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FUNDAMENTALS OF PLANAR
TRANSMISSION LINES

1.1 PLANAR TRANSMISSION LINES, DISTRIBUTED CIRCUITS,
AND ARTIFICIAL TRANSMISSION LINES

In radiofrequency (RF) and microwave engineering, transmission lines are two-
port networks used to transmit signals, or power, between two distant points
(the source and the load) in a guided (in contrast to radiated) way. There are
many types of transmission lines. Probably, the most well-known transmission
line (at least for nonspecialists in RF and microwave engineering) is the coaxial
line (Fig. 1.1), which consists of a pair of concentric conductors separated by a
dielectric, and is typically used to feed RF/microwave components and to connect
them to characterization and test equipment. Other planar transmission lines are
depicted in Figure 1.2. There are many textbooks partially or entirely focused
on transmission lines and their RF and microwave applications [1–8]. The author
recommends these books to those readers interested in the topic of the present
book (artificial transmission lines), which are not familiar with conventional
(or ordinary) transmission lines. Nevertheless, the fundamentals of planar trans-
mission lines are considered in this chapter for completeness and for better com-
prehension of the following chapters. As long as waveguides (and even optical
fibers) do also carry electromagnetic (EM) waves and EM energy between two
points, they can also be considered transmission lines. However, this book is
entirely devoted to planar structures; and for this reason, waveguides are out
of the scope of this chapter.
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Obviously, there are not transmission lines in natural form.1 Transmission lines
must be fabricated in order to satisfy certain requirements or specifications; in this
sense, they are actually artificial (i.e., man-made) structures. However, the term arti-
ficial transmission line is restricted to a specific type of transmission lines, to distin-
guish them from the conventional ones.2 Before discussing the definition and scope of
the term artificial transmission line, let us now point out the different approaches for
the study of planar (conventional) transmission lines. If the physical length of the
transmission line is much smaller than the wavelength of the transmitted signals,
the voltages and currents in the line are uniform, that is, they do not depend on the
position in the line.3 Under these conditions, the voltages and currents are dictated
by the Kirchhoff’s current and voltage laws and by the terminal equations of the
lumped elements present at the input and output ports of the line, or at any position
in the line. This is the so-called lumped element approach, which is generally valid up
to about 100MHz, or even further for planar structures (or circuits) including trans-
mission lines not exceeding the typical sizes of printed circuit boards or PCBs (i.e.,
various centimeters). At higher frequencies, typically above 1 GHz, the finite propa-
gation velocity of the transmitted signals (of the order of the speed of light) gives rise
to variations of voltage and current along the lines, and the lumped circuit approach is
no longer valid. At this regime, transmission lines can be analyzed by means of field
theory, fromMaxwell’s equations. However, most planar transmission lines can alter-
natively be studied and described by means of an intermediate approach between
lumped circuits and field equations: the distributed circuit approach. Indeed, for

εr2a2b

FIGURE 1.1 Perspective three-dimensional view of a coaxial transmission line. The relevant
geometry parameters of the line are indicated, and εr is the relative permittivity (or dielectric
constant) of the dielectric material.

1 Exceptions to this are, for instance, the axons, which transmit nerve signals in brain neurons.
2 Conventional (or ordinary) transmission lines are uniform along the propagation direction (see Fig. 1.2).
3 Strictly speaking, this is true if losses are negligible. The effects of losses in transmission lines will be
discussed later in detail.
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FIGURE 1.2 Perspective three-dimensional view of the indicated planar transmission lines,
and relevant geometry parameters. These transmission lines are used for the implementation of
distributed circuits, where the shape and transverse dimensions (W, S, G) of the line (or set of
lines and stubs) are determined in order to obtain the required line functionality.
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transverse electric and magnetic (TEM),4 or quasi-TEM, wave propagation in planar
transmission lines (i.e., the fundamental modes), there is a link between the results
inferred from the distributed analysis and field theory. Nevertheless, this connection
is discussed and treated in Appendix A, since it is not necessary to understand the
contents of the present and the next chapters.

The most intriguing aspect of transmission lines operating at microwave frequen-
cies and beyond is the fact that such lines can replace lumped elements, such as
capacitances and inductances, in planar circuits, thus avoiding the use of lumped
components which increase cost and circuit complexity. Hence, in RF and microwave
engineering, transmission lines are not only of interest for signal or power transmis-
sion, but they are also key elements for microwave device and component design
on the basis of the distributed approach. Thus, the constituent building blocks of dis-
tributed circuits are transmission lines and stubs,5 which are implemented by simply
etching metallic patterns on a microwave substrate (such patterns define a set of trans-
mission lines and stubs providing certain functionality).

Distributed circuits are typically low cost since they are implemented in planar
technology. However, the design flexibility, performance, or functionality of planar
microwave circuits can be enhanced (and/or their dimensions can be reduced) by
loading the lines with reactive elements (not necessarily planar),6 or by breaking
the uniformity of the lines in the direction of propagation, or by considering specific
arrangements able to provide certain advantages as compared to ordinary lines. In the
context of this book, the term artificial transmission line is used to designate these
lines with superior characteristics, and to distinguish them from their conventional
counterparts (ordinary lines). Hence, notice that the term artificial transmission line
is not only restricted to designate artificial structures mimicking the behavior of ordi-
nary lines (e.g., an LC ladder network or a capacitively loaded line acting as a slow
wave transmission line).7 In this book, the definition of artificial transmission line is

4 Transmission lines supporting TEMmodes require at least two conductors separated by a uniform (homo-
geneous) dielectric, and the electric and magnetic field lines must be entirely contained in such dielectric. In
such modes, the electric and magnetic field components in the direction of propagation are null. A coaxial
line is an example of transmission line that supports TEM modes. Microstrip and CPW transmission lines
(see Fig. 1.2) are nonhomogeneous open lines, and hence do not support pure TEM modes, but quasi-
TEM modes.
5 Stubs are short- or open-circuit transmission line sections, shunt or series connected to another transmis-
sion line, intended to produce a pure reactance at the attachment point, for the frequency of interest.
6 Notice that this loading refers to line loading along its length, not at the output port (as considered in
Section 1.3 in reference to ordinary lines). A line with a load at its output port is usually referred to as
terminated line.
7 Artificial lines that mimic the behavior of ordinary lines are sometimes referred to as synthetic lines.
Synthetic lines can be implemented by means of lumped, semilumped, and/or distributed components
(combination of transmission lines and stubs). Synthetic lines purely based on the distributed approach
(e.g., stub-loaded lines) are out of the scope of this book since they are indeed implemented by combining
ordinary lines. Other artificial lines that can be considered to belong to the category of synthetic lines (e.g.,
capacitively loaded lines) are included in this book; but obviously, it is not possible to include all the reali-
zations of synthetic lines reported in the literature. Artificial lines able to provide further functionalities than
ordinary lines (e.g., metamaterial transmission lines with multiband functionality) are not considered to be
synthetic transmission lines.
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very broad and roughly covers all those lines that cannot be considered ordinary lines.
Nevertheless, in many applications of artificial transmission lines, these lines simply
replace ordinary lines, and the design approach of microwave circuits based on such
artificial lines is similar to the one for ordinary lines, based on the control of the main
line parameters. Therefore, in the next subsections, we will focus the attention on the
study and analysis of ordinary lines, including the main transmission line parameters,
reflections at the source and load (mismatching), losses in transmission lines, a com-
parative analysis of the most used planar transmission lines, and examples of applica-
tions. Most of these contents will be useful in the following chapters. Other useful
contents for this chapter and chapters that follow (and in general for RF/microwave
engineering), such as the Smith Chart and the scattering S-matrix, are included for
completeness in Appendix B and C, respectively.

1.2 DISTRIBUTED CIRCUIT ANALYSIS AND MAIN TRANSMISSION
LINE PARAMETERS

Planar transmission lines can be described by cascading the lumped element two-port
network unit cell depicted in Figure 1.3, corresponding to an infinitesimal piece of
the transmission line of length Δz, and C , L , R , and G are the line capacitance, line
inductance, line resistance, and line conductance per unit length, respectively. R is
related to conductor losses, whereas G accounts for dielectric losses. From Kirchh-
off’s circuit laws applied to the network of Figure 1.3, the following equations are
obtained:

v z, t −R Δz i z, t −L Δz
∂i z, t
∂t

−v z +Δz, t = 0 1 1a

i z, t −G Δz v z+Δz, t −C Δz
∂v z+Δz, t

∂t
− i z+Δz, t = 0 1 1b

C′Δz

L′Δz

Δz

R′Δz

G′Δz

+

–

v(z,t)
+

–

v(z+Δz,t)

i(z+Δz,t)i(z,t)

FIGURE 1.3 Lumped element equivalent circuit model (unit cell) of an ordinary
transmission line.
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By dividing these equations by Δz, and taking the limit as Δz 0, it follows:

∂v z, t
∂z

= −R i z, t −L
∂i z, t
∂t

1 2a

∂i z, t
∂z

= −G v z, t −C
∂v z, t
∂t

1 2b

Equations 1.2 are known as the telegrapher equations. If we now consider sinusoidal
steady-state conditions (i.e., v(z, t) = V(z) ejωt and i(z, t) = I(z) ejωt), the time variable in
the previous equations can be ignored:

dV z

dz
= − R + jωL I z 1 3a

dI z

dz
= − G + jωC V z 1 3b

and the well-known wave equations result

d2V z

dz2
−γ2V z = 0 1 4a

d2I z

dz2
−γ2I z = 0 1 4b

where γ = α + jβ is the complex propagation constant, given by

γ = R + jωL G + jωC 1 5

and α and β are the attenuation constant and the phase constant, respectively. Notice
that if conductor and dielectric losses can be neglected (R =G = 0), α = 0, and the
phase constant is proportional to the angular frequency and given by

