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ARTIFICIAL TRANSMISSION LINES
BASED ON PERIODIC STRUCTURES

2.1 INTRODUCTION AND SCOPE

In the framework of RF/microwave engineering, one-dimensional periodic structures
are transmission lines and waveguides periodically loaded with identical elements
(lumped, semilumped, inclusions, defects, etc.), or with a periodic perturbation in
their cross-sectional geometry (nonuniform transmission lines and waveguides).1

The main relevant properties of one-dimensional periodic structures, which will be
reviewed in this chapter, can be useful for the implementation of artificial transmission
lines with various functionalities and applications based on them. Specifically, peri-
odic transmission lines exhibit stop/pass bands, and support the propagation of waves
with phase velocities lower (slowwaves) or higher (fast waves) than the speed of light.
Thus, transmission lines based on periodic structures can be applied to the implemen-
tation of filters, reflectors, electromagnetic bandgaps (EBGs),2 slow wave structures

1 Two-dimensional and three-dimensional periodic structures can also be of interest at RF/microwave (and
even at optical) frequencies, in applications such as frequency-selective surfaces, antenna substrates and
superstrates (to improve antenna performance), isolators, and so on, but these structures are out of the scope
of this book, which is focused on artificial transmission lines.
2 In analogy with semiconductor crystals (which exhibit forbidden energy bands, or gaps), periodic struc-
tures in the optical domain are usually identified as photonic crystals (PCs), or photonic bandgaps (PBGs).
This explains the term “electromagnetic bandgap” (EBG) used to designate such structures at RF/micro-
wave frequencies.
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(of interest for device miniaturization), and leaky wave antennas (LWAs), among
others.

The purpose of this chapter is to briefly present the Floquet (or Bloch mode) anal-
ysis of one-dimensional periodic structures (which will bring us to the concept of
space harmonics), and the transfer matrix method, applied to the unit cell, for obtain-
ing the modal solutions (or dispersion curves) of the fundamental space harmonic.
This will be important to predict the frequency response of the considered lines based
on periodic structures. Moreover, an alternative and complementary analysis for peri-
odic transmission lines with nonuniform cross section, (e.g., microstrip lines with
defected ground planes or strip width modulation), based on the coupled mode theory,
is also included in this chapter. By means of justified approximations, it will be shown
that this analysis provides valuable information (through analytical expressions) rel-
ative to the main relevant parameters of these lines (S-parameters, maximum reflec-
tivity and bandwidth of the stop bands, etc.). The periodic transmission lines that
will be considered and studied in this chapter through the earlier-cited approaches
(the transfer matrix method and the coupled mode analysis) include EBG-based trans-
mission lines (either with defected ground planes or strip width modulation), and
transmission lines loaded with reactive elements. The main applications of these lines
will also be reviewed in the chapter.

2.2 FLOQUET ANALYSIS OF PERIODIC STRUCTURES3

Let us consider a one-dimensional infinite periodic structure (transmission line or
waveguide) with period l, and the propagation axis denoted as z. If the time depend-
ence is chosen as e jωt, and if the cross-sectional dependence is suppressed, the
Floquet’s theorem states that the fields propagating along the line can be expressed
as Bloch waves according to [1–5]:

Ψ z = e−γz P z 2 1

where γ is the propagation constant, and P(z) is a periodic function with period l:

P z+ l =P z 2 2

Thus, the field behavior can be expressed in terms of a fundamental traveling wave,
with propagation constant γ, and a standing wave P(z), which repeats in each unit cell

3 This section is mainly based on a short course given by Arthur A. Oliner, who recently passed away, and
who was a pioneer in the topic of periodic structures and leaky waves. His contributions on this topic are so
well-written and comprehensible that can be effortlessly understood. Let us consider this section, extracted
from this short course (published in Ref. [2]), as a tribute to him.
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and represents the local variations due to the periodicity. From (2.1), it follows that the
fields at positions separated by one period are related by:

Ψ z+ l = e−γ z+ l P z+ l = e−γl Ψ z 2 3

or, in other words, the fields of a Bloch wave repeat at each unit cell terminal, having a
propagation factor e−γl.

Since P(z) is a periodic function, it can be expanded in a Fourier series as

P z =
n= +∞

n= −∞
Pne

− j2πnl z 2 4

By inserting (2.4) into (2.1), the fields can be expressed as a superposition of traveling
waves of the form

Ψ z =
n = +∞

n= −∞
Pne

− j β + 2πn
l z e−αz 2 5

where the propagation constant has been decomposed into the phase and attenuation
constants, γ = α + jβ. The components of (2.5) are called space harmonics, in analogy
to the harmonic decomposition of a periodic signal in time domain [2, 4]. The phase
constants of the space harmonics are thus given by:

βn = β +
2πn
l
, n = 0, ± 1, ± 2, … 2 6

and the phase of the fundamental harmonic (n = 0) is simply β. It is important to men-
tion that the space harmonics do not exist independently. Rather than being modal
solutions by themselves, they represent individual contributions to the whole field.

Since the phase constants of the space harmonics differ by a constant, it follows
that the group velocity is the same for all harmonics, that is,

vgn =
dω

dβ
2 7

whereas the phase velocities are given by

vpn =
ω

β + 2πn l
2 8

From the space harmonics representation of the periodic structure, it is possible to
infer the pass/stop band characteristics inherent to periodicity. The reason is mode
interference (or coupling) between modes with similar phase velocities but opposite
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group velocities (this aspect will be studied in Section 2.4 in detail). This results in
stop bands (or gaps) in the frequency response. To gain insight on this effect, let
us consider that a transmission line is slightly (periodically) perturbed so that the
phase constant β of the fundamental harmonic can be approximated by a straight line
(see expression 1.6). This means that the β −ω diagrams (or dispersion curves) of the
set of space harmonics, obtained by displacing the dispersion diagram of the funda-
mental harmonic a quantity 2πn/l, are also straight lines, as depicted in Figure 2.1.
This diagram points out that there are points where the straight lines cross, giving rise
to mode coupling and hence stop bands, as Figure 2.2 illustrates. Thus, Figure 2.2
depicts the actual dispersion curves of the slightly perturbed transmission line. The
gap bandwidths and the specific frequency dependence of the phase constants

βl

ω

2π 4π−2π−4π 0

FIGURE 2.1 β-ω diagram of the fundamental harmonic (solid line) and high-order space
harmonics (dashed lines) for a transmission line with an infinitesimal periodic perturbation.

β l

ω

2π 4π−2π−4π 0

FIGURE 2.2 Dispersion diagram of a one-dimensional periodic structure with space
harmonics. The limits of the first Brillouin zone are indicated by vertical dotted lines. The
region where leaky wave radiation is possible is delimited by the dashed lines with slopes −
c/l and + c/l (and indicated by the gray-white alternating strips).
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(identical for all the space harmonics) are related to the nature and magnitude of the
perturbation or loading element. Nevertheless, in view of Figure 2.2, the band gaps
appear at frequencies satisfying βl = π (or l = λ/2), that is,

f =
vp
2l

2 9

and its harmonics, vp being the phase velocity of the unperturbed line. Expression
(2.9) is known as the Bragg condition, and states that the first stop band caused by
the effects of periodicity4 appears at the frequency satisfying that the period is half
the wavelength of the unperturbed line, λ. The presence of additional band gaps
depends on the harmonic content of the Fourier expansion (2.4), which in turn
depends on the specificities of the loading elements or perturbation (this aspect will
also be considered in Section 2.4).

It is remarkable that the part of the β −ω diagram of Figure 2.2 comprised between
− π < βl < π is repetitive every βl = 2π along the abscissa axis. Usually, this region is
referred to as the first Brillouin zone, and the curves within this region give full infor-
mation of the dispersion characteristics of the periodic structure [1, 5]. It is also impor-
tant to mention that if we consider either an infinitely long or terminated (with a
matched load) periodic transmission line (so that reflections are avoided) fed by a
source at one end, the waves excited by the source must carry their energy (and hence
the group velocity) in the direction against the source (i.e., toward the load if it is pres-
ent). Thus, in such situation, only the portions of the curves of Figure 2.2 with positive
slope (or group velocity) are of interest.5 Regardless of the propagation direction,
there are regions of the dispersion curves where β(ω) dβ(ω)/dω < 0. In these regions,
the phase and group velocities are of opposite sign, and the corresponding waves are
called backward waves.6

Another relevant aspect of one-dimensional periodic structures is the fact that these
structures may radiate if they are open. The reason is that there are portions of the
dispersion curves where the phase velocity is higher than the speed of light in vacuum,
c, (fast wave regions, see Fig. 2.2). These radiating harmonics are leaky waves,
and exhibit properties similar to leaky waves in uniform structures. A detailed analysis
of leaky wave radiation in periodic structures is out of the scope of this book (see [6–9]
for further details).7 Therefore, we will simply present a brief and straightforward

4 Stop bands not related to periodicity may appear at lower frequencies, for instance, by periodically loading
a transmission line with resonators coupled to it. In this case, the first stop band is centered at the resonance
frequency of the resonant element.
5 It is assumed that the energy travels toward the positive z-direction.
6 The concept of backward wave will be considered in detail in Chapter 3. Nevertheless, it is important to
distinguish them from backward travelling waves. In backwardwaves, the energy propagates in the opposite
direction to the phase of the waves, and it is therefore an unconventional type of propagation. Thus, for
energy transmission in the positive z-direction, the phase of the waves propagates in the negative/positive
z-direction for backward/forward waves. Backward/forward travelling waves are simply forward waves
propagating in the negative/positive z-direction.
7 Nevertheless, we dedicate a subsection in Chapter 4 devoted to LWAs based on metamaterial transmis-
sion lines.
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analysis to understand the phenomenon. Let us consider that the fields in the open
periodic structure vary in both the longitudinal and transverse directions. The free-
space wavenumber k is related to the parameters of each space harmonic as [2]8:

k2 = k2n + k
2
tn = β +

2πn
l

− jα
2

+ k2tn 2 10

where it has been assumed that kn = βn − jα (component in the longitudinal direction)
and ktn = βtn − jαtn (component in the transverse direction). To graphically illustrate
the generation of leaky waves by the fast wave space harmonics, let us assume that
the longitudinal attenuation constant α is negligible (i.e., kn = βn). In that case, if kn

2 >
k2 (slow wave regions), ktn is imaginary, and the mode does not leak. Conversely, if
kn

2 < k2 (fast waves), ktn is real and the mode radiates. This situation is illustrated in
Figure 2.3, where it can be seen that for 0 < kn < k and − k < kn < 0, the radiation is
forward and backward, respectively. For the specific frequencies where kn = 0, kn = k
and kn = − k , leaky wave radiation is designated as broadside, endfire and backfire,
respectively. Indeed, the direction of the radiated beam can be easily inferred from:

cosθ =
kn
k

2 11

which results from direct inspection to Figure 2.3.
Let us now take into account the attenuation constants in (2.10). Through separa-

tion of the real and imaginary parts, we obtain:

k2 = k2n + k
2
tn = β2n−α

2 + β2tn−α
2
tn −2j αβn + αtnβtn 2 12

z

x

0 kn

ktn k

z

x

0kn

ktnk

(a) (b)

θ θ

FIGURE 2.3 Diagrams illustrating the generation of a forward (a) and backward (b) leaky
wave in a periodic structure.

8 The free-space wavenumber is denoted as k, rather than k0 (as usual), to avoid confusion with the funda-
mental space harmonic. However, in Section 2.4, we recover the usual designation (see expression 2.45)
since in that section k is used as a parameter related to the weighting factors of the coupling coefficient
(to be defined later), according to expression (2.66).
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Since the imaginary part of the free-space wavenumber k is zero, it follows that

αtn = −α
βn
βtn

2 13

Expression (2.13) is interesting because it points out a significant difference between
the forward and backward leaky waves. Namely, since the longitudinal attenuation
constant α and transverse phase constant βtn are both positive, the transverse attenu-
ation constant αtn is of opposite sign to the longitudinal phase constant of the space
harmonic βn. Thus, if βn < 0, αtn is positive, meaning that the radiated fields decay in
the transverse direction. Conversely, if βn > 0, αtn is negative, and the fields increase in
the transverse direction. In this latter case (forward wave radiation), since this wave
type would diverge at infinity in the transverse plane if it were defined everywhere,
it cannot be spectral, that is, a proper mode. Therefore forward leaky waves are said to
be non-spectral, contrary to backward leaky waves, which are called spectral [2]. By
introducing (2.13) into (2.12), the relation between k, βn and βtn is found to be:

β2n =
k2−β2tn + α

2

1−
α2

β2tn

2 14

Notice that although forward (nonspectral) leaky waves are mathematically
improper,9 they have physical meaning and are useful for the implementation of
radiating elements (LWAs). In practice, the leaky wave is defined only within a
wedge-shaped region determined by the position of the source, where the leaky wave
decays at all angles from the source. This solves the above inconsistency between the
mathematical solution and the “physical” leaky waves, never exhibiting progressively
increasing fields in the transverse direction.

2.3 THE TRANSFER MATRIX METHOD

Although the space harmonics are fundamental to explain several properties of peri-
odic structures (the weight of each harmonic depends on the nature and magnitude of
the perturbation), usually the fundamental space harmonic is dominant, and it suffices
for the description of many structures (especially in the pass band regions, far enough
from the band gap edges). In order to obtain the modal solutions (or dispersion char-
acteristics) of the fundamental space harmonic (or equivalently of the Bloch wave),
the transfer matrix method is very useful in situations where the fields at two positions
separated by a period (related by Eq. 2.3) can be expressed as mutually dependent
through a certain transfer function (or matrix), characteristic of the unit cell structure.

