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26.1. Introduction

Quite often we wish to express results or objectives by functions of causes or means
in various specialized fields, such as natural science, social science, or engineering.
If we cannot perform experiments to obtain results or objectives after arranging
causes or means, that is, factors in a particular manner, we often estimate param-
eters of a regression function predicted by data obtained from research or obser-
vations. Although the least squares method is frequently used to estimate unknown
parameters after a linear regression model is selected as a regression function, in
most cases this procedure is not used appropriately and predicted regression equa-
tions do not function well from the standpoint of specialized engineering fields.
Among several methods of avoiding this situation is experimental regression
analysis.

26.2. Estimation of Operation Time and Least Squares Method

As a simple example, let’s examine a problem of estimating standard operation
times for office work. Since office work does not consist of several clear-cut portions
and its transaction time has large variability, we need a considerable number of
observations to estimate a standard operation time accurately after breaking total
time down into many work elements. Now we define k types of major transaction
times among various office works as a1, a2, ... , ak and the corresponding number
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486 26. Parameter Estimation in Regression Equations

of jobs to be completed as x1, x2, ... , xk. The total operation time y0 is expressed
as follows:

y � a x � a x � ��� � a x (26.1)0 1 1 2 2 k k

In actuality, since there are jobs other than the k types of work or slack times,
we should add a constant a0 to equation (26.1). Therefore, the total operation
time y is

y � a � a x � a x � ��� � a x (26.2)0 1 1 2 2 k k

Table 26.1 shows the incidence of seven different works (x1, x2, ... , x7) and
corresponding operation time y (minutes) for each business office. For the sake
of convenience, we take data for a certain day. However, to improve the adequacy
of analysis, we sometimes sum up all data for one month. To estimate a0, a1, a2, ...
, a7 of the following equation, using these data is our objective:

y � a � a x � a x � ��� � a x (26.3)0 1 1 2 2 7 7

This process is called estimation of unknown parameters a0, a1, a2, ... , a7.
An equation such as equation (26.2), termed a single regression equation or linear

regression equation, takes y as the objective variable and x1, x2, ... , x7 as the expla-
nation variables with respect to unknowns a0, a1, a2, ... , a7.

As one of the estimation methods of unknowns in a linear regression equation,
the multivariate analysis is known, which is based on the least squares method. By
applying the least squares method to the data in Table 26.1, we obtain the follow-
ing result:

y � 551.59 � 72.51x � 25.92x � 44.19x � 65.55x1 2 3 4

� 6.58x � 24.02x � 11.35x (26.4)5 6 7

error variance � V � 233,468.19e

Although the true values of a0, a1, a2, ... , a7 are unknown, the fact that a1 are
estimated as �72.51 or a3 is estimated as �44.19 is obviously unreasonable because
each of the values indicates the operation time for one job.

In the least squares method, the coefficients a1, a2, ... , a7 are estimated in such
a way that the coefficients may take a range of (��, �). It is well known that the
estimation accuracy of a0, a1, a2, ... , a7 depends significantly on the correlation
among x1, x2, ... , x7. If a certain variable x1 correlates strongly with other variables,
the estimation accuracy of a1 is decreased; otherwise, it is improved.

Actual data observed always correlate with each other. In this case, since the
volume of all jobs is supposed to increase on a busy day, the data x1, x2, ... , x7 tend
to correlate with each other, reflecting actual situations. When the least squares
method is applied to this case, the estimation obtained quite often digresses from
the true standard time. In calculating appropriate coefficients, the least squares
method is not effective.

26.3. Experimental Regression Analysis

To eliminate the drawbacks of the least squares method we need to use a new
method that reflects on the following:
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Table 26.1
Incidence of works and total operation time

