
Appendix B

THE SMITH CHART

The Smith chart is a graphicalmeans to simultaneously visualize the reflection coefficient
and impedance of a certain load (i.e., a lumped element, a terminated transmission line, or
even a complex one-port system). It is very useful for the analysis and synthesis of cir-
cuits based on transmission lines and stubs, and most microwave commercial CAD tools
and test equipment allow for the visualization of simulation andmeasurement results on a
Smith chart. The Smith chart (see Fig. B.1) is essentially the representation of the reflec-
tion coefficient in polar coordinates, ρ = |ρ|e jθ, where −π ≤ θ ≤ π, and the origin of θ is the
right-hand side of the horizontal axis. For any passive load (|ρ| ≤ 1), the reflection coef-
ficient is given by a single point within the circle of unit radius, which is the considered
region for the representation of the reflection coefficient in the chart.

However, the main relevant use of the Smith chart is the direct conversion from
reflection coefficients to normalized impedances, or admittances, and vice versa.
Let us consider for the moment the conversion to normalized impedances, defined
by the quotient between a given impedance Z and a reference impedance Zo, which
is typically the characteristic impedance of a transmission line:

Z =
Z

Zo
B 1

Considering Z the load impedance of a transmission line, the reflection coefficient can
be expressed as follows:

ρ=
Z−1
Z + 1

B 2
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and there is a univocal correspondence between ρ and Z. From B.2, the normalized
impedance can be isolated and expressed as follows:

Z =
1+ ρ
1−ρ

B 3

or

R + jχ =
1 + ρr + jρi
1−ρr− jρi

B 4

FIGURE B.1 Smith chart.
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where Z and ρ have been decomposed into the real and imaginary parts. In the pre-
vious complex equation, both the real and the imaginary parts must be equal.
This gives

ρr−
R

1 +R

2

+ ρ2i =
1

1 +R

2

B 5a

ρr−1
2 + ρi−

1
χ

2

=
1
χ

2

B 5b

Considering R constant, (B.5a) is the equation of a circumference in the ρr–ρi plane.
Thus, (B.5a) is a family of circumferences parameterized by R, and each circumfer-
ence has its center in the ρi = 0 axis. These circumferences, all contained within the
Smith chart, are called constant resistance circumferences, and the value of R is indi-
cated in the horizontal axis of the Smith chart. Notice that the R = 0 circumference
coincides with the unit radius circumference, as one expects for a purely reactive load,
where |ρ| = 1. As R increases, the radius of the constant resistance circumferences
decrease, and the circumference degenerates in a single point ρr = 1, ρi = 0 (or |ρ| = 1,
θ = 0) for R ∞.

By contrast, (B.5b) is the equation of a family of circumferences parameterized by
the normalized reactance (constant reactance circumferences). However, for any con-
stant reactance circumference, only a portion of it lies within the Smith chart (the cen-
ters of these circumferences lie in the vertical line ρr = 1 of the chart). For increasing
values of χ, the radius of the reactance circumferences decreases and ρr = 1, ρi = 0 for
χ ∞. For χ = 0, the constant reactance curve degenerates in the straight line ρi = 0,
as expected on account of the real reflection coefficient for a purely resistive load.
The normalized reactance values that label the different reactance circumferences
are indicated in the Smith chart (along the whole external circumference).

Notice that the constant resistance and reactance circumferences are orthogonal.
Some relevant curves and normalized impedances are indicated in the Smith chart
of Figure B.2.

Given a reflection coefficient, represented by a unique point in the Smith chart, the
normalized impedance can be immediately visualized by directly reading in the chart.
The Smith chart has many applications, but one relevant use of the Smith chart con-
cerns the graphical solution of the input impedance, Zin, of a terminated transmission
line (expression 1.31). Since the reflection coefficient at the input of the terminated
line is given by (1.27), it is clear that increasing the line length is equivalent to a clock-
wise rotation of an angle θ = 2βl (l being the line length) from the point of the load (ρL)
with center on the center of the Smith chart. Notice that for a λ/2 line, θ = 2π, corre-
sponding to a complete rotation and Zin = ZL (the input impedance does not experience
any change for transmission line lengths that are multiple of half wavelength). To
facilitate the solution of this type of transmission line problems, the Smith chart
has scales around its periphery calibrated in terms of the wavelength toward (clock-
wise) or away from (counterclockwise) the generator. Figure B.3 plots the location of
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Zin = 0.5 Zin = 2

(l = λ/4) (l = 0)

FIGURE B.3 Location of the reflection coefficient of the indicated terminated line for line
length increasing from 0 to λ/4. Notice that the left extreme of the plot gives the normalized
admittance of the load (Y = 0 5), which coincides with the normalized input impedance of
the line.
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FIGURE B.2 Some relevant constant resistance/reactance curves and normalized
impedances plotted in the Smith chart. The constant resistance circumference that crosses
the center of the Smith chart (Re(Z) = 1) is called unit resistance circumference.
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the reflection coefficient at the input port of a transmission line terminated with a
purely resistive load (Z = 2) when the line length is increased from l = 0 to l = λ/4.

Following a similar procedure, a Smith chart for the normalized admittance can be
constructed. However, the normalized admittance of a given load can be directly
visualized in the impedance Smith chart. The reason is that the normalized input
impedance of a λ/4 terminated line (impedance inverter) is

Zin =
1

ZL
B 6

which is the normalized admittance of the load. Since a λ/4 transformation is equiv-
alent to a 180 rotation in the Smith chart, the normalized admittance of the load can
be simply inferred by imaging the impedance point across the center of the Smith
chart. Thus, the impedance Smith chart can be used to deal with normalized impe-
dances or admittances, indistinctly. Figure B.3, indicates that the normalized admit-
tance of the load considered in the example is Y = 0 5.

Since the reflection coefficient of a matched load is null, that is, it is located in the
centre of the Smith chart, the Smith chart is a useful tool to evaluate the level of
matching of a given load and its dependence with frequency (strong deviations from
the center of the chart indicate significant mismatch). In reactive loads, departure
from the zero-resistance circumference must be attributed to the presence of a non-
negligible-resistive component in the load impedance, and gives an indication of
the deviation from the purely reactive nature of the load.

To finalize this appendix, let us consider an illustrative example to show how the
Smith chart can be used to obtain information on reactive two-port circuits loaded with
resistive impedances. Let us consider the lumped-element circuit of Figure B.4a (this
circuit describes the unit cell of a particular type of artificial transmission line, as dis-
cussed in Chapter 3), and let us assume that the series inductance L and the elements of
the shunt branch (C, Cc, and Lc) are unknown. Let us represent the dependence of the
input impedance (or reflection coefficient) with frequency in the Smith chart, consid-
ering that the output port is loaded with the reference impedance Zo (Fig. B.4b). There
are two singular frequencies in the circuit: (1) the resonance frequency of the Lc–Cc

tank, fo and (2) the frequency that nulls the shunt reactance, fz. At fz, given by

fz =
1

2π Lc C +Cc

B 7

the impedance seen from the input port is simply jωL since the shunt branch is
short-circuited to ground. This means that the input impedance must be tangent to
the zero-resistance circle of the Smith chart at fz. Thus, from the value of the reactance
at this point, the inductance L can be inferred, and from the value of fz, a condition for
the parameters of the shunt branch is inferred. A second condition comes from fo,

fo =
1

2π LcCc
B 8
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This frequency can be easily identified because at this frequency the shunt branch
opens and the normalized input impedance can be expressed as Zin = 1 + jχ. In other
words, fo is that frequency where the input impedance crosses the so-called unit resist-
ance circumference, and the second condition is given by expression (B.8). To univ-
ocally determine the parameters of the shunt branch an additional condition is
necessary, for instance, the reactance value at a given frequency. However, a more
elegant procedure to extract the parameters of structures described by this and other
similar circuits is detailed in Appendix G.

L L

Cc

C

Lc

(a) (b)

M1

0.1 GHz 5.0 GHz

0.2

–0.2

–0
.5

–1
.0

–2
.0

–5.0

0.5

1.
0

2.
0

5.0

10

20

202.
0

1.
0

0.
5

105.
0

–20

–10

M2

FIGURE B.4 Lumped-element-reactive two-port network (a), and its reflection coefficient
considering that the output port is terminated with the reference impedance Zo (b). The
relevant frequencies are fo = 3.56 GHz (M2) and fz = 3 GHz (M1). The normalized
impedance at fz is Z = j0 946, giving a value for the series inductance of L = 2.5 nH. The
other element values are C = 0.8 pF, Cc = 2 pF, and Lc = 1 nH. The frequency swept covers
the range 0.1–5.0 GHz.
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