9 The increasing field in the transverse direction violates the boundary condition at infinity since the math-
ematical description of leaky waves holds throughout all space.
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2.3.1 Dispersion Relation

Let us consider the periodic structure depicted in Figure 2.4, where the unit cells are
represented by boxes, and let us consider that the voltages and currents at the reference
planes between adjacent unit cells are well (uniquely) defined10 and measurable
quantities. The voltages and currents on either side of the nth unit cell are related
by the ABCD matrix (see Appendix C) according to

Vn

In
=

A B

C D

Vn + 1

In+ 1
2 15

On the other hand, according to the Floquet’s theorem, the voltages and currents at the
n and n + 1 planes only differ by the propagation factor, that is

Vn+ 1 = e
−γl Vn 2 16a

In+ 1 = e
−γl In 2 16b

From (2.15) and (2.16), it follows that

Vn

In
=

A B

C D

Vn + 1

In+ 1
=

eγl Vn + 1

eγl In+ 1
2 17

In+1

Vn+1

+

− DC

BA
Vn–1

In–1

+

− DC

BA

In

Vn

+

− DC

BA

FIGURE 2.4 Periodic structure with unit cell described by the transfer ABCD matrix.

10 Strictly speaking, this uniqueness of voltages and currents is only possible for TEMmodes, but it can also
be made extensive to quasi-TEMmodes. For non-TEMmodes, the voltage and the current are not properly
(uniquely) defined. However, it is possible to define an equivalent voltage and current that make these vari-
ables (and even their ratio, the impedance) useful quantities. To this end, the following considerations are
applied [10]: (i) voltage and current are only defined for a particular mode, and are defined so that the volt-
age and current are proportional to the transverse electric and magnetic fields, respectively; (ii) the equiv-
alent voltages and currents should be defined so that their product gives the power flow of the mode; and
(iii) the voltage to current ratio for a single travelling wave should be equal to the characteristic impedance of
the mode. Nevertheless, unless otherwise specified, the periodic structures considered throughout this book
can be described, to a first-order approximation, by considering only the TEM or quasi-TEMmodes. There-
fore, expression (2.15) involves well-defined variables in our case.
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or

A−eγl B

C D−eγl

Vn+ 1

In+ 1
= 0 2 18

Notice that, according to (2.17) and (2.18), the voltages and currents propagating in
the line are the eigenvectors, whereas the propagation factor is given by the eigenva-
lues, or eigenmodes, of the system. For a nontrivial solution, the determinant of the
matrix in (2.18) must be zero, namely

AD + e2γl− A+D eγl−BC = 0 2 19

Since for a reciprocal system AD − BC = 1 (see Appendix C), (2.19) can be expressed
as follows11:

eγl + e−γl =A+D 2 20

and the dispersion relation can be finally written as

cosh γl =
A+D
2

2 21

In a lossless and reciprocal periodic structure, the right-hand side of (2.21) is purely
real. This means that the propagation constant is either purely real (γ = α, β = 0) or
purely imaginary (γ = jβ, α = 0).12 In the first case, the Bloch wave is attenuated along
the line, and the corresponding regions define the stop bands of the structure. If γ = jβ
and α = 0, cosh(γl) = cos(βl), and (2.21) rewrites as follows:

cos βl =
A +D
2

2 22

Expression (2.22) is thus valid in the propagation regions, where the modulus of the
right-hand side is smaller than 1. If the unit cell of the periodic structure is symmetric
with respect to the plane equidistant from the input and output ports, A =D and (2.22)
can be simplified to

cos βl =A 2 23

11Reciprocity is assumed throughout this chapter.
12 As it will be shown in Chapter 3, under some circumstances, lossless periodic structures may support
modes that appear as conjugate pairs, that is, modes of the form γ = α ± jβ. Such modes are called complex
modes.
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2.3.2 Bloch Impedance

Another important parameter is the relationship between the voltage and current at any
position (plane) of the periodic structure. Such parameter can be inferred from (2.18),
namely,

A−eγl Vn + 1 +BIn + 1 = 0 2 24

and it follows that

Vn + 1

In + 1
= −

B

A−eγl
, n 2 25

Expression (2.25) does not depend on the plane where such voltage to current relation
is calculated. It resembles the characteristic impedance of a transmission line, defined
as the relation between voltage and current for a single propagating wave at any posi-
tion in the line. However, since the propagating waves in the periodic structure are
Bloch waves, it is more convenient to identify the impedance given by (2.25) as
the Bloch impedance, ZB. Isolating eγl from (2.20) and introducing it into (2.25), it
follows that the Bloch impedance has two solutions:

Z ±
B = −

2B

A−D A+D 2−4
2 26

one corresponding to forward traveling waves and the other to backward traveling
waves. In general, the two solutions of (2.26) are complex. In the propagation regions,
(A +D)2 < 4, and the resulting solutions have the same magnitude, identical imaginary
part and real parts of opposite sign. In the forbidden (band gap) regions, the two solu-
tions are purely imaginary13 and exhibit different magnitude, unless the unit cell is
symmetric. In this case, A =D and (2.26) is simplified to

Z ±
B = ±

B

A2−1
2 27

For a lossless and symmetric structure, the two solutions of the Bloch impedance in
the allowed regions are real and have opposite signs. Such different signs are indic-
ative of propagation in the forward or backward direction (the negative sign for back-
ward traveling waves is related to the definition of the currents in Fig. 2.4).

Let us discuss the meaning of the complex Bloch impedance that results in the
allowed bands of lossless periodic structures with asymmetric unit cells. According

13 In the forbidden regions, (A +D)2 > 4, hence the denominator in (2.26) is a real number. Since for a loss-
less structure B is purely imaginary, it follows that the Bloch impedance is purely imaginary in those
regions.
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to expression (1.8), in a lossless transmission line, the characteristic impedance is
purely real. However, the Bloch impedance in lossless periodic structures is complex,
if the unit cell is asymmetric. This complex impedance cannot be related to attenuation
losses if the periodic line is lossless. The origin of the complex Bloch impedance in
lossless periodic structures with asymmetric unit cells is intimately related to the ter-
mination of the line. If the unit cell is asymmetric, a finite periodic structure consisting
of a certain number of cascaded unit cells is also asymmetric. Therefore, the input
impedance of such an asymmetric structure terminated by certain load impedance
depends on the locations (left or right) of the source and the load. In particular, if
the structure is terminated with the Bloch impedance, the impedance seen from the
input port is also the Bloch impedance. However, since the input impedance depends
on the position of the source (input port), it follows that the Bloch impedance must be
different for forward and backward traveling waves in asymmetric periodic transmis-
sion lines. Nevertheless, for an infinite periodic structure, where the effects of termi-
nations vanish, propagation in the forward or backward directions must be
undistinguishable. Indeed, if the structure is infinite, it can be described by a cascade
of symmetric unit cells, by simply shifting the reference planes, as described in
Figure 2.5.14 Since the Bloch impedance for this symmetric unit-cell-based structure
in the propagation regions is real, we can conclude that the complex Bloch impedance
in the asymmetric structure is caused by a phase shift in only one of the variables (volt-
age or current), as compared to the symmetric case (where voltage and current are in
phase), as consequence of a displacement of the reference planes (this situation is also
illustrated in Fig. 2.5). From this analysis, we can also conclude that for both forward
and backward traveling waves propagating in the periodic structure with asymmetric
unit cells, the real part of the Bloch impedance must be identical, whereas the imag-
inary parts must have identical magnitude and different sign (for the validity of this
statement, we have assumed that the backward traveling waves exhibit positive
current in the backward direction).

To gain insight on the effects of asymmetry, let us consider a periodic structure that
can be described by the network of Figure 2.5, where the dashed lines are the reference
planes for the symmetric unit cell described by a T-circuit model, whereas the dotted
lines are the reference planes of the asymmetric unit cell described by an L-circuit.15

The elements of the ABCD matrix for the unit cells considered in Figure 2.5 can be
easily inferred [10]. In particular, for the symmetric unit cell:

A=D= 1+
Zs
2Zp

2 28a

14 This statement is based on the fact that any two-port network can be described by means of an equivalent
π- or T-circuit. Despite the asymmetry of the equivalent π- or T-circuit of any asymmetric unit cell, by cas-
cading such circuits, it is possible to describe any infinite structure by means of symmetric unit cells by
simply shifting the reference planes. However, in a physical periodic structure, it is not necessarily possible
to identify a symmetric unit cell.
15 An L-circuit can be considered a particular case of a T-circuit where one of the series impedances is null.
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B=Zs +
Z2
s

4Zp
2 28b

C =
1
Zp

2 28c

whereas the following parameters apply to the asymmetric unit cell:

A = 1 +
Zs
Zp

2 29a

B =Zs 2 29b

C =
1
Zp

2 29c

D= 1 2 29d

Zs

Zp Zp Zp

Zs Zs Zs

Zs/2Zs/2

Zp

Zs/2 Zs/2

+

−

In
L

Vn
L Vn

T

In
T

−

+

nL–1 nL+1 nL+2nT–1 nT+1

nL+1 nT+1

nT+2nL

nL

nT

nT

FIGURE 2.5 Periodic structure where the reference planes of the symmetric T-circuit unit
cell (vertical dashed lines) and asymmetric L-circuit unit cell (vertical dotted lines) are
indicated. The superscripts L or T in the port variables and reference planes are used to
differentiate between the asymmetric and symmetric unit cells. Notice that the port currents
do not vary by shifting the reference planes ILn = I

T
n , contrary to the port voltages

VL
n VT

n . To make the reference planes of the symmetric unit cells accessible, it suffices
to split the series impedance into two identical impedances equal to Zs/2.
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Introducing the elements of (2.28) in (2.27), the Bloch impedance corresponding to
the structure described by the symmetric unit cell is found to be

Z ±
B = ±

Zs 1 +
Zs
4Zp

1 +
Zs
2Zp

2

−1

= ±
Zs
2

Zs
2
+ 2Zp 2 30

and it is real in the propagation regions if Zs and Zp are purely reactive impedances. For
the structure composed by a cascade of the asymmetric L-circuit unit cells, the Bloch
impedance is derived from (2.26) and (2.29)

Z ±
B = −

2Zs

Zs
Zp

2 +
Zs
Zp

2

−4

= ±
Zs
2

Zs
2
+ 2Zp +

Zs
2

2 31

and it is a complex number in the region where wave propagation is allowed. As men-
tioned before, according to the usual definition of the positive current for forward and
backward traveling waves, the two solutions of the Bloch impedance must be actually
expressed as follows:

Z ±
B =

Zs
2

Zs
2
+ 2Zp ±

Zs
2

2 32

Expression (2.32) indicates that the real part of the Bloch impedance is identical to that
of the symmetric structure (2.30), as expected. Notice that the imaginary part is the
impedance that must be cascaded to the truncated periodic line (+Zs/2 and − Zs/2 in
the load and source planes, respectively) in order to transform the finite asymmetric
periodic structure to a symmetric network. Therefore, the complex Bloch impedance
in the propagation regions of lossless asymmetric structures indicates that to match a
load/source to the line it is necessary to series connect a reactive impedance, able to
compensate the effects of asymmetry, plus the required resistive part, given by the
absolute value of (2.30).

In the circuit of Figure 2.5, it is remarkable that the dispersion relation, given by
(2.22), is insensitive to the position of the reference planes of the unit cell. Either by
using the A and D parameters given by (2.28) or (2.29), expression (2.22) is found
to be

cos βl = 1 +
Zs
2Zp

2 33
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2.3.3 Effects of Asymmetry in the Unit Cell through an Illustrative Example

At this point, it is interesting to provide an example to illustrate the effects of asym-
metry of the unit cell in the behavior of the structure. Let us consider the ladder net-
work corresponding to the circuit model of a lossless conventional transmission line,
where each unit cell describes a section of the transmission line that must be electri-
cally short (Figure 2.6). For the symmetric unit cell, the Bloch impedance, inferred
from (2.30), is

ZB =
L

C
1−

ω2

ω2
o

2 34

where ω is the angular frequency, and ωo = 2 LC is a cutoff frequency. Above this
cutoff frequency, the Bloch impedance is purely imaginary, and propagation is not
allowed. The network of Figure 2.6 is indeed a low-pass filter, whereas a lossless
transmission line is an all-pass structure. The discrepancy is explained because the
network of Figure 2.6, where L and C model the per-section inductance and capaci-
tance of the transmission line, is valid at low frequencies (the wavelength must be
much larger than the considered line section length). Nevertheless, for frequencies sat-
isfying ω ωo, the Bloch impedance coincides with the well-known characteristic
impedance of the line (expression 1.9). For the asymmetric unit cell (L-network),
the Bloch impedance, given by expression (2.32), is

Z ±
B =

L

C
1−

ω2

ω2
o

± j
1
2
Lω 2 35

As frequency decreases, the imaginary part of the Bloch impedance also decreases.
Therefore, at sufficiently low frequencies, where Lω/2 << (L/C)1/2, the Bloch imped-
ance that results by considering the asymmetric unit cell is essentially real. This means
that in this frequency regime, the behavior of both terminated periodic structures (with
cascaded symmetric and asymmetric unit cells) is expected to be similar. This has
been verified by comparing the reflection and transmission coefficients (considering
a source impedance of 50Ω) of the 20-cell structures depicted in Figure 2.7, loaded
with a resistance of value R = (L/C)1/2 = 50Ω, which is a matched load at low

l
(a)

L

C C C

L L
(b)

FIGURE 2.6 Model of a losses transmission line (a), where each unit cell describes the finite
transmission line sections of length l (b).
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frequencies (see Fig. 2.8). As expected, at low frequencies all the injected power is
delivered to the load (|S11| << 1 and |S21| 1), and the reflection and transmission
coefficients are similar for both structures. However, as frequency increases, the
Bloch impedance varies and the structures are no longer matched to the source.
The injected power is thus partially reflected back to the source (except at certain fre-
quencies16), and above ωo the lines are in the evanescent region, where |S11| 1 and

(a)
(1)

(1)

(2)

(2)

(20)

(20)

L/2

C

C C C

L L L

C C

L/2 L/2 L/2 L/2 L/2

(b)

FIGURE 2.7 (a) Symmetric (T-circuit) and (b) asymmetric (L-circuit) networks modeling a
20-section lossless transmission line.