No. x1 x2 x3 x4 x5 x6 x7 y

1 4 6 18 6 58 120 22 3667

2 2 2 16 12 74 85 31 3683

3 2 12 18 10 58 127 37 3681

4 0 2 3 4 82 39 14 2477

5 2 2 2 0 28 31 0 1944

6 2 0 0 0 26 27 12 414

7 0 2 6 8 52 31 14 1847

8 0 0 2 2 110 15 5 1689

9 0 2 6 6 86 31 11 2459

10 0 0 2 8 64 20 4 1934

11 0 0 2 6 84 15 1 2448

12 0 0 4 2 50 13 3 1228

13 0 0 2 4 72 12 2 1234

14 0 0 4 4 32 12 5 1240

15 0 0 2 0 40 7 0 648

16 0 0 2 8 70 13 2 1252

17 0 0 0 0 42 6 1 715

18 0 0 6 2 46 15 4 1309

19 0 2 4 4 84 62 22 3023

20 2 2 12 4 72 57 24 2433

21 2 2 6 6 86 45 0 2447

22 2 0 4 4 74 76 21 3210

23 0 2 2 4 58 24 2 1239

24 0 4 2 2 52 28 13 3635

25 0 2 4 4 94 22 6 1341

26 0 2 4 4 56 24 11 1930

27 0 0 4 8 56 18 4 1940

28 0 0 6 0 56 18 6 7565

29 0 0 2 0 12 3 0 639

30 0 0 2 0 36 4 2 1229

31 0 0 2 4 52 9 2 1239

32 0 0 2 4 94 22 6 1341

33 0 0 2 0 10 4 2 1245
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Table 26.1
(Continued )

No. x1 x2 x3 x4 x5 x6 x7 y

34 0 0 0 0 48 4 0 748

35 0 0 0 4 36 4 0 1218

36 0 0 2 2 20 5 2 518

37 0 0 0 0 56 5 1 636

38 0 0 2 0 26 5 1 631

39 0 0 0 0 48 2 0 650

40 0 0 0 0 16 1 1 649

41 0 0 0 0 6 1 1 653

42 0 0 0 0 18 1 0 653

43 0 0 0 0 16 2 0 640

1. For unknowns (or coefficients), we set up a practically reasonable range and
seek a suitable equation within the range. This is called quadratic planning.

2. To rationally seek reasonable coefficients, we narrow down the range of each
coefficient using an orthogonal array.

3. When we determine coefficients based on narrowed-down results, we em-
phasize ideas of users of the equation or experts in specialized engineering
fields.

As one of the methods satisfying these requirements, we describe the experi-
mental regression analysis below. This is called quadratic planning in the Taguchi
method.

Setting of Initial
Values

First, by assuming how much time a0, a1, a2, ... , a7 affects the total operation time
y when each piece of work increases by 1 unit (number of jobs or papers), or a
rough range of the standard operation time required for each piece of work, we
set up three levels within the range. More specifically:

1. After setting the minimum to level 1 and the maximum to level 3, we select
the middle of the two values as level 2.

2. After setting the forecasting value to level 2, by creating a certain range
before and after level 1 based on level 2’s confidence, we establish level 2 �
the range as levels 1 and 2 � the range as level 3.

Both of the methods above can be used. For example, we assume that work 1
takes approximately 2 hours on average and has a range of 30 minutes.

❏ Level 1 of a1: a11 � 90 minutes

❏ Level 2 of a1: a12 � 120 minutes

❏ Level 3 of a1: a13 � 150 minutes

These are called initial values of a1. Although the range should be as precise as
possible, we do not need to be too sensitive to it. Table 26.2 shows the initial values
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Table 26.2
Initial values of coefficients (minutes)

Coefficient

Level

1 2 3

a1 90 120 150

a2 0 60 120

a3 0 30 60

a4 0 30 60

a5 0 10 20

a6 0 20 40

a7 0 20 40

for other work. Now, we do not set up a variable range of a1 but calculate it using
the following relationship:

a � y � a x � a x � ��� � a x (26.5)0 1 1 2 2 7 7

Selection of
Orthogonal Array and
Calculation

If, as for level 2, all values of a0, a1, a2, ... , a7 follow the data in Table 26.1, the
total operation time of business office 1, y, is calculated as follows:

y � a � a x � a x � ��� � a x1 0 12 1 22 2 72 7

� a � (120)(4) � (60)(6) � ��� � (20)(22)0

� a � 4980 (26.6)0

However, since the actual time is 3667 minutes, � y1 indicates the differencey1

between the actual time and the estimate assuming a1 � 120, a2 � 60, ... , a7 �
20 as a unit operation time. This difference involves assumptive errors. On the
other hand, if each of the assumed coefficients a has little error, � y1 for eachy1

business office is not supposed to vary greatly. The magnitude of change can be
evaluated by variation (a sum of squares of residuals, Se). Therefore, we need to
do the same calculation and comparison for other business offices. Now, we ex-
clude a0 in equation (26.3). In this case, � y1 involves not merely assumptivey1

errors regarding a1 � 120, a2 � 60, ... , a7 � 20 but also operation times other
than x1, x2, ... , x7.