β =ω L C 1 6

The general solutions of the wave equations are traveling waves of the form:

V z =V +
o e

−γz +V −
o e

γz 1 7a

I z = I +o e
−γz + I −o e

γz 1 7b

where the first and second terms correspond to wave propagation in +z and –z direc-
tions, respectively. By combining (1.3) and (1.7), it follows that the relation between
voltage and current for the traveling waves, also known as the characteristic imped-
ance, is given by
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Zo =
V +
o

I +o
=
−V −

o

I −o
=

R + jωL
G + jωC

1 8

For lossless lines, the voltage and current in the line are in phase, and the characteristic
impedance is a real number:

Zo =
L

C
1 9

Although losses may limit the performance of distributed microwave circuits, losses
are usually neglected for design purposes, and the propagation constant and charac-
teristic impedance are approximated by (1.6) and (1.9), respectively. According to
(1.6), the dispersion relation β−ω is linear. The phase velocity, vp, and the group
velocity, vg, are thus identical and given by

vp =
ω

β
=

1

L C
1 10

vg =
dβ

dω

−1

=
1

L C
1 11

and the wavelength in the line is given by:

λ=
2πvp
ω

=
2π
β

=
2π

ω L C
1 12

That is, it is inversely proportional to frequency.8 Sometimes, the length of a trans-
mission line (for a certain frequency) is given in terms of the wavelength, or expressed
as electrical length, ϕ = βl, where l is the physical length of the line, and ϕ is an angle
indicating whether distributed effects should be taken into account or not (as a first-
order approximation, distributed effects are typically neglected if ϕ < π/4). In many
distributed circuits, transmission lines and stubs are λ/4 or λ/2 long at the operating
frequency, corresponding to electrical lengths of ϕ = π/2 and ϕ = π, respectively.

For plane waves in source-free, linear, isotropic, homogeneous, and lossless dielec-
trics, the wave impedance, defined as the ratio between the electric and magnetic
fields, and the phase velocity, are given by [1, 2] (see Appendix A):

η=
μ

ε
1 13

8Aswill be shown, for artificial transmission lines expressions (1.10–1.12) are not necessarily valid. Indeed,
for certain artificial lines, the wavelength either increases or decreases with frequency depending on the
frequency regions.
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vp =
1
με

1 14

where ε and μ are the dielectric permittivity and magnetic permeability, respectively.
These expressions, derived from Maxwell’s equations, do also apply to TEM wave
propagation in planar transmission lines, and therefore the main line parameters
can be expressed in terms of the material parameters.9 Notice that for nonmagnetic
materials μ = μo, the permeability of vacuum, and hence the phase velocity can be
rewritten in the usual form:

vp =
1
μoε

=
1

μoεoεr
=

c

εr
1 15

where c is the speed of light in vacuum, and ε = εoεr (εo and εr being the permittivity of
vacuum and the dielectric constant, respectively). However, for open nonhomoge-
neous lines, such as microstrip or coplanar waveguide (CPW) transmission lines,
where pure TEM wave propagation is not possible, the previous expression does
not hold. Nevertheless, the phase velocity in open lines can be expressed as (1.15)
by simply replacing the dielectric constant of the substrate material, εr, with an effec-
tive dielectric constant, εre, which takes into account the presence of the electric field
lines in both the substrate material and air10:

vp =
c

εre
1 16

1.3 LOADED (TERMINATED) TRANSMISSION LINES

A uniform (in the direction of propagation) transmission line is characterized by the
phase constant β (or by the electrical length βl), and by the characteristic impedance,
Zo. In a semi-infinitely long transmission line with a traveling wave generated by a
source, the characteristic impedance expresses the relation between voltage and cur-
rent at any transverse plane of the line. If losses are neglected, it follows that the power
carried by the traveling wave along the line is given by

P +=
1
2

V +
o

2

Zo
1 17

9However, the wave impedance should not be confused with the characteristic impedance, Zo, of transmis-
sion lines supporting TEM waves, which relates the voltage and current in the line and depends not only on
the material parameters but also on the geometry of the line (see Appendix A).
10 See at the end of Appendix A for more details.
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However, if the line is terminated by a load, three different situations may arise: (1)
the incident power is completely absorbed by the load, (2) the incident power is
completely reflected by the load, and (3) the incident power is partially absorbed
and reflected by the load. Let us consider that the impedance of the load is ZL, that
this load is situated in the plane z = 0 of the line (as Fig. 1.4 illustrates), and that a
traveling wave of the form V+(z) = Vo

+ e−jβz is present in the line. The ratio of volt-
age to current for such travelling wave is V+(z)/I+(z) = Zo. At z = 0, the relation
between the voltage, VL, and the current, IL, in the load must satisfy the Ohm
law, that is, VL/IL = ZL. Since, in general, ZL Zo, a reflected wave must be gener-
ated at z = 0, so that the Ohm law is preserved. Therefore, the voltage and current in
the line can be expressed as follows:

V z =V +
o e

− jβz +V −
o e

jβz 1 18a

I z =
V +
o

Zo
e− jβz−

V −
o

Zo
ejβz 1 18b

By forcing the Ohm law at z = 0, it follows that

ZL =
V 0
I 0

=
V +
o +V −

o

V +
o −V −

o
Zo 1 19

and the relation between the amplitude of the reflected and the incident wave, also
known as reflection coefficient, is

ρL =
V −
o

V +
o

=
ZL−Zo
ZL + Zo

1 20

From (1.20), it follows that if ZL = Zo (matched load), ρL = 0 and the incident power
is absorbed by the load (i.e., there are not reflections in the load). Conversely, if the
load is an open or a short circuit, the reflection coefficient is ρL(ZL =∞) = 1 and
ρL(ZL = 0) = −1, respectively, and the incident power is reflected back to the source.
Notice that the incident power is also reflected back to the source for reactive loads,
where |ρL(ZL = jχ)| = 1, χ being the reactance. Partially reflected and absorbed power

z = 0 

ZLρLZo, β
V+(z)

V–(z)
ρ(z)

FIGURE 1.4 Transmission line terminated with an arbitrary load, located at z = 0.
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occurs for resistive loads not matched to the line, or for complex loads. Notice also
that for passive loads (ZL = R + jχ, with R > 0), the modulus of the reflection coef-
ficient is |ρL| ≤ 1. This is expected since the reflected power, given by

P− =
1
2

V +
o

2

Zo
ρL

2 1 21

cannot be higher than the incident power (given by 1.17) for passive loads. In micro-
wave engineering, the reflection coefficient is typically expressed in dB and identified
as the return loss:

RL= −20log ρL 1 22

For infinitely long transmission lines or for transmission lines terminated with a
matched load, constant amplitude travelling waves are present in the line. However,
if a reflected wave is generated in the load plane, a standing wave is generated in the
line, where the amplitude is modulated by the modulus of the reflection coefficient.
From (1.18a) and (1.20), the voltage in the line can be written as follows:

V z =V +
o e− jβz + ρLe

jβz 1 23

If we now express the reflection coefficient in polar form (ρL = |ρL| e
jθ), the voltage in

the line can be rewritten as follows:

V z =V +
o e

− jβz 1 + ρL e2jβz+ jθ 1 24

from which it follows:

V z 2 = V +
o

2
1 + ρL

2 + 2 ρL cos 2βz+ θ 1 25

Equation 1.25 indicates that the amplitude is a maximum (Vmax = |Vo
+|[1+|ρL|]) and a

minimum (Vmin = |Vo
+|[1−|ρL|]) at planes separated by λ/4, and the ratio between the

maximum and minimum voltage in the line, known as voltage standing wave ratio, is
given by

SWR=
1+ ρL
1− ρL

1 26

As anticipated, the SWR is determined by the reflection coefficient. However, it only
depends on the modulus of the reflection coefficient, not on its phase, θ. This means
that from the information of the SWR, it is not possible to completely characterize the
load. For instance, it is not possible to distinguish between a short circuit, an open
circuit, or a reactive load, since the reflection coefficient of these loads has the same
modulus (|ρL| = 1). Nonetheless, in many applications the relevant information is the
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matching between the line (or the source) and the load in terms of the power trans-
mitted to the load, the phase information being irrelevant.

Although wave reflection in a transmission line is caused by a mismatch between
the line and the load, and hence it is ultimately generated at the plane of the load
(z = 0), the reflection coefficient can be generalized to any plane of the line, as the
ratio between the voltage of the incident and reflected wave, that is

ρ z =
V −

V +
=

V −
o e

jβz

V +
o e− jβz

= ρLe
2jβz 1 27

where, as expected, |ρ(z)| = |ρL|.
One important point of terminated lines is the amount of power delivered by a

given source to the line. If the source has complex impedance, Zs, such power is
directly characterized by the power wave reflection coefficient, s, given by [9]:

s =
Zin−Z∗

s

Zin + Zs
1 28

where the asterisk denotes complex conjugate, and Zin is the impedance seen from
the input port of the line, that is, looking into the load (Fig. 1.5). Actually, the power
transmission coefficient, which is the relevant parameter for computing the power
transmitted to the line for the general situation of a source with complex impedance,
is given by

τ = 1− s 2 = 1−
Zin−Z∗

s

Zin + Zs

2

1 29

The input impedance, Zin, depends on the distance between the load and the
input port (i.e., the plane of the source). This impedance can be simply computed
as follows:

Zin =
V − l

I − l
=
V +
o ejβl + ρLe

− jβl

V +
o ejβl−ρLe− jβl

Zo 1 30

z = 0 

ZLZo, βZin

Zs

z = – l 

Vs

+

–

FIGURE 1.5 Transmission line of length l fed by a voltage source and terminated with an
arbitrary load, located at z = 0.
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And after some minor manipulation,

Zin =Zo
ZL + jZo tan βl

Zo + jZL tan βl
1 31

The analysis of (1.31) reveals that in the limit βl 0, Zin = ZL, as expected, since this
regime corresponds to the lumped element approximation discussed in Section 1.1.
Expression (1.31) also indicates that the need to model the line as a distributed circuit
does not solely depend on frequency (through β), but also on the line length l. Indeed,
the key parameter is the electrical length, βl, as anticipated in the previous subsection.
From (1.31), it follows that the input impedance is a periodic function with βl, and
hence a periodic function with both the line length and the frequency. If the frequency
is set to a certain value, the input impedance is a periodic function of period λ/2 with
the line length. This means that the input impedance looking into the load seen from
planes separated by a multiple of λ/2 is identical. From this result, it follows that for a
λ/2 line (βl = π), the input impedance is the one of the load, Zin = ZL.

