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7.1 Energy-Efficient Design for Single-User Communications

Shannon theory provides some insights into the fundamental limits on minimum energy per
bit required for reliable transmission for a single-user link. Based on the Shannon capacity
formula, the data rate of an ideal band-limited additive white Gaussian noise (AWGN) channel
is given as follows:

R = W log2

(
1 +

Pg

WNo

)
, [bits∕sec]

where W is the channel bandwidth, P the transmission power, g the channel power gain, and No
the noise spectral density. From a system-design perspective, g and No are usually given and W
and P can be controlled by an appropriate transceiver design. To save energy, the transceiver
should be designed to maximize the number of information bits reliably delivered per unit
energy consumption, that is, the power should be chosen to maximize

u =
W log2

(
1 +

Pg

WNo

)
t

Pt
=

W log2

(
1 +

Pg

WNo

)
P

, [bits∕Joule]

where t is the time used to send the bits, u is named the energy efficiency, with a unit bits/Joule.
Note that choosing the power is the same as choosing the data rate and they are related through
the power-rate function, for example, the Shannon capacity formula here. Therefore, another
way formulating the problem is to write u as the function of the data rate R and the result
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should be the same. It can be easily proved that u decreases in P and the lowest power should
be used. Therefore, the highest energy efficiency is achieved when P → 0, that is, R → 0 and
infinitely long time should be used for data transmission, and

u∗ = limP→0

W log2

(
1 +

Pg

WNo

)
P

=
g

N0 log 2
.

Similarly, if W is a variable, then u increases in W. The highest energy efficiency is achieved
when W → ∞, and

u∗ = limW→∞

W log2

(
1 +

Pg

WNo

)
P

=
g

N0 log 2
.

In both of the aforementioned cases, the spectral efficiency is zero, indicating a trade-off
between spectral and energy efficiency.

The ideal analysis above ignores channel impairment and practical issues such as delay
spread, frequency selectivity of the channel, phase noise, nonlinearity of power amplifiers,
and other wideband RF circuits. Furthermore, in addition to transmission power, a device
will also incur additional circuit power that is relatively independent of the transmission rate
[1, 2]. Thus a fixed energy cost of transmission is incurred, which must also be accounted
for when designing energy-efficient transmission systems. In the following sections, we con-
sider energy-efficient design for single-user transmission, accounting for the impact of circuit
power. We first consider the case of flat fading wireless channels before addressing the more
complex case of frequency-selective channels.

7.1.1 Energy-Efficient Transmission in Flat Fading Channels

To facilitate the understanding, we first consider a special case that the channel is experiencing
flat fading. This happens in narrowband communications. We examine the basic relation-
ship between energy efficiency and channel gain, circuit power, and system bandwidth. In
this section, we investigate the optimal transmission power level maximizing the bits/Joule
metric, accounting for the circuit power, Pc, consumed during transmission. The total energy
consumption considering the circuit power is given as follows:

E = (P + Pc)t,

and the system energy efficiency is given as follows:

u(P) =
W log2

(
1 +

Pg

WNo

)
P + Pc

.

It can be easily shown that u is strictly quasi-concave in P, as shown in Figure 7.1 [3].
For a strictly quasi-concave function, if a local maximum exists, it is also globally optimal.
Besides, u is first strictly increasing and then strictly decreasing in P. Therefore, there is a
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Figure 7.1 Quasi-concavity of the energy-efficiency function

unique optimal P∗, that is, a unique data rate R∗, that maximizes the energy efficiency and the
first-order derivative of u(P) at P∗ is zero. P∗ can be expressed as

P∗ =
(

P∗ +
WN0

g

)
log

(
1 +

P∗g

WN0

)
− Pc.

In general, there is no closed-form expression of P∗ and numeric methods such as the
bisection method or the gradient assisted binary search (GABS) in [3] can be used to search for
P∗. The basic idea of GABS is to first find a range that includes P∗ and then use the bisection
method to narrow down the range to the desired accuracy.

Further analyzing the energy-efficiency function, we can see that it increases with the band-
width, W, indicating higher signal bandwidth can improve the transmitter energy efficiency. In
a multiuser system, this means more system bandwidth should be allocated to users desiring
energy efficiency [1].