When we have three assumed values for each of the unknowns a1, a2, ... , a7,
the eventual total number of combinations amounts to 37 � 2187. However, we
select a certain number of combinations from them. Which combination should
be chosen depends on an orthogonal array.

By taking into account the number of unknown parameters, we select the size
of an orthogonal array according to Table 26.3. The orthogonal arrays shown in
Table 26.3 have no particular columns where inter-column interactions emerge.
Since we can disperse interaction effects between parameters for the sum of
squares of residuals Se to various columns by using these arrays, we can perform
sequential approximation even if there are no interactions.
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Table 26.3
Selection of orthogonal array

Number of Unknown Parameters Orthogonal Array to Be Used

2 3 � 3 two-dimensional layout

3–6 Three-level portion of L18 orthogonal array

7–13 Three-level portion of L36 orthogonal array

14–49 Three-level portion of L108 orthogonal array

Because the L18 orthogonal array has seven three-level columns, we can allocate
up to seven parameters. However, if the actual calculation does not take long, we
recommend that the L36 array be used in cases of seven parameters or more. For
this case, we utilize the L36 array, where there are only seven unknown parameters.
Table 26.4 illustrates the L36 array. In the table, each number from 1 to 13 in the
top horizontal row shows a type of unknown, and each digit 1, 2, and 3 in the
table itself indicates the unknown’s level. Each row in the table represents a com-
bination of levels: 36 combinations in case of an L36 orthogonal array.

Now, we assign each of the seven unknowns a1, a2, ... , a7 to each column from
1 to 7. This process is called assignment (layout) to an orthogonal array. As a conse-
quence, the numbers in rows 1 to 36 represent the following 36 equations:

Row 1: y � 90x � 0x � ��� � 0x1 2 7

Row 2: y � 120x � 60x � ��� � 20x1 2 7 (26.7)

�

Row 36: y � 150x � 60x � ��� � 20x1 2 7

As a next step, we plug x1, x2, ... , x7 of 43 business offices into these equations
and calculate the following differences between the result calculated and its cor-
responding actual operation time:

e � y � y (i � 1,2, ... , 36; j � 1,2, ... , 43) (26.8)ij ij j

Then we compute a sum of all of the differences and variation as follows:

T � e � e � ��� � e (26.9)1 11 12 143

2T 12 2 2S � e � e � ��� � e � (26.10)1 11 12 143 43

Table 26.5 summarizes the result for the first data in Table 26.2. However, the data
in the first column of Table 26.5 do not indicate T itself but the averaged T, which
is equivalent to the constant term a0 in each equation.

Sequential
Approximation

Using Table 26.5, we compute a level-by-level sum of S values for each of the
unknown coefficients a1, a2, ... , a7, as shown in Table 26.6. For each unknown we
compare three different level-by-level sums of S. If all of them are almost the same,
any of the three levels assumed for each coefficient leads to the same amount of
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Table 26.4
L36 orthogonal array

No.

