6)(40)(304.4) \\
& =152196 \tag{12.184}\\
S_{T} & =y_{11}^{2}+y_{12}^{2}+\cdots+y_{62}^{2} \\
& =149.0^{2}+146.8^{2}+\cdots+304.4^{2} \\
& =1,252,346.16 \tag{12.185}
\end{align*} \quad(f=12)
$$

Figure 12.5
Decomposition of variation

Table 12.23

Results of experiment

	M_{1} (20)	M_{2} $M_{1}^{\star}(2 \mathrm{~mm})$	N_{1}
$M_{2}^{\star}(4 \mathrm{~mm})$	N_{2}	149.0	146.8
	N_{1}	88.6	87.0
$M_{3}^{\star}(6 \mathrm{~mm})$	N_{2}	300.4	481.1
	N_{1}	135.7	205.5
	N_{2}	408.0	713.2
		207.5	304.4

$$
\begin{align*}
S_{\beta} & =\frac{\left(L_{1}+L_{2}\right)^{2}}{2 r} \\
& =\frac{(338,840+152,196)^{2}}{(2)(112,000)}=1,076,412.292 \quad(f=1) \tag{12.186}\\
\gamma_{0} & =2 \tag{12.187}\\
\gamma & =\left(M_{1}^{\star} M_{1}\right)^{2}+\left(M_{1}^{\star} M_{2}\right)^{2}+\cdots+\left(M_{3}^{\star} M_{2}\right)^{2} \\
& =[(2)(20)]^{2}+[(2)(40)]^{2}+\cdots+[(6)(40)]^{2} \\
& =112,000 \tag{12.188}\\
S_{\beta N} & =\frac{L_{1}^{2}+L_{2}^{2}}{\gamma}-S_{\beta} \\
& =\frac{338,840^{2}+152,196^{2}}{112,000}-1,076,412.292 \\
& =155,517.78 \tag{12.189}\\
S_{e} & =S_{T}-S_{\beta}-S_{\beta N} \\
& =1,252,436.16-1,076,412.292-155,517.78 \\
& =20,506.088 \tag{12.190}\\
S_{N} & =S_{T}-S_{\beta} \\
& =1,252,436.16-1,076,412.292 \\
& =176,023.868 \\
V_{e} & =\frac{S_{e}}{10}=\frac{20,506.088}{10}=2050.6088 \tag{f=11}
\end{align*}
$$

$$
\begin{align*}
V_{N} & =\frac{S_{N}}{11}=\frac{176,023.868}{11}=16,002.1698 \tag{12.193}\\
\eta & =10 \log \frac{(1 / 2 r)\left(S_{\beta}-V_{e}\right)}{V_{N}} \\
& =10 \log \frac{[1 /(2)(112,000)](1,076,412.295-2050.6088)}{16,002.1698} \\
& =-35.23 \mathrm{~dB} \tag{12.194}\\
S & =10 \log \frac{1}{2 r}\left(S_{\beta}-V_{e}\right) \\
& =10 \log \frac{1}{(2)(112,000)}(1,076,412.292-2050.6088) \\
& =0.68 \mathrm{~dB} \tag{12.195}
\end{align*}
$$

When there are two signals, the ideal function could be as follows:

$$
\begin{equation*}
y=\beta \frac{M}{M^{*}} \tag{12.196}
\end{equation*}
$$

where y is the deformation, M the load, and M^{*} the cross-sectional area. In a material development, for example, the deformation of test pieces must be linearly proportional to the load added and also inversely proportional to the crosssectional area. Table 12.24 shows the deformation of test pieces at each load and cross-sectional area under noise conditions N_{1} and N_{2}.