It is shown in Ref. [3] that when the channel gain increases, higher transmission data rate
should be used to improve energy efficiency. Furthermore, when the transmitter has a higher
circuit power, higher transmission data rate should also be used. This is because with higher
data rate, the duration the device has to be on can be decreased to reduce the circuit power
consumption. When circuit power dominates power consumption, which is usually true with
short-range communication, the highest data rate should be used to finish the transmission
as soon as possible and then the device can be switched into a lower circuit power state, for
example, sleep mode, as soon as possible. This technology has been commonly used in most
medium access control (MAC) layer energy-efficient designs. When the circuit power is negli-
gible, which is usually true with long-range communication such as satellite communications,
the lowest data rate should be used, which coincides with the results in Refs. [4] and [5].
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7.1.2 Energy-Efficient Transmission in Broadband Frequency-Selective
Channels

Current communication systems design deals with frequency selectivity through subdividing
the bandwidth into small segments, where the channel can assumed to be flat. So, for an ideal
channel-orthogonalization technology such as MIMO or OFDM, the channel may be divided
into K subchannels, each experiencing flat fading. Consider static channels to gain insights.
The energy efficiency of such a system can be modeled by

u(R) =

∑
rk

PT (R) + Pc
,

where R = [r1, r2,… , rK] is the data rate vector where rk is the rate on the kth subchannel,∑
rk the total system throughput, and PT (R) the total transmission power consumed by the

power amplifier for the reliable transmission of R. Note that PT (R) characterizes all power
consumption components that may vary depending on the data rate vector and Pc the remaining
ones that are independent of R. An example of the transmission power consumption for coded
QAM system is [3]

PT (R) =
K∑

i=1

(
e

ri
W − 1

) N0W𝜇

gi𝛾
,

where 𝜇 is the SNR gap that defines the gap between the channel capacity and a practical cod-
ing and modulation scheme, and 𝛾 the power amplifier efficiency and depends on the design
and implementation of the transmitter. It can be easily verified that PT (R) for almost all com-
munication systems is strictly convex and monotonically increasing in R and in the following
we make this assumption.

As shown in [3], u(R) is strictly quasi-concave in R. In addition, it is either strictly decreas-
ing or first strictly increasing and then strictly decreasing in any ri, that is, the local maximum
of u(R) for each ri exists at either 0 or a positive finite value. For strictly quasi-concave func-
tions, if a local maximum exists, it is also globally optimal. Hence, a unique globally optimal
transmission rate vector always exists and the necessary and sufficient condition of the optimal
R can be found by setting the first-order derivative of u(R) to be zero. When each subchan-
nel achieves the Shannon capacity, the optimal power allocation is a dynamic energy-efficient
water-filling approach. With this approach, while the absolute value of power allocation is
determined by the maximum energy efficiency u(R∗), which relies on both the circuit power
and channel state, the relative differences of power allocations on different subchannels depend
only on the channel gains on those subchannels.

The discussions above have not considered quality of service (QoS) assurance or resource
constraints. If the global optimal transmission meets the QoS requirements and resource con-
straints, it can be used. Otherwise, the transmission should be adapted right on a subset of
the boundary conditions and the optimality is guaranteed because of the strict quasi-concavity
of the energy-efficiency function. Some examples of energy-efficient designs considering the
constraints can be found in Refs. [3] and [6].

Similar to the energy-efficient transmission in flat fading channels, there are no closed-form
expressions of the globally optimal transmission setting. Using appropriate approximation
techniques, suboptimal closed-form link adaptation can be obtained. In Ref. [7], by using
time-average energy efficiency, closed-form link adaptation is obtained with the knowledge
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of historical link energy efficiency in the past time slots and the performance is very close to
the globally optimal one, depending on how fast the channel varies.

7.2 Energy-Efficient Design for Multiuser Communications

While it is important to investigate energy-efficient design for a single-link, wireless trans-
mission is inherently multiuser in nature, with several mechanism defined for multiple access.
Multiuser communications can simultaneously support a large number of users satisfying their
QoS requirement, and therefore it significantly enhances the system performance as compared
with single-user communications. In multiuser systems, the system resources must be divided
among multiple users. For parallel transmission of symbols, multiuser MIMO allocates spatial
degrees of freedom brought by the use of multiple antennas to multiple users, whereas OFDMA
distributes subchannels obtained by dividing the entire bandwidth to multiple users. In cog-
nitive radio, unlicensed secondary users can access the spectrum licensed to primary users
by exploiting the idle times of the primary users. On the other hand, in cooperative systems
multiple users can cooperate to enhance the transmissions of other users. In this section, we
discuss energy-efficient designs of multiuser techniques such as multiuser MIMO, OFDMA,
cognitive radio, and cooperative relay transmission.