Let us now consider several cases of particular interest. If the line length is l = λ/4
(βl = π/2), the input impedance is

Zin =
Z2
o

ZL
1 32

whichmeans that the input impedance is inversely proportional to the load impedance,
and hence a λ/4 transmission line acts as an impedance inverter. This means that a
reactive load with inductive/capacitive reactance is seen as capacitive/inductive reac-
tance from the input port; in other words, the sign of the reactance is reversed in λ/4
lines. From (1.32), it also follows that an open-circuit load is transformed to short-
circuit at the input port of a λ/4 line, and vice versa.

For the general case of open-ended (ZL =∞) and short-circuited (ZL = 0) lines, the
input impedance given by (1.31) takes the following form:

Zin ZL = ∞ = − jZo cot βl 1 33a

Zin ZL = 0 = jZo tan βl 1 33b

Thus, the input impedances are purely reactive, just as those of lumped reactive ele-
ments (inductors and capacitors). For lines satisfying βl < π/2, a short-circuited line
resembles an inductor, whereas an open-ended line mimics a capacitor. However,
the reactances of lumped inductors and capacitors have different mathematical forms
than those of shorted and opened transmission lines. This means that we cannot
replace lumped reactive elements with open or shorted lines exhibiting identical
behavior. However, by forcing the impedance of a capacitor and inductor to be equal
to those of (1.33) we obtain
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−
j

ωC
= − jZo cot βl 1 34a

jωL= jZo tan βl 1 34b

and the previous expressions have solutions at many different frequencies. Let us con-
sider the smallest of these angular frequencies and call it ωc. If we set the length of the
line to be λ/8 at this frequency (i.e., βl = π/4 at ωc), the previous expressions take the
following form:

1
ωcC

=Zo 1 35a

ωcL= Zo 1 35b

Therefore, if we wish to implement a short-circuited transmission line with the same
impedance as an inductor L at frequencyωc, we set the characteristic impedance of the
transmission line to Zo =ωcL. Likewise, if we wish to obtain the reactance of a capac-
itor C at frequency ωc, we set the characteristic impedance of the transmission line to
Zo = 1/ωcC. In both cases, the length of the line must be set to λ/8 at ωc. Expressions
(1.35) are called Richard’s transformations [10], and are useful to avoid the use of
lumped reactive components in certain microwave circuits such as low-pass filters.
However, since Richard’s transformations guarantee identical reactances between
the lumped and the distributed reactive elements at a single frequency, we cannot
expect that the response of a lumped circuit is identical to that of the distributed
counterpart.

Obviously, the load of a transmission line can be another transmission line with
different characteristic impedance. Let us consider that two transmission lines of char-
acteristic impedances Zo and Z1, respectively, are cascaded as shown in Figure 1.6,
and that the transmission line to the right of the contact plane (z = 0), that is, the line
acting as load, is either infinitely long or terminated with a matched load (so that there
are not reflected waves in this line). Under these conditions, the load impedance seen
by the transmission line to the left of z = 0 is simply Z1. Hence, the reflection coeffi-
cient at z = 0 is given by

ρ=
Z1−Zo
Z1 + Zo

1 36

z = 0 

Z1Zo

V+(z)

V–(z)

ρ
V+(z)

FIGURE 1.6 Cascade connection of two transmission lines with different characteristic
impedance.
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and the incident wave is partially transmitted to the second line. For z < 0, the
voltage in the line can be expressed as (1.23), whereas to the right of the contact plane,
the voltage can be expressed in terms of a transmission coefficient, T, as follows:

V z =V +
o Te

− jβz 1 37

By forcing expressions (1.23) and (1.37) to be identical at z = 0, the transmission coef-
ficient is found to be

T = 1+ ρ =
2Z1

Z1 + Zo
1 38

and the transmission coefficient expressed in dB is identified as the insertion loss:

IL = −20log T 1 39

Notice that the transmission coefficient, defined by the fraction of the amplitude of the
voltage of the incident wave transmitted to the second transmission line (expression
1.37), can be higher than one (this occurs if Z1 > Zo). This result does not contradict
any fundamental principle (i.e., the conservation of energy), since the transmitted
power is always equal or less than the incident power (however, the amplitude of
the voltage of the transmitted wave can be higher than Vo

+).
To end this subsection, let us briefly consider the reflections generated by a source

with mismatched impedance that feeds a transmission line with characteristic imped-
ance Zo and length l (Fig. 1.5). Let us assume that the load of the transmission line is
also mismatched, so that a reflected wave is generated by the load once the incident
wave reaches the load plane. Once the switch is closed at t = 0, the following expres-
sion must be satisfied at any time t > 0:

Vs = ZsI − l +V − l 1 40

Before the reflected wave at the load reaches the plane of the source (z = −l), that is, for
t < 2l/vp, expression (1.40) is written as follows:

Vs =Zs
V +
1

Zo
+V +

1 1 41

where V1
+ is the amplitude of the incident wave generated by the source after the

switch is closed, that is,11

11 This expression is valid if the source impedance is purely resistive. However, expression (1.45) is valid
for any source impedance (purely resistive, purely reactive, or complex). The reason is that the time domain
analysis giving (1.45) can be initiated once the transient associated to reactive or complex load and/or source
impedances has expired.
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V +
1 =Vs

Zo
Zo + Zs

1 42

Once the reflected wave V1
− reaches the source plane, a reflected wave V2

+must be gen-
erated by the source in order to satisfy theOhm law.Hence, (1.40) is expressed as follows:

Vs = Zs
V +
1 −V −

1 +V +
2

Zo
+V +

1 +V
−
1 + V +

2 1 43

By combining (1.41) and (1.43), we obtain the following:

Zs
Zo

V −
1 −V +

2 =V −
1 +V +

2 1 44

and the reflection coefficient at the source is found to be

ρs =
V +
2

V −
1
=
Zs−Zo
Zs + Zo

1 45

which is formally identical to the reflection coefficient at the load.
Obviously, when the reflected wave at the source (V2

+) reaches the load plane, a new
wave (V2

−) is generated by reflection at the load plane, and the process continues indef-
initely until the steady state is achieved. This endless bouncing process converges to a
steady state since the amplitude of the reflected waves progressively decreases.12 Let us
calculate, as an illustrative example, the steady-state voltage at z = −l for the structure of
Figure 1.5. If the initial wave is designated as V1

+, the first reflected one at z = −l, taking
into account the phase shift experienced by the wave along the transmission line, is
V1

− = V1
+ρL e

−2jβl (see Fig. 1.7). The next two are V2
+ = V1

+ρLρs e
−2jβl and V2

− =
V1

+ρL
2ρs e

−4jβl. The steady-state voltage at z = −l is given by the superposition of the
left to right (+) and right to left (−) waves, that is13,

V z= − l =
i

V +
i +

i

V −
i =V +

1
1

1−ρiρs
+V +

1
ρi

1−ρiρs
1 46

where V1
+ is given by (1.42) and ρi = ρL e−2jβl. Introducing (1.42) and (1.45) in

(1.46) gives

V z= − l =Vs
Zo 1 + ρLe

−2jβl

Zo + Zs− Zs−Zo ρLe−2jβl
1 47

12 This is consequence of the modulus of the reflection coefficients at the source and the load, which is
smaller than one for passive loads. However, if the line is loadedwith an active load, instability is potentially
possible.
13 To derive (1.46), the identity 1 + x + x2 +… = 1/(1 − x), where |x| < 1, has been used.
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which can be expressed as follows:

V z= − l =Vs
Zin

Zin + Zs
1 48

where Zin, given by (1.30), is the impedance seen from the source plane. As
expected, the steady-state voltage at z = −l is simply given by the voltage divider,
considering the series connection of the source impedance and the input impedance
of the loaded line.

1.4 LOSSY TRANSMISSION LINES

In planar transmission lines of practical interest for RF and microwave circuit
design losses are small and they are usually neglected for design purposes (as it
was mentioned in Section 1.2).14 However, although small, losses produce

z =–l z = 0

V1
+

t

l/vp

2l/vp

3l/vp

4l/vp

ρL V1
+ e – 2 j β l

ρL V1
+ e – j β l

V1
+ e – j β l

ρS ρL V1
+ e – 2 j β l ρS ρL V1

+ e – 3 j β l

ρS ρL
2 V1

+ e – 4 j β l ρSρL
2 V1

+ e – 3 j β l

ρS
2 ρL

2 V1
+ e – 4 j β l

FIGURE 1.7 Bounce diagram corresponding to the example discussed in the text. The vertical
axis is the time axis.