1.0

0.8

T circuit
L circuit

0.6

0.4S 1
1 

,  
S 2

1

S21

S110.2

0.0
0.0 2.0 4.0

Frequency (GHz)

6.0 8.0

FIGURE2.8 Reflection (S11) and transmission (S21) coefficients for the structures depicted in
Figure 2.7 with C = 1 pF and L = 2.5 nH.

16 Below the cut-off frequency, there are transmission peaks (reflection zeros) corresponding to phase
matching. Namely, at these frequencies, the injected power is delivered to the load (despite that the line
impedance is not matched to the ports) since the phase of the line is a multiple of 180 .
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|S21| << 1. However, the relevant aspect is that as frequency increases, both reflection
coefficients and transmission coefficients progressively diverge as consequence of the
increasing effects of the imaginary part of the Bloch impedance in the asymmetric
periodic structure. If we force the imaginary part of (2.35) to be much smaller than
the real part, that is,

1
2
Lω<<

L

C
1−

ω2

ω2
o

2 36

the following condition is obtained:

ω<<
1

2
ωo 2 37

which is indeed more restrictive (but comparable) than the necessary condition for the
validity of the networks of Figure 2.7 as circuit models of a lossless transmission
line (ω <<ωo). In summary, this analysis points out that in the long wavelength regime
(λ >> l), both terminated periodic structures of Figure 2.7 can be indistinctly used. This
means that both networks are appropriate to describe or model a finite lossless trans-
mission line. However, in general, this identification between the symmetric and
asymmetric networks (which simply differ in the location of the reference planes –
see Fig. 2.5) cannot be made. In other words, for a correct description of an actual
periodic structure by means of a cascade of T- or π-sections, it is fundamental that
such sections properly account for the possible asymmetries of the unit cell of the peri-
odic structure (this aspect will be discussed in Chapter 3 in reference to asymmetric
planar structures).

2.3.4 Comparison between Periodic Transmission Lines and
Conventional Lines

It is important to mention that one-dimensional periodic structures, such as periodic
loaded, or perturbed, transmission lines, can be characterized as if they were conven-
tional transmission lines, that is, by means of a characteristic, or Bloch, impedance,
and by means of a propagation constant.17 However, as compared to conventional
lines, where dispersion is absent (under ideal conditions), periodic transmission lines
exhibit dispersion as well as pass bands and stop bands. Moreover, the Bloch imped-
ance is frequency dependent, whereas the characteristic impedance of a conventional
transmission line is solely dependent on the substrate characteristics and cross-
sectional geometry of the line. Nevertheless, given a certain frequency in the region
of propagation, periodically loaded or perturbed lines behave as conventional lines
with identical propagation constant and characteristic impedance at the considered

17 If the repeating period of the structure is asymmetric, caution must be taken due to the effects of
termination.
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frequency. Thus, for instance, if a periodic transmission line is terminated by a
matched load at the considered frequency, that is, a load impedance identical to
the Bloch impedance, all the injected power will be delivered to the load (as has been
demonstrated in the example reported earlier and illustrated in Fig. 2.8—low-
frequency region). Similarly, a finite periodic transmission line excited by a harmonic
source and terminated by a load, exhibits identical behavior to that of a conventional
line with identical electrical length and Bloch impedance. Specifically, if the electrical
length of the periodic line is a multiple of π, the impedance seen from the source is the
load impedance. These artificial lines based on periodic structures can also be used for
the implementation of narrow band impedance or admittance inverters, by simply
setting the Bloch impedance to the required impedance of the inverter at the design
frequency, and the electrical length to π/2 or an odd multiple of π/2. Indeed, as will be
demonstrated in Chapter 3, it is possible to implement impedance inverters by means
of a single unit cell (of different type than those considered in this chapter), which is
very interesting in terms of device miniaturization.

2.3.5 The Concept of Iterative Impedance

The characteristic impedance of a transmission line can also be defined as the load
impedance necessary to “see” the same impedance from the source plane (or input
port). In two-port networks, the impedance that satisfies the above requirement is called
iterative impedance, ZI.

18 For a given unit cell, the iterative impedance and the Bloch
impedance are identical. To demonstrate this, let us consider that an arbitrary two-port
network, described by the ABCD matrix, is loaded with an arbitrary impedance ZL
(Fig. 2.9). The voltage and current at the input port can be expressed as follows:

V1 =AV2 +B
V2

ZL
2 38a

DC

BA
ZL

I1

V1

+

–

I2

V2

–

+

FIGURE 2.9 Arbitrary two-port network terminated with a load impedance ZL.

18 Notice that the iterative impedance of an asymmetric network is different for ports 1 and 2 (similarly to the
Bloch impedance for forward and backward travelling waves in such networks). The iterative impedance
should not be confused with the image impedances of a two-port network. If we designate these image impe-
dances as Zi1 and Zi2, they satisfy (i) Zi1 is the input impedance at port 1 when port 2 is terminated with Zi2
and (ii) Zi2 is the input impedance at port 2 when port 1 is terminated with Zi1 [10]. However, for symmetric
networks, the image impedances Zi1 and Zi2 are identical and coincide with the iterative impedance and
Bloch impedance.

63THE TRANSFER MATRIX METHOD



I1 =CV2 +D
V2

ZL
2 38b

Hence, the input impedance is

Zin =
V1

I1
=
A+B ZL
C +D ZL

2 39

If ZL = ZI, then Zin = ZI, and ZI can be isolated from (2.39), giving

ZI =
A−D± A+D 2−4

2C
2 40

Although apparently expressions (2.40) and (2.26) are different, simple algebra
demonstrates that ZB = ZI, as anticipated before. Namely, (2.26) can be expressed
as follows:

Z ±
B = −

2B

A−D A+D 2−4

A−D ± A+D 2−4

A−D ± A+D 2−4
2 41

which gives

Z ±
B =

2B A−D± A+D 2−4

4 AD−1
=
A−D± A+D 2−4

2C
= ZI 2 42

where the reciprocity condition AD − BC = 1 has been used. Indeed, the term “iterative
impedance” is usually restricted to two-port networks with few (or even a single) unit
cells, where the propagation of Bloch waves as traveling waves with several wave-
lengths is not possible. However, it is important to clarify that expressions (2.21)
and (2.26) are valid regardless of the number of cells (they are valid even for a sin-
gle-cell structure). Throughout this book, the terms Bloch impedance and characteristic
impedance, in reference to artificial transmission lines, are considered to be
synonymous.

2.4 COUPLED MODE THEORY19

As anticipated in the introduction, the specific periodic structures that will be analyzed
in this chapter are transmission lines loaded with reactive elements, and nonuniform
planar transmission lines, namely, transmission lines with periodic perturbation in the
conductor strip width or in the ground plane. For the latter case, the coupled mode

19 This section has been co-authored with Txema Lopetegi (Public University of Navarre, Spain).
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theory, and specifically the cross-section method, is a very useful analysis tool
[11–15]. It is a complementary approach to the transfer matrix method, able to provide
detailed information (under several reasonable approximations) on the main para-
meters of the periodic nonuniform transmission line, such as the S-parameters, the
central frequencies of the stop bands as well as their rejection level and bandwidth,
the harmonic content, and so on.

2.4.1 The Cross-Section Method and the Coupled Mode Equations

The basic idea of the cross-section method is that the electromagnetic (EM) fields at
any cross section of a nonuniform transmission line can be expressed as a superpo-
sition of the forward and backward traveling waves associated to the different modes
of an auxiliary (or reference) uniform transmission line with the same cross section as
the considered cross section of the nonuniform transmission line.20 Namely,

Ψ =
i

aiΨ
i +

i

∞

0

ai kt Ψ
i kt dkt 2 43

where Ψ is either the total electric or magnetic field of the nonuniform transmission
line, Ψ i is the field pattern of the ith discrete mode of the auxiliary uniform transmis-
sion line, and ai are the corresponding weights, or coefficients, which can be inter-
preted as the complex amplitudes of the discrete modes along the non-uniform
transmission line, and are only function of z (the propagation direction) and frequency.
Notice that expression (2.43) gives the field expansion of an open transmission line (or
waveguide) where, besides the discrete modes, a system of modes with a continuous
spectrum is also included (second term of the right-hand side of 2.43). This additional
system is in general necessary since the radiated field cannot be represented by the
discrete modes. Conversely, in a closed waveguide, the discrete modes (including
the propagating and evanescent modes) form a complete and orthogonal system.21

The coefficients of the above field expansion satisfy a system of integrodifferential
equations, known as coupled mode equations. The derivation of the coupled mode
equations for the general case of open transmission lines (or waveguides) is not
straightforward and is out of the scope of this book (the authors recommend Refs.
[12–14] to the interested readers). The interest in this book is to infer simplified
coupled mode equations of practical use for the analysis of the considered structures
by applying reasonable approximations to the general equations. Thus, the starting

20 This includes the same permeability and permittivity distributions for nonhomogeneous substrates.
Nevertheless, only artificial transmission lines implemented on homogeneous substrates are considered
in this book.
21 Themodes of a closed waveguide can be enumerated by a subscript, and the set is composed by an infinite
number of discrete modes. However, in an open waveguide, the system of discrete modes is formed by a
finite number of modes, all of them in propagation.
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point is the expression of the general integrodifferential coupled mode equations that,
for an open transmission line or waveguide nonuniform in the propagation direction,
take the form22:

dam
dz

+ jβmam =
i

aiCmi +
i

∞

0

ai kt Cmi kt dkt 2 44a

dan kt

dz
+ jβn kt an kt =

i

aiC
c
ni kt +

i

∞

0

ai kt C
c
ni kt,kt dkt 2 44b

where βm is the phase constant of the mth discrete mode, Cmi is the coupling coeffi-

cient between the mth and ith discrete modes, and βn(kt), Cmi(kt), Cc
ni kt , and

Cc
ni kt,kt are the corresponding parameters for the continuous spectrummodes (their

expressions can be found in Ref. [14]), and

k2t = k
2
o −β

2
i kt 2 45

with k0 =ω μoεo, and βi kt = + k20 −k
2
t for i > 0, βi kt = − k20 −k

2
t for i < 0. There

is one of these coupled mode equations for each mode, including their forward (+) and
backward (−) traveling waves.

Expression (2.44a and b) can be substantially simplified if several assumptions
are made:

• The first one is to neglect the coupling of energy to the modes of the continuous
spectrum. This is reasonable if the considered structures have little radiation
losses in the considered frequency bands (however, the continuous spectrum
cannot be neglected in applications where devices are designed to radiate, i.e.,
antennas). This approximation notably simplifies the coupled mode equations
since expression (2.44b) can be ignored, and the second term of the right-hand
side of (2.44a) has a negligible effect as well.

• The second approximation consists of assuming single-mode operation, that is,
the fundamental mode with two associated waves: the forward and backward
traveling waves. In structures with periodic defects or patterns in the ground
plane, further modes may appear. For instance, in microstrip lines with slots

22 For the derivation of these equations, it is also assumed that the nonuniform transmission lines are
lossless.
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in the ground plane, a quasimicrostrip mode23 and a quasislot mode are possible
(at moderate frequencies and for conventional microwave substrate thicknesses,
higher-order modes are not present). However, if the periodic microstrip struc-
ture is excited by a pure microstrip line, the corresponding mode (quasi-TEM
mode) has very small correlation with the quasislot mode, and strong correlation
with the quasimicrostrip mode. Therefore, the quasislot mode can be neglected,
and single-mode operation is justified.

With the previous approximations, the system of coupled mode equations simpli-
fies to [14, 16]

da+

dz
+ jβ + a+ = a+C + + + a−C + − 2 46a

da−

dz
+ jβ−a− = a−C− − + a+C− + 2 46b

where the subscripts (+) and (−) designate the forward and backward traveling waves,
respectively, associated to the fundamental TEM or quasi-TEM mode. Expression
(2.46a and b) can be further simplified to

da+

dz
+ jβ a + = a−K 2 47a

da−

dz
− jβ a− = a+K 2 47b

where the fundamental property that the phase constants of the forward and backward
traveling wave of a discrete mode are identical except the sign (β+ = −β− = β) has been
used. With regard to the coupling coefficients, notice that due to symmetry considera-
tions, C+ − =C− +≡ K. Moreover, C− − =C+ + = 0 since the coupled mode
Equations 2.46a and 2.46b must give trivial solutions of the form a+ e−jβz and
a− e+jβz, for the case of a lossless uniform transmission line (where K = 0).
Expression (2.47a and 2.47b) can thus be expressed in the following compact form:

d

dz

a +

a−
=

− jβ K

K jβ

a +

a−
2 48

23By quasimicrostrip mode, we mean the fundamental mode of the line when a defect in the form of a slot in
the ground plane is present.
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where a single coupling coefficient, K, between the forward and backward traveling
waves associated to the fundamental TEM or quasi-TEM mode, plus the phase
constant of the auxiliary uniform waveguide, characterize the structure. Notice that
both the phase constant and the coupling coefficient are functions of z and frequency,
that is, β = β(z,ω) and K =K(z,ω). The phase constant of the operation mode can be
calculated as

β z,ω =
ω

c
εre z,ω 2 49

where the explicit dependence of the effective dielectric constant, defined in Chapter 1,
on z and ω has been introduced in the square root in order to highlight that, rather than
being an averaged dielectric constant, the effective dielectric constant varies with the
cross section, which in turn depends on the position along the propagation axis in a
nonuniform transmission line. The effective dielectric constant at each cross
section (i.e., that of the auxiliary uniform transmission line), and hence the phase con-
stant, can be numerically calculated [10, 17], or inferred by means of most available
EM solvers.

The exact expression of the coupling coefficient involves the calculation of
the fields of the modes in the auxiliary uniform transmission line associated
to the cross section of interest (which varies with z) [14]. Nevertheless, the cou-
pling coefficient can be approximated by a simple expression that depends only
on the characteristic impedance, Zo, of the transmission line according to (see
Appendix E):

K z,ω = −
1
2Zo

dZo
dz

2 50

In microstrip or coplanar waveguide transmission lines with periodic perturbation in
the conductor strip, Zo can be point-to-point obtained along the propagation axis by
means of available transmission line calculators. If the ground plane is etched, for
instance, by periodically drilling holes underneath the conductor strip of a micro-
strip line (a usual technique for the implementation of EBG-based reflectors [18,
19]), the calculation of Zo is not so straightforward. Nonetheless, the impedance
of expression (2.50) must be inferred from the power and current carried by the
mode according to

Zo z,ω = 2
P+

I + 2 2 51

Indeed, the dependence of Zo with frequency can be neglected to a first-order approx-
imation as it is customarily done in planar transmission lines.