Table 12.24
Load, cross section, and deformation

		\boldsymbol{M}_{1}^{*}	\boldsymbol{M}_{2}^{*}	\ldots	\boldsymbol{M}_{k}^{*}
M_{1}	N_{1}	y_{11}	y_{12}	\ldots	$y_{1 k}$
	N_{2}	y_{21}	y_{22}	\ldots	$y_{2 k}$
M_{2}	N_{1}	y_{31}	y_{32}	\ldots	$y_{3 k}$
	N_{2}	y_{41}	y_{42}	\ldots	$y_{4 k}$
M_{3}	N_{1}	y_{51}	y_{52}	\ldots	$y_{5 k}$
	N_{2}	y_{61}	y_{62}	\cdots	$y_{6 k}$

The linear equations at different noise factor levels are calculated by

$$
\begin{align*}
L_{1} & =\frac{M_{1}}{M_{1}^{*}} y_{11}+\frac{M_{1}}{M_{2}^{*}} y_{12}+\cdots+\frac{M_{3}}{M_{k}^{*}} y_{5} k \\
L_{2} & =\frac{M_{1}}{M_{1}^{*}} y_{21}+\frac{M_{1}}{M_{2}^{*}} y_{22}+\cdots+\frac{M_{3}}{M_{k}^{*}} y_{6 k} \tag{12.197}
\end{align*}
$$

The total variation is

$$
\begin{equation*}
S_{T}=y_{11}^{2}+y_{12}^{2}+\cdots+y_{6 k}^{2} \quad(f=6 k) \tag{12.198}
\end{equation*}
$$

The total variation is decomposed as shown in Figure 12.6.
Variation of L :

$$
\begin{equation*}
S_{L}=\frac{L_{1}^{2}+L_{2}^{2}}{r} \quad(f=2) \tag{12.199}
\end{equation*}
$$

Variation of the proportional term:

$$
\begin{equation*}
S_{\beta}=\frac{\left(L_{1}+L_{2}\right)^{2}}{2 r} \quad(f=1) \tag{12.200}
\end{equation*}
$$

where

$$
\begin{equation*}
r=\left(\frac{M_{1}}{M_{1}^{*}}\right)^{2}+\left(\frac{M_{1}}{M_{2}^{*}}\right)^{2}+\cdots+\left(\frac{M_{3}}{M_{k}^{*}}\right)^{2} \tag{12.201}
\end{equation*}
$$

Variation of L due to noise:

$$
\begin{align*}
S_{\beta N} & =S_{L}-S_{\beta} \\
& =\frac{L_{1}^{2}+L_{2}^{2}}{r}-\frac{\left(L_{1}+L_{2}\right)^{2}}{2 r}=\frac{\left(L_{1}-L_{2}\right)^{2}}{2 r} \quad(f=1) \tag{12.202}
\end{align*}
$$

Variation of error:

$$
\begin{equation*}
S_{e}=S_{T}-S_{L}=S_{T}-S_{\beta}-S_{\beta N} \quad(f=6 k-2) \tag{12.203}
\end{equation*}
$$

Figure 12.6
Decomposition of variation

Variation of noise:

$$
\begin{equation*}
S_{N}=S_{T}-S_{\beta} \quad(f=6 k-1) \tag{12.204}
\end{equation*}
$$

Variance of error:

$$
\begin{equation*}
V_{e}=\frac{S_{e}}{6 k-2} \tag{12.205}
\end{equation*}
$$

Variance of noise:

$$
\begin{equation*}
V_{N}=\frac{S_{N}}{6 k-1} \tag{12.206}
\end{equation*}
$$

SN ratio:

$$
\begin{equation*}
\eta=10 \log \frac{(1 / 2 r)\left(S_{\beta}-V_{e}\right)}{V_{N}} \tag{12.207}
\end{equation*}
$$

Sensitivity:

$$
\begin{equation*}
S=10 \log \frac{1}{2 r}\left(S_{\beta}-V_{e}\right) \tag{12.208}
\end{equation*}
$$

Example [6]