7.2.1 Multiuser MIMO

For a single-user MIMO (SU-MIMO) system with M antennas at the base station (BS) and
N antennas at the mobile user, the capacity gain is approximately min(M,N) times that of
single-input single-output (SISO) systems [8]. In typical cellular systems, multiple antennas
can be easily deployed at the BS, but the number of antennas at the mobile users is limited
because of the size and cost constraints. Therefore, the capacity gain of SU-MIMO is usually
limited by the number of antennas at the mobile user. An alternative to SU-MIMO is multiuser
MIMO (MU-MIMO). In MU-MIMO systems, the BS serves multiple users simultaneously in
the same frequency and time slots by spatially multiplexing the users’ data using multiple
antennas. The sum capacity of MU-MIMO grows linearly with min(M, nN), where n is the
number of users served simultaneously, so an M-fold increase in the sum capacity can be
obtained as long as nN is larger than M. When the number of users is larger than M, a scheduler
can be employed to select up to M users. By opportunistically transmitting to the selected
users having good channel conditions, multiuser diversity can be obtained [9]. Besides, by
carefully allocating resources such as power, antennas, and subcarriers to the scheduled users,
the performance of the MU-MIMO system can be improved. The user scheduling and the
resource allocation can significantly improve the performance of MU-MIMO systems. In this
subsection, we discuss user scheduling and resource allocation schemes to improve the energy
efficiency of MU-MIMO systems.

We consider an energy-efficient user-scheduling problem in a downlink MU-MIMO system.
With a zero-forcing precoder at the BS, the energy efficiency related to a user is given as:

ui =
log2

(
1 +

𝛾iPTi

𝜎2

)
PTi

+ PC
,
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where 𝛾i is the effective channel power gain from the BS to the user, PTi
is the transmit power

that the BS consumes for the user, 𝜎2 is the noise power, and PC is the circuit power of the BS.
Due to the zero-forcing precoder, 𝛾i of a user depends on the channels of the other scheduled
users as well as its own channel. The user scheduler that maximizes the energy efficiency of
the BS is given as follows:

S′n = argmax
Sn∈ Ω

∑
i∈Sn

ui,

where Sn is a set of scheduled users who are serviced simultaneously from the BS and Ω is the
collection of all possible scheduled user sets. The number of possible scheduled user sets is(

Nu
k

)
, where Nu is the number of all users and k = |Sn| ≤ M is the number of the scheduled

users. Since the above scheduler does not consider the fairness, the cell-edge users, whose
channel conditions are usually bad, are hardly selected.

Denote Ti to be the accumulated throughput for the ith user. The proportional-fair
energy-efficient user scheduler

S′n = argmax
Sn∈ Ω

∑
i∈Sn

ui

Ti
,

can balance the cell-average energy efficiency and the cell-edge energy efficiency by increasing
the priorities of the users that have been served less (with lower Ti) [10].

Now, we discuss energy-efficient power allocation. For a given set of scheduled users,

ri = log2

(
1 +

𝛾iPTi

𝜎2

)
is independent of the powers of the other scheduled users’ due to the

zero-forcing precoding at the BS and therefore, optimal PTi
that maximizes

∑
i∈Sn

ui

Ti
is the one

that maximizes ui

Ti
. Moreover, since ri is strictly concave in PTi

and PTi
+ PC is convex in PTi

,
ui is strictly quasi-concave in PTi

[11, 12]. Therefore, the optimal PTi
is unique.

In an uplink MU-MIMO system where each user has multiple antennas, the energy effi-
ciency of the users is written as

u =
∑

i
∑

krik∑
i

(∑
kPTik

+ Pai
+ Pc

) (7.1)

where rik and PTik
are the data rate and transmit power for the kth stream of the ith user,

respectively, Pai
is the antenna-related circuit power consumption of the ith user, and Pc is the

power consumption of circuit components that are independent of the antenna circuit opera-
tions. If the users use zero-forcing precoders and the BS uses a zero-forcing receiver, the data
rate for the kth stream of the ith user is given as follows:

rik = log2

(
1 +

𝛾ikPTik

𝜎2

)
,

where 𝛾ik is the equivalent channel power for the kth stream of the ith user and 𝜎2 is noise power.
Since rik is a strictly concave function and sum of strictly concave functions is a strictly concave
function, the numerator of u is also a strictly concave function. Similarly, the denominator of
u is a convex function. Therefore, u is a strictly quasi-concave function of {PTik

} and there
exists a unique optimal {PTik

} that maximizes u.
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While using a large number of active antennas is always beneficial for increasing the spectral
efficiency, it can decrease the energy efficiency because it requires more antenna-related circuit
power consumption. Therefore, an improved circuit management scheme that can turn off
circuit operations of the user-antennas whose energy efficiency is too low can improve the
energy efficiency [13].