The matrix equation (2.48) is a system of first-order linear differential equations. In
order to solve these equations, it is necessary to define the z interval corresponding to
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the structure under study, delimited by z = 0 and z = L (the device length), and appro-
priate boundary conditions. Such boundary conditions depend on how the ports of the
structure are loaded. Typically, the output port is loaded with a matched load, whereas
a unitary excitation is applied at the input of the device. Under these conditions, the
following boundary values apply:

a+ z = 0 = a +
in = 1 2 52a

a− z =L = a
−

out = 0 2 52b

and the coupled mode equations can be easily solved through numerical methods.

2.4.2 Relation between the Complex Mode Amplitudes and S-Parameters

Once the complex amplitudes a+(z,ω) and a−(z,ω) are inferred, the S-parameters of
the device can be straightforwardly calculated. According to the definitions of these
parameters, given in Appendix C,

S11 =
b1
a1 a2 = 0

=
V −
1 Zo

V +
1 Zo a2 = 0

2 53a

S21 =
b2
a1 a2 = 0

=
V −
2 Zo

V +
1 Zo a2 = 0

2 53b

S22 =
b2
a2 a1 = 0

=
V −
2 Zo

V +
2 Zo a1 = 0

2 53c

S12 =
b1
a2 a1 = 0

=
V −
1 Zo

V +
2 Zo a1 = 0

2 53d

where Zo is the reference impedance of the ports (it is assumed that both ports have the
same impedance), and z = 0 and z = L are the reference planes of the input (1) and out-
put (2) ports, respectively. The relations between the voltages associated to the inci-
dent (V1

+, V2
+) and reflected (V1

−, V2
−) waves from the ports and those associated to

the forward V + and backward V − traveling waves are as follows:

V +
1 =V + z= 0 2 54a

V −
1 =V − z = 0 2 54b
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V +
2 =V − z= L 2 54c

V −
2 =V + z = L 2 54d

On the other hand, the voltages associated to the forward V + and backward V − trav-
eling waves must be proportional to the complex amplitudes according to24

V + =Ca + 2 55a

V − =Ca− 2 55b

Therefore, using (2.54) and (2.55), the S-parameters can be expressed as follows:

S11 =
Ca− z = 0
Ca + z= 0 a− z= L = 0

=
a− z= 0
a+ z= 0 a− z= L = 0

2 56a

S21 =
Ca+ z =L
Ca + z= 0 a− z= L = 0

=
a+ z= L
a+ z = 0 a− z= L = 0

2 56b

S22 =
Ca+ z =L
Ca− z= L a+ z= 0 = 0

=
a+ z= L
a− z= L a+ z= 0 = 0

2 56c

S12 =
Ca− z= 0
Ca− z =L a+ z= 0 = 0

=
a− z = 0
a− z= L a + z = 0 = 0

2 56d

Hence, by solving the coupled mode equations with the boundary conditions given by
(2.52), the S-parameters can be inferred using (2.56).

24 The proportionality between the voltages and complex amplitudes of the forward and backward travelling
waves can be alternatively expressed as V+ =Ca+ and V − = −Ca−. The (−) or (+) sign in the second
expression simply depends on the relations between the (x,y) dependent part of the fields of the forward
and backward travelling waves. The (+) sign (i.e., 2.55) results when such relations are taken as
E−
x =E +

x ;E−
y =E +

y ;E−
z = −E +

z for the electric fields, and as H −
x = −H +

x ;H −
y = −H +

y ;H −
z =H +

z for the

magnetic fields, following [11, 15]. The (−) sign is obtained if the fields are chosen to satisfy
E−
x = −E +

x ;E−
y = −E +

y ;E−
z =E +

z and H −
x =H +

x ;H −
y =H +

y ;H −
z = −H +

z , following [13, 14]. Notice that if

the (−) sign is chosen in (2.55b), a (−) sign would appear in (2.56a) and (2.56c), with the result of a more
unfamiliar expression for S11 and S22. However, this change in the relation between the fields of the forward
and backward travelling waves implies also a change in the sign of the coupling coefficient K. Notice that
the change of sign in K and a− (necessary to leave the S-parameters unaltered) keeps invariant the coupled
mode equations (2.48).
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2.4.3 Approximate Analytical Solutions of the Coupled Mode Equations

Solving the system of coupled mode equations (2.48) requires in general a numerical
method. However, by considering a pair of additional approximations (valid in most
cases of practical interest), it is possible to further simplify the equations in such a way
that analytical solutions can be obtained, and, from them, relevant parameters of
EBG-based planar transmission lines25 can be inferred. Such needed approximations
are [14]:

• The z dependence of the phase constant β (or εre) is neglected. This means that an
averaged value of β (and εre) must be chosen. As justified in Appendix F, the
most adequate value is:

εre =
1
l

l

0

εre z dz

2

2 57

where l is the period of the EBG-based structure.
• The analysis is restricted to a range of frequencies in the vicinity of the central
frequency of a certain (nth) rejected band.26 This approximation is necessary in
order to express the coupled mode equations in terms of the nth coefficient of the
Fourier expansion of the coupling coefficient, K(z), which is a periodic function
of z if the nonuniformity of the transmission line is also periodic.27

Let us now see how the previous approximations notably simplify the coupled
mode equations. Due to periodicity, the coupling coefficient can be expanded in a
Fourier series as follows:

K z =
n= +∞

n = −∞
Kne

j2πnl z 2 58

which in turn can be expressed as follows:

K z =
n= +∞

n= 1

2Kn cos
2πn
l
z+ arg Kn 2 59

25As already mentioned in the introduction of this chapter, by EBG-based planar transmission lines,
we mean nonuniform periodic lines with either modulation of the conductor strip or ground plane
etching.
26 In general, periodic EBG-based transmission lines exhibit multiple rejection bands, as results from the
Floquet analysis of Section 2.2.
27 Notice that the period of K(z) is also l.
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since K(z) is a real function (i.e., K−n =Kn
∗ = Kn e−jarg(Kn)), and K0 = 0 (the mean

value of the coupling coefficient of a periodic structure is null). Let us now express
the complex amplitudes as a function of the averaged β as follows [14]:

a + z =A+ z e− jβz 2 60a

a− z =A− z e + jβz 2 60b

Using these variables, the coupled mode equations can be written as

dA +

dz
=K z A− e + j2βz 2 61a

dA−

dz
=K z A + e− j2βz 2 61b

and introducing (2.58) in (2.61), the following equations result:

dA +

dz
=

∞

n= 1

Kn e
+ j2 β + nπ

l z +K−n e
+ j2 β−nπ

l z A− 2 62a

dA−

dz
=

∞

n= 1

Kn e
− j2 β−nπ

l z +K−n e
− j2 β + nπ

l z A + 2 62b

For the solution of Equations 2.62 over the whole frequency spectrum, it is necessary to
keep all the coefficients, Kn, of the series expansion of K(z), unless some of them are
negligible or null.28 However, for frequencies in the vicinity of those frequencies
satisfying

β =
nπ
l

2 63

only one term in the summations of (2.62) is significant; namely, the term K−n in
(2.62a), and the term Kn in (2.62b). The reason is that the corresponding exponential
has an argument close to zero for these terms, giving a significant contribution to the
sum. For the other terms, the exponentials are rapidly varying functions of z, and when
these terms, multiplied by A−, or A+ (which are slowly varying functions of z), are
integrated over several periods, their contribution is negligible. From a physical point

28Notice, for instance, that for a sinusoidal variation of K(z), all the coefficients of the series are null,
except K±1.

72 ARTIFICIAL TRANSMISSION LINES BASED ON PERIODIC STRUCTURES



of view, this means that at those frequencies satisfying (2.63), a strong coupling (and
hence an important transfer of energy) between the forward and backward traveling
waves is expected. This energy transfer gives rise to significant reflection of the
injected power, with the result of stop bands in the frequency response, caused by
the perturbation. Notice that condition (2.63), usually known as phase matching, or
resonant coupling, is equivalent to expression (2.9). Therefore, the coupling equations
(2.62) provide the mathematical explanation for the presence of band gaps in artificial
transmission lines based on periodic structures. Notice that at frequencies far enough
from those frequencies satisfying phase matching, all the terms in the right-hand side
of (2.62) experiment quick variations with z. When such terms are multiplied by A− (in
2.62a) or A+ (in 2.62b), and are integrated over a distance much larger than the period
l, their contributions tend to vanish, and A− and A+ tend to be constant. Indeed, if the
boundary conditions (2.52) are applied, and the considered frequencies are within the
pass band regions, we expect that the solutions of (2.62) can be approximated by
A+(z) = 1 and A−(z) = 0 (or a+(z) = e−jβz and a−(z) = 0), corresponding to roughly total
transmission between the input and output ports. Notice that if A−(z) = 0, it directly
results from (2.62a) that A+(z) is constant with z, and (2.62b) gives a negligible value
of A−(z) if the number of periods of the structure is large enough, this being consistent
with our previous prediction.

According to the previous analysis, for the frequency range in the vicinity of the nth
rejected frequency band; and for a periodic structure with total length satisfying L >>
l, the coupled mode equations can be simplified to

dA +

dz
=K∗

n A− e + j2Δβz 2 64a

dA−

dz
=Kn A

+ e− j2Δβz 2 64b

where

Δβ = β−
nπ
l

2 65

Δβ being null at the frequency satisfying the phase matching condition. To solve
(2.64), let us express the weighting factors of the coupling coefficient as

Kn = jk 2 66

The coupling equations can thus be written as

dA +

dz
= − jk∗ A− e + j2Δβz 2 67a
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dA−

dz
= jk A+ e− j2Δβz 2 67b

In order to solve the previous equations analytically, the following new variables are
introduced [14, 20]:

R z =A+ z e− jΔβz = a + z ej
nπ
l z 2 68a

S z =A− z ejΔβz = a− z e− j
nπ
l z 2 68b

and the coupled mode equations can be written as follows:

dR

dz
= − jΔβ R− jk∗ S 2 69a

dS

dz
= jΔβ S+ jk R 2 69b

The general solutions of (2.69) are of the form29:

R z =R + e−γz +R− eγz 2 70a

S z = S+ e−γz + S− eγz 2 70b

where

γ = + k 2− Δβ 2 2 71

Let us now introduce boundary conditions compatible with (2.52), namely, a matched
output port. This means that a−(z = L) = S(z = L) = 0, and, using (2.70b), it follows that
S + = −S − e2γL. Therefore, S(z) can be expressed as

S z = S+ e−γz 1−e−2γ L−z 2 72

29 The calculation of the general solutions of (2.69) is not straightforward. To demonstrate that (2.70), with γ
given by (2.71), are the general solutions of (2.69), we first introduce (2.70) in (2.69). This gives two equa-
tions where all the terms are multiplied either by eγz or e−γz. By equating the corresponding weights of these
exponentials, four linear equations in the variables S+, S−, R+ andR−, which can be expressed in matrix form,
are obtained. For a non-trivial solution, it is necessary that the associated determinant is null, and this occurs
if (2.71) is satisfied.
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and introducing (2.72) in (2.69b), R(z) is found to be

R z = −
S+ e−γz

jk
γ 1 + e−2γ L−z + jΔβ 1−e−2γ L−z 2 73

Assuming an incident wave at the input port R(z = 0) = Ro, the integration constant S
+

can be obtained, and expressions (2.72) and (2.73), after some tedious calculations,
are found to be

R z = −
Ro Δβsinh γ z−L + jγcosh γ z−L

Δβsinh γL − jγcosh γL
2 74a

S z =
Roksinh γ z−L

Δβsinh γL − jγcosh γL
2 74b

Finally, from (2.68), the solutions of the coupled mode equations (2.47a and 2.47b)
under the considered approximations are

a+ z = −
Δβsinh γ z−L + jγcosh γ z−L

Δβsinh γL − jγcosh γL
a+ 0 e− j

nπ
l z 2 75a

a− z =
ksinh γ z−L

Δβsinh γL − jγcosh γL
a+ 0 ej

nπ
l z 2 75b

Notice that the above expressions are the approximate solutions of the coupled equa-
tions for a periodic EBG structure with length L, with input and output ports placed at
z = 0 and z = L, respectively, and excited by an incident wave a+(z = 0) = a+(0), and
with the output port matched, that is, a−(z = L) = 0. Once the approximate solutions
of the complex amplitudes a+(z) and a−(z) are known, the S-parameters can be inferred
using (2.56). This gives

S11 =
a− z = 0
a+ z = 0 a− z = L = 0

=
ksinh γL

−Δβsinh γL + jγcosh γL
2 76a

S21 =
a+ z =L
a+ z= 0 a− z = L = 0

=
jγ e− j

nπ
l L

−Δβsinh γL + jγcosh γL
2 76b

In order to obtain S12 and S22, it is necessary to modify the boundary conditions. In this
case, the input port is matched, and hence a+(z = 0) = R(z = 0) = 0. Therefore, using
(2.70a), it follows that R+ = −R−, and R(z) can be expressed as

75COUPLED MODE THEORY



R z =R + e−γz−eγz = −2R+ sinh γz 2 77

Introducing (2.77) in (2.69a), S(z) is found to be

S z =
2R+

jk∗
γcosh γz + jΔβsinh γz 2 78

As proceeded before, in order to determine the integration constant R+, it is necessary
to set the incident wave at the output port to S(z = L) = So. Substituting the resulting
value in (2.77) and (2.78), we obtain

R z = −
Sok∗sinh γz

Δβsinh γL − jγcosh γL
2 79a

S z =
So Δβsinh γz − jγcosh γz

Δβsinh γL − jγcosh γL
2 79b

and using (2.68),

a+ z =
k∗sinh γz

Δβsinh γL − jγcosh γL
a− L e− j

nπ
l z + L 2 80a

a− z = −
Δβsinh γz − jγcosh γz

Δβsinh γL − jγcosh γL
a− L e + j

nπ
l z−L 2 80b

where a−(L) = Soe
+jnπL/l. Finally, using (2.56), S22 and S12 are found to be

S22 =
a+ z = L
a− z =L a + z = 0 = 0

=
k∗sinh γL e− j

2nπ
l L

−Δβsinh γL + jγcosh γL
2 81a

S12 =
a− z = 0
a− z = L a + z = 0 = 0

=
jγ e− j

nπ
l L

−Δβsinh γL + jγcosh γL
2 81b

Notice that S12 = S21, and the S-parameters satisfy the unitarity conditions, as expected
for reciprocal and lossless networks.

