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35.1. Introduction

Earlier, reproducibility of conclusions was discussed, and it was recommended that
one use orthogonal arrays to check the existence of interactions, the cause of
nonreproducibility. Followings are examples of poor-quality characteristics that
cause interactions.

35.2. Quality Characteristics and Additivity [1]

Data Showing
Physical Condition

At the stage of selecting a characteristic, it must be considered whether that char-
acteristic is the most suitable one to use to achieve the purpose of the experiment.

A characteristic may not always exactly express the purpose itself. As an exam-
ple, let’s discuss an experiment for curing the physical condition of a patient. Since
the data showing physical condition is directly related to the purpose of the ex-
periment, a characteristic ‘‘condition’’ is selected. Another example of a charac-
teristic condition would be data recorded under categories such as ‘‘delicious’’ or
‘‘unsavory.’’

Assume that there are three types of medicines: A, B, and C. First, medicine A
was taken by the patient, then his or her physical condition became better. Such
data can be expressed as:
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A : Did not take A Bad condition1

A : Took A Slightly better condition2

Suppose that the results after taking medicines B and C were as follows:

B : Did not take B Bad condition1

B : Took B Better condition2

C : Did not take C Bad condition1

C : Took C Slightly better condition2

If, for the reason that the three medicines (A, B, and C) did the patient good,
and if the patient became much better after taking the three medicines together,
we say that there exists additivity in regard to the effects of the three medicines,
A, B, and C. However, if the patient became worse or died after taking the three
medicines together, we say that there is interaction (a large effect that reverses the
results) between A, B, and C.

When there is interaction, it is generally useless to carry out the investigations
in such a way that one factor (in this case, medicine) is introduced into the ex-
periment followed by another factor.

For example, suppose that a patient is suffering from diabetes, which is caused
by lack of insulin being produced by the pancreas. Also suppose that medicine A
contains 80%, B contains 100%, and C contains 150% of the amount of insulin
the patient requires. In this case, interaction does occur. Taking A, B, and C to-
gether would result in a 330% insulin content, which would definitely be fatal.

As far as physical condition is concerned, there is no additivity. But if the
amount of insulin is measured, it becomes possible to estimate the result of taking
A, B, and C together, but the combination can never be tested. If effect A is re-
versed by the other conditions, solely researching effect A would turn out to be
meaningless. Accordingly, we have to conduct the experiment in regard to all the
combinations of A, B, and C.

When there are three two-level factors, there are only eight combinations in
total; however, when there are 10 factors to be investigated, 1024 combinations
should be included in the experiment, which would be impossible.

If the amount of insulin is measured, there then exists additivity. That is, we
can predict that physical condition becomes worse when A, B, and C are taken
together. In other words, we do not need the data from all combinations. In this
way, even when there are 10 two-level factors, we can estimate the results for all
combinations by researching each individual factor, or by using orthogonal arrays
(described in other chapters) and then finishing the research work by conducting
only about 10 experiments.

‘‘Physical condition’’ is not really an efficient and scientific characteristic, but
‘‘quantity of insulin’’ is. Research efficiency tends to drop if we cannot find a
characteristic by which the results of the individual effect reappears or has consis-
tent effects, no matter how the other conditions, variables, or causes vary. It is
therefore most important from the viewpoint of research efficiency to find a char-
acteristic with the additivity of effects in its widest sense.
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Noise Level and
Additivity

To measure noise level, it is usual to measure the magnitude of noise for an audible
frequency range using ‘‘phon’’ or ‘‘decibel’’ as a unit. Generally, there are three
types of factors affecting noise. Of these types, additivity exists for the factors of
the following two types:

1. Factors that extinguish vibrating energy, the origin of noise.

2. Factors that do not affect vibrating energy itself, but convert the energy
caused by vibration into a certain type of energy, such as heat energy. That
is, the less vibrating source, the lower the noise level. Also, the more we
convert the energy that causes noise into other types of energy, the lower
the noise level.

The third type of factors imply:

3. Factors that change the frequency characteristics into frequency levels out-
side the audible range: for example, changing the shape or dimensions of
component parts, changing the gap between component parts, changing
surface conditions, or switching the relative positions of the various com-
ponent parts.

Suppose that the frequency characteristic of a certain noise is as shown in Fig-
ure 35.1. There is a large resonance frequency at 500 cycles. It forms half of the
total noise. There are two countermeasures, A and B, as follows:

1. Countermeasure A: converts resonance frequency from 500 cycles to 50,000
cycles. As a result, the noise level decreases by 50%.

2. Countermeasure B: converts resonance frequency from 500 cycles to 5 cycles.
As a result, again the noise level decreases by 50%.

If the two countermeasures were instituted at the same time, the noise level
might come back to the original magnitude.

Generally, most factors cited in noise research belong to the third type. If so,
it is useless to use noise level as a characteristic. Unless frequency characteristics
are researched with the conditions outside the audible range, it would turn out
to be inefficient; therefore, researching all combinations is required to find the
optimum condition.

In many cases, taking data such as the frequency of misoperation of a machine,
the rate of error in a communications system or in a calculator, or the magnitude
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Table 35.1
Particle size distribution

�15 15–50 �50

A1 60 40 0

A2 0 80 20

B1 60 40 0

B2 0 90 10

C1 60 40 0

C2 0 40 60

of electromagnetic waves when there are frequency changes does not make sense.
These errors are not only the function of the signal-to-noise (SN) ratio, but may
also be caused by the unbalance of a setting on the machine. In the majority of
these cases, it is advisable to calculate the SN ratio, or it is necessary to find another
method to analyze these data, which are called classified attributes.

Data Showing
Particle Size
Distribution

Next we discuss an experiment concerned with a crushing process.

❒ Example

The product becomes off grade when it is either too coarse or too fine; the fineness
within the range of 15 through 50 mesh is desirable, it being most desirable to
increase the yield. But additivity does not exist for yield or percentage in this case.
One would not use such a characteristic for the purpose of finding the optimum
condition efficiently.

Suppose that the present crushing condition is A1B1C1. The resulting yields after
changing A1 to A2, B1 to B2, and C1 to C2 are as follows:

A : 40% B : 40% C : 40%1 1 1

A : 80% B : 90% C : 40%2 2 2

The data signify that yield increases by 40% when crushing condition A changes
from A1 to A2; the yield also increases by 50% when B is changed from B1 to B2,

but yield does not change when C is changed from C1 to C2. Judging from these
data, the optimum condition is either A2B2C1 or A2B2C2.

The yield of any one of the optimum conditions is expected to the nearly 100%.
But if the crushing process is actually operated under condition A2B2C2, and if a
yield of less than 10% is obtained, the researcher would be puzzled. However, it
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is very possible to obtain such a result. This is easy to understand from the particle
distribution shown in Table 35.1.

At present operating conditions, a 40% low yield is obtained because the par-
ticles are too coarse. As to conditions C1 and C2, the percentage of particles in the
range 15 to 50 mesh is equal, but factor C exerts the largest influence on particle
distribution. Only by changing condition C from C1 to C2 do the particles become
much finer. Furthermore, adding the effects of A and B, the yield of condition
A2B2C2 tends to be very small. Yield is therefore not a good characteristic for finding
an optimum condition.

Even if the yield characteristic were used, the optimum condition could be ob-
tained if all of the combinations were included in the experiment. In this case, the
optimum condition is obtainable because there are only eight experiments (23 �
8). When there are only three two-level factors, the performance of eight experi-
ments is not impractical. But when these factors are three and four levels, the total
combinations increase to 27 and 64, respectively.

If there are 10 three-level factors, experiments with 59,049 combinations are
required. Assuming that the experiments performed are 10 combinations a day,
about 20 years would be required to test for all the combinations. Clearly, in order
to find an optimum condition by researching one factor after another, or researching
a few factors at one time, a characteristic must have additivity.

The example above is a case where yield becomes 100% when particle size is
in a certain range. In such a case, it is nonsense to take yield as data. In addition,
we need percentages of the coarser portions and the finer portions. If the three
portions are shown, it is clear that condition A2B2C2 is the worse condition without
conducting any experiment.

There is no additivity with the yield data within the range 15 to 50 mesh, but
there is additivity if the total (100%) is divided into three classes, called classified
variables.

When a physical condition is expressed as good, average, and bad, this type of
data would not be additive. The same holds true when yield is expressed as a
percentage.

The yield in the case of a reversible chemical reaction, or the yield of a reaction
that may be overreacted, would not be considered additive data. What type of
scientific field would exist where ‘‘condition’’ or ‘‘balance’’ is seriously discussed,
such as the color matching of dyes or paints, the condition of a machine or a
furnace, taste, flavor, or physical condition? In such fields, no one could be as
competent as an expert worker who has the experience of nearly all the combi-
nations. So far a characteristic with additivity has not been discovered; we can never
be out of the working level.

It is difficult in most cases to judge in a specialized technical field whether the
characteristic is additive. Accordingly, we need a way to judge whether or not we
are lost in a maze. Evaluation of experimental reliability is the evaluation of a
characteristic in regard to its additivity. The importance of experiments using or-
thogonal arrays lies in the feasibility of such evaluations.
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35.3. Orthogonal Array L18 [2]

In quality engineering, orthogonal arrays L12, L18, and L36 are generally used. L12

is used for two-level factors, L18 for three-level factors, and L36 for simulation. In
this discussion, L18 is used for simplifying the explanation.

❒ Example [1]

An early application of robust design involved the optimization of a tile manufac-
turing process in Japan in the 1950s. In 1953, a tile manufacturing experiment
was conducted by the Ina Seito Company. The flow of the manufacturing process
is as follows:

raw material preparation: crushing and mixing → molding → calcining

→ glazing → calcining

The molded tiles are stacked in the carts and move slowly in a tunnel kiln as
burners fire the tiles. The newly constructed kiln did not produce tiles with uniform
dimensions. More than 40% of the outside tiles were out of specification. The inside
tiles barely met the specification. It was obvious to the engineers at the plant that
one of the causes of dimensional variation was the uneven temperature distribution.

The traditional way of improving quality is to remove the cause of variation. In
this case it would mean redesigning the tunnel kiln to make temperature distribution
more uniform, which was impossible because it was too costly. Instead of removing
the cause of variation, the engineers decided to perform an experiment to find the
formula for the tile materials that would produce consistently uniform tiles, regard-
less of their positions within the kiln.

In the study, control factors were assigned to orthogonal arrays, and seven po-
sitions in the kiln were assigned to the outer array as noise factors. The interactions
between each control factor and the noise factors were studied to find the optimum
condition. Today, the SN ratio is used to substitute for the tedious calculation to
study the interactions between control and noise factors.

Following are the control factors and their levels:

A: amount of a certain material
A1 � 5.0%
A2 � 1.0% (current)

B: firmness of material
B1 � fine
B2 � (current)
B3 � coarse

C: amount of agalmatolite
C1 � less
C2 � (current)
C3 � new mix without additive
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D: type of agalmatolite
D1 � �0.0%
D2 � 1.0% (current)
D3 �

E: amount charged
E1 � smaller
E2 � current
E3 � larger

F: amount of returned material
F1 � less
F2 � medium (current)
F3 � more

G: amount of feldspar
G1 � 7%
G2 � 4% (current)
G3 � 0%

H: clay type
H1 � only K-type
H2 � half-and-half (current)
H3 � only G-type

These were assigned to an orthogonal array L18 as the inner array, and seven po-
sitions in the kiln were assigned to the outer array. Dimensions of tiles for each
combination between a control factor and the noise factor are shown in Table 35.2.

Data Analysis
As a quality characteristic, a nominal-the-best SN ratio is used for analysis. (For
the SN ratio, see later chapters.) For experiment 1:

2(10.18 � 10.18 � ��� � 10.20)
S � � 714.8782 (35.1)m 7

2 2 2S � 10.18 � 10.18 � ��� � 10.20 � 714.9236 (35.2)T

S � S � S � 714.9236 � 714.8782 � 0.0454 (35.3)e T m

S 0.0454eV � � � 0.00757 (35.4)e 7 � 1 6

(1/n)(S � V )m e
� � 10 log

Ve

7(714.8782 � 0.00757)
� 10 log

0.00757

� 41.31 dB (35.5)

The SN ratios of the other 17 runs are calculated similarly, as shown in Table 35.2.
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Table 35.2
Layout and results

L18

A
1

B
2

C
3

D
4

E
5

F
6

G
7

H
8 P1 P2 P3 P4 P5 P6 P7 Mean SN

1 1 1 1 1 1 1 1 1 10.18 10.18 10.12 10.06 10.02 9.98 10.20 10.11 41.31

2 1 1 2 2 2 2 2 2 10.03 10.01 9.98 9.96 9.91 9.89 10.12 9.99 42.19

3 1 1 3 3 3 3 3 3 9.81 9.78 9.74 9.74 9.71 9.68 9.87 9.76 43.65

4 1 2 1 1 2 2 3 3 10.09 10.08 10.07 9.99 9.92 9.88 10.14 10.02 40.36

5 1 2 2 2 3 3 1 1 10.06 10.05 10.05 9.89 9.85 9.78 10.12 9.97 37.74

6 1 2 3 3 1 1 2 2 10.20 10.19 10.18 10.17 10.14 10.13 10.22 10.18 50.03

7 1 3 1 2 1 3 2 3 9.91 9.88 9.88 9.84 9.82 9.80 9.93 9.87 46.34

8 1 3 2 3 2 1 3 1 10.32 10.28 10.25 10.20 10.18 10.18 10.36 10.25 43.21

9 1 3 3 1 3 2 1 2 10.04 10.02 10.01 9.98 9.95 9.89 10.11 10.00 43.13

10 2 1 1 3 3 2 2 1 10.00 9.98 9.93 9.80 9.77 9.70 10.15 9.90 35.99

11 2 1 2 1 1 3 3 2 9.97 9.97 9.91 9.88 9.87 9.85 10.05 9.93 42.88

12 2 1 3 2 2 1 1 3 10.06 9.94 9.90 9.88 9.80 9.72 10.12 9.92 37.05

13 2 2 1 2 3 1 3 2 10.15 10.08 10.04 9.98 9.91 9.90 10.22 10.04 38.46

14 2 2 2 3 1 2 1 3 9.91 9.87 9.86 9.87 9.85 9.80 10.02 9.88 43.15

15 2 2 3 1 2 3 2 1 10.02 10.00 9.95 9.92 9.78 9.71 10.06 9.92 37.70

16 2 3 1 3 2 3 1 2 10.08 10.00 9.99 9.95 9.92 9.85 10.14 9.99 40.23

17 2 3 2 1 3 1 2 3 10.07 10.02 9.89 9.89 9.85 9.76 10.19 9.95 36.60

18 2 3 3 2 1 2 3 1 10.10 10.08 10.05 9.99 9.97 9.95 10.12 10.04 43.48

Tables 35.3 and 35.4 show the response tables for the SN ratio and average.
Figure 35.2 shows the response graphs of SN the ratio and average. For example:

41.31 � 42.19 � ��� � 43.13
average SN ratio for A �1 9

� 43.10 (35.6)

35.99 � 42.88 � ��� � 43.48
average SN ratio for A �2 9

� 39.50 (35.7)

41.31 � 42.19 � ��� � 37.05
average SN ratio for B �1 6

� 40.51 (35.8)
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Table 35.3
Response table: SN ratio

Level A B C D E F G H

1 43.10 0.51 40.45 40.33 44.53 41.11 40.44 39.90

2 39.50 41.24 40.96 40.88 40.12 41.38 41.47 42.82

3 42.16 42.51 42.71 39.26 41.42 42.00 41.19

� 3.60 1.65 2.06 2.38 5.27 0.31 1.57 2.92

Ranking 2 6 5 4 1 8 7 3

Table 35.4
Response table: Mean

Level A B C D E F G H

1 10.02 9.93 9.99 9.99 10.00 10.07 9.98 10.03

2 9.95 10.00 10.00 9.97 10.02 9.97 9.97 10.02

3 10.02 9.97 9.99 9.94 9.91 10.01 9.90

� 0.06 0.08 0.03 0.02 0.08 0.17 0.04 0.13

Ranking 5 3 7 8 3 1 6 2

Optimization
The first thing in parameter design is to reduce variability or maximize the SN ratio.
Select the optimum combination from the SN ratio response table as
A1B3C3D3E1F3G3H2. Factors A, C, D, E, and H had a relatively strong impact on
variability, whereas B, F, and G had a relatively weak impact. Therefore, A1, C3,
E1, and H2 are definitely selected.

The second step is to adjust the mean. Adjusting the mean is easy by adjusting
the dimension of the mold. In general, look for a control factor with a large impact
on the mean and a minimum impact on variability.

Estimation and Confirmation
It is important to check the validity of experiments or the reproducibility of results.
To do so, the SN ratios of the optimum conditions and initial condition are estimated
using the additivity of factorial effects. Their difference, called gain, is then com-
pared with the one calculated from the confirmatory experiments under optimum
and initial conditions.

Additivity of factorial effects is simply the sum of the gains from the control
factors. Every factorial effect may be used (added) to estimate the SN ratios of the
optimum and initial conditions. But it is recommended that one exclude weak fac-
torial effects from the prediction to avoid overestimates. In this example, factors B,
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A1 A2 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3 G1 G2 G3 H1 H2 H3

A1 A2 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3 G1 G2 G3 H1 H2 H3

Figure 35.2
Response graphs

F, and G are excluded from the predictions. The SN ratios under the optimum and
initial conditions, denoted by �opt and �initial, respectively, are predicted by

� � T � (A � T) � (C � T) � (D � T) � (E � T) � (H � T)opt 1 3 3 1 2

� A � C � D � E � H � 4T1 3 3 1 2

� 43.10 � 42.51 � 42.71 � 44.53 � 42.82 � (4)(41.30)

� 50.47 dB (35.9)

� � T � (A � T) � (C � T) � (D � T) � (E � T) � (H � T)initial 2 2 2 2 2

� A � C � D � E � H � 4T2 2 2 2 2

� 39.50 � 40.96 � 40.88 � 40.12 � 42.82 � (4)(41.30)

� 39.08 dB (35.10)

gain predicted � 50.47 � 39.08 � 11.39 dB (35.11)
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Confirmatory experiments are conducted under the optimum and initial condi-
tions. From these results, two SN ratios are calculated. Their difference is the gain
confirmed. When the gain from prediction is close enough to the gain from the
confirmatory experiments, it indicates there is additivity and that the conclusions
are probably reproducible.

35.4. Role of Orthogonal Arrays

To estimate the eight factorial effects A, B, ... , H, it is not necessary to carry out
the experiment by orthogonal arrays as shown in Section 35.3. Traditionally, one-
factor-at-a-time experiments have been conducted. In this method, the condition
of one factor is varied each time by fixing all conditions of other factors. Such an
experiment is much easier to do than the experiments arranged by orthogonal
arrays.

In the one-factor-by-one method, levels A1 and A2 are compared while other
factors, B, C, ... , H, are fixed (to the first level, B1C1D1E1F1G1H1). Generally speak-
ing, the difference between A1 and A2 can be obtained very precisely by using this
method. In orthogonal arrays, on the contrary, the average effect of A1 and A2 (or
main effect A) is obtained by varying the levels of other factors. That means to
calculate the average of A1 from the data of the four experiments (No. 1, 2, to 9)
and the average of A2 from No. 10, 11, to 18. But using such a layout is very time
consuming, since the conditions of many factors must be varied for each experi-
ment; also, the data variation between experiments generally becomes larger com-
pared with experiments by the one-factor-by-one method.

One way to look at it is that the comparison between single experimental figures
in the one-factor-by-one method is less precise than the comparison between the
average of four figures from the experiments that used orthogonal arrays. How-
ever, this advantage in orthogonal array design might be offset by the disadvantage
caused by the tendency for increased variation when the levels of many factors
vary from experiment to experiment. As a result, there is no guarantee of obtain-
ing better precision. What, then, is the merit of recommending such time-
consuming experiments as orthogonal arrays?

They are stressed because of the high reproducibility of factorial effects. In
experiments with orthogonal arrays, the difference of the two levels, A1 and A2, is
determined as the average effect, while the conditions of other factors vary.

If the influence of A1 and A2 on the experimental results is consistent while the
conditions of other factors vary, the effect obtained from the experiments on or-
thogonal arrays tends to be significant. On the other hand, if the difference be-
tween A1 and A2 either reverses or varies greatly once the levels of other factors
change, effect A tends to be insignificant.

If orthogonal arrays are used, a factor having a consistent effect, with other
factors varying under different conditions, can be estimated. This means that a
large factorial effect (or the order of the preferable levels) obtained from orthog-
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onal arrays does not vary if there are some variations in the levels of other factors.
The reliability of such factorial effects is therefore very good.

In experiments using the one-factor-by-one method, on the other hand, the
difference between A1 and A2 is estimated under a certain constant condition of
the other factors. No matter how precisely such an effect is estimated and how
neatly the curve is plotted, the effect is correct only for the case where the levels
of other factors are exactly identical to the condition that was fixed at the time of
the experiment; there is no guarantee at all of obtaining a consistent factorial
effect if other factorial conditions change. Accordingly, it is doubtful whether the
results obtained from the experimental data of the one-factor-by-one method will
be consistent if the researcher changes or if the raw material changes.

It is said that since orthogonal arrays have been used in experiments, the results
of small-scale laboratory experiments have become adopted satisfactorily to actual
manufacturing. That is, a factor with a consistent effect under the various condi-
tions of other factors has a good possibility of reproducing its effect at a manufac-
turing scale.

The reason for using orthogonal arrays is not to reduce cost by improving the
efficiency of experimentation. When orthogonal arrays such as L12, L18 and L36 are
used, the interactions between control factors are almost evenly distributed to
other columns of the orthogonal arrays and confounded to various main effects.
If the interactions between control factors are significant, the gain predicted under
the optimum condition from the initial condition will become significantly differ-
ent from the gain from confirmatory experiments.

Using the one-factor-at-a-time method, where all other factor levels are fixed,
it is not certain that an effect will be consistent. In other words, the main effect
may be different if the conditions of other factors change. So this method is good
only when there are no interactions between control factors.

The method of assigning main factors only to an orthogonal array will be suc-
cessful when there are no interactions. The chance of success is the same as the
case of using the one-factor-at-a-time method. Then why is are orthogonal arrays
used? It is to check the reproducibility of conclusions by conducting confirmatory
experiments. Thus, the success or failure will be clear. If the gain predicted did
not agree with the confirmed gain, it tells us that the experiment has failed and
the optimum condition was not found.

It is the same as inspection. When a product passes an inspection, the inspec-
tion was wasted. Inspection has a value only when a defective is found. The defec-
tive product is either scrapped or repaired to prevent problems in the marketplace.

Similarly, an experiment using an orthogonal array is used to inspect a bad
experiment. It is to prevent a wrongly designed product from being shipped to
the market and causing problems. Therefore, when the gain predicted is repro-
duced in confirmatory experiments, the use of orthogonal arrays is wasted. The
use of using orthogonal arrays is advantageous only when a gain was not
reproduced.

To be successful in a study, it is necessary to find a quality characteristic with
small interactions between control factors. It is believed in quality engineering that
the dynamic SN ratio is based on the functionality of a product or a system. It is
also believed that reproducibility using a dynamic SN ratio based on the generic
function is superior to use of a nondynamic SN ratio.
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35.5. Types of Orthogonal Arrays

There are many orthogonal arrays. L4(23), L8(27), L12(211), L16(215), or L32(231)
belong to two-level series; L9(34), L27(313), or L81(340) are three-level series; and
L18(2 � 37) or L36(23 � 313) are mixed-level arrays. In quality engineering, it is
recommended that one use arrays such as L12, L18, and L36 because the interactions
are almost evenly distributed to other columns, and there is no worry that an
interaction confounds to a specific column or columns, thus leading to confusion.
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