A process used to apply an encapsulant, which provides electrical isolation between elements on the outer surface of a night-vision image intensifier tube, was optimized using double signal factor SN ratio. The ideal function was identified as

$$
\begin{equation*}
y=\beta \frac{M}{M^{*}} \tag{12.196}
\end{equation*}
$$

where y is the current leakage, M the applied voltage ($M_{1}=2, M_{2}=4, M_{3}=6$, $M_{4}=8, M_{5}=10$), and M^{*} the electrode spacing ($M_{1}^{*}=0.016, M_{2}^{*}=0.030$, $M_{3}^{*}=0.062$), Table 12.25 shows the input/output relationship of this study, and Table 12.26 shows the results of one run of the experiment.

Calculations for SN ratio and sensitivity are made as follows:

$$
\begin{align*}
L_{1} & =\frac{M_{1}}{M_{1}^{\star}} y_{11}+\frac{M_{1}}{M_{2}^{\star}} y_{12}+\cdots+\frac{M_{5}}{M_{3}^{\star}} y_{53} \\
& =\frac{2}{0.016}(9)+\frac{2}{0.030}(5)+\cdots+\frac{10}{0.062}(34 \\
& =217,781.7 \tag{12.209}\\
L_{2} & =266,009.9 \\
L_{3} & =3,687,281 \\
L_{4} & =3,131,678
\end{align*}
$$

Table 12.25
Input/output table

		M_{1}	M_{2}	M_{3}	M_{4}	M_{5}
N_{1}	$\begin{aligned} & M_{1}^{\star} \\ & M_{2}^{\star} \\ & M_{3}^{\star} \end{aligned}$	$\begin{aligned} & y_{11} 1 \\ & y_{21} \\ & y_{31} \end{aligned}$	$\begin{aligned} & y_{12} \\ & y_{22} \\ & y_{32} \end{aligned}$	$\underline{y_{13}}$	y_{14}	$\begin{aligned} & y_{15} 5 \\ & y_{25} \\ & y_{35} \end{aligned}$
N_{2}	$\begin{aligned} & M_{1}^{\star} \\ & M_{2}^{\star} \\ & M_{3}^{\star} \end{aligned}$	$\begin{aligned} & y_{41} \\ & y_{51} \\ & y_{61} \end{aligned}$	$\begin{aligned} & y_{42} \\ & y_{52} \\ & y_{62} \end{aligned}$	-	-	$\begin{aligned} & y_{45} \\ & y_{55} \\ & y_{65} \end{aligned}$
N_{3}	$\begin{aligned} & M_{1}^{\star} \\ & M_{2}^{\star} \\ & M_{3}^{\star} \end{aligned}$	$\begin{aligned} & y_{71} \\ & y_{81} \\ & y_{91} \end{aligned}$	$\begin{aligned} & y_{72} \\ & y_{82} \\ & y_{92} \end{aligned}$	-	-	$\begin{aligned} & y_{75} 5 \\ & y_{85} \\ & y_{95} \end{aligned}$
N_{4}	$\begin{aligned} & M_{1}^{\star} \\ & M_{2}^{\star} \\ & M_{3}^{\star} \end{aligned}$	$\begin{aligned} & y_{10 \cdot 1} \\ & y_{11-1} \\ & y_{12 \cdot 1} \end{aligned}$	$\begin{aligned} & y_{10 \cdot 2} \\ & y_{11 \cdot 2} \\ & y_{12 \cdot 2} \end{aligned}$	-	-	$\begin{aligned} & y_{10.5} \\ & y_{11.5} \\ & y_{12.5} \end{aligned}$