Inspection of (2.75) and (2.80) indicates that the z-dependent part of the wave
solutions is an exponential with phase constants given by [3, 14, 21]

β' =
nπ
l
± jγ =

nπ
l
± j k 2− Δβ 2 2 82a
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for the forward traveling wave, a+(z), and

β = −
nπ
l
± jγ = −

nπ
l
± j k 2− Δβ 2 2 82b

for the backward traveling wave, a−(z). Therefore β is the approximate phase constant
of the Bloch waves of the periodic structure. Notice that for |Δβ| < |k|, the phase
constant has an imaginary part. This region is the forbidden band (bandgap) of the
periodic structure. On the contrary, far enough from the phase matching condition
(|Δβ| > |k|), β is real and the structure is transparent. In the limit of small perturbations
(k 0), and for sufficiently large values of |Δβ| (i.e., |Δβ| >> |k|), the phase constant
can be approximated by

β =
nπ
l
±Δβ 1−

k 2

Δβ 2≈
nπ
l
±Δβ =

nπ
l
± β−

nπ
l

= β, or −β +
2nπ
l

2 83a

or

β ≈ −
nπ
l
±Δβ = −

nπ
l
± β−

nπ
l

= −β, or β−
2nπ
l

2 83b

which is coherent with (2.6). Notice, however, that in (2.83) there are only four terms:
the fundamental (forward or backward traveling), and those space harmonics with
index ± n. This is expected since this analysis is valid for frequencies in the vicinity
of the nth forbidden band.

In order to obtain a more accurate solution for the phase constant of the fundamen-
tal space harmonic (notice that 2.82 gives an approximate solution), it is necessary to
calculate the complex amplitudes a+(z) and a−(z) numerically, and, from them, the
S-parameters. Using the transformations (C.22), the ABCD matrix can be inferred,
and the dispersion relation can be finally derived from (2.22).

2.4.4 Analytical Expressions for Relevant Parameters of
EBG Periodic Structures

Apart from the S-parameters, there are other relevant parameters of interest in EBG
one-dimensional periodic structures such as the frequency of maximum reflectivity,
the value of this maximum reflectivity, and the bandwidth of the frequency band
where significant reflection is achieved. The purpose of this subsection is to provide
analytical expressions for these parameters [14, 16, 22].

The frequency of maximum reflectivity, fmax, is that frequency satisfying Δβ = 0,
or βmax = nπ/l. Therefore,
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fmax = n
c

2l εre
2 84

where c is the speed of light in vacuum. Notice that if Δβ = 0, then γ = k , and the
value of maximum reflectivity (from 2.76a and 2.81a) is

S11 max = S22 max = tanh k L 2 85

Notice that S11 max = S22 max 1 (i.e., 0 dB) as k L ∞. From 2.76b and 2.81b, the
maximum attenuation (minimum transmission) is found to be

S21 min = S12 min = sech k L 2 86

It is important at this point to analyze the dependence of the maximum reflectivity, or
minimum transmission, with the parameters of the EBG periodic structure. Notice
that, as expected, the value of maximum reflectivity depends on the magnitude of
the periodic perturbation through k , which is the modulus of the considered Kn term
of the Fourier series expansion of the coupling coefficient (see expressions 2.58 and
2.59). The larger the periodic perturbation, the higher the derivative of the character-
istic impedance and hence the amplitude of the coupling coefficient given by (2.50).
Thus, increasing the magnitude of the perturbation has the effect of increasing the
terms of the series expansion of K(z). On the other hand, an increase in device length,
L, means that the structure includes an increasing number of periods, with the effect of
more power being transferred to the backward traveling waves and hence more
reflection.

Concerning the reflected bandwidth, it is reasonable to consider that it is given by
the frequency range between the first reflection zeros around the maximum reflectiv-
ity. At first sight, one may erroneously deduce from (2.76a) and (2.81a) that such pair
of reflection zeros are obtained by forcing γ = 0. However, notice that by applying the
l’Hôpital’s rule, S11 and S22 tend to a finite value in the limit when γ 0. Indeed, the
frequency corresponding to the first minimum of reflection satisfies

γL= jπ 2 87

or

k 2 +
π2

L2
= Δβ 2 2 88

and assuming that εre does not depend on frequency in the rejected bandwidth
(i.e., neglecting dispersion), the bandwidth is found to be
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BW=
c k

π εre
1 +

π
k L

2

2 89

2.4.5 Relation between the Coupling Coefficient and the S-Parameters

As discussed in Section 2.4.3, as long as the coefficients of the Fourier series expan-
sion of the coupling coefficient, Kn, are different than zero, stop bands in the vicinity
of those frequencies satisfying the phase matching condition (2.63) are expected in
EBG-based periodic transmission lines. In other words, the number of reflection
bands is intimately related to the harmonic content of the coupling coefficient K(z).
For instance, it is expected that for a sinusoidal coupling coefficient, a single reflection
band, centered at the frequency given by (2.84) with n = 1, appears. Indeed, under con-
ditions of low reflectivity, the relation between S11 and K(z) can be easily approxi-
mated by the Fourier transform. To demonstrate this, let us express the generalized
reflection coefficient in an EBG structure as

ρ z =
a− z

a+ z
2 90

and let us consider the coupled mode equations (2.47a and 2.47b), where the only
approximation applied is single-mode operation. Using (2.47), the derivative of ρwith
z can be expressed as [14]:

dρ z

dz
= 2j β ρ z +K z 1−ρ z 2 2 91

which is a nonlinear equation that does not have a known general solution. However,
if it is assumed that β is not a function of z, and ρ (z) 2 << 1 (low reflectivity condi-
tions), (2.91) can be expressed as [23]

dρ z

dz
e−2jβz = 2j β ρ z e−2jβz +K z e−2jβz 2 92

where the equation has been multiplied by e−2jβz. The previous equation can be sim-
plified to

d

dz
ρ z e−2jβz =K z e−2jβz 2 93

and integrating both sides between z = 0 and z = L, the following result is obtained:
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ρ L e−2jβL−ρ 0 =

L

0

K z e−2jβz dz 2 94

If we now assume that the output port is matched, then ρ(L) = 0, and ρ(0) ≡ S11.
Therefore,

S11 = −

L

0

K z e−2jβz dz 2 95

and (2.95) resembles the Fourier transform ofK(z). If we assume thatK(z) = 0 for z < 0
and for z > L (device with length L, between z = 0 and z = L), (2.95) can be rewritten as
follows:

S11 = −

∞

−∞

K z e− j2π
β
π z dz 2 96

and (2.96) is the Fourier transform of K(z) in the variable β/π, that is,

S11
β

π
= −F K z 2 97

Although K(z) is zero outside the interval [0,L], in a first-order approximation we can
introduce the series expansion (2.58) ofK(z) in (2.96). According to this, the reflection
coefficient S11 will be significant in the vicinity of those frequencies satisfying

n

l
=
β

π
2 98

which is identical to the phase matching condition (2.63). Thus, in summary, the har-
monic content of the coupling coefficient determines the frequency behavior of the
reflection coefficient, and gives the number of rejected bands. This is a fundamental
property that can be helpful in certain applications. However, the exact determination
of S11 from (2.97) in situations where high reflectivity is required (as occurs in most
practical applications) is not possible.

2.4.6 Using the Approximate Solutions of the Coupled Mode Equations

The aim of this subsection is to provide two examples to illustrate the use of the
approximate analytical solutions of the coupled mode equations and to compare
the results with full-wave EM simulations and measurements of the considered struc-
tures (further results are given in Ref. [22]). Let us first consider a periodic microstrip
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transmission line with a coupling coefficient K(z) exhibiting a sinusoidal dependence
on z. A rejection band in the vicinity of that frequency satisfying the phase matching
condition (i.e., 2.63 with n = 1) is expected. However, according to the preceding the-
ory, since K(z) does not have harmonic content, further rejection bands will not
appear. In order to determine the variation of the characteristic impedance with the
axial position, let us integrate (2.50) with z (the dependence on ω is considered to
be negligible). This gives

−2

z

0

K z dz =

Zo z

Zo 0

1
Zo

dZo 2 99

where integration is performed between z = 0 and an arbitrary point, z, within the
periodic microstrip line. Solution of (2.99) gives

Zo z = Zo 0 e
−2

z

0
K z dz

2 100

Let us now assume that the periodic structure exhibits a continuous variation of the
characteristic impedance at the extremes of the device (z = 0 and z = L)—the charac-
teristic impedance at these extremes being Zo(0) = Zo(L) = Zo,ref, that is, the reference
impedance of the ports and access lines. Moreover, let us consider that the impedance
in the periodic region (interval [0,L]) experiences variations around Zo,ref and starts
increasing from the input port. This forces the coupling coefficient to be expressed as

K z = −2 K1 cos
2π
l
z = 2 K1 cos

2π
l
z+ π 2 101

where K1 is the first term of the Fourier series expansion of K(z) and arg(K1) = π
(the other terms are null). Introducing (2.101) in (2.100), the characteristic impedance
is found to be

Zo z =Zo,ref e
2 K1 l
π sin 2π

l z 2 102

For the present example, the period of the EBG structure and the reference impedance
of the ports are set to l = 1 cm and Zo,ref = 50Ω, respectively, and 10 unit cells are con-
sidered, that is, L = 10l = 10 cm. In order to avoid extreme characteristic impedances
along the line, the coupling coefficient amplitude is set to |K1| = 0.64 cm−1. This
gives maximum and minimum characteristic impedances of Zo,max = 1.50Zo,ref =
75Ω and Zo,min = 0.66Zo,ref = 33.3Ω, respectively. The considered substrate para-
meters are those of the Rogers RO3010 substrate, with thickness h = 1.27 mm and
dielectric constant εr = 10.2. In the present example, the periodic perturbation of
the characteristic impedance of the line is carried out by varying the strip width,
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W, along the line.30 In practice, the width of the line as a function of the characteristic
impedance can be obtained by means of a transmission line calculator. A simple pro-
cedure is to calculate the line width at discrete points along the period, and then
approximateW(z) by a piecewise function. The photograph of the resulting microstrip
EBG structure, including access lines, is depicted in Figure 2.10. The reflection (S11)
and transmission (S21) coefficients of the structure inferred from full-wave EM sim-
ulation and measurement are compared with those given by expressions (2.76) in
Figure 2.11. The analytical solutions (2.76) have been obtained by considering n = 1,
k = −jK1 = j0.64 cm−1, l = 1 cm, and β given by

β =
2πf
c

εre 2 103

with εre inferred from (2.57). The agreement between the predictions of analytical
solutions of the coupled mode theory and the full-wave simulation and experimental
results is remarkable. The frequency of maximum attenuation, the value of maximum
reflectivity, the value of minimum transmission, and the bandwidth, obtained from
expressions (2.84–2.86), and (2.89), respectively, are found to be fmax = 5.66 GHz,
S11 max ~ 1 (i.e., ~0 dB), S21 min = 3.32 × 10−3 (i.e., −49.6 dB) and BW = 2.55 GHz.
As expected, these values are in good agreement with those inferred from the
frequency response depicted in Figure 2.11.

It is clear in view of Figure 2.11 that the frequency response of the designed micro-
strip EBG structure exhibits a single reflection band around fmax. No further forbidden
bands are present, as one expects from the lack of harmonic content of the considered
coupling coefficient,K(z). Conversely, by considering a coupling coefficient given by
a square-shaped periodic function of the form indicated in Figure 2.12, forbidden
bands centered at the fundamental frequency and its odd-order harmonics are
expected, as derived from the harmonic content of such coupling coefficient. From

FIGURE 2.10 Photograph of the EBG microstrip line with sinusoidal coupling coefficient.

30 The characteristic impedance in microstrip transmission lines can also be modulated through ground
plane etching, as will be later shown.
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(2.100), the characteristic impedance corresponding to the coupling coefficient of
Figure 2.12 can be expressed as a piecewise function in one period, l, as follows:

Zo z = Zo, ref e
2Kz, z 0,

l

4
2 104a

Zo z = Zo,ref e
−2K z− l

2 , z
l

4
,
3l
4

2 104b
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FIGURE 2.11 Frequency response of the EBG structure depicted in Figure 2.10. (a) Insertion
loss and (b) return loss. The measurement is depicted up to 10 GHz. The EM simulations have
been obtained by excluding ohmic and dielectric losses.
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Zo z =Zo,ref e
2K z− l , z

3l
4
, l 2 104c

where K is the amplitude of the coupling coefficient (the characteristic impedance is
also depicted in Fig. 2.12). The 10-cell microstrip EBG structure shown in Figure 2.13
exhibits a dependence of the characteristic impedance with the axial position given
by (2.104), with l = 1 cm and K = 1 cm–1. With these parameter values, the character-
istic impedance varies around the reference impedance with extreme values given
by Zo(l/4) = Zo,max = 1.65Zo,ref = 82.4Ω, and by Zo(3l/4) = Zo,min = 0.61Zo,ref = 30.4Ω
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FIGURE 2.12 Dependence of the coupling coefficient and characteristic impedance with
the axial position z, corresponding to an EBG microstrip line with a square shaped coupling
coefficient.