14 To guarantee small losses, distributed circuits must be preferably implemented in commercially available
low-loss microwave substrates.
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attenuation and distortion in the transmitted signals, and the analysis of their effects
on wave propagation is of interest. There are three main causes of losses: (1) the
finite conductivity of the metals (conductor losses), (2) the dissipation in the die-
lectric (either caused by the presence of free electrons or by dipole relaxation phe-
nomena), and (3) radiation losses. Although radiation losses may be dominant
under some circumstances, transmission lines operating as guided-wave structures
must be designed in order to exhibit small radiation. Hence, this loss mechanism is
not considered by the moment.15

Ohmic (or conductor) and dielectric losses are accounted for by the lumped ele-
ment circuit model of the transmission line (Fig. 1.3) through the series resistance
R and shunt conductance G , respectively. Let us now calculate the complex propa-
gation constant (expression 1.5) under the low-loss approximation (justified by the
reasons explained earlier), namely, R ωL and G ωC . The complex propaga-
tion constant can be rearranged and written as follows:

γ = jω L C 1− j
R

ωL
+

G

ωC
−

R G

ω2L C
1 49

Neglecting the last term in the square root of (1.49) and applying the Taylor series
expansion up to the first order, the complex propagation constant can be approxi-
mated by

γ = jω L C 1−
j

2
R

ωL
+

G

ωC
1 50

From (1.50), the attenuation constant and the phase constant for low-loss transmission
lines can be easily identified:

α=
1
2

R

Zo
+G Zo 1 51

β =ω L C 1 52

where Zo is the lossless characteristic impedance of the line given by (1.9).

15Nevertheless, leaky-wave transmission lines are specifically designed to enhance radiation. These lines
are the building blocks of leaky-wave antennas (LWAs), as will be shown in Chapter 4.
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With regard to the characteristic impedance (expression 1.8), it can be rearranged
and written as follows:

Zo =
L

C
1− j

C ω

G
−
L ω

R
L C ω2

R G
− j

L ω

R

1 53

By virtue of the low-loss approximation, the second term of the denominator in the
square root can be neglected, and, by using the first order Taylor series approximation,
the characteristic impedance is found to be

Zo =
L

C
1−

j

2
R

ωL
−

G

ωC
1 54

and this expression can be further simplified to (1.9).16

According to these results, it follows that the phase constant and the characteristic
impedance of low-loss transmission lines can be closely approximated by considering
the line as lossless. The attenuation constant (1.51) has two contributions: one asso-
ciated to conductor losses (proportional to R ), and one associated to dielectric losses
(proportional to G ).

Despite for low-loss lines the phase constant can be approximated by a linear func-
tion, the effects of dispersion may be appreciable in very long transmission lines, and
may give rise to signal distortion. However, there is a special case where the phase
constant of lossy transmission lines varies linearly with frequency, and dispersion
is not present. Such lines are called distortionless lines and must satisfy the following
identity (known as distortionless, or Heaviside, condition)

R C =G L 1 55

In view of the general expression of the complex propagation constant (1.5), the
unique way to achieve a linear dependence of β with frequency for a lossy line is
to achieve a complex propagation constant of the form A + jωB (where A and B are
constants). The only way this can be satisfied is if R + jωL and G + jωC differ
by no more than a constant factor. This means that both the real and imaginary parts
must be independently related by the same factor, which leads to (1.55). Under the
condition specified by (1.55), the complex propagation constant is17

γ =
R

Zo
+ jω L C 1 56

16Notice that this means to neglectR /ωL andG /ωC in (1.54). However, if these two terms are neglected in
(1.50), we find the trivial solution corresponding to the lossless line, with β given by (1.6) and α = 0.
17Notice that, using (1.55), the attenuation constant can also be expressed as α = (R G )1/2 or α =G Zo.
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and β is given by (1.6). It is interesting to mention that the attenuation constant (α =
R /Zo) does not depend on frequency, which means that all frequency components
are attenuated the same factor. This means that distortionless lines are able to trans-
mit pulse signals or modulated signals without distortion (although these signals are
attenuated along the line due to losses). It is also simply to demonstrate that the char-
acteristic impedance of distortionless lines is a real constant given by (1.9).

In practical transmission lines, the distortionless condition is not easy to satisfy
since G is usually very small. To compensate this, the line can be loaded with series
connected inductances periodically spaced along the line. This strategy leads to an
unconventional transmission line that can indeed be considered an artificial transmis-
sion line.18 Nevertheless, the elements of the distributed circuit of a transmission line
are not exactly constant (in particular, R varies weakly with frequency), and the
distortionless condition (expression 1.55) is difficult to meet in practice. For planar
transmission lines used as building blocks in distributed circuits, where the lines
are low-loss and short, dispersion is not usually an issue, except at high frequencies
(dozens of GHz) or for very wideband signals.

1.4.1 Dielectric Losses: The Loss Tangent

Although for the design of most planar distributed circuits losses are neglected in the
first steps, it is important to simulate their effects before fabrication. In EM solvers,
losses are introduced by providing the conductivity of the metallic layers, and the loss
tangent (tanδ) of the substrate material. The loss tangent takes into account dielectric
losses, including both conduction losses (due to nonzero conductivity of the material)
and losses due to damping of the dipole moments (that represents an energy transfer
between the external electric field and the material at microscopic level).

For a dielectric material, the application of an electric field gives rise to the polar-
ization of the atoms or molecules of the medium in the form of electric dipole
moments, which contribute to the total displacement flux according to

D = εo E +Pe 1 57

where Pe is the electric polarization, which is related to the applied electric field
through19

Pe = εoχe E 1 58

18According to the definition of artificial transmission line adopted in this book (see Section 1.1), L-loaded
distortionless lines belong to this group, but such lines are out of the scope of this manuscript. As will be
seen in Chapter 2, periodic loaded lines exhibit a cut-off frequency. Beyond this frequency, attenuation dra-
matically increases, and hence these lines may not support the transmission of high-frequency or broadband
signals.
19 It is assumed that the material is linear, isotropic, and homogeneous, that is, the electric susceptibility and
permittivity are scalars that do not depend on the position and magnitude of the external field. For aniso-
tropic materials, the relation between E and Pe, or between E and D, is a tensor.
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χe being the electric susceptibility. Combining the previous expressions, the electric
displacement can be written as follows:

D = εo 1 + χe E = εE 1 59

In vacuum, the electric susceptibility is null, whereas in dielectric materials it is a
complex number, where the imaginary part accounts for losses. In low-loss materials,
the imaginary part of the susceptibility can be neglected to a first-order approximation.
However, the effects of material losses on circuit performance may play a role in
distributed circuits.20 For this reason, losses cannot be neglected in the evaluation
of circuit performance (typically inferred fromcommercially available EMsimulators).
In lossy materials, the dielectric permittivity is thus a complex number that can be
expressed as follows:

ε = εo 1 + χe = ε − jε 1 60

where ε is a positive number due to energy conservation [1, 11].
Conduction losses, associated to the presence of free electrons in the dielectric

material (it is assumed that the material exhibits a nonzero conductivity), do also con-
tribute to the imaginary part of the complex permittivity. The conduction current
density is related to the electric field through the Ohm law:

J = σ E 1 61

where σ is the conductivity of the material. By introducing the previous expression in
the Ampere–Maxwell law, we obtain

∇× H = jωεE + σ E 1 62a

∇× H = jω ε − j
σ +ωε

ω
E 1 62b

From (1.62), it is clear that the effects of conduction losses can be accounted for
by including a conductivity dependent term in the imaginary part of the complex per-
mittivity. The loss tangent is defined as the ratio between the imaginary and real parts
of this generalized21 permittivity:

20 In low-loss microwave substrates, losses are dominated by the finite conductivity of the metal layers.
However, in general-purpose substrates, such as FR4, or in high-resistivity silicon (HR-Si) substrates,
among others, material losses may significantly degrade the circuit performance.
21 The complex permittivity including the contribution of σ is usually designated as effective complex per-
mittivity in most textbooks. However, in this book, the term effective permittivity is either referred to the
permittivity of effective media, or metamaterials, as will be seen in Chapter 3, or it is used to describe wave
propagation in quasi-TEM lines by introducing an “averaged” permittivity (and permeability) in the equa-
tions governing purely TEM wave propagation (see Appendix A).
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tanδ=
σ +ωε
ωε

1 63

Low-loss dielectrics are characterized by a small tanδ (typically 10–4 − 10–2).
Let us now try to link the loss tangent to the dielectric contribution of the attenu-

ation constant for low-loss transmission lines. Let us consider a hypothetical transmis-
sion line with purely TEM wave propagation, for example, a stripline, or a parallel
plate transmission line with magnetic walls at the lateral sides (or with very wide
plates to neglect the fringing fields). This simplifies the analysis, and provides com-
pact formulas, which is enough for our purposes. For the case of the parallel plate
transmission line (Fig. 1.8), letW and h be the width of the metal plates and the height
of the substrate, respectively. The per-unit-length line conductance is related to the
dielectric conductivity as22

G =
W

h
σ 1 64

which in turn can be expressed in terms of the per unit length capacitance as

G =
C

ε
σ 1 65

h

Magnetic walls

W

ε, σ

FIGURE 1.8 Parallel plate transmission line with magnetic walls at the edges.

22We assume that the conductivity in (1.64) is actually the effective conductivity, given by the numerator
of (1.63).
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The dielectric contribution of the attenuation constant for low-loss lines is given by the
second term of the right-hand side of (1.51), and can be written as follows:

αd =
1
2
G

L

C
1 66

Introducing (1.65) in (1.66), we finally obtain

αd =
1
2
C

ε
σ

L

C
=
1
2
σ

ε

β

ω
=
β

2
tanδ=

1
2
ω με tanδ 1 67

In nonhomogeneous open lines, such as microstrip lines or CPWs, expression (1.67) is
not strictly valid, but it provides a rough approximation of αd by merely introducing
the effective permittivity (defined as the effective dielectric constant times the permit-
tivity of vacuum) in the last term. Indeed, for microstrip transmission lines (1.67)
rewrites as [12, 13] follows:

αd =
πf
c

εr εre−1
εre εr−1

tanδ 1 68

where it has been assumed that μ = μo and (μoεo)
−1 is the speed of light in vacuum, c.