$$
\begin{align*}
S_{T} & =y_{11}^{2}+y_{12}^{2}+\cdots+y_{12 \cdot 5}^{2} \\
& =9^{2}+26^{2}+\cdots+361^{2} \\
& =20,974,160 \quad(f=60) \tag{12.210}\\
S_{L} & =\frac{L_{1}^{2}+L_{2}^{2}+L_{3}^{2}+L_{4}^{2}}{\gamma} \\
& =\frac{217,781.7^{2}+266,009.9^{2}+3,687,281^{2}+3,131,678^{2}}{1,161,051} \\
& =20,258,919 \quad \tag{12.211}\\
\gamma_{0} & =4 \tag{12.212}\\
\gamma & =\left(\frac{M_{1}}{M_{1}^{*}}\right)^{2}+\left(\frac{M_{1}}{M_{2}^{*}}\right)^{2}+\cdots+\left(\frac{M_{5}}{M_{3}^{*}}\right)^{2} \\
& =\left(\frac{2}{0.016}\right)^{2}+\left(\frac{2}{0.030}\right)^{2}+\cdots+\left(\frac{10}{0.062}\right)^{2}=1,161,051 \tag{12.213}\\
S_{\beta} & =\frac{\left(L_{1}+L_{2}+L_{3}+L_{4}\right)^{2}}{4 \gamma} \\
& =\frac{(217,781.7+266,009.9+3,687,281+3,131,678)^{2}}{(4)(1,161,051)} \\
& =11,483,166 \quad(f=1) \tag{12.214}
\end{align*}
$$

12.12. Double Signals

Table 12.26
Results of experiment

		M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	L
N	M_{1}^{*}	9	26	53	92	152	L_{1}
	M_{2}^{*}	5	13	24	42	62	
	M_{3}^{*}	5	9	14	23	34	
N_{2}	M_{1}^{*}	13	36	66	100	170	L_{2}
	M_{2}^{*}	8	23	44	62	90	
	M_{3}^{*}	6	14	24	37	45	
N_{3}	M_{1}^{*}	209	517	915	1452	2266	L_{3}
	M_{2}^{*}	165	374	622	892	1186	
	M_{3}^{*}	110	235	385	515	655	
N_{4}	M_{1}^{*}	177	457	897	1321	2113	L_{4}
	M_{2}^{*}	100	234	408	621	895	
	M_{3}^{*}	50	104	171	262	361	

$$
\begin{align*}
S_{\beta N} & =S_{L}-S_{\beta} \\
& =20,258,919-11,483,166 \\
& =8,775,753 \tag{12.215}\\
S_{e} & =S_{T}-S_{L}=S_{T}-S_{\beta}-S_{\beta N} \\
& =20,974,160-20,258,919 \\
& =715,241 \\
S_{N} & =S_{T}-S_{\beta}=20,974,160-11,483,166 \\
& =9,490,994 \\
V_{e} & =\frac{S_{e}}{56}=\frac{715,241}{56}=12,772 \\
V_{N} & =\frac{S_{N}}{59}=\frac{9,490,994}{59}=160,864 \\
\eta & =10 \log \frac{\left(1 / \gamma_{0} \gamma\right)\left(S_{\beta}-V_{e}\right)}{V_{N}} \\
& =10 \log \frac{\frac{1}{(4)(1,161,051)}(11,483,166-12,772)}{160,864} \\
& =-48.138 \mathrm{~dB}
\end{align*}
$$

$$
\begin{align*}
S & =10 \log \frac{1}{\gamma_{0} \gamma}\left(S_{\beta}-V_{e}\right) \\
& =10 \log \frac{1}{(4)(1,161,051)}(11,483,166-12,772) \\
& =3.93 \mathrm{~dB} \tag{12.221}
\end{align*}
$$

12.13. Split Analysis: When There Is No Noise

The objective of parameter design is to reduce the effect of noise factors by evaluating the magnitude of their SN ratio. Therefore, noise factors must be assigned in an experiment. But sometimes it is difficult to assign noise factors. In experiments with chemical reactions, for example, taking extra data points means conducting one more experiment for a run, which doubles the time and cost of the entire experiment. Therefore, only one experiment is conducted for one run of the orthogonal array in many cases.

