
18
Energy-Efficient Protocol Design

Giuseppe Anastasi1, Simone Brienza1, Giuseppe Lo Re2 and Marco Ortolani2

1Department of Information Engineering, University of Pisa, Pisa, Italy
2DICGIM, University of Palermo, Palermo, Italy

18.1 Introduction

In developed countries, the total energy consumed by the Internet accounts for approximately
2–3% of the overall worldwide energy consumption [1, 2]. Although this percentage is not so
high, its absolute value is very remarkable and has followed an increasing trend over the years
[3]. More important, it has been estimated that a large fraction of the overall energy consumed
by the Internet is wasted due to an inefficient utilization of infrastructure and user equipment
[4]. Hence, significant energy savings could be achieved through appropriate power manage-
ment strategies