Factor

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 1

3 3 3 3 3 3 3 3 3 3 3 3 3 1

4 1 1 1 1 2 2 2 2 3 3 3 3 1

5 2 2 2 2 3 3 3 3 1 1 1 1 1

6 3 3 3 3 1 1 1 1 2 2 2 2 1

7 1 1 2 3 1 2 3 3 1 2 2 3 1

8 2 2 3 1 2 3 1 1 2 3 3 1 1

9 3 3 1 2 3 1 2 2 3 1 1 2 1

10 1 1 3 2 1 3 2 3 2 1 3 2 1

11 2 2 1 3 2 1 3 1 3 2 1 3 1

12 3 3 2 1 3 2 1 2 1 3 2 1 1

13 1 2 3 1 3 2 1 3 3 2 1 2 2

14 2 3 1 2 1 3 2 1 1 3 2 3 2

15 3 1 2 3 2 1 3 2 2 1 3 1 2

16 1 2 3 2 1 1 3 2 3 3 2 1 2

17 2 3 1 3 2 2 1 3 1 1 3 2 2

18 3 1 2 1 3 3 2 1 2 2 1 3 2

19 1 2 1 3 3 3 1 2 2 1 2 3 2

20 2 3 2 1 1 1 2 3 3 2 3 1 2

21 3 1 3 2 2 2 3 1 1 3 1 2 2

22 1 2 2 3 3 1 2 1 1 3 3 2 2

23 2 3 3 1 1 2 3 2 2 1 1 3 2

24 3 1 1 2 2 3 1 3 3 2 2 1 2

25 1 3 2 1 2 3 3 1 3 1 2 2 3

26 2 1 3 2 3 1 1 2 1 2 3 3 3

27 3 2 1 3 1 2 2 3 2 3 1 1 3

28 1 3 2 2 2 1 1 3 2 3 1 3 3

29 2 1 3 3 3 2 2 1 3 1 2 1 3

30 3 2 1 1 1 3 3 2 1 2 3 2 3
31 1 3 3 3 2 3 2 2 1 2 1 1 3

32 2 1 1 1 3 1 3 3 2 3 2 2 3
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Table 26.4
(Continued )

No.

Factor

1 2 3 4 5 6 7 8 9 10 11 12 13

33 3 2 2 2 1 2 1 1 3 1 3 3 3

34 1 3 1 2 3 2 3 1 2 2 3 1 3

35 2 1 2 3 1 3 1 2 3 3 1 2 3

36 3 2 3 1 2 1 2 3 1 1 2 3 3

error. However, if S for level 2 is small while S values for levels 1 and 3 are large,
the true value of the coefficient ai will lie close to level 2. In this case, by resetting
three levels in the proximity to level 2, we repeat the calculation. For practical
calculation, we determine new level values using level-by-level sums of S values in
Table 26.6 according to Table 26.7.

Now, for Ve shown in the determinant column of Table 26.7, we use error var-
iance obtained by the least squares method. Indeed, coefficients calculated by the
least squares method are unreliable; however, error variances can be considered
trustworthy. For the sake of convenience, we recommend using 3 as the F-test
criterion because a value of 2 to 4 has been regarded as the most appropriate in
our experience.

For instance, coefficient a1 has three levels 90, 120, and 150. Table 26.6 shows
the following:

9S(a ) � 0.39111173 � 1011

9S(a ) � 0.34771989 � 1012

9S(a ) � 0.36822313 � 1013

The fact that the value of S at level 1 is the largest and the value at level 2 is the
smallest indicates a V-shaped type (type V), in particular, pattern 3.

1 9 9––(1/r) (S � S ) (0.36822313 � 10 � 0.34771989 � 10 )3 2 12�
V 23,346.19e

� 87.8 � 3 (26.11)

In this equation, we set r to 12 because both S3 and S2 are sums of 12 data.
Accordingly, the new levels for coefficient a1 in the second round are estab-

lished in the proximity to level 2. By proceeding with this process, we obtain the
new level setting, as illustrated in Tables 26.7 and 26.8.

Selection of
Estimated Values

Based on the newly selected levels, we repeat the same calculation as in the first
round. In addition, after making the same judgment as that shown in Table 26.7,
for coefficients not converging sufficiently, we set up the three new levels and move
on to the third round. In this case, all coefficients have converged in the fifth
round, as summarized Table 26.9.
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Table 26.5
T and S in first round

