Appendix F

AVERAGING THE EFFECTIVE DIELECTRIC CONSTANT IN EBG-BASED TRANSMISSION LINES ${ }^{1}$

The approximate analytical solutions of the coupled mode equations given in Section 2.4.3 have been obtained by neglecting the dependence on z of the phase constant, β, or the effective dielectric constant, $\varepsilon_{\text {re }}$ (these parameters are related by 2.49). However, it is possible to improve the accuracy of the solutions by considering the z-dependence of β. To this end, let us introduce a new spatial variable, ζ, defined as follows:

$$
\begin{equation*}
\zeta(z)=\int_{0}^{z} \sqrt{\varepsilon_{\mathrm{re}}\left(z^{\prime}\right)} \cdot d z^{\prime} \tag{F.1}
\end{equation*}
$$

in the first of the coupled-mode equations (2.47a). With this new variable, (2.47a) can be written as follows:

$$
\begin{equation*}
\frac{d a^{+}}{d \zeta} \frac{d \zeta}{d z}+j \beta_{\mathrm{o}} \frac{d \zeta}{d z} \cdot a^{+}=K(\zeta) \frac{d \zeta}{d z} \cdot a^{-} \tag{F.2}
\end{equation*}
$$

where $\beta_{\mathrm{o}}=\omega / c$ and

$$
\begin{equation*}
\frac{d \zeta(z)}{d z}=\sqrt{\varepsilon_{\mathrm{re}}} \tag{F.3}
\end{equation*}
$$

[^0][^1]as results by differentiating (F.1). The coupling coefficient in terms of this new variable is simply
\[

$$
\begin{equation*}
K(z)=-\frac{1}{2 Z_{\mathrm{o}}} \frac{d Z_{\mathrm{o}}}{d \zeta} \frac{d \zeta}{d z}=K(\zeta) \frac{d \zeta}{d z} \tag{F.4}
\end{equation*}
$$

\]

The derivative of ζ with respect to z can be eliminated in (F.2), and the resulting equation is

$$
\begin{equation*}
\frac{d a^{+}}{d \zeta}+j \beta_{\mathrm{o}} a^{+}=K(\zeta) a^{-} \tag{F.5a}
\end{equation*}
$$

Similarly, the second coupled mode equation (2.47b) can be expressed in terms of ζ as follows:

$$
\begin{equation*}
\frac{d a^{-}}{d \zeta}-j \beta_{\mathrm{o}} a^{-}=K(\zeta) a^{+} \tag{F.5b}
\end{equation*}
$$

Notice that Equations F. 5 are formally identical to Equations 2.47 if β is considered to be constant. Since this approximation (i.e., $\beta \neq \beta(z)$) has been used in order to obtain analytical solutions of the coupled-mode equations, it follows that the solutions of (F.5) must be the same (provided β_{o} is constant), simply replacing z with ζ. In particular, the frequency of maximum reflectivity, corresponding to $\Delta \beta=0$, can be inferred from

$$
\begin{equation*}
\beta_{0, \max }=\frac{n \pi}{\zeta(z=l)} \tag{F.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{2 \pi f_{\max }}{c}=\frac{n \pi}{\int_{0}^{l} \sqrt{\varepsilon_{\mathrm{re}}\left(z^{\prime}\right)} \cdot d z^{\prime}} \tag{F.7}
\end{equation*}
$$

Comparing (F.7) and (2.84), the averaging value of (2.57) is justified.

[^0]: ${ }^{1}$ This appendix has been co-authored with Txema Lopetegi (Public University of Navarre, Spain).

[^1]: Artificial Transmission Lines for RF and Microwave Applications, First Edition. Ferran Martín. © 2015 John Wiley \& Sons, Inc. Published 2015 by John Wiley \& Sons, Inc.