In some cases, the problem of maximizing energy efficiency can be solved more efficiently
by using the Dinkelbach method [12]. When the numerator and the denominator of an objective
function are concave and convex, respectively, the objective function can be transformed to an
equivalent objective function in subtractive form which is a concave function. For example,
the problem of maximizing the energy efficiency in Eq. (7.1) can be solved by the Dinkelbach
method as follows. First, set q = 0 and calculate as:

P′
Tik

= argmax
PTik

∑
i

∑
k

rik − q
∑

i

(∑
k

PTik
+ Pai

+ Pc

)
.

Then, unless
∑

i
∑

krik − q
∑

i

(∑
kP′

Tik
+ Pai

+ Pc

)
≈ 0, update q by using the equation

q =
∑

i
∑

krik∑
i

(∑
kP′

Tik
+ Pai

+ Pc

) .

This process repeats until
∑

i
∑

krik − q
∑

i

(∑
kP′

Tik
+ Pai

+ Pc

)
≈ 0.

In a MU-MIMO system, if the precoders and the receivers cannot fully eliminate the inter-
ference between users, the data rate of a user is affected by the powers of the other users as
well as its own power. Moreover, the data rate of a user is not a concave function of transmit
powers of all the users. In this case, the optimization problem is nonconvex and a brute force
approach can be used to obtain a global optimal solution. By using some approximations, we
can obtain a low-complexity suboptimal solution of the problem. For example, Ref. [14] con-
siders a downlink MU-MIMO system where the BS adopts the MRT precoder. Since the object
function is coupled and not concave, finding the optimal solution is difficult. For this reason,
the energy efficiency is approximated to a lower bound which is a quasi-concave function. The
problem of optimizing the quasi-concave energy efficiency function has been discussed above.

7.2.2 Orthogonal Frequency Division Multiple Access (OFDMA)

In OFDMA, the entire bandwidth is divided into a number of subchannels to transmit symbols
for multiple users in a parallel fashion. By assigning each subchannel to the best user and
adapting the rate and power according to its channel condition, the system throughput can be
optimized. For these characteristics, OFDMA has been adopted by 4G standards such as 3GPP
LTE and IEEE 802.16 WiMAX. In this subsection, we discuss adaptive subcarriers, power and
rate allocation schemes for OFDMA to enhance the energy efficiency.

Consider an uplink OFDMA system in a flat fading channel. The energy efficiency of the
ith user is given as follows:

ui(ci,PTi
) =

cilog2

(
1 +

giPTi

𝜎2

)
ciPTi

+ Pc
,
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where ci is the number of subcarriers allocated to the ith user, PTi
is transmit power of the ith

user on each subcarrier, gi is the channel power gain of the ith user, 𝜎2 is the noise power, and
Pc is the circuit power of the user.

For a given subcarrier allocation ci to a user, the unique optimal power P∗
Ti

that maximizes
ui can be easily found because ui is a quasi-concave function of PTi

. Then, the optimal energy
efficiency u∗i and the corresponding rate r∗i can be determined by using P∗

Ti
. The optimal energy

efficiency u∗i increases with the channel power gain gi. That is, if gi ≤ gj for ci = cj, then
u∗i ≤ u∗j because

u∗i =

cilog2

(
1 +

giP
∗
Ti

𝜎2

)
ciP

∗
Ti
+ Pc

≤

cjlog2

(
1 +

gjP
∗
Ti

𝜎2

)
cjP

∗
Ti
+ Pc

≤

cjlog2

(
1 +

gjP
∗
Tj

𝜎2

)
cjP

∗
Tj
+ Pc

= u∗j .

Also, since the energy efficiency of the ith user can be rewritten as

ui =
log2

(
1 +

giPTi

𝜎2

)
PTi

+
Pc

ci

,

increasing ci is equivalent to decreasing the circuit power of the user. Therefore, energy effi-
ciency increases with the number of allocated subcarriers. Since the number of total subcarrier
is limited,

∑
ici ≤ K, a proper subcarrier allocation is required to maximize the sum energy

efficiency of users. Consider a toy OFDMA system with two users and K = 10 subcarriers. As
c1 increases, u1 also increases while u2 decreases because c2 = 10 − c1 decreases. As shown in
Figure 7.2, there exits optimal subcarrier allocation that maximizes the sum energy efficiency
of users.