FIGURE 2.13 Photograph of the EBG microstrip line with square-shaped coupling
coefficient.
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(the considered substrate is also the Rogers RO3010 with thickness h = 1.27 mm and
dielectric constant εr = 10.2). The broadband frequency response of the designed
microstrip EBG structure, depicted in Figure 2.14, confirms that only the fundamental
andodd harmonics are reflected, and the frequencies ofmaximumattenuation are given
by (2.84)withnodd.Thevalue ofminimumtransmission in each forbiddenband canbe
obtained from (2.86),with kgiven by (2.66),where the termsof the coupling coefficient
are given by

Kn = −
2K
nπ

, n= 1,3,5,… 2 105
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FIGURE 2.14 Frequency response of the EBG structure depicted in Figure 2.13. (a) Insertion
loss and (b) return loss. The measurement is depicted up to 10 GHz. The EM simulations have
been obtained by excluding ohmic and dielectric losses.
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Thus, the minimum transmission at the first three forbidden bands, inferred from
analytical expressions, is −49.3 dB, −12.5 dB, and −5.7 dB; these values are in good
agreement with the frequency response of the device, confirming the validity of
the theory.

2.5 APPLICATIONS

Several applications of periodic transmission lines, including nonuniform transmis-
sion lines and reactively loaded lines, are reviewed in this section.

2.5.1 Applications of Periodic Nonuniform Transmission Lines31

As it has been demonstrated along this chapter, periodic transmission lines with
conductor strip or ground plane modulation exhibit stop bands and pass bands that
can be useful in various applications. These applications include reflectors, high-Q
resonators, spurious suppression in planar microwave filters, and harmonic
suppression in active circuits, among others. In the next subsections, such applications
are discussed and some examples are reported. Moreover, it will be shown that
quasi-periodic nonuniform transmission lines are useful to implement chirped delay
lines (CDLs).

2.5.1.1 Reflectors Band gap structures were first applied to the optical domain
as photonic bandgaps (PBGs) [24], and later used for the implementation of reflec-
tors at microwave frequencies in microstrip technology [18, 25]. The first EBG
structures in microstrip technology were indeed implemented by drilling a two-
dimensional periodic pattern of holes through the substrate [25, 26]. A simpler
strategy to inhibit signal propagation at controllable frequencies consists of partially
etching the ground plane as depicted in Figure 2.15 [18]. As reported in Ref. [18],
this structure exhibits wider and deeper stopbands than previous designs using the
dielectric hole approach [25]. However, the effects of the perturbation are negligible
beyond the defect row below the conductor strip [19]. This suggests that EBG
reflectors consisting of only the central row of the pattern (one-dimensional
EBG) will have similar behavior as a two-dimensional reflector, with the advantage
of a considerable reduction in the transverse dimension. Figure 2.16a depicts a
one-dimensional and a two-dimensional reflector with a period of l = 18.9 mm,
giving a Bragg frequency of 3 GHz in the considered substrate (the Rogers
RO3010, with dielectric constant εr = 10.2 and thickness h = 1.27 mm). The ratio
between the radius of the circles and the period is 0.25. Figure 2.16b indicates that
the frequency responses of both structures are almost undistinguishable. Hence,
the one-dimensional EBG transmission line suffices to achieve strong reflection
at the operating frequency.

31 This subsection has been co-authored with Txema Lopetegi (Public University of Navarre, Spain).

86 ARTIFICIAL TRANSMISSION LINES BASED ON PERIODIC STRUCTURES



In order to reduce the ripple in the pass bands, inherent to periodic structures, a
tapering technique, consisting of a modification of the radius of each circle according
to the position in the structure, can be applied [27]. The improvement of the frequency
response achieved by means of the tapering function is related to the progressive
matching of the characteristic impedance of the Bloch wave toward the input and out-
put characteristic impedance that the tapering function produces. It is also possible to
enhance the bandwidth of EBG microstrip lines by using chirping techniques, for-
merly used in fiber Bragg gratings [28]. The idea is to linearly distribute the position
of the etched holes (center-to-center distance of adjacent holes) along the line [29].
This modulation of the period has the effect of varying the Bragg frequency along
the line, with the result of an enhanced bandwidth. The effects of tapering and chirping
can be appreciated in Figure 2.17, where the frequency responses of a nonchirped,
chirped, and tapered and chirped EBG microstrip lines are compared. Chirping the
lines clearly enhances the rejected bandwidth, whereas the pass band ripple level is
significantly reduced by tapering the structure.

If a strong rejection level and sharp cutoff is required, the number of periods of the
structure has to be necessarily large. To avoid an excessive aspect ratio (length versus
width) of the one-dimensional EBG microstrip line, it is possible to bend the line as
depicted in Figure 2.18 [30]. The tapering and chirping techniques can be applied to
these bended EBG structures as well, in order to enhance the reflection bandwidth and
reduce the ripple level in the pass bands [14].

Circular holes
in ground plane Microstrip line

h

a

r

w

Ground planeDielectric substrate

FIGURE 2.15 Microstrip EBG structure implemented by etching circular holes in the ground
plane. Reprinted with permission from Ref. [18]; copyright 1998 IEEE.
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It was shown in Section 2.4.5 that the harmonic content of the coupling coefficient
K(z) determines the number of rejected bands in the frequency response of EBG-based
transmission lines, and this was verified in Section 2.4.6 by considering two different
periodic structures. Specifically, it was demonstrated that a square-shaped coupling
coefficient produces stop bands not only at the fundamental frequency but also at
its odd harmonics. However, the rejection level decreases with the frequency index;
and for certain applications, it may be of interest to achieve two, or even further,
rejected bands centered at frequencies not necessarily being harmonics. To implement
multiple-frequency-tuned EBG transmission lines, a solution is to add various sinus-
oidal functions tuned at the design frequencies, as reported in Ref. [31]. Specifically,
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FIGURE 2.16 Two-dimensional and one-dimensional EBGmicrostrip line (a) and measured
reflection coefficient (b). The line width is W = 1.2 mm corresponding to a 50Ω line in the
considered substrate. Reprinted with permission from [19]; copyright 1999 John Wiley.
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FIGURE 2.17 Photographs of a nonchirped (a), chirped (b), and tapered and chirped (c) EBG
microstrip lines, measured return loss (d) and measured insertion loss (e). The traces are dashed
line (nonchirped), thin solid line (chirped), and thick solid line (tapered and chirped). Reprinted
with permission from Ref. [29]; copyright 2000 John Wiley.
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the double- and triple-frequency-tuned EBG structures of Ref. [31] are implemented
by adding two and three raised-sine functions, respectively. The double-tuned EBG
has 9 periods of l1 = 23.9mm and 14 periods of l2 = 14.8 mm, in order to have the
rejected frequencies around 3 GHz and 4.5 GHz, respectively. Both sine functions
have an amplitude-to-period ratio of t/l = 0.2. The triple-frequency-tuned EBG micro-
strip structure is designed with three added raised-sine functions. The first sine has 9
periods of l1 = 23.9 mm, the second one has 11 periods of l2 = 19.35 mm, and the third
one has 14periods of l3 = 14.8 mm, to obtain their stopbands centered at 3 GHz, 4 GHz,
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FIGURE 2.18 Photograph of a bended EBG microstrip line (a) and measured insertion
(solid line) and return (dashed line) loss (b). The substrate is the Rogers RO3010 with dielectric
constant εr = 10.2 and thickness h = 1.27 mm. The period of the structure is l = 15.5 mm, the
ratio between the radius and the period is 0.25 and the strip width is 1.2 mm (corresponding to a
50Ω line). Reprinted with permission from Ref. [30]; copyright 1999 John Wiley.
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and 5 GHz, respectively. In all these cases, the t/l ratio is fixed to 0.15. The amplitude of
each particular sine is limited in order to maintain the total amplitude of the ground
plane perturbation in such values that radiation is kept in low levels. In both designs,
the patterns resulting from the addition of various sine functions are Hamming-
windowed to achieve a low-rippled response at the pass band [31]. These double-
and triple-tuned EBG microstrip lines, including their frequency responses, are
depicted in Figures 2.19 and 2.20, respectively.32 The results of these figures clearly
demonstrate that band gaps at closely spaced frequencies can be achieved. Notice that
the patterned functions in the groundplane do not give a combination of pure sinusoidal
functions for the coupling coefficient, and, hence, further stops bands at the harmonics
of the design frequencies may appear.
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FIGURE 2.19 Photograph (ground plane) of a double-frequency-tuned EBG microstrip line
(a) and measured insertion (thick line) and return (thin line) loss (b). The substrate is the Rogers
RO3010with dielectric constant εr = 10.2 and thickness h = 1.27 mm. The conductor strip width
is W = 1.2 mm. Reprinted with permission from Ref. [31]; copyright 2000 IEEE.

32 The raised sine functions determine the geometry of the slotted ground plane, rather than the coupling
coefficient. Nevertheless, for small perturbations, the harmonic content of the rejected bands can be approxi-
mated by the Fourier transform of the perturbation geometry.
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2.5.1.2 High-Q Resonators It is possible to implement Bragg resonators by com-
bining two EBG-based reflectors separated by a microstrip line acting as a resonant
cavity [32]. In principle, such resonant cavity can be obtained by removing one cell of
the EBG structure, which corresponds to a resonator structure with two uniform EBG
reflectors separated by a 180 line at the Bragg frequency of the reflector. However,
since the reflectors contribute to the phase, the resonance condition is written as [33]
follows:

ϕref1 fo +ϕref2 fo −2 β fo Lm = 2πn 2 106

where n is an integer that must be chosen so that the resonance frequency lies within
the reflected frequency band of the EBG reflectors. The other variables of (2.106) are
as follows:
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FIGURE 2.20 Photograph (ground plane) of a triple-frequency-tuned EBG microstrip line
(a) and measured insertion (thick line) and return (thin line) loss (b). The substrate is the
Rogers RO3010 with dielectric constant εr = 10.2 and thickness h = 1.27 mm. The conductor
strip width is W = 1.2 mm. Reprinted with permission from Ref. [31]; copyright 2000 IEEE.
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• ϕref1: phase of the reflection coefficient of the first reflector

• ϕref2: phase of the reflection coefficient of the second reflector

• β: phase constant of the mode of interest in the resonant cavity

• Lm: length of the microstrip transmission line that separates the two reflectors

Thus, the length of the resonant cavity must be optimized in order to satisfy (2.106) at
the required frequency. To this end, it is necessary to study the reflectors independ-
ently and obtain the phase of the reflection coefficient at the design frequency, that is,
ϕref1 and ϕref2. Once these phases are known (they are identical if the same reflectors
are considered at both sides of the resonant cavity), the electrical length of the line can
be inferred, and from the value of the phase constant, the length Lm can be determined.
Figure 2.21a shows the photograph of the fabricated Bragg reflector reported in
Ref. [32], where ϕref1 = ϕref2 = −95.84 at the design frequency (fo = 4.2 GHz), which
gives βLm = 84.15 for n = −1 and Lm = 6.25 mm. The considered substrate is the
Rogers RO3010 with dielectric constant εr = 10.2, thickness h = 1.27 mm, and tanδ =
0.0026. Hole dimensions and separations are those of Figure 2.16. The measured
frequency response of this resonator is depicted in Figure 2.21b, where the resonance
is located at the desired frequency, and the measured quality factor is Q = 129.2, as
reported in Ref. [32], which is a high value for a planar structure. Other high-Q
resonators based on a similar concept but implemented in CPW, CPS and slot lines
are reported in Ref. [34].

2.5.1.3 Spurious Suppression in Planar Filters One of the most interesting
applications of EBG-based transmission lines acting as Bragg reflectors is the sup-
pression of undesired harmonics in planar microwave filters. Indeed, in the EBG-
based reflectors discussed before, the periodic perturbation was achieved through
ground plane etching. However, it is also possible to modulate the strip width
leaving the ground plane unaltered, as was pointed out in Section 2.4.6. This eases
fabrication, and it is an interesting solution in those applications where the structure
must rest on top of a metallic holder. This latter approach was applied to the design
of coupled line microstrip bandpass filters with spurious suppression [35]. In such
filters, the width of the coupled lines was perturbed following a sinusoidal law. This
modulates the characteristic impedance so that the harmonic pass band of the filter
is rejected (first spurious band), while the desired pass band is maintained virtually
unaltered. In this “wiggly-line” filter, the period of the perturbation, l, is obtained
following:

l=
λg
4

2 107

where λg is the guided wavelength at the design frequency (filter central frequency).
According to expression (2.107), it is clear that in each coupled line section exactly a
complete period of the perturbation can be accommodated. The perturbation has been
implemented in Ref. [35] through the modulation of the outer edge of the coupled
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lines (i.e., leaving the inner edge unaltered). The conductor strip-width variation in
each coupled line section (denoted by the index i) is given by

Wi z =Wi 1 +
M

100
cos

2πz
li

+ϕ 2 108

whereWi is the width of the coupled lines in the conventional implementation, ϕ is the
initial phase (0 or 180 ), li is the period of the sinusoidal perturbation, and M is the
strip width modulation parameter.
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FIGURE 2.21 Photograph (ground plane) of the Bragg resonator (a) and measured frequency
response (b). The conductor strip width is W = 1.2 mm. Reprinted with permission from Ref.
[32]; copyright 1999 Springer.
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A prototype device of a “wiggly line” coupled line bandpass filter is depicted in
Figure 2.22 [35]. It is an order-3 Butterworth bandpass filter centered at 2.5 GHz with
a 10% fractional bandwidth and a strip width perturbation factorM = 47.5%. This fil-
ter was implemented on the Rogers RO3010 substrate with εr = 10.2 and h = 1.27 mm.
The measured frequency response of this device is also depicted in Figure 2.22 jointly
with that frequency response which was obtained on an identical filter, but with dif-
ferent modulation factor (i.e., M = 37.5%). The results indicate that in both cases, the
pass band of interest is not affected by the strip width modulation, whereas significant
rejection of the first spurious band is achieved. This is over 40 dB in the “wiggly line”
filter with M = 47.5%.