Notice that if εr = εre, (1.67) and (1.68) are identical. The analysis of (1.68) also reveals
that for high values of εr (and hence εre), expression (1.67) provides a good estimation
of αd by introducing in the root the effective permittivity.

The dielectric material (substrate) used in planar transmission lines is characterized
by the loss tangent (which accounts for dielectric losses) and by the dielectric constant
(which determines the phase velocity). Although these parameters are supplied by the
manufacturer with the corresponding tolerances, there are sometimes substantial var-
iations that make necessary the characterization of the material (i.e., the measurement
of the dielectric constant and the loss tangent) for an accurate design. The dielectric
constant and the loss tangent of a substrate material can be experimentally inferred by
means of a microstrip ring resonator configuration (Fig. 1.9) [13–15]. The transmis-
sion coefficient exhibits transmission peaks at frequencies that depend on the dielec-
tric constant of the substrate, and the loss tangent is extracted from the quality factor of
the resonance peaks along with the theoretical calculations of the conductor losses
(see next subsection).

For a ring resonator, resonances occur at those frequencies where the ring circum-
ference is a multiple of the wavelength, λ. The resonance condition can thus be
expressed as follows:

λ =
2πrm
n

=
vp
fn

=
c

εre

1
fn

1 69
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where n refers to the nth-order resonance, and rm is the mean ring radius. The effective
dielectric constant is thus [13–15]

εre =
nc

2πrm fn

2

1 70

Once the effective dielectric constant is known (the resonance frequencies can be eas-
ily inferred from the measured transmission coefficient), the dielectric constant is
given by [6, 13]:

Width (w)
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FIGURE 1.9 Microstrip ring resonator configuration used to extract the dielectric constant
and loss tangent of the substrate (a), and typical frequency response with transmission peaks
(b). Reprinted with permission from Ref. [15]; copyright 2007 IEEE.
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εr =
2εre +M−1

M + 1
1 71

where

M = 1+ 12
h

W

−1 2

1 72

and W is the effective strip width, given by

W =W +
1 25t
π

1 + ln
2h
t

1 73

In (1.72) and (1.73), h and t are the thickness of the substrate and metal layer,
respectively, and W is the strip width. Expressions (1.71–1.73) are valid under the
assumption that W ≥ h >> t, which is usually satisfied (general expressions are
given in [6]).

For the determination of tanδ, it is first necessary to measure the unloaded quality
factor, given by [13, 14]:

Qo =
QL

1−10− IL 20
1 74

where IL is the measured insertion loss at resonance, and the loaded quality factor is
given by

QL =
fo

BW−3 dB
1 75

BW−3 dB being the −3 dB bandwidth, which can be easily measured from the trans-
mission coefficient. The total attenuation in the resonator is related to the unloaded
quality factor by

α=
π

Qoλ
1 76

where λ is given by (1.69). By subtracting to (1.76) the conduction attenuation
constant, given by expression (1.90) (see the next subsection), the dielectric attenuation
constant, αd, can be inferred,23 and by using (1.68), the loss tangent can be finally
obtained.

23 It is assumed that radiation from the ring is negligible (valid at moderate frequencies) [13]; hence, the
contribution of radiation loss to the attenuation constant is null.
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Alternatively, the dielectric constant and the loss tangent of thin film un-clad sub-
strates and low-loss sheet materials can be measured by means of specific instrumen-
tation, namely, a split cylinder resonator. It is a cylindrical resonant cavity separated
into two halves, one of them being movable in order to accommodate varying sample
thicknesses (i.e., the sample is loaded in the gap between the two cylinder halves).
Each cylinder half accommodates a small coupling loop, introduced through a small
hole, in order to measure the transmission coefficient of the fundamental TE011 mode.
The principle for the determination of the dielectric constant and the loss tangent is the
variation of the resonance frequency and quality factor with loaded and un-loaded cyl-
inder (obviously, the thickness of the sample must be accurately known for a correct
measurement). More details on this method are given in Refs. [16, 17].

1.4.2 Conductor Losses: The Skin Depth

Let us consider a conductor material with finite, but high, conductivity (i.e., a low-loss
conductor), where the conduction current dominates over the displacement current, or
σ >> |ωε |,|ωε |. The complex propagation constant in such medium, with general
expression given by (see Appendix A)

γ = α+ jβ = jω μ ε − j
σ +ωε

ω
1 77

can be written as follows:

γ = jω μ − j
σ

ω
=
1+ j
δp

1 78

with

δp =
2

ωμσ
1 79

From (1.78), it follows that both the phase constant and the attenuation constant are
given by

α = β =
1
δp

1 80

Since the attenuation of the fields is given by e−αz = e−z/δp, where z is the direction of
propagation, δp indicates the distance over which a plane wave is attenuated by a fac-
tor of e−1. If a plane wave in vacuum impinges on a conductor material with its surface
perpendicular to the wave vector, the wave transmitted to the conductor decays
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exponentially from its surface. Therefore, δp is referred to as penetration depth.
24 It is

worth mentioning that (i) δp decreases with the square root of the conductivity and
frequency, and (ii) the wavelength is given by λ = 2πδp and is typically much smaller
than the wavelength in free space.

Similarly, if a conductor such as a wire or a metallic strip is carrying an AC current,
the current tends to concentrate in the conductor surface as frequency increases. This
phenomenon is known as skin effect and increases the high frequency AC resistance
of the conductor since the effective conductor cross section is reduced. To a first-order
approximation, the effective cross section of the conductor is limited by the external
surface contour and by the curve resulting by reducing such contour by the penetration
depth, also known as skin depth. Let us consider as a simple illustrative example a cylin-
drical conductor with length l and radius r (Fig. 1.10). The AC resistance is given by

RAC =
l

σAAC
=

l

σ2πrδp
1 81

where AAC is the effective conductor cross section.
Expression (1.81) can also be derived by considering the intrinsic impedance of the

low-loss conductor, given by25

η=
μ

ε
= j

μ

σ
ω= 1 + j Rs 1 82

where Rs is the surface resistance

Rs =
1
σδp

=
μω

2σ
1 83

l

r
σ

δp

FIGURE 1.10 Cylindrical conductor with conductivity σ. The effective cross section for the
calculation of theAC resistance is given by the annular gray region corresponding to one skindepth.

24 In copper, the most used clad metal for PCB technology, the penetration depth (or skin depth) at 1 and
10 GHz is 2.06 and 0.66 μm, respectively.
25 Notice that in a good conductor, the phase of the magnetic component of an EM wave propagating
through it lags that of the electric component by π/4.
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Considering again a plane wave impinging on the surface of a low-loss conductor, the
conduction current density within the conductor is given by26

J = σ E = σEoe
− z
δp e− j

z
δp x 1 84

where Eo is the electric field in the surface, and it has been assumed that the electric
field is polarized in the x-direction. The current across a surface normal to x, of width a
and infinitely long in the direction normal to the surface (z-direction) is given by:

I =

∞

0

dz

yo+a

yo

dy σEoe
− z
δp e− j

z
δp 1 85

which gives

I = aσEo
δp
1 + j

=
aEo

Rs 1 + j
1 86

The voltage drop between two points separated a distance l in the x-direction is simply
V = Eol. Thus, the surface impedance is given by

Zs =Rs 1 + j
l

a
1 87

which reduces Rs(1 + j) for a square geometry. The term Rs is usually designated as
square resistance. For the cylindrical conductor considered earlier, the AC resistance
can thus be inferred from the real part of (1.87) by considering a = 2πr, which
gives (1.81).

Deriving the relation between the conduction loss attenuation constant, αc, and the
surface (or square) resistance in most planar transmission lines is not straightforward.
Nevertheless, for a parallel plate transmission line, the per-unit-length resistance is
roughly given by [12]

R =
2Rs

W
1 88

whereW is the width of the strips. The previous expression is valid under the assump-
tion that the current density is uniform in the transverse plane and concentrated one

26 This result is also obtained from Maxwell’s equations by calculating the current density distribution in
the direction normal to the surface (z-direction) of a semi-infinite conductor, with current density
parallel to such surface, and assuming that the current density at the surface is Jx (z = 0) = σEo (see
Appendix D).
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skin depth from the interface between the conductors and the substrate. Introducing
(1.88) in the first term of (1.51), gives

αc =
Rs

ZoW
1 89

For microstrip lines, closed-form expressions for αc have been derived in [12].
Specifically, if W ≥ 2h27

αc =
Rs

Zoh

1

W

h
+
2
π
ln 2πe

W

2h
+ 0 94

2

W

h
+

W πh
W

2h
+ 0 94

× 1 +
h

W
+

h

πW
ln

2h
t
+ 1 −

1 + t h

1 + t 2h

1 90

The conduction attenuation constants for microstrip lines satisfying W/h ≤ l/2π and
l/2π <W/h ≤ 2 are reported in Ref. [12]. It is worth mentioning that (1.90) simplifies
to (1.89) in the limit of wide strips (W/h >> 1).

1.5 COMPARATIVE ANALYSIS OF PLANAR TRANSMISSION LINES

The objective of this subsection is to briefly highlight some advantages and limitations
of planar transmission lines from a comparative viewpoint. The most used transmis-
sion lines for the implementation of planar distributed circuits are microstrip lines and
CPWs because no more than two metal levels are needed for their implementation.
Striplines are closed and shielded structures, but they require three metal levels
and their use is very limited. However, striplines support TEM wave propagation,
and the phase velocity in these lines does not depend on their lateral geometry
(i.e., the strip width).28 Conversely, microstrip lines and CPWs are nonhomogeneous
open lines that do not support purely TEM waves, but quasi-TEM waves. The dielec-
tric substrate slows the waves down, as compared to the field lines in air, and the field
lines tend to bend forward, thus preventing the presence of TEM modes.