For a given power allocation, the optimal subcarrier allocation ci’s that maximize sum
energy efficiency of users

∑
iui can be uniquely obtained because ui is strictly concave in ci

and sum of strictly concave functions is a strictly concave function. An energy-efficient power
and subcarrier allocation that can significantly improve the overall network energy efficiency
is introduced in Ref. [1].

The above energy-efficient resource allocation for OFDMA can be extended to
frequency-selective channels. In this case, dynamic power allocation across the subcar-
riers is required as well as power allocation across the users because even the subcarriers
allocated to the same user experience different channel conditions. Each user’s optimal power
allocation across the subcarriers follows the water-filling algorithm, and the total power of a
user should be determined to maximize its energy efficiency. Besides, the subcarrier allocation
for the frequency-selective channel needs to decide which subcarriers are to be allocated to
which users as well as the number of subcarriers to be allocated to each user. For these reasons,
the subcarrier allocation for frequency-selective channels is much more complex in compu-
tation than that for flat fading channels. To reduce the complexity of subcarrier allocation, a
suboptimal iterative subcarrier allocation that maximizes the minimum energy efficiency of
a user rather than maximizing the system energy efficiency is proposed in Ref. [15].

If we use a nonexclusive subcarrier allocation, which allows allocating a subcarrier to more
than one user, the performance of the OFDMA system can be further improved. However,
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Figure 7.2 Sum energy efficiency of a two-user OFDMA system, c1 + c2 = K = 10

the nonexclusive subcarrier allocation makes the power and subcarrier allocation problem that
maximizes sum energy efficiency of users to be coupled and nonconvex. Therefore, convex
optimization techniques cannot be employed. In this case, a game-theoretic approach can be
used. For example, Ref. [16] proposes a noncooperative game to obtain a low-complexity
suboptimal energy-efficient power and subcarrier allocation. Here, the utility functions are
chosen to satisfy the conditions of a potential game, which always admits Nash equilibrium
[17]. The best response of each user can be found as follows. For a given subcarrier allocation,
each user finds its optimal power that maximizes its utility. Each user can find the optimal
subcarrier allocation that maximizes its utility function by the exhaustive search.

The above energy-efficient techniques for OFDMA systems assume perfect channel state
information (CSI) and neglect the energy consumptions necessary for channel estimation.
However, to be more precise, energy consumption in transmitting the pilot signals for chan-
nel estimation needs to be considered in the energy efficiency. Consider a downlink OFDMA
system with M users and multiple subcarriers. Pilot symbols are periodically placed in the
frequency domain and shared by the users. Denote 𝛼 and 𝛽i to be the pilot power and the data
power of the ith user, respectively. The achievable rate of the ith user, Ci, is a function of pilot
power 𝛼 and its data power 𝛽i [18]. The energy efficiency can be written as:

u =
∑

iCi(𝛼, 𝛽i)
𝛼 +

∑
i𝛽i + Pc

,

where Pc is the circuit power at the BS. Cleary, the rate Ci increases as the pilot power 𝛼

increase. Also, Ci is increasing in 𝛽i. Our interest is to find 𝛼 and 𝛽i’s that maximize u under
the constraint of 𝛼 +

∑
i𝛽i ≤ Pmax. It is shown in Ref. [18] that u is not jointly quasi-concave
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in 𝛼 and 𝛽i’s, but u is quasi-concave with respect to 𝛼, 𝛽1, · · · 𝛽M ,. In this case, a coordinate
search that alternately finds optimal 𝛼 and 𝛽i’s can be used [19].

7.2.3 Cognitive Radio

In the previous sections, we covered energy-efficient design for multiuser system wherein
no specific spectrum access priority was assigned to users. However, cognitive radio (CR) is
another potential key technology to increase the efficiency of spectrum utilization by allowing
unlicensed secondary users (SUs) to access the spectrum licensed to primary users (PUs) as
long as the QoS of the PUs is ensured [20]. There are two main spectrum access approaches
in CR (1) opportunistic spectrum access [21, 22], where the SUs opportunistically access the
spectrum when the PUs are inactive and (2) spectrum sharing [23, 24], where the SUs concur-
rently access the spectrum with the PUs provided that the interference to the PUs is kept below
an acceptable level. In this subsection, we discuss the resource allocation techniques such as
power control, beamforming, and spectrum allocation to increase the energy efficiency of the
CR networks.