It has also been implemented a microstrip coupled line bandpass filter with multi-
spurious suppression [36]. To this end, the modulation of the widths of the coupled
line sections was done by means of different periods, so that very good out-of-band
performance was demonstrated, with spurious suppression above 30 dB up to the
fourth harmonic. The device and the measured frequency response are depicted in
Figure 2.23 (further details are given in Ref. [36]).

2.5.1.4 Harmonic Suppression in Active Circuits Harmonic suppression in
active circuits, such as power amplifiers, mixers, oscillators, or active antennas, using
EBGs is very interesting in order to improve device performance. By reducing the
harmonic content, the power level at the fundamental frequency increases, and the
efficiency of the device can be enhanced [37–40]. It has also been demonstrated that
EBG structures are useful to reduce the phase noise in microwave oscillators [41]. In
this case, the key idea is to increase the quality factor of the resonator by effectively
increasing the phase slope of the input matching network through the stopband effect
of the periodic structure.

In Refs. [37–39], the EBG structures are cascaded to the output of the devices,
whereas in Refs. [40, 41] the periodic structure is integrated with the active device.
This latter strategy was also used for the design of an active antenna with improved
efficiency, where a multiple-tuned EBG structure was used in order to achieve the
suppression of the even and the odd harmonics [14]. The design of EBG-based active
circuits is a two-step process: first, the conventional (i.e., without EBG) device is
designed according to the procedures described in well-known textbooks [10]; sec-
ond, the EBG, which is independently designed, is introduced in the active device in
order to suppress the harmonic content. The active circuit design (first step) is out of
the scope of this book. Therefore, let us review the design of the active antenna
reported in Ref. [14], with emphasis on the design of the EBG, as an illustrative
example of the potentiality of periodic structures to improve the performance of
active circuits.

The active antenna consists of a microwave oscillator directly feeding a patch
antenna. The introduction of the EBG within the oscillator circuit has the effect
of suppressing the harmonics present in the radiated power spectrum, increasing
at the same time the power level at the fundamental frequency. One important aspect
of the active antenna reported in Ref. [14] is the use of a double-tuned EBG, which
effectively reduces the power level of the first (2fo) and second (3fo) harmonic
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FIGURE 2.22 Coupled line bandpass filter with strip width modulation (a) and measured
return (b) and insertion (c) loss. Conventional: thick solid line; “wiggly line” filter with M =
37.5%: dashed line; “wiggly line” filter with M = 47.5%: thin solid line. Reprinted with
permission from Ref. [35], copyright 2001 IEEE.
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(notice that by using a single tuned EBG structure at 2fo, the odd-order harmonics,
i.e., 3fo, 5fo, etc., cannot be suppressed). Specifically, the considered EBG is formed
by the addition of two raised sinusoids etched in the ground plane, and tuned at 2fo
and 3fo. The photograph of the classical designed active antenna of Ref. [14] is
depicted in Figure 2.24a, where the patch antenna is the terminating load of the oscil-
lator. The considered transistor is the Si bipolar junction transistor (BJT) AT-42035,
operating in the common-base configuration at VCE = 8 V and IC = 35 mA. The oscil-
lation frequency was set to fo = 4.5 GHz, which means that the EBG structure must
be able to efficiently suppress those frequencies in the vicinity of 9 GHz and
13.5 GHz. The periods of the raised sinusoids are 6.2 mm (to reject the first harmonic)
and 4.1 mm (to reject the second harmonic), whereas the amplitude of the perturbation
to period ratio is 0.3 for both raised sinusoids (theRogers RO3010 substrate with thick-
ness h = 1.27 mm and dielectric constant εr = 10.2 was used). Figure 2.24b shows the
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FIGURE 2.23 Coupled line bandpass filter with multispurious rejection (a) and measured
frequency response (b). Reprinted with permission from Ref. [36], copyright 2004 IEEE.
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layout of the active antenna, including the double-tuned EBG, etched in the
ground plane, and integrated within the oscillator matching networks. The measured
power spectrum of both antennas (with and without EBG), inferred by means of a
spectrum analyzer and a rectangular horn antenna optimized for the fundamental
oscillation, is depicted in Figure 2.25. For the prototype with EBG, the first and second
harmonic are reduced around 20 dB and 10 dB, respectively, whilst an increase of the
output power of roughly 2.6 dB at the fundamental frequency is achieved. It is
important to highlight that the introduction of the EBG structure within the oscillator
circuit did not require a redesign process. Moreover, this approach does not increase
the layout area.

(a)

(b)

FIGURE 2.24 Photograph of the classical active antenna designed in Ref [14] (a) and layout
of the same antenna including the EBG structure to reject the first and second harmonics (b).
From Ref. [14]; reprinted with permission from the author.
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2.5.1.5 Chirped Delay Lines A CDL is a quadratic-phase filter whose frequency
response H ω =A0 ω exp − j ϕ0 ω is characterized by constant insertion losses,
A0(ω), and a group-delay, ϕ_0 = dϕ0 dω, that varies linearly with frequency in the
operation bandwidth. CDLs are extensively used in the emerging field of microwave
analog signal processing [42], and several interesting applications have been reported
in the last years, for example, signal time compression and magnification systems
[43], tunable time-delay systems [44], real-time spectrum analyzers [45] and
frequency discrimination systems [42], among others. All these systems work
satisfactorily at high frequencies and with wide bandwidths.

CDLs with very high time-bandwidth products (defined as the total delay excur-
sion times the operation bandwidth), over ranges of several GHz, can be implemented
by using quasiperiodic EBG structures in microstrip technology. To obtain them, the
starting point is a single-frequency-tuned EBG structure, with sinusoidal coupling
coefficient, of the type proposed in Section 2.4.6. In order to achieve the required
group-delay that varies linearly with frequency, the period of the characteristic imped-
ance perturbation is also varied linearly along the propagation axis, z. The character-
istic impedance implemented to obtain the CDL in the reported example is [45, 46]:

Z0 z =Z0,ref e
A W z sin ζ z dz = Z0, ref e

A W z sin
2π
l0
z+C z2 −C L2 4

2 109

where ζ z = 2π l0 + 2Cz is the spatial angular frequency (that is linearly modulated
along z), C is the chirp parameter, and the microstrip line extends from z= −L 2 to
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FIGURE 2.25 Measured power spectrum for the classical active antenna (thin line) and for
the active antenna with EBG (thick line). From Ref. [14]; reprinted with permission from the
author.
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z= L 2, L being the total device length. The perturbation period of the resulting quasi-
periodic EBG structure is

l z =
2π
ζ z

=
2π

2π l0 + 2Cz
2 110

and therefore the frequency locally reflected at position z (calculated through 2.84) is

f z =
c

2 l z εre
=

c

2 εre

1
l0
+
C

π
z 2 111

where εre is the effective dielectric constant, c is the speed of light in vacuum, and l0 is
the perturbation period at the center of the device.

As can be seen, the phase-matching condition for resonant Bragg coupling between
the forward and backward traveling waves is ideally satisfied at only one position for
each frequency. At this position, the propagating wave will be back-reflected. More-
over, since the perturbation is linearly chirped then the mode-coupling location varies
linearly with frequency. As a result, the reflection time is also a linear function of fre-
quency. This is equivalent to say that the group delay (in reflection) will vary linearly
with frequency, as intended in the CDL. According to (2.111), the CDL implemented
following (2.109) will work in reflection with an operation bandwidth:

Δf = f z= L 2 − f z = −L 2 =
1
2π

c

εre
C L 2 112

around a central frequency:

f0 = f z= 0 =
c

2 l0 εre
2 113

and with a group-delay slope, ψ (s/Hz):

ψ =
2L εre
c Δf

=
4π εre
C c2

2 114

The group-delay slope is derived by taking into account that Δf ψ is the time-delay
difference between the arrivals at the input of the extreme frequencies of the band-
width, f z = −L 2 and f z= L 2 , the former reflected at the input and the latter at
the output of the device, respectively (path difference = 2 L).

The three last equations can be inverted to obtain expressions for the main design
parameters in (2.109) as a function of the operation bandwidth, Δf (Hz), central
frequency, f0 (Hz), and group-delay slope, ψ (s/Hz):
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l0 =
c

2 f0 εre

C =
4π εre
ψ c2

L=
c ψ Δf
2 εre

2 115

The additional parameters in (2.109) to finish the CDL design are Z0,ref, that corre-
sponds to the characteristic impedance of the ports (the integration constant is fixed
to −C L2 4 to ensure input and output ports with Z0,ref, assuming that L is a multiple
of l0); A, a nondimensional amplitude factor for the perturbation, andW(z), a window-
ing function for smoother input and output impedance transitions to avoid partial
reflections from the extremes of the structure that give rise to different long-path
Fabry–Perot like resonances, which cause undesirable rapid ripple to appear around
the mean values in the magnitude and group-delay versus frequency patterns degrad-
ing the CDL performance. Furthermore, both negative values ofC, which imply upper
(higher loss) frequencies to be reflected at the beginning, and asymmetricW(z), which
can compensate for the longer lossy round trips, can be used to lead to better equalized
reflection losses across the operation band.

To demonstrate the proposed design method, a CDL in microstrip technology is
reported. The characteristic impedance of the ports is Z0,ref = 50 Ω, and the Rogers
RO3010 substrate with dielectric constant εr = 10 2, and thickness h = 1 27mm is
employed. The central operation frequency is f0 = 9 GHz, and the bandwidth is
Δf = 12 GHz, with a group-delay slope of ψ = −0 5 ns GHz. The design parameters
have been calculated using (2.115) to fulfill the response: l0 = 6 4 mm, L= 50 l0, and
C = −2080 m−2 [45]. A Gaussian asymmetric tapering function is used

W z = exp −4 z−L 4 L 2 , and A = 0 4. Once all the parameters in (2.109) have

been fixed, the impedance variation is implemented as a strip width modulation;
see Figure 2.26a. In Figure 2.26b and c, the S11 parameter obtained by solving the
simplified system of coupled mode equations (2.47a and 2.47b), that is, lossless and
single-mode approximation (dotted line), is compared with the simulation employing
the commercial software Agilent Momentum (thin solid line) and the measurements
of the fabricated prototype (thick solid line), showing that the CDL provides the
required features of flat magnitude and linear group-delay variation with frequency.
The reflection losses are maintained around 3 dB over the entire bandwidth. Finally,
the design requirements of central operation frequency, bandwidth and group-delay
slope are also properly satisfied.

The main limitation of the CDL structure proposed here is that it operates in
reflection, and therefore it requires an additional component to recover the reflected
signal. However, this limitation can be avoided by implementing the CDL structure in
coupled line technology as explained in Ref. [47].
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2.5.2 Applications of Reactively Loaded Lines: The Slow Wave Effect

In thepreviousapplicationsofEBG-based transmission lines, aperiodicperturbationwas
introduced either in the ground plane or in the conductor strip.However, band gaps in the
transmission coefficient of periodic transmission lines can also be achieved by reactively
loading the line. Specifically, by periodically loading the line with shunt-connected
capacitances, either implemented by lumped elements or with planar semilumped
components, significant dispersion arises, pass bands and stop bands appear, and the
phase velocity of the lines is reduced. This slow-wave effect is interesting to reduce
the size of microwave components. On the other hand, the transmission characteristics
of these periodic loaded structures are of interest for the design of planar filterswith small
size and/or improved performance. All these aspects are discussed in this subsection.

Notice that the coupled mode theory presented in Section 2.4 does not apply to
transmission lines periodically loaded with reactive elements. To analyze such
artificial lines, the transfer matrix method is a convenient approach. Let us consider
a transmission line periodically loaded with shunt-connected capacitances
(Fig. 2.27a). The dispersion relation, inferred from (2.22) is:

cosβl= coskl−
ωClsZo

2
sinkl 2 116
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FIGURE 2.26 Photograph of the microstrip CDL (a) and S11 parameter of the device:
magnitude (b) and group-delay (c) obtained by coupled mode theory (lossless)
approximation (dotted line), Agilent Momentum (thin solid line) and measurement (thick
solid line). Reprinted with permission from Ref. [45], copyright 2003 IEEE.
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where k and β are the phase constants of the unloaded and loaded line,33 respectively,
Cls are the loading capacitances, l is the distance between adjacent capacitances
(period), and Zo is the characteristic impedance of the line sections between adjacent
capacitances. The dispersion relation is depicted in a Brillouin diagram in Figure 2.28,
where θ = kl is proportional to frequency and φ = βl. This is a representation in a
reduced zone, that is, 0 ≤ φ ≤ π. The structure exhibits a low-pass filter-type response
with multiple spurious bands (only the first three bands are visible in the diagram of
Fig. 2.28). For design purposes, however, a lumped-element circuit model of the capa-
citively loaded transmission line is convenient. This circuit model is depicted in
Figure 2.27b, where C and L are the per-section capacitance and inductance of the
line, respectively. This model is valid under the assumption that Cls >>C. According
to the lumped-element equivalent circuit of the periodically loaded line, the first pass
band of the structure is delimited by the following cutoff frequency

fC =
1

π L C +Cls

2 117

the characteristic (or Bloch) impedance of the loaded line at low frequencies is
given by

(b)

(a)

CCC

LL L

Cls Cls Cls

Cls Cls Cls

Zo, k Zo, k Zo, k

FIGURE 2.27 Transmission line periodically loaded with shunt connected capacitances
(a), and lumped-element equivalent circuit model (b).

33 Notice that in this subsection k is used to designate the phase constant of the unloaded line. Hence, do not
confuse with the coupling coefficient parameter (introduced in Section 2.4—see expression 2.66), or with
the free-space wavenumber (Section 2.2—see expression 2.10). The use of the same symbol to designate
different variables is avoided as much as possible throughout this book. However, exceptions are made
either to use the usual symbols for certain variables or to be faithful to the sources/references where the
symbols and related expressions are introduced.
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ZB =
L

C +Cls
2 118

and the lower frequency of the first spurious band is

fS =
1

2 LC
2 119

From these equations, the element values can be inferred and the capacitively loaded
line can thus be implemented.