27 If surface roughness is not negligible, its effects can be accounted for in (1.90) by merely including an
additional term in Rs, as reported in [13]. In [12], αc appears multiplied by the factor 8.68 since the units are
given in dB/unit length. This factor arises from the conversion from Nepers (Np) to dB. The Neper is a unit
in logarithmic scale that uses the natural logarithm. Thus, if an arbitrary variable F(z) is attenuated with
position as F(z) = Fo exp(−αz), the loss factor expressed in Np is −ln[F(z)/Fo] = αz, and α is said to have
units of Np/unit length. The loss factor expressed in dB is −20log[F(z)/Fo] = −20log[exp(−αz)] =
αz20log(e) = 8.68 αz. Hence, the conversion from Np/unit length to dB/unit length introduces the above
number 8.68 in expression (1.90).
28 For TEM wave propagation in a stripline, the substrate material must be homogeneous and isotropic.
Strictly speaking, purely TEM waves do also require perfect conductors. This latter condition cannot be
satisfied in practice, but as long as the resistivity of the conductors is low, purely TEM wave propagation
can be assumed.
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From the viewpoint of shielding, the advantage of microstrip lines over CPWs is
the presence of the ground plane in the back substrate side, which effectively isolates
the structure from the backside region, and prevents it from potential interference
effects caused by other circuits or materials (including metallic holders). CPWs with
backside metallization (also known as conductor-backed CPWs) can also be imple-
mented, but this backside metallization may induce leaky wave propagation as a result
of the parasitic parallel plate waveguides present at both sides of the CPW axis. As
compared to microstrip lines, CPWs without backside ground plane only need a
metallic layer for their implementation. This eases fabrication and the shunt connec-
tion of lumped elements, since the ground plane is coplanar to the central (conductor)
strip, and vias are not necessary. Nevertheless, in asymmetric CPW structures, such as
bended lines, or asymmetrically loaded (along its length) lines, or in CPW lines with
discontinuities, the parasitic slot mode29 may be generated and obscure the fundamen-
tal mode (and hence degrade device performance). To prevent the presence of the slot
mode in asymmetric CPW transmission lines, the ground plane regions must be elec-
trically connected through air bridges, or by means of backside strips and vias (this
technique has been applied to many CPW-based artificial transmission lines and
microwave devices based on them, as will be seen along this book).

In CPWs, the transverse line geometry (see Fig. 1.2) is determined by the strip,W,
and slot, G, widths (and of course by the substrate thickness, h, which is not usually a
design parameter). Therefore, the characteristic impedance does not univocally deter-
mine the transverse line dimensions (W andG). This flexibility in the lateral geometry
can be of interest in some applications. Moreover, for a given substrate thickness, it is
possible to achieve higher characteristic impedances in CPW technology as compared
to microstrip lines, where the strip width is univocally determined by the imped-
ance value.

Suspended microstrip lines can be implemented by using sustaining posts in order
to create an air gap between the ground plane and the substrate, or by means of
advanced micromaching technologies [18], where the (lossy) substrate is partly
removed by etching. As compared to conventional microstrip lines, suspended micro-
strip lines are thus low-loss lines. Moreover, because most of the field is in the air gap,
higher characteristic impedances can be realized. Additionally, the presence of the air
gap reduces the effects of dispersion, and such lines are of special interest in the upper
microwave and lower millimeter wave bands. However, despite these beneficial prop-
erties, suspended microstrip lines are difficult to implement, and their use is restricted
to applications where the required performance justifies the higher fabrication costs,
or to monolithic microwave integrated circuits (MMICs). A modification of the sus-
pended microstrip line is the so-called inverted microstrip line, where the conductor
strip is placed below the substrate, in contact with the air gap. The advantages and
drawbacks are similar to those of the suspended microstrip line.

29 The slot mode of a CPW is, in general, an undesiredmode of odd nature, that is, the symmetry plane of the
CPW transmission line is an electric wall (or a virtual ground) for this mode. Conversely, the symmetry
plane is a magnetic wall for the fundamental (even) CPW mode.
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Slot lines are transmission lines that can be used either alone or in combination with
microstrip lines on the opposite side of the substrate [19, 20]. Resonant slots coupled
to microstrip lines have been used for the implementation of stop band filters, and slot
antennas, consisting of a resonant slot fed by a microstrp line, are very well known
[21]. For guided wave applications, radiation must be minimized. This is achieved
through the use of high permittivity substrates, which causes the slot-mode wave-
length to be small compared to free-space wavelength, and thereby results in the fields
being closely confined to the slot with negligible radiation loss. The slot line shares
with the CPW the coplanar configuration; hence, slot lines are especially convenient
for shunt connecting lumped elements. Like microstrip lines or CPWs, slot lines do
not support purely TEMmodes. Indeed, the slot mode is markedly a non-TEM mode,
and hence the characteristic impedance and the phase velocity in the slot line vary with
frequency [19] (in contrast to microstrip lines or CPWs, where the line parameters are
constant to a first-order approximation).

Except the slot line, the planar transmission lines considered earlier are single-
ended (or unbalanced) lines. However, in applications where high immunity to noise,
low crosstalk, and low electromagnetic interference (EMI) are key issues (i.e., in high-
speed digital circuits), balanced (or differential) lines, and circuits are of primary
interest. In two-conductor unbalanced transmission lines, the conductors have
different impedance to ground, as sketched in Figure 1.11a. Such lines are fed by
single-ended ports in which there is an active terminal and a ground terminal (i.e.,
one of the conductors is fed whereas the other is tied to ground potential). One of
the conductors transports the signal current and the other acts as the return current
path. By contrast, in two-conductor balanced lines (Fig. 1.11b), the conductors have
equal potential with respect to ground and are in contra phase, and the currents flowing
in the conductors have equal magnitude but opposite direction (each conductor pro-
vides the signal return path for the other). Such balanced lines are fed by a differential
port, consisting of two terminals, neither of which being explicitly tied to ground. In
balanced lines, the conductors have the same impedance to ground, this being the
main relevant difference compared to unbalanced lines. Microstrip lines, CPWs,
and striplines are examples of unbalanced lines. By contrast, slot lines, or coplanar
strips (CPS), are balanced structures by nature. However, these balanced structures
can be regarded as either balanced or unbalanced, depending on whether the excitation
is balanced or unbalanced, respectively. Two-conductor balanced transmission lines
can also be implemented by etching parallel strips at both sides of a dielectric slab
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FIGURE 1.11 Schematic of two-port transmission lines. (a) Two-conductor unbalanced line,
(b) two-conductor balanced line, and (c) three-conductor balanced line.
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(see Fig. 1.2). This paired strips transmission line is useful, for instance, to feed
antipodal printed dipole antennas [22]. Notice that the symmetry plane of the paired
strips transmission line is an electric wall, and hence a virtual ground. Therefore, this
structure can be analyzed by applying symmetry properties, that is, by removing the
lower half of the structure, and adding a conducting plate, acting as ground plane, in
the backside of the “sliced” substrate. Obviously, the resulting structure is a single-
ended microstrip transmission line, and hence the main line parameters are calculated
by applying the same formulas. However, the voltage drop across the paired strips is
twice the voltage drop in the microstrip transmission line, whilst the current is the
same. This means that the characteristic impedance of the balanced paired strips line
is twice the characteristic impedance of the microstrip line.

Most practical implementations of balanced lines incorporate a ground plane, or
some other global reference conductor. Such differential structures cannot be consid-
ered as pure two-conductor systems, since the ground plane becomes the third con-
ductor of a three-conductor line (Fig. 1.11c). Such three-conductor line can be
implemented by means of a pair of coupled lines over a ground plane. If the three-
conductor line is not balanced due to the ground plane, currents flowing on it can
unbalance the currents in the lines. On the contrary, if the three-conductor line is bal-
anced, the active lines carry equal and opposite currents because the impedances of
either line to ground are equal (see Fig. 1.11c). For instance, although a microstrip line
is unbalanced, a two-port differential microstrip line can be designed by means of
symmetric coupled lines (illustrated in Fig. 1.2—coupled microstrip) differentially
driven. This balanced line consists of edge coupled lines that can be seen as a CPS
line with a ground plane.

1.6 SOME ILLUSTRATIVE APPLICATIONS OF PLANAR
TRANSMISSION LINES

There are several textbooks focused on the analysis and design of planar distributed
circuits and antennas. Our aim in this Section is not to review all these transmission
line applications, but to simply discuss some examples of distributed circuits where
the involved transmission lines and stubs operate at different regimes, i.e., have
different electrical lengths at the frequencies of interest. This includes planar circuits
based on semi-lumped transmission lines (i.e., transmission lines with length l < λ/10),
and based on λ/8, λ/4 and λ/2 lines. Some of the implementations reported in this
Section will be later designed by means of artificial transmission lines in order to
reduce circuit size, improve circuit performance, or achieve novel functionalities
(or a combination of the previous beneficial aspects).