First, we consider an energy-efficient power control for a spectrum-sharing based CR net-
work, where an SU network with Ks SU transmitters (SU-TXs) and one SU-receiver (SU-RX)
coexists with a PU network consisting of Kp PU transmitters (PU-TXs) and one PU receiver
(PU-RX). The transmit powers of the SU-TXs are constrained such that the maximum interfer-
ence caused by all the SU-TXs to the PU-RX is below an acceptable level. The kth transmitter
(among those Ks + Kptransmitters) sends bits at a common bit rate R in packets consisting
of L information bits and M − L overhead bits. In this case, the energy efficiency of the kth
transmitter can be written as:

uk(p) = R
L
M

(1 − eSINR(p))M

pk
,

where pk ∈ [0,Pk,max] is the transmit power of the kth transmitter, p = [p1,… , pKp+Ks
] is trans-

mit power vector, and (1 − eSINR(p))M is the probability that a packet is correctly received. Note
that Pk,max is the transmit power limit if the kth transmitter is a PU-TX and the precalculated
maximum allowed transmit power to ensure the QoS of the PUs if the kth transmitter is an
SU-TX [25].

If each transmitter selfishly chooses its transmit power to maximize its energy efficiency
based on its local information, the power control problem can be formulated as a noncoop-
erative game represented by  =

{
,

{
k

}Kp+Ks

k=1 , {uk}
Kp+Ks

k=1

}
, where  = {1, 2,… ,Kp +

Ks} is the set of players (PU-TXs and SU-TXs), k = [0,Pk,max] is the set of the kth player’s
strategy (transmit power pk), uk is the kth player’s utility (energy efficiency). The utility uk can
be shown to be strictly quasi-concave in pk. If the utility function of each player is continuous
in strategy vector p and quasi-concave in its strategy pk, then the noncooperative game has at
least one Nash equilibrium as long as the strategy set is compact and convex. Therefore, the
above power control game has at least one Nash equilibrium. Moreover, the Nash equilibrium
can be shown to be unique. Since uk is strictly quasi-concave in pk, the best response of the kth
transmitter, or the pk that maximizes uk for a given set of other transmitters’ powers is the min-
imum of (1) its power limit and (2) the power that satisfies 𝜕uk

𝜕pk
= 0. The best response function

of this game can be shown to be a standard function [25]. A function f (p) is standard if for all
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p≥ 𝟎, it has (1) positivity: f (p) > 0, (2) monotonicity: if p ≥ p′, then f (p) > f (p′), and (3) scal-
ability: For all α > 1, αf (p) > f (αp), where the vector inequality p ≥ p′ is an inequality in all
components. If the best response of each player is a standard function, then the noncooperative
game has a unique Nash equilibrium [26].

Next, we consider energy-efficient beamforming in a CR MU-MIMO system, where an
SU-TX transmits messages to K SU-RXs sharing the spectrum with multiple pairs of PU-TX
and PU-RX. The energy efficiency of the SU-TX is given by

u =
∑K

k=1 rk∑K
k=1 tr(AkAH

k ) + Pc

,

where Ak is the beamformer for the kth SU-RX, rk is the rate of the kth SU-RX, and Pc is the
circuit power at the SU-TX. The problem of finding the optimal Ak’s that maximize u under
the constraints on (1) maximum interference power to the PU-RXs, (2) maximum power of the
SU-TX, and (3) the minimum throughput requirement is a nonconvex problem, and therefore
hard to solve directly. We can construct an equivalent quasi-concave problem [27]. First, for
a given power p =

∑K
k=1 tr(AkAH

k ) of the SU-TX, the optimal Ak’s that maximize the system
throughput

∑K
k=1 rk under the above constraints are found. Then, the energy efficiency u can

be expressed as a function of p, that is,

u =
R(p)

p + Pc
,

where R(p) is the system throughput as a function of p. There is no closed-form expression of
R(p), but it can be shown that R(p) is a concave function of p. Since a concave function divided
by a convex function is quasi-concave, the energy efficiency u is a strictly quasi-concave func-
tion of p [11, 12]. In this case, the optimal p that maximizes u can be found numerically, for
example, using the golden section method [27].