The lumped-element equivalent circuit model is only valid in the first band of the
structure. Indeed, the circuit model of Figure 2.27b does not exhibit spurious bands.
However, the lower frequency of the first spurious band (2.119) can be easily inferred,
since θ = kl = π at this frequency. Hence,

kl= 2πfS LC = π 2 120

from which (2.119) results.
The cutoff frequency (expression 2.117) can be obtained from (2.116) by

considering that θ = kl is small in the first pass band (which is equivalent to consider
that Cls >>C). At the cutoff frequency, φ = βl = π, and expression (2.116) can be
written as

−1 = 1−
kcl

2

2
−
2πfCClsZo

2
kcl 2 121

3

2

1

kl
/π

βl/π

0
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 2.28 Typical dispersion diagram of a transmission line periodically loaded with
shunt connected capacitances, depicted in a reduced Brillouin zone. The dispersion relation
for the unloaded line is also depicted (dotted line). Notice that the smaller slope of the
capacitively loaded line at low frequencies (as compared to that of the unloaded line) is
indicative of the slow wave effect of capacitively loaded lines.
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where the sin and cos functions have been expanded in Taylor series up to the first
order, and kc, given by

kcl = 2πfC LC 2 122

is the phase constant of the unloaded line at the cutoff frequency. Introducing (2.122) in
(2.121), and taking into account that the characteristic impedance of the unloaded line is

Zo =
L

C
2 123

the cutoff frequency can be isolated, and (2.117) is found.
To gain more insight on the validity of the model of Figure 2.27b as Cls

increases (as compared to C), the dispersion relations (first band) of three transmis-
sion lines loaded with different capacitances have been obtained by means of
(2.116), and by applying (2.33) to the unit cell of the circuit of Figure 2.27b.
The results, compared in Figure 2.29a, confirm that the dispersion curves inferred
from both models are identical in the low-frequency limit, regardless of the value of
Cls.

34 This result is expected since at low frequencies the wavelength of the
unloaded line is large as compared to the distance, l, between adjacent capacitors.
As frequency increases both curves progressively diverge, the difference being a
maximum at the cutoff frequency. However, such maximum difference decreases
as the difference between Cls and C increases, and the results of Figure 2.29 indi-
cate that for Cls = 9C the relative difference between the cutoff frequencies given by
both models is as small as 3.5%. Figure 2.29b compares the Bloch impedance cor-
responding to the exact (distributed) and approximate (circuit) models for the three
considered cases, where it is found that both models tend to give the same values as
Cls increases, as expected.

In the next subsections, it is shown that capacitively loaded lines are useful for size
reduction (associated to the slow-wave effect) and spurious suppression. Such lines
can thus be applied to the design of compact filters with spurious suppression, includ-
ing lowpass and bandpass filters. The two reported examples are bandpass filters
(the application of capacitively loaded lines to lowpass filtering structures can be
found in [48–51]).

2.5.2.1 Compact CPW Bandpass Filters with Spurious Suppression By period-
ically loading a transmission line with shunt capacitances, the phase velocity can
be substantially reduced. In the low-frequency limit, the phase velocity of the
periodically loaded line, vpL, is given by

34Notice that the second and third bands given by the distributed model are also depicted in Figure 2.29a.
The presence of these bands is not accounted for by the lumped element model, since it is not valid above the
first pass band.
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vpL =
l

L C +Cls

2 124

The effect of such phase velocity reduction is a decrease of the guided wavelength;
hence, significant size reduction of distributed circuits implemented with such peri-
odically loaded lines can be achieved. Such artificial lines, also referred to as
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FIGURE 2.29 Dispersion diagram (a) and Bloch impedance (b) of a transmission line
periodically loaded with a capacitance Cls of the indicated value. The curves corresponding
to the distributed and lumped-element circuit models are indicated in dashed and solid lines,
respectively. For the three cases, L = 5 nH and C + Cls = 2 pF, so that the Bloch impedance at
low frequencies and the cutoff frequency (lumped-element model) are identical for the three
considered cases. Notice that the values of kl at the cutoff frequency are different since they
depend on C (see expression 2.122), which is different for the three considered cases.
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slow-wave transmission lines, or simply slow-wave structures, are an alternative to
high dielectric constant substrates for device miniaturization. Moreover, since these
capacitively loaded lines exhibit stop bands, they can be used to simultaneously
reduce the size of distributed circuits and suppress undesired bands (as pointed out
before).

In CPW technology, the loading capacitances can be implemented by means of
T-shaped planar structures, as reported in Refs [50, 51]. The slow-wave effect can also
be achieved by periodically approaching the conductor strip and ground planes. This
idea was applied by Görur et al. [52, 53] to the design of compact resonators in CPW
technology and by Martín et al. [54] to the design of compact capacitively (gap)
coupled resonator bandpass filters (see the example provided in Section 1.6.4, corre-
sponding to a conventional implementation). The details of the design of these filters
can be found in Ref. [54]. Essentially, the periodic perturbation (providing capacitive
loading) has been determined to obtain a cutoff frequency beyond the pass band of
interest, but below the first harmonic band. In this way, spurious elimination is
achieved. Moreover, the line perturbation effectively increases the capacitance of
the line, decreases the phase velocity (slow-wave effect), and hence reduces the length
of the different resonators forming the filter.35 The filter described in Ref. [54] is a
fourth-order bandpass filter with central frequency fo = 6 GHz and 10% fractional
bandwidth. It is depicted in Figure 2.30 and compared with the conventional

(b)

(a)

FIGURE 2.30 Layouts of the conventional (a) and periodic-loaded (b) CPW bandpass filters.
The layouts are drawn to scale, the length of the conventional filter being 5.6 cm. Reprinted with
permission from Ref. [54], copyright 2004 John Wiley & Sons.

35A detailed design process of the capacitively loaded slow wave transmission lines using expressions
(2.117)–(2.119) is given in reference to the bandpass filter of the next subsection, also based on slow-wave
transmission-line sections, but implemented in microstrip technology.
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implementation (designed on the same substrate—Rogers RO3010 with εr = 10.2, h =
1.27 mm—with identical central frequency). Roughly 30% size reduction is achieved
by means of the slow-wave periodic structure. The measured frequency response of
the device is depicted in Figure 2.31. The device is spurious free in a wide band due to
the effects of periodicity. This concept has been applied to the miniaturization of other
components, such as hybrids and couplers [55].

Other periodic slow wave structures based on inductive loading [56], or com-
bined inductive and capacitive loading [57–62] have also been reported. The topic
of slow-wave transmission lines has attracted much attention in recent years for their
potential in size reduction of distributed circuits, and other different approaches
(out of the scope of this book) have been reported [63], including slow-wave
transmission lines for passive and active CMOS devices operating at millimetre
wavelengths [64–69].

2.5.2.2 Compact Microstrip Wideband Bandpass Filters with Ultrawideband
Spurious Suppression Capacitively loaded lines can also be implemented in
microstrip technology by means of patch capacitances. These structures can also
be applied to the design of compact bandpass filters (due to the inherent slow-wave
effect). However, since high capacitance values can be achieved by means of
capacitive patches, the most relevant aspect of these periodic loaded microstrip
lines is the huge achievable stop bands, which are very interesting to suppress
spurious bands over a very wide frequency range. As an illustrative example of
capacitively loaded microstrip lines, a wideband bandpass filter is considered,
where some of the transmission line sections are substituted by patch loaded lines
[70]. The filter consists of a cascade of shunt stubs of equal length, alternating with
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FIGURE 2.31 Measured insertion (bold line) and return (thin line) loss for the periodic-
loaded filter of Figure 2.30b. Reprinted with permission from Ref. [54], copyright 2004
John Wiley & Sons.
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transmission lines with twice the stub electrical length. The analysis of this type of
filters was done by Levy [71]. A very interesting characteristic of these filters is
that by using n stubs, an insertion function of degree 2n − 1 is implemented. These
filters are useful to generate wide transmission bands, although wideband spurious
are also present in their frequency response. The schematic of the filter is depicted
in Figure 2.32. The network shown in Figure 2.32 implements the transfer function
described in expression (2.125a) as a function of the normalized frequency variable
θ = θcf/fc [72]:

S21 θ 2 =
1

1 + κ2F2
n θ

2 125a

with

Fn θ =
1 + 1−x2c T2n−1

x

xc
− 1− 1−x2c T2n−3

x

xc

2 cos
π
2
−θ

2 125b

x = sin
π
2
−θ 2 125c

xc = sin
π
2
−θc 2 125d

where Tn = cos n cos−1 x and κ is the pass band ripple constant. The bandwidth of
the filter is delimited by the frequencies fc and (π/θc − 1)fc; therefore, the bandwidth
can be controlled by the value of the angle θc.

As an illustrative example, a n = 3 prototype with fc = 1.4 GHz and θc = 35 (that
implies a 4.8 GHz bandwidth) is implemented. To determine the impedance values
of the short-circuit stubs and line elements, the tabulated element values supplied by
Hong and Lancaster in their text book [72] for optimum distributed highpass

y0 = 1 y0 = 1

y1

y12

y2

yn–1n

yn–1 yn

2·θc2·θc

θc θc θc θc

FIGURE 2.32 Schematic of the wideband bandpass filter where yi and yjk are the normalized
characteristic admittances of the stubs and transmission lines, respectively.
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filters are used. The resulting impedance values are shown in Figure 2.33. The
simulation results depicted in Figure 2.33b correspond to the structure described
in Figure 2.33a, implemented in an Arlon substrate with dielectric constant εr =
2.4 and thickness h = 0.675 mm. Five reflection zeros can be observed in the
transmission bands, such as one expects on account of the 2n − 1 degree of the filter
function (n = 3 in our case). The structure of Figure 2.33 is the conventional
implementation.

The capacitively loaded structure is obtained by replacing the interstub transmis-
sion line sections with patch-loaded lines (with two unit cells). The electrical length of
these lines is 70 , whereas the characteristic impedance is 47.5Ω. The phase shift per
cell is given by

ϕ= 2π f L C +Cls 2 126

(a)

0 5 10 15 20

–50

–40

–30

–20

–10

0

W1= 0.28 mm W1= 0.28 mmW3= 0.47 mm

W2= 2.08 mm W2= 2.08 mm

W0= 1.92 mm
Z0= 50 Ω

W0= 1.92 mm
Z0= 50 Ω

L1= 15.53 mm L1= 15.53 mmL3= 15.35 mm
Z3= 103.5 Ω

Z2= 47.5 Ω
L2= 29.34 mm
2θc = 70°

Z2= 47.5 Ω
L2= 29.34 mm
2θc = 70°

Z1= 124.7 Ω Z1= 124.7 Ω

θc = 35° θc = 35° θc = 35°

S21 UWB filter
S11 UWB filter

S-
pa

ra
m

et
er

s 
(d

B
)

Frequency (GHz)

(b)

FIGURE 2.33 (a) Layout of the wideband bandpass filter including electrical parameters and
geometry of transmission lines and stubs. (b) EM simulation of the frequency response of the
filter. Reprinted with permission from Ref. [70], copyright 2006 IEEE.
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By forcing (2.118) and (2.126) to obtain the required electrical characteristics (i.e.,
ϕ = 35 at 1.4 GHz and ZB = 47.5Ω) and by setting fs (expression 2.119) to fs =
22 GHz in order to obtain a huge rejection band, the electrical parameters of the patch
(capacitively) loaded line can be inferred. The results are as follows: C = 0.17 pF,
L = 3.1 nH and Cls = 1.2 pF. With these values, the impedance of the unloaded
line is Zo = 123.5Ω, and the cutoff frequency of the periodic-loaded line is fC =
5.6 GHz, that is, it lies between the pass band of interest and the first spurious fre-
quency of the conventional filter.

The layout of the patch-loaded transmission line sections was obtained bymeans of
an optimization procedure by using Agilent Momentum. It is depicted in Figure 2.34
together with the simulated frequency response. The band gap extends up to more than
20 GHz (as required). Hence, it is expected that by introducing such lines in the filter
layout, the frequency response is free of spurious up to very high frequencies.
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FIGURE 2.34 (a) Layout of the periodic-loaded structure in microstrip technology and
(b) electrical and EM simulation. Reprinted with permission from Ref. [70], copyright
2006 IEEE.
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Acomparative layout of the conventional and capacitively loaded (patch-loaded) filters
and the corresponding simulated frequency responses are depicted in Figure 2.35.
The photograph of the fabricated patch-loaded filter is shown in Figure 2.36, jointly
with the measured frequency response. The out-of-band performance is good, with
a rejection level better than −30 dB up to 20 GHz. In-band losses are lower than
0.9 dB and return losses are better than 10 dB. Finally, approximately 50% length
reduction is obtained by using the capacitively loaded filter.

A balanced (differential) version of this type of filters, covering the frequency
spectrum assigned for ultrawideband (UWB) communications (3.1–10.6 GHz), is
reported in Ref. [73].
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FIGURE 2.35 Layout of the patch-loaded filter (a) standard filter (b) and EM simulation
of both filters (c). The filters are designed and implemented using an Arlon substrate
with εr = 2.4 and thickness h = 0.675 mm. Reprinted with permission from Ref. [70],
copyright 2006 IEEE.
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FIGURE 2.36 (a) Picture of the fabricated patch-loaded filter, (b) measured S-parameters,
and (c) measured group delay. Reprinted with permission from Ref. [70], copyright 2006 IEEE.
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To end this chapter, let us mention that although the most intensive research
activity on periodic transmission lines (EBG-based and reactively loaded lines)
was carried out in the late nineties and first years of this century, there is still activity
on this topic. In particular, EBGs have been combined with coupled lines for the
design of coupled line directional couplers with enhanced coupling factor [22, 74,
75]. By properly modulating the common-mode and differential-mode characteristic
impedances, it is possible to achieve contra-phase reflection coefficients for the even
and odd modes and, consequently, redirect the reflected signal to the coupled port.
Another recent application concerns the design of differential lines with common-
mode suppression [76]. In this case, the common-mode impedance is periodically
modulated, whereas the differential-mode impedance is kept uniform along the line.
The result is a band gap for the common-mode, whereas the line is transparent for the
differential signals (other techniques for common-mode suppression in differential
lines are pointed out in Chapter 6).
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