No. Averaged T Variation S Combination

1 1,553.58140 36,740,548.5 1 1 1 1 1 1 1 1 1 1 1 1 1

2 143.581395 16,829,328.5 2 2 2 2 2 2 2 2 2 2 2 2 1

3 �1,266.41860 11,911,050.8 3 3 3 3 3 3 3 3 3 3 3 3 1

4 4,221.953488 10,251,155.9 1 1 1 1 2 2 2 2 3 3 3 3 1

5 �988.046512 81,015,535.9 2 2 2 2 3 3 3 3 1 1 1 1 1

6 996.837209 14,439,209.9 3 3 3 3 1 1 1 1 2 2 2 2 1

7 497.069767 18,175,430.8 1 1 2 3 1 2 3 3 1 2 2 3 1

8 �225.023256 45,653,675.0 2 2 3 1 2 3 1 1 2 3 3 1 1

9 158.697674 11,285,447.1 3 3 1 2 3 1 2 2 3 1 1 2 1

10 128.465116 46,156,958.7 1 1 3 2 1 3 2 3 2 1 3 2 1

11 512.186047 9,359,614.51 2 2 1 3 2 1 3 1 3 2 1 3 1

12 �209.906977 19,597,979.6 3 3 2 1 3 2 1 2 1 3 2 1 1

13 �232.930233 18,923,170.8 1 2 3 1 3 2 1 3 3 2 1 2 2

14 212.186047 45,252,574.5 2 3 1 2 1 3 2 1 1 3 2 3 2

15 451.488372 10,126,044.7 3 1 2 3 2 1 3 2 2 1 3 1 2

16 909.395349 13,132,844.3 1 2 3 2 1 1 3 2 3 3 2 1 2

17 231.255814 13,060,792.2 2 3 1 3 2 2 1 3 1 1 3 2 2

18 �709.906977 52,139,539.6 3 1 2 1 3 3 2 1 2 2 1 3 2

19 �692.00000 43,558,928.0 1 2 1 3 3 3 1 2 2 1 2 3 2

20 1,174.27907 16,310,512.7 2 3 2 1 1 1 2 3 3 2 3 1 2

21 �51.5348837 26,925,158.7 3 1 3 2 2 2 3 1 1 3 1 2 2

22 40.7906977 12,195,333.1 1 2 2 3 3 1 2 1 1 3 3 2 2

23 441.953488 31,986,195.9 2 3 3 1 1 2 3 2 2 1 1 3 2

24 �52.000000 27,263,368.0 3 1 1 2 2 3 1 3 3 2 2 1 2

25 �433.162791 71,126,909.9 1 3 2 1 2 3 3 1 3 1 2 2 3

26 209.395349 15,054,924.3 2 1 3 2 3 1 1 2 1 2 3 3 3

27 654.511628 13,870,504.7 3 2 1 3 1 2 2 3 2 3 1 1 3

28 717.534884 13,035,738.7 1 3 2 2 2 1 1 3 2 3 1 3 3

29 �508.279070 28,202,412.7 2 1 3 3 3 2 2 1 3 1 2 1 3

30 221.488372 48,144,624.7 3 2 1 1 1 3 3 2 1 2 3 2 3

31 �598.046512 78,524,235.9 1 3 3 3 2 3 2 2 1 2 1 1 3

32 254.511628 13,377,984.7 2 1 1 1 3 1 3 3 2 3 2 2 3
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Table 26.5
(Continued )

No. Averaged T Variation S Combination

33 774.279070 13,789,392.7 3 2 2 2 1 2 1 1 3 1 3 3 3

34 �438.976744 29,290,475.0 1 3 1 2 3 2 3 1 2 2 3 1 3

35 264.976744 31,616,335.0 2 1 2 3 1 3 1 2 3 3 1 2 3

36 604.744186 11,531,352.2 3 2 3 1 2 1 2 3 1 1 2 3 3

Table 26.6
Level-by-level sum of S valuesa

Coefficient Level 1 Level 2 Level 3

a1 0.39111173E � 09 0.34771989E � 09 0.36822313E � 09

a2 0.316029886E � 09 0.32800430E � 09 0.46302058E � 09

a3 0.30145602E � 09 0.35595808E � 09 0.44964065E � 09

a4 0.37578365E � 09 0.33903175E � 09 0.39223935E � 09

a5 0.32961513E � 09 0.33368737E � 09 0.44375224E � 09

a6 0.17658955E � 09 0.24090200E � 09 0.68956319E � 09

a7 0.29273406E � 09 0.34254936E � 09 0.47177133E � 09

a0.39111173E � 09 � 0.39111173 � 109.

As a reference, see Tables 26.10 and 26.11, showing averaged T and S values
and level-by-level sums of S�, respectively. When all coefficients are converged, we
can use any of the three levels. However, without any special reasons to select a
specific level, we should adopt level 2. Selecting level 2 for all of a1, a2, ... , a7, we
can express them as follows:

a � 127.5 � 7.5 minutes1

a � 30.0 � 15.0 minutes2

�

a � 15.0 � 5.0 minutes (26.12)7

In addition, the constant term a0 is calculated as

a � y � a x � a x � ��� � a x0 1 1 2 2 7 7

� 1591.26 � (127.5)(0.4183) � (30.0)(1.02) ��� � (15.0)(6.72)

� 573.52 (26.13)

This value is equal to the value of averaged T in row 2 of Table 26.10 because all
levels in the row are set to level 2.
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Table 26.7
New setting of levelsa