Now, we consider an energy-efficient spectrum and power allocation in a heterogeneous CR
network that consists of a cognitive macro base station (MBS), multiple macro SUs (MSUs),
and multiple femto base stations (FBSs). Each FBS is assumed to provide service to one femto
SU (FSU). The cognitive MBS first purchases spectrum resources from multiple primary net-
works and then allocates the spectrum resources to MSUs and FBSs to maximize its revenue.
The spectrum resource purchase and allocation problem can be formulated as a three-stage
Stackelberg game. In Stage 1, the multiple primary networks perform a price competition
game, where each primary network selfishly determines the spectrum selling price that max-
imizes its revenue. As shown in Ref. [28], the price competition game has a unique Nash
equilibrium. In Stage 2, the cognitive MBS decides the bandwidth of the spectrum to purchase
from each primary network, allocates the purchased spectrum to MSUs or FBSs, and performs
energy-efficient power allocation for the MSUs to maximize its revenue. In Stage 3, each FBS
performs power allocation that maximizes its energy efficiency. The energy efficiency of each
FBS is shown to be strictly quasi-concave in its power [28]. Therefore, the optimal power of
each FBS is the minimum of (1) its peak power and (2) a local maximizer of the energy effi-
ciency. It is shown in Ref. [28] that the Stackelberg game has a unique Stackelberg equilibrium.
The unique Stackelberg equilibrium can be numerically obtained by a gradient-based iterative
algorithm in Ref. [28].
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7.2.3.1 Cooperative Relay

In a cooperative relay system, relays assist the transmissions between sources and their
corresponding destinations. With decode-and-forward (DF) protocol, each relay decodes the
received signal, re-encodes the message bit, and then forwards the re-encoded signal. On the
other hand, with amplify-and-forward (AF) protocol, each relay forwards the received signal
with amplification only. Cooperative relaying can significantly enhance the network coverage
and capacity because it reduces the path loss by shortening the transmission distances and
enables cooperative diversity that mitigates the detrimental effect of fading in wireless
networks [29]. This subsection considers enhancing the overall energy efficiency of relay
systems. Natural questions are (1) what is optimal power control? (2) what is optimal number
of relays to be used? and (3) what is optimal deployment of relays? In the following, we
discuss energy-efficient designs in relay systems to answer these questions.

First, we consider a relay system where K relays using DF protocol are deployed in a serial
fashion between a source and a destination. In the wideband regime, the data rate of the ith
link is ri =

chiPi

d𝛼
i

, where Pi is the transmit power of the ith link, di is the distance of the ith link,

𝛼 is the path loss exponent, hi is the small fading gain for the ith link, and c is a constant. The
overall energy efficiency of the system is

u(P,d) = R(P,d)∑K
i=0 Pi + Pc,tot

, (7.2)

where R is the overall data rate between the source and the destination, P = [P0,… ,PK],
d = [d0,… , dK], and Pc,tot is the total circuit power dissipated by the source, the relays, and
the destination. Since the nodes are serially concatenated, the overall rate R is dominated by

the worst link, that is, R = min
0≤i≤K

ri. Therefore, each node set its power Pi =
Rd𝛼

i

chi
to achieve

r0 = · · · = rK = R; otherwise, any node with higher power will waste its energy. For given
link distances d, the energy efficiency u increases with R, and maximizing u is equivalent
to maximizing R [30]. Therefore, the worst link needs to transmit at its maximum allowable
transmit power Pmax.

Now, we consider adjusting link distances d as well as link powers P to maximize the energy
efficiency. For given link powers P, the optimal link distances d∗(P) = [d∗

0(P),… , d∗
K(P)] need

to satisfy R = r0 = · · · = rk. Inserting the obtained d∗(P) into Eq. (7.2), the energy efficiency
u(P,d(P)) can be shown to be strictly quasi-concave in P [3]. Therefore, each node uses
the minimum of (1) its peak power and (2) the power at which the first-order derivative of
u(P,d(P)) is zero.