1.6.1 Semilumped Transmission Lines and Stubs and Their
Application to Low-Pass and Notch Filters

Let us start by considering the design of circuits on the basis of electrically small planar
components, usually referred to as semilumped components. The characteristic
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dimension30 of these components is typically smaller than λ/10 at the frequency
of interest. The main relevant characteristic of semilumped components is the fact that
they can be described by simple reactive elements, such as inductors, capacitors, or LC
resonant tanks, up to frequencies satisfying the semilumped element approximation
(l < λ/10). Let us consider an electrically small (l < λ/10) section of a transmission line,
with electrical length βl and characteristic impedance Zo. From (1.6), we can write

βl=ωl L C 1 91

The previous equation can be expressed in terms of the characteristic impedance and
the per-unit-length inductance of the line as follows:

βl =ωl L C =ωl
L

Zo
1 92

or as a function of the characteristic impedance and the per-unit-length line capaci-
tance according to

βl=ωl L C =ωlZoC 1 93

Thus, the line inductance and capacitance of the considered transmission line
section can be expressed as follows:

Lω= Zoβl 1 94a

Cω=
βl

Zo
1 94b

Equations 1.94 reveal that if the line is electrically short and Zo is high, the capacitance
of the considered transmission line section can be neglected and hence the line is
essentially a series inductance; conversely, for an electrically short low impedance
line, the line can be described by a shunt capacitance (the line inductance can be
neglected). At first sight, one may erroneously deduce from (1.94) that the electrically
short line condition (semilumped approximation) is not a requirement to describe the
line by means of a series inductance or a shunt capacitance (very high/low value of Zo
leads to a negligible line capacitance/inductance). However, the line is not free from
distributed effects (despite the fact it has an extreme—high or low—characteristic
impedance) if it is not electrically short. If the line is electrically short, expressions
(1.33) can be approximated by

30By characteristic dimension we mean the length (for a transmission line section or stub), the diameter (for
a circular semilumped component, such as a circularly shaped split ring resonator or SRR), or the longest
side length (for a rectangular planar component, such as a folded stepped impedance resonator or SIR). The
analysis of these electrically small resonators and their applications will be considered later.
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Zin ZL = ∞ = − j
Zo
βl

= − j
1
Cω

1 95a

Zin ZL = 0 = jZoβl= jLω 1 95b

where (1.94) has been used. Hence, it is demonstrated that an electrically small trans-
mission line section with extreme characteristic impedance can be described either by
a series inductor or by a shunt capacitor, and the element values can be inferred
from (1.94).31

From the previous words, it follows that by cascading electrically small transmis-
sion line sections with high and low characteristic impedance, we can implement a
ladder network with series inductances and shunt capacitances, that is, a low-pass fil-
ter. The design procedure simply consists of setting the high and low characteristic
impedance to implementable values, and determining the line length l of each trans-
mission line section by means of (1.94) [1]. Notice that the higher/lower the charac-
teristic impedance, the shorter the resulting inductive/capacitive transmission line
section. After calculation, it is necessary to verify that each transmission line
section satisfies the semilumped element approximation. An illustrative example of
a stepped impedance low-pass filter (in CPW technology) and its frequency response
are presented in Figure 1.12. The device is a ninth-order Butterworth low-pass filter
with a cut-off frequency of fc = 2 GHz (the element values of the filter are inferred
from impedance and frequency transformation from the low-pass filter prototype
[1]). The widths of the central strips and slots for the different sections are obtained
by means of a transmission line calculator, once the characteristic impedance of the
high- and low-impedance transmission line sections is set. Such calculators incorpo-
rate the formulas that link the lateral line geometry to the characteristic impedance,
present in most textbooks focused on transmission lines [6].

In microwave engineering, shunt- and series-connected resonators (either distrib-
uted or semilumped) are key elements. In particular, shunt-connected series resonators
introduce transmission zeros (notches) in the frequency response, which are of interest
for harmonic suppression, or to improve the selectivity in microwave filters (elliptic
low-pass filters are implemented by means of shunt resonators in order to generate
transmission zeros above the pass band of interest). An open-ended shunt stub
behaves as a parallel connected series resonator in the vicinity of the frequency that
makes the line to be λ/4 long. However, the stub length can be significantly reduced by
considering a stepped impedance topology, as depicted in Figure 1.13 [23]. Such ele-
ment is known as stepped impedance shunt stub (SISS) and is described by a grounded
series resonator. The narrow (high impedance) and wide (low impedance) transmis-
sion line sections correspond to the inductance and capacitance, respectively. The
admittance of the SISS (seen from the host line) is given by

31Alternatively, expressions (1.94) and the semilumped approximation requirement have been derived by
considering the equivalent T-circuit model of a transmission line section, where the series and shunt imped-
ance are calculated from the elements of the impedance or admittance matrix [1].
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FIGURE 1.12 Order-9 Butterworth stepped impedance low-pass filter (a) and measured
(solid line) and EM simulated (thin line) frequency response (b). The filter was fabricated on
the Rogers RO3010 substrate with dielectric constant εr = 10.2, and thickness h = 1.27mm.
Filter length is 9.4 cm.
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FIGURE 1.13 Topology of the SISS in microstrip technology and relevant dimensions
(Z2 Z1).
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YSISS = − j
tanϕ1 +Ktanϕ2

Z2tanϕ1 tanϕ2−Z1
1 96

where ϕ1 and ϕ2 are the electrical lengths of the low- and high-impedance line
sections, respectively, and

K =
Z1
Z2

1 97

is the impedance ratio of the SISS [24]. At resonance, the denominator in (1.96)
vanishes, and the following condition results32:

K = tanϕ1 tanϕ2 1 98

It is obvious from (1.98) that to minimize the total electrical length (ϕT = ϕ1 + ϕ2) of
the resonator, K must be as small as possible (K 1) [24]. The reduction of ϕT is
important for two reasons: (1) to reduce the length of the SISS and (2) to be able
to describe the SISS by means of a lumped element model (grounded series LC res-
onator) over a wide frequency band. Under the assumption that the two transmission
line sections of the SISS are electrically small, the tangents in (1.96) can be linearized,
and the admittance of the SISS is found to be

YSISS = − j
ϕ1 +Kϕ2

Z2ϕ1ϕ2−Z1
1 99

This admittance is identical to that of an LC series resonant tank, given by

YLC = − j
ωC

LCω2−1
1 100

provided the following mapping is satisfied:

C =
l1

vp1Z1
+

l2
vp2Z2

=C1 +C2 1 101

L=
Z2l2
vp2

l1
vp1Z1

l1
vp1Z1

+
l2

vp2Z2

= L2
C1

C1 +C2
1 102

32Notice that if K = 1, the resonance condition (1.98) rewrites as tan(ϕ1 + ϕ2) =∞, giving ϕT = ϕ1 + ϕ2 =
π/2, that is, a λ/4 open stub at resonance. This result is easily inferred by applying the following trigono-
metric identity to (1.96): tan(ϕ1 + ϕ2) = (tanϕ1 + tanϕ2)/(1 − tanϕ1 tanϕ2).
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where vp1 and vp2 are the phase velocities of the low- and high-impedance transmis-
sion line sections, respectively, C1 and C2 are the line capacitances, namely,

C1 =
l1

vp1Z1
=C1 l1 1 103

C2 =
l2

vp2Z2
=C2 l2 1 104

C i (i = 1, 2) being the per unit length capacitances of the lines, and L2 is the inductance
of the high impedance transmission line section, that is,

L2 = L2 l2 1 105

Notice that although C is dominated by the capacitance of the low impedance trans-
mission line section, C1, the contribution of C2 on C may be nonnegligible if either K
or l2 are not very small. It is also interesting to note that L is somehow affected by the
capacitive line section, such inductance being smaller than the inductance of the high-
impedance transmission line section, L2. Obviously, to a first-order approximation,
the resonator elements are given by C≈C1 and L≈ L2 (as expected on account of
1.95), although this approximation sacrifices accuracy.

Figure 1.14 shows the photograph of a SISS resonator loading a 50Ω microstrip
transmission line, where L = 3.7 nH and C = 6.9 pF (the resonance frequency is fo = 1
GHz [23]). The impedance of the inductive line is that corresponding to a line width of
150 μm, namely, Z2 = 101.8Ω (the structure is implemented on the Rogers RO3010
substrate with dielectric constant εr = 10.2 and thickness h = 1.27 mm). For the low-
impedance transmission line section, the width (23 mm) guarantees that the first trans-
verse resonance occurs beyond 2fo (see details in Ref. [25]). This gives a characteristic
impedance of Z1 = 5.8Ω. The lengths of the lines, l1 = 2.8 mm and l2 = 4 mm, were
derived from (1.101) and (1.102) (actually some optimization was required due to
the effects of line discontinuities, not accounted for by the model). These line lengths
correspond to electrical lengths of ϕ1 = 20.7 and ϕ2 = 23.8 at 2fo. The EM simula-
tion and the measured frequency response of the SISS-loaded line is also depicted in
Figure 1.14. The circuit simulation of the same line loaded with a shunt connected LC
resonator with the reactive values given above is also included in the figure, for com-
parison purposes. The agreement is excellent up to 2fo, indicating that the semilumped
approximation is valid in the considered frequency range. Although, typically, notch
filters (i.e., stop band filters with a peaked response, or transmission zero) exhibit
narrow stop bands, the structure of Figure 1.14 can be considered to belong to this
category (the bandwidth can be controlled by the inductance/capacitance ratio).