In such cases it is necessary to provide some type of noise for SN ratio calculation. When dynamic characteristics are used, there are signal factors. In such cases we want the input signal and the output response to be proportional. Therefore, the deviation from linearity can be used as the noise. But the number of signal factor levels is limited and the degrees of freedom for noise are limited. Generally, it is better to have more degrees of freedom for noise. Split design is used for this purpose. It is a method of calculating the SN ratio from the results obtained from an orthogonal array experiment without providing noise factors.

Split Analysis for Two-Level Orthogonal Array

To simplify explanation, an L_{8} orthogonal array is used. (In practice, however, it is recommended that one use L_{12}, L_{18}, or L_{36} arrays.) Two-level control factors A, B, C, D, E, F, and G are assigned to the inner array. A three-level signal factor M is assigned to the outer array. Table 12.27 shows the layout.

Assume that zero-point proportional equations are used for M and y. The SN ratio of A_{1} is calculated from the data for runs $1,2,3$, and 4 . The data for A_{1} are shown in Table 12.28.

The 12 data points in Table 12.28 are decomposed as follows:

$$
\begin{array}{ll}
S_{T} \\
(f=12)
\end{array} \begin{cases}S_{\text {row }} & (f=3) \\
S_{\beta} & (f=1) \\
S_{e} & (f=8)\end{cases}
$$

$S_{\text {row }}$ is the variation between rows $1,2,3$, and 4 . It is the variation caused by control factors B, C, D, E, F, and G. This variation belongs neither to the signal nor to the noise, and therefore is separated out.

Total variation:

$$
\begin{equation*}
S_{T}=y_{11}^{2}+y_{12}^{2}+\cdots+y_{43} \quad(f=1) \tag{12.222}
\end{equation*}
$$

Table 12.27
Results without noise factors

	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}	\boldsymbol{E}	\boldsymbol{F}	\boldsymbol{G}				
No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\boldsymbol{M}_{\mathbf{1}}$	$\boldsymbol{M}_{\mathbf{2}}$	$\boldsymbol{M}_{\mathbf{3}}$	Total
1	1	1	1	1	1	1	1	y_{11}	y_{12}	y_{13}	y_{1}
2	1	1	1	2	2	2	2	y_{21}	y_{22}	y_{23}	y_{2}
3	1	2	2	1	1	2	2	y_{31}	y_{32}	y_{33}	y_{3}
4	1	2	2	2	2	1	1	y_{41}	y_{42}	y_{43}	y_{4}
Total								$y_{\cdot 1}$	$y_{\cdot 2}$	$y_{\cdot 3}$	
5	2	1	2	1	2	1	2	y_{51}	y_{52}	y_{53}	y_{5}
6	2	1	2	2	1	2	1	y_{61}	y_{62}	y_{63}	y_{6}
7	2	2	1	1	2	2	1	y_{71}	y_{72}	y_{73}	y_{7}
8	2	2	1	2	1	1	2	y_{81}	y_{82}	y_{83}	y_{8}

Totals of M :

$$
\begin{align*}
& y_{1}=y_{11}+y_{21}+y_{31}+y_{41} \\
& y_{.2}=y_{12}+y_{22}+y_{32}+y_{42} \tag{12.223}\\
& y_{3}=y_{13}+y_{23}+y_{33}+y_{43} \\
& y_{4}=y_{14}+y_{24}+y_{34}+y_{44}
\end{align*}
$$