Plot of Variation S Determinant

New Level

1� 2� 3�

I (1/r)(S � S )3 1(1) � F
Ve

(1/r)(S � S )2 1(2) � F
Ve

(1/r)(S � S )2 1(3) � F
Ve

1

1

0.5
(1)

2

1.5

1
(1.5)

3

2

1.5
(2)

II (1/r)(S � S )3 2(1) � F
Ve

(1/r)(S � S )1 2(2) � F
Ve

(1/r)(S � S )1 2(3) � F
Ve

1

1

1.5

2

1.5

2

3

2

2.5

III

Omitted 1 2 3

IV

Omitted 1 2 3

V (1/r)(S � S )1 3(1) � F
Ve

(1/r)(S � S )1 2(2) � F
Ve

(1/r)(S � S )3 2(3) � F
Ve

1

2

1.5

2

2.5

2

3

3

2.5
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Table 26.7
(Continued )

Plot of Variation S Determinant

New Level

1� 2� 3�

VI (1/r)(S � S )1 3(1) � F
Ve

(1/r)(S � S )2 3(2) � F
Ve

(1/r)(S � S )2 3(3) � F
Ve

1

2

2.5
(2)

2

2.5

3
(2.5)

3

3

3.5
(3)

a r � N/3, where N is the size of an orthogonal array; Level 1.5 means to create an intermediate level between levels 1 and
2; values in parentheses are used when newly determined values exceed the initial variable range.

Table 26.8
Three levels for second round

Coefficient

Level

1 2 3

a1 105 120 135

a2 0 30 60

a3 0 15 30

a4 15 30 45

a5 0 5 10

a6 0 10 20

a7 0 10 20

Finally, we obtain the following regression equation:

y � 573.52 � 127.5x � 30.0x � ��� � 15.0x (S � 9279244.98) (26.14)1 2 7 e

At the same time, Se � 9279244.98 in (26.14) can be seen in variation S in row 2
of Table 26.10. Indeed, this value is somewhat larger than the variation of Se �
8171386.56 obtained by the least squares method; however, this can be regarded
as quite practical because the coefficients determined here do not involve any
contradiction.

The regression equation obtained here is normally utilized for data other than
those used for this regression equation: for example, for predicting future values
or making a decision for other groups. Then it is important to evaluate the mag-
nitude of errors by using different data. For instance, we can make the comparison
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Table 26.9
Three levels for fifth round

Coefficient

Level

1 2 3

a1 120.0 127.5 135.0

a2 15.0 30.0 45.0

a3 0.0 7.5 15.0

a4 30.0 37.5 45.0

a5 5.0 7.5 10.0

a6 10.0 12.5 15.0

a7 10.0 15.0 20.0

Table 26.10
T and S in fifth round

No. Averaged T Variation S Combination

1 864.976744 11,740,655.0 1 1 1 1 1 1 1 1 1 1 1 1 1

2 573.523256 9,279,244.98 2 2 2 2 2 2 2 2 2 2 2 2 1

3 282.069767 11,255,440.8 3 3 3 3 3 3 3 3 3 3 3 3 1

4 643.116279 9,535,102.42 1 1 1 1 2 2 2 2 3 3 3 3 1

5 351.662791 10,016,397.4 2 2 2 2 3 3 3 3 1 1 1 1 1

6 725.790698 9,962,633.12 3 3 3 3 1 1 1 1 2 2 2 2 1

7 661.895349 9,489,529.28 1 1 2 3 1 2 3 3 1 2 2 3 1

8 542.418605 9,702,168.47 2 2 3 1 2 3 1 1 2 3 3 1 1

9 516.255814 9,133,562.19 3 3 1 2 3 1 2 2 3 1 1 2 1

10 630.790698 9,877,123.12 1 1 3 2 1 3 2 3 2 1 3 2 1

11 604.627907 9,122,004.05 2 2 1 3 2 1 3 1 3 2 1 3 1
12 485.151163 9,326,132.77 3 3 2 1 3 2 1 2 1 3 2 1 1