To study the relationship between the energy efficiency and the number of deployed relays,
we consider the case of h = h0 = · · · = hK . In this case, optimal transmit powers satisfy P0 =
P1 = · · · = PK and as shown in Ref. [30], the energy efficiency is increasing with P0. There-
fore, if there is no transmit power limits, each node transmits with infinite P0. Then, the energy
efficiency increases with the number of relays. The reason is as follows. The total energy
consumption linearly increases with the number of relays. However, the achievable rate is
exponentially increasing with the number of relays because (1) the link distances are inversely
proportional to the number of relays and (2) the achievable data rate is exponentially decreas-
ing with the link distances. Therefore, the energy efficiency increases as the number of relays
increases when there is no transmit power limits.
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Next, we consider energy-efficient power control in a relay network where an AF relay helps
the transmissions of the multiple source–destination pairs. The multiple sources transmit at the
same time using the same frequency band, and there exist interferences among the multiple
source–destination pairs. Finding the optimal source powers that maximize the sum of the
energy efficiencies of the sources is a coupled problem, and the tools of the convex optimization
cannot be applied. In this case, the game-theoretic approach can be used. Assuming there
is no cooperation between the sources, the source-power control problem can be formulated
as a noncooperative power control game for the sources. In a noncooperative game, Nash
equilibrium is a state where no player can improve its utility by changing only its own strategy
unilaterally. It is shown in Ref. [31] that the power control game always has at least one Nash
equilibrium. Moreover, when there is no direct links between sources and destinations, the
Nash equilibrium is shown to be unique.

Besides, relay selection is another way to improve the energy efficiency of a relay system in
a fading environment when there are multiple relays. The energy efficiency can be improved by
opportunistically selecting the best relay among the multiple relays deployed. Some examples
of energy-efficient relay selection schemes can be found in Refs. [32] and [33].

7.3 Summary and Future Work

This chapter has reviewed energy-efficient transmission and resource allocation techniques for
wireless communications. First, the energy efficiency of the point-to-point AWGN channel was
investigated from an information-theoretic perspective ignoring the circuit power. In this case,
the energy efficiency strictly decreases in the transmit power, and therefore, the highest energy
efficiency is achieved when the transmit power is zero. If the circuit power is considered, how-
ever, the energy efficiency is strictly quasi-concave in the transmit power. Therefore, there
exists a unique nonzero optimal transmit power. In frequency-selective channels, OFDM can
be employed to divide the entire bandwidth into multiple parallel subchannels, each experienc-
ing flat fading. For a given total transmit power, maximizing the energy efficiency is equivalent
to maximizing the spectral efficiency, whose solution is well known to be the water-filling algo-
rithm. The total transmit power or the water level further needs to be adjusted to maximize the
energy efficiency.

Besides, we have discussed the energy-efficient designs for the multiuser techniques such
as MU-MIMO, OFDMA, cognitive radio, and cooperative relay transmission. In MU-MIMO,
user scheduling is an important issue because it can significantly enhance the system perfor-
mance by exploiting the multiuser diversity. For example, the energy-efficient proportional-fair
user scheduling can balance the cell-average energy efficiency and the cell-edge energy effi-
ciency. In OFDMA, energy-efficient subcarrier allocation schemes were investigated. If a user
is allocated more subcarriers, the rate increases, but the power consumption also increases.
Since the energy efficiency related to a user is strictly concave in the number of allocated
subcarriers ci, the optimal ci is unique. If the subcarriers are allowed to be allocated nonex-
clusively to more than one user, interuser interference occurs. A noncooperative game was
considered where each user selfishly chooses its subcarriers and powers to maximize its energy
efficiency. If the utilities of the users are designed properly, the existence of Nash equilibrium
can be guaranteed. In CR systems, secondary users should meet the QoS of primary users as
well as improving their energy efficiencies. In a CR system where there are multiple secondary
users, interuser interference occurs. In this case, a game-theoretic approach can be used, where
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each secondary user selfishly chooses its transmit power to maximize its own energy efficiency
while protecting the QoS of the primary users. In cooperative relay systems, choosing the num-
ber of deployed relays and their locations is important as well as allocating powers to improve
the energy efficiency. For a serially concatenated relay system, the performance bottleneck is
the link with the worst SNR. Therefore, the optimal relay deployment and power allocation
should ensure that all the links achieve the same data rate. If there is no transmit power limits,
the energy efficiency increases with the number of relays deployed.

So far, many energy-efficient techniques have been proposed. However, there are still
some important issues that need to be investigated. Most of the existing energy-efficient tech-
niques for cellular system have considered only the single-cell environment. Extending the
energy-efficient designs to multicell environments is important because multicell techniques
can efficiently mitigate intercell interference and improve the system performance. Also, most
of the energy-efficient OFDMA techniques considered only single antenna systems. However,
OFDMA techniques can be combined with MIMO techniques to enhance the spectral
efficiency. Therefore, energy-efficient MIMO-OFDMA techniques need to be investigated.
Finally, most of the existing works on the energy-efficient design assumed perfect channel
estimation and ignored the energy consumption for the channel estimation. To evaluate the
energy efficiency more precisely, however, the energy consumed for the channel estimation
needs to be considered.
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