Variation of linear term:

$$
\begin{equation*}
S_{\beta}=\frac{1}{\gamma_{0} \gamma}\left(M_{1} y_{1}+M_{2} y_{\cdot 2}+M_{3} y_{\cdot 3}\right)^{2} \quad(f=1) \tag{12.224}
\end{equation*}
$$

where γ_{0} is the number of data points under M :

$$
\begin{equation*}
\gamma_{0}=4 \tag{12.225}
\end{equation*}
$$

Table 12.28
Results of A_{1}

No.	$\begin{aligned} & 1 \\ & A \end{aligned}$	$\begin{aligned} & 2 \\ & B \end{aligned}$	C	$\begin{aligned} & 4 \\ & D \end{aligned}$	$\begin{aligned} & 5 \\ & E \end{aligned}$	${ }^{6}$	7	M	M	M	Total
1	1	1	1	1	1	1	1	y_{11}	y_{12}	y_{13}	y_{1}
2	1	1	1	2	2	2	2	y_{21}	y_{22}	y_{23}	y_{2}
3	1	2	2	1	1	2	2	y_{31}	y_{32}	y_{33}	y_{3}
4	1	2	2	2	2	1	1	y_{41}	y_{42}	y_{43}	y_{4}
Total								y^{1}	$y \cdot 2$	y. 3	

Effective divider:

$$
\begin{equation*}
\gamma=M_{1}^{2}+M_{2}^{2}+M_{3}^{2} \tag{12.226}
\end{equation*}
$$

Variation between rows:

$$
\begin{equation*}
S_{\mathrm{row}}=\frac{1}{k}\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right)-\frac{\left(y_{1}+y_{2}+y_{3}+y_{4}\right)^{2}}{\gamma_{0} k} \quad\left(f=\gamma_{0}-1\right) \tag{12.227}
\end{equation*}
$$

where k is the number of data points in each run:

$$
\begin{equation*}
k=3 \tag{12.228}
\end{equation*}
$$

Error variation:

$$
\begin{equation*}
S_{e}=S_{T}-S_{\beta}-S_{\text {row }} \quad(f=8) \tag{12.229}
\end{equation*}
$$

Error variance:

$$
\begin{equation*}
V_{e}=\frac{S_{e}}{8} \tag{12.230}
\end{equation*}
$$

SN ratio:

$$
\begin{equation*}
\eta=10 \log \frac{\left(1 / \gamma_{0} \gamma\right)\left(S_{\beta}-V_{e}\right)}{V_{e}} \tag{12.231}
\end{equation*}
$$

The SN ratio of A_{2} is calculated similarly from the results for A_{2}. The SN ratio of B_{1} is calculated from the results for B_{1}, as shown in Table 12.29.

Split Analysis for Mixed Orthogonal Arrays

Calculation of the SN ratios for a three-level orthogonal array is exactly the same as that for a two-level orthogonal array. An L_{18} orthogonal array is used as an example to explain the calculations in Table 12.30.

Table 12.31 shows the layout of an experiment. A two-level control factor, A, and seven three-level control factors, B, C, D, E, F, G, and H, are assigned to an L_{18} orthogonal array. The signal factor M is assigned to outside the L_{18} array. There are no noise factors.

First, the calculation of the SN ratio of A_{1} is explained. The results under A_{1} are shown in Table 12.31.

Total variation:

$$
\begin{equation*}
S_{T}=y_{11}^{2}+y_{12}^{2}+\cdots+y_{9 k}^{20} \quad(f=9 k) \tag{12.232}
\end{equation*}
$$

Table 12.29
Results of B_{1}

No.	\boldsymbol{M}_{1}	\boldsymbol{M}_{2}	\boldsymbol{M}_{3}	Total
1	y_{11}	y_{12}	y_{13}	y_{1}
2	y_{21}	y_{22}	y_{23}	y_{2}
5	y_{51}	y_{52}	y_{53}	y_{5}
6	$\frac{y_{61}}{y \cdot 1}$	$\frac{y_{62}}{y_{\cdot 2}}$	$\frac{y_{63}}{y_{\cdot 3}}$	y_{6}
Total				

Table 12.30
Results without noise factors

No.	$\begin{gathered} A \\ 1 \end{gathered}$	$\begin{aligned} & B \\ & 2 \end{aligned}$	$\begin{aligned} & C \\ & 3 \end{aligned}$	$\begin{aligned} & D \\ & 4 \end{aligned}$	$\begin{aligned} & E \\ & 5 \end{aligned}$	$\begin{aligned} & F \\ & 6 \end{aligned}$	$\begin{aligned} & G \\ & 7 \end{aligned}$	$\begin{aligned} & H \\ & 8 \end{aligned}$	M_{1}	M_{2}	\ldots	$M_{\text {k }}$	Total
1	1	1	1	1	1	1	1	1	y_{11}	y_{12}	...	$y_{1 k}$	y_{1}
2	1	1	2	2	2	2	2	2	y_{21}	y_{22}	...	$y_{2 k}$	y_{2}
3	1	1	
4	1	2	
5	1	2	
6	1	2											
7	1	3											
8	1	3											
9	1	3											
10	2	1											
11	2	1											
12	2	1											
13	2	2											
14	2	2											
15	2	2											
16	2	3											
17	2	3											
18	2	3	3	2	1	2	3	1	$y_{18 \cdot 1}$	$y_{18 \cdot 2}$...	$y_{18 k}$	y_{18}

Table 12.31
Results of A_{1}

No.	\boldsymbol{M}_{1}	\boldsymbol{M}_{2}	\ldots	\boldsymbol{M}_{k}	Total
1	y_{11}	y_{12}	\ldots	$y_{1 k}$	y_{1}
2	y_{21}	y_{22}	\ldots	$y_{2 k}$	y_{2}
3	\cdot				
4	\cdot				
5	\cdot				
6	\cdot				
7			\ldots	y_{99}	y_{9}
8	$y_{\cdot 1}$	$\frac{y_{92}}{y_{\cdot 2}}$	\cdots		
9					

Column totals:

$$
\begin{align*}
y_{.1} & =y_{11}+y_{21}+\cdots+y_{91} \\
y_{.2} & =y_{12}+y_{22}+\cdots+y_{92} \tag{12.233}\\
& \vdots \\
y_{. k} & =y_{1 k}+y_{2 k}+\cdots+y_{9 k}
\end{align*}
$$

Variation of linear term:

$$
\begin{equation*}
S_{\beta}=\frac{1}{\gamma_{0} \gamma}\left(M_{1} y_{\cdot 1}+M_{2} y_{\cdot 2}+\cdots+M_{k} y_{\cdot k}\right)^{2} \quad(f=1) \tag{12.234}
\end{equation*}
$$

where γ_{0} is the number of runs under M_{1} :

$$
\begin{equation*}
\gamma_{0}=9 \tag{12.235}
\end{equation*}
$$

Effective divider:

$$
\begin{equation*}
\gamma_{0} \gamma=9\left(M_{1}^{2}+M_{2}^{2}+\cdots+M_{k}^{2}\right) \tag{12.236}
\end{equation*}
$$

Variation between rows:

$$
\begin{align*}
S_{\text {row }}= & \frac{1}{k}\left(y_{1}^{2}+y_{2}^{2}+\cdots+y_{9}^{2}\right)-\frac{1}{\gamma_{0} k}\left(y_{1}+y_{2}+\cdots+y_{9}\right)^{2} \\
& \left(f=\gamma_{0}-1=8\right) \tag{12.237}
\end{align*}
$$

where k is the number of data points in each run.
Error variation:

$$
\begin{equation*}
S_{e}=S_{T}-S_{\beta}-S_{\mathrm{row}} \quad(f=9 k-9) \tag{12.238}
\end{equation*}
$$

Error variance:

$$
\begin{equation*}
V_{e}=\frac{S_{e}}{9 k-9} \tag{12.239}
\end{equation*}
$$

SN ratio:

$$
\begin{equation*}
\eta=10 \log \frac{\left(1 / \gamma_{0} \gamma\right)\left(S_{\beta}-V_{e}\right)}{V_{e}} \tag{12.240}
\end{equation*}
$$

The SN ratio of B_{1} is calculated from the results under B_{1}, as shown in Table 12.32.

$$
\begin{align*}
S_{T} & =y_{11}^{2}+y_{12}^{2}+\cdots+y_{12 \cdot k}^{2} \quad(f=6 k) \tag{12.241}\\
y_{11} & =y_{11}+y_{21}+y_{31}+y_{10 \cdot 1}+y_{12 \cdot 1} \\
y_{\cdot 2} & =y_{12}+y_{22}+y_{32}+y_{10 \cdot 2}+y_{11 \cdot 2}+y_{12 \cdot 2} \\
& \vdots \\
y_{\cdot k} & =y_{1 k}+y_{2 k}+y_{3 k}+y_{10 \cdot 2}+y_{11 \cdot k}+y_{12 \cdot k} \tag{12.242}\\
S_{\beta} & =\frac{1}{\gamma_{0} \gamma}\left(M_{1} y_{\cdot 1}+M_{2} y_{\cdot 2}+\cdots+M_{k} y_{\cdot k}\right)^{2} \tag{12.243}
\end{align*}
$$

Table 12.32
Results of B_{1}

No.	\boldsymbol{M}_{1}	\boldsymbol{M}_{2}	\ldots	$\boldsymbol{M}_{\boldsymbol{k}}$	Total
1	y_{11}	y_{12}	\ldots	$y_{1 k}$	y_{1}
2	y_{21}	y_{22}	\ldots	$y_{2 k}$	y_{2}
3	y_{31}	\ldots			\cdot
10	$y_{10 \cdot 1}$	\ldots			\cdot
11	$y_{11 \cdot 1}$	\ldots	\ldots		\cdot
12	$\frac{y_{12 \cdot 1}}{y \cdot 1}$	$\frac{y_{12 \cdot 2}}{y_{\cdot 2}}$	\ldots	$y_{12 k}$	y_{12}
Total	$y_{\cdot 1}$	\ldots	$y_{\cdot k}$		

where

$$
\begin{align*}
& \gamma_{0}=6 \tag{12.244}\\
& \gamma= M_{1}^{2}+M_{2}^{2}+\cdots+M_{k}^{2} \tag{12.245}\\
& S_{\text {row }}=\frac{1}{k}\left(y_{1}^{2}+y_{2}^{2}+\cdots+y_{12}^{2}\right)-\frac{\left(y_{1}+y_{2}+\cdots+y_{12}\right)^{2}}{\gamma_{0} k} \\
& \quad\left(f=\gamma_{0}-1=5\right) \tag{12.246}\\
& S_{e}=S_{T}-S_{\beta}-S_{\text {row }} \quad(f=9 k-9) \tag{12.247}\\
& V_{e}=\frac{S_{e}}{9 k-9} \tag{12.248}\\
& \eta=10 \log \frac{\left(1 / \gamma_{0} \gamma\right)\left(S_{\beta}-V_{e}\right)}{V_{e}} \tag{12.249}
\end{align*}
$$

References

1. Genichi Taguchi, 1991. Quality Engineering Series, Vol. 3. Tokyo: Japanese Standards Association/ASI Press.
2. Kazuyoshi Ishikawa et al., 1972. SN Ratio Manual, Tokyo: Japanese Standards Association.
3. Hiroshi Yano, 1998. Introduction to Quality Engineering Calculation. Tokyo: Japanese Standards Association.
4. Shin Taguchi, 1998. ASI Workshop Manual. Livonia, Michigan: American Supplier Institute.
5. Mitsugi Fukahori, 1995. Optimization of an electrical encapsulant. Journal of Quality Engineering Forum, Vol. 3, No. 2.
6. Lapthe Flora et al., 1995. Parameter design of laser welding for lap edge joint piece. Presented at the ASI Symposium.