13 479.395349 9,390,239.28 1 2 3 1 3 2 1 3 3 2 1 2 2

14 651.720930 9,654,002.65 2 3 1 2 1 3 2 1 1 3 2 3 2

15 589.453488 9,293,008.41 3 1 2 3 2 1 3 2 2 1 3 1 2

16 703.930233 9,779,070.79 1 2 3 2 1 1 3 2 3 3 2 1 2

17 595.441860 9,142,876.60 2 3 1 3 2 2 1 3 1 1 3 2 2

18 421.197674 9,549,964.57 3 1 2 1 3 3 2 1 2 2 1 3 2
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Table 26.10
(Continued )

No. Averaged T Variation S Combination

19 425.674419 9,087,415.44 1 2 1 3 3 3 1 2 2 1 2 3 2

20 770.151163 10,164,835.3 2 3 2 1 1 1 2 3 3 2 3 1 2

21 524.744186 9,579,907.19 3 1 3 2 2 2 3 1 1 3 1 2 2

22 486.779070 9,120,635.15 1 2 2 3 3 1 2 1 1 3 3 2 2

23 648.116279 10,081,987.4 2 3 3 1 1 2 3 2 2 1 1 3 2

24 585.674419 9,342,025.44 3 1 1 2 2 3 1 3 3 2 2 1 2

25 490.383721 9,972,519.92 1 3 2 1 2 3 3 1 3 1 2 2 3

26 528.930233 9,688,640.79 2 1 3 2 3 1 1 2 1 2 3 3 3

27 701.255814 9,511,572.19 3 2 1 3 1 2 2 3 2 3 1 1 3

28 655.965116 9,647,941.20 1 3 2 2 2 1 1 3 2 3 1 3 3

29 410.558140 9,381,541.60 2 1 3 3 3 2 2 1 3 1 2 1 3

30 654.046512 9,862,355.91 3 2 1 1 1 3 3 2 1 2 3 2 3

31 449.162791 10,108,859.9 1 3 3 3 2 3 2 2 1 2 1 1 3

32 540.209302 9,418,093.12 2 1 1 1 3 1 3 3 2 3 2 2 3

33 731.197674 9,944,122.07 3 2 2 2 1 2 1 1 3 1 3 3 3

34 427.883721 9,123,062.42 1 3 1 2 3 2 3 1 2 2 3 1 3

35 664.918605 9,628,645.97 2 1 2 3 1 3 1 2 3 3 1 2 3

36 627.767442 9,686,485.67 3 2 3 1 2 1 2 3 1 1 2 3 3

Table 26.11
Level-by-level sum of S values

Coefficient Level 1 Level 2 Level 3

a1 0.11687215E � 09 0.11528044E � 09 0.11644715E � 09

a2 0.11652424E � 09 0.11450165E � 09 0.11757385E � 09

a3 0.11467273E � 09 0.11543298E � 09 0.11849404E � 09

a4 0.11843048E � 09 0.11506510E � 09 0.11510416E � 09

a5 0.11969653E � 09 0.11441208E � 09 0.11449113E � 09

a6 0.11675750E � 09 0.11378532E � 09 0.11805692E � 09

a7 0.11660350E � 09 0.11500287E � 09 0.11699338E � 09
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Table 26.12
Comparison between least squares method and experimental regression analysis with different
business office dataa

No. x1 x2 x3 x4 x5 x6 x7 y
Least Squares

Method
Experimental
Regression

1 2 4 10 4 144 85 21 2980 596.37 651.02

2 0 0 4 10 120 28 5 2431 140.17 �127.48

3 0 2 2 4 42 19 1 1254 287.43 112.02

4 0 4 6 0 78 38 0 1815 19.38 �16.48

5 2 0 2 4 118 27 6 2452 �356.60 �145.98

6 0 0 4 4 56 14 5 1223 197.47 200.52

7 0 0 2 6 70 14 0 1234 441.32 279.52

Sum of squares of residual:
Variance:

819,226.319
117,032.331

592,554.321
84,650.617

aVariance � sum of square of residuals/7.

shown in Table 26.12. This table reveals that the mean sum of squares of deviations
between the estimation and actual value (variance) calculated based on the least
squares method is 1.38 times as large as that by the experimental regression anal-
ysis. This fact demonstrates that we cannot necessarily minimize the sum of squares
of residuals for different business office data, whereas we can do so for the data
to be used for coefficient estimation. This is considered to be caused the by un-
certainty of parameters estimated using the least squares method. Then if volume
of jobs such as x1 and x3 is increased in the future, the equation based on the least
squares method will lose its practicality.