To end this subsection devoted to semilumped transmission lines and components,
let us briefly consider the stepped impedance resonator (SIR) [26], which consists of a
pair of wide transmission line sections sandwiching a narrow strip (Fig. 1.15a). This
resonator is electrically smaller than the conventional λ/2 resonator (in the same form
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than the SISS is electrically smaller than the λ/4 open stub). SIRs are typically driven
through electric coupling, though they can also be externally driven by means of a
time varying magnetic field by simply folding the SIR topology, as shown in
Figure 1.15b. The size of the folded SIR can be further reduced by decreasing the
gap distance between the wide transmission line sections, since this introduces an
extra capacitance to the structure. SIRs have been used in a wide variety of microwave
applications, including applications involving artificial transmission lines (as will be
later shown). To illustrate the potentiality of these resonators, an SIR-based order-3
elliptic-function low-pass filter is reported (see further details in Ref. [27]). The filter
is based on a CPW transmission line loaded with an SIR etched in the back substrate
side. The wide strip sections of the SIR are placed face-to-face with the central strip
and ground plane of the CPW host line, resulting in a shunt connected series resonator
which introduces a transmission zero. The circuit model of an elliptic low-pass filter

(a) (b)

FIGURE 1.15 Topology of a SIR (a), and folded SIR (b).
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FIGURE 1.14 SISS-loaded microstrip line (a), insertion and return loss (b) and phase
response (c). Reprinted with permission from Ref. [23]; copyright 2011 IET.
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FIGURE 1.16 (a) Low-pass elliptic-function prototype filter with shunt connected series
resonators (the circuit correspond to a fifth-order prototype), (b) topology of the SIR-based
low-pass filter (order-3), (c) equivalent circuit model including parasitics, and (d) EM
response, ideal filter prototype response and circuit response including parasitics. The
considered substrate thickness and dielectric constant are h = 254 μm and εr = 11.2,
respectively. Dimensions are W = 5 mm, G = 0.55 mm, a = 3.24 mm, b = 3.99 mm. Back side
metal is indicated in black colour. The element values of the ideal prototype filter shown in
(a) are L1 = L3 = 4.7 nH, L2 = 1.38 nH, C2 = 2.98 pF. The element values of the complete
circuit model in reference to the circuit shown in (c) are L1 = L3 = 4.7 nH, L2 = 1.65 nH, C2

= 2.5 pF, Ca = 0.08 pF, Cb = 0.44 pF, Cs = 0.115 pF. With regard to parasitics, Cs models the
capacitance associated to the meander, and Ca, Cb are the capacitances from the central strip
to the ground plane. Reprinted with permission from Ref. [27]; copyright 2010 IEEE.



based on shunt connected series resonators,33 the proposed order-3 SIR-based filter,
its circuit model including parasitics, and the frequency response, are depicted in
Figure 1.16. The remarkable aspects of these SIR-based filters are the small size,
and the excellent agreement between the ideal filter response (ideal circuit simulation)
and the EM simulation up to frequencies above the transmission zero frequency. At
higher frequencies, the parasitics must be included for an accurate description of the
filter response (indicated as improved circuit simulation in the figure). Elliptic func-
tion low-pass filters using SISS in microstrip technology have also been reported [28].

1.6.2 Low-Pass Filters Based on Richard’s Transformations

Let us now consider the potential of λ/8 open and short-circuit stubs, which are elec-
trically larger than the semilumped components considered in the previous section.
According to Richard’s transformations, such stubs can be used to replace shunt
inductors and capacitors. Let us illustrate their application to the implementation of
low-pass filters. The key idea is to force the length of the stubs to be λ/8 at the filter
cut-off frequency, ωc. Using (1.35), the reactance of the short-circuit and open-circuit
stub at ωc is forced to be identical to that of the inductor and capacitor, respectively.
Below that frequency, we also expect a similar reactance because the stubs have
roughly a linear dependence with frequency. However, discrepancies between the
reactances of the stubs and lumped elements are expected above ωc.

34 Let us consider
the implementation of an order-3 Chebyshev low-pass filter with a cut-off frequency
of fc = 2 GHz, and 0.5 dB ripple. From impedance and frequency transformation from
the low-pass filter prototype, the series inductances and the shunt capacitance of the
filter are L1 = L3 = 6.35 nH, and C2 = 1.74 pF, respectively. Application of (1.35)
gives Zo1,3 = 79.8Ω and Zo2 = 45.6Ω, for the inductive and capacitive stubs, respec-
tively. Since the implementation of series stubs is complex, at least in microstrip tech-
nology, let us replace the inductive stubs with shunt stubs. To this end, the Kuroda
identity shown in Figure 1.17 is used [1].35 To apply the Kuroda identity of
Figure 1.17, we first cascade a pair of λ/8 long 50Ω transmission line sections at
the input and output port of the filter. Notice that this has effects on the phase response
of the filter, but not on the magnitude of the insertion and return loss. Application of
the Kuroda identity leads to the circuit of Figure 1.18. The layout of this filter, for
microstrip technology considering the Rogers R04003C substrate with dielectric
constant εr = 3.38 and thickness h = 0.81 mm, is also depicted in the Figure. The
EM simulation of the filter response is compared with the ideal Chebyshev filter
response, where it can be appreciated that the agreement is excellent up to the

33Alternatively, elliptic-function lowpass filters can be implemented by cascading series connected parallel
resonators and shunt capacitors.
34 Since the reactance of the stubs is a periodic function with frequency, the frequency response of the filter
is also a periodic function, and spurious (or harmonic) bands are generated.
35 Kuroda’s identities are equivalences between two-port networks containing series- or shunt-reactive ele-
ments and transmission line sections (called unit elements), that are used to physically separate transmission
line stubs, to transform series stubs into shunt stubs, and to change unrealizable characteristic impedances
into implementable ones.

39SOME ILLUSTRATIVE APPLICATIONS OF PLANAR TRANSMISSION LINES



cut-off frequency, and the frequency selectivity of the distributed implementation is
significantly better, although with the presence of spurious bands (the filter response
repeats every 8 GHz), as predicted before.

1.6.3 Power Splitters Based on λ/4 Lines

Power splitters, combiners, and couplers are fundamental building blocks in RF/
microwave engineering. Most of their simplest implementations as distributed circuits
are based on λ/4 lines.36 Let us, hence, illustrate the application of λ/4 lines to the
implementation of power splitters (it will be later shown that these lines can be
replaced with artificial lines in order to reduce splitter size and obtain dual-band func-
tionality). Power splitters are reciprocal37 three-port networks (or multiport networks
if the number of output ports is higher than 2) with a matched input port, that is, there
is not power return to this port if the output ports are terminated with matched loads. If
the splitter is lossless, the scattering matrix (for the case of a 1:2 device) can be written
in the general form [1]:

S =

0 α α

α γ −γ

α −γ γ

1 106

l =  λ/8

Zo1

Zo2
n2 = 1+

Port 2Port 1

Zo1

Zo2

l

l Port 2Port 1

n2Zo1

n2Zo2

l

l

FIGURE 1.17 Kuroda identity used for the design of the filter of Figure 1.18.

36 Power splitters can also be implemented by means of lumped resistive elements [1]. Such splitters ideally
exhibit an infinite operational bandwidth, but they are lossy. By contrast, distributed splitters can be con-
sidered (to a first approximation) lossless, but their functionality is restricted to a certain band in the vicinity
of the operational frequency.
37 Reciprocal networks are defined as those networks verifying that the effects of a source, located at one
port, over a load, located at another port, are the same if the source and load interchange the ports where they
are connected [1]. In reciprocal networks, the scattering matrix is symmetric.
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with α = 1 2 and γ = 1 2. The two canonical forms of lossless symmetric power
splitters are depicted in Figure 1.19, where the impedances of the inverters (λ/4 lines),
indicated in the figure, are derived by forcing the matching condition for the input
port. In both implementations of Figure 1.19, α= − j 2, whereas γ = 1/2 for
Figure 1.19a and γ = −1/2 for Figure 1.19b. The number of output ports of the splitter
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FIGURE 1.18 Schematic (a), layout (b), and frequency response (c) of the low-pass filter
based on Richard’s transformations. The relevant dimensions (in mm) are indicated. The
circuit simulation in (c) was obtained by using a commercial circuit and schematic solver,
where the transmission lines and stubs are modeled by the corresponding distributed models.
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can be arbitrarily large. In order to preserve matching, the characteristic impedance of
the inverters must be Zo = 50 nΩ for the structure of Figure 1.19a and 50 nΩ for
the structure of Figure 1.19b, where n is the number of output ports. A 1:3 power
divider, corresponding to the configuration of Figure 1.19a, and its EM response
are shown in Figure 1.20. The device was designed to be operative at 1.5 GHz, as
revealed by the good matching at that frequency.

1.6.4 Capacitively Coupled λ/2 Resonator Bandpass Filters

The last illustrative example is a bandpass filter based on λ/2 transmission lines acting
as distributed resonators. If a gap is etched on a transmission line, the frequency
response is a high-pass type response, and this can be described by series connecting
a capacitor to the line. However, if two capacitive gaps are etched in the line, rather
than a high-pass response with enhanced rejection in the stop band, the structure exhi-
bits a bandpass response that can be attributed to a resonance phenomenon. At the
frequency where the distance between gaps is roughly λ/2, the forward and backward
travelling waves (caused by gap reflections) in the resonator sum up in phase, and
small coupling (and hence power transfer) between the feeding line and the resonator
is enough to achieve total power transmission (assuming lossless lines) between the
input and the output ports. Of course, this resonance phenomenon occurs at frequen-
cies satisfying l = nλ/2 (with n = 1, 2, 3, …).38 Based on this phenomenon, bandpass
filters with controllable response can be implemented (see Ref. [1] for further details
on the design of this type of filters). As an example, an order-3 bandpass filter in
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FIGURE 1.19 Canonical forms of the two-output distributed symmetric power splitter.
(a) With two inverters and (b) with one inverter.

38 Actually, this is the resonance condition for an unloaded resonator. The gaps introduce some phase shift in
the reflected waves, and the resonance condition is slightly modified.
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FIGURE 1.20 Example (layout) of a power splitter (a), and frequency response (b). Relevant
dimensions (in mm) and device ports are indicated. The width of the three λ/4 lines gives a
characteristic impedance of Zo = 50 3= 86 6 Ω. The considered substrate is the Rogers
RO3010 with dielectric constant εr = 10.2 and thickness h = 1.27 mm.
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microstrip technology and its frequency response are shown in Figure 1.21. Resonator
lengths and inter-resonators distance (i.e., gap space) have been calculated in order to
obtain a Chebyshev response with 0.5 dB ripple, central frequency fo = 6 GHz, and 5%
fractional bandwidth (it will be shown in Chapter 2 that resonator’s length can be
reduced by means of slow wave artificial transmission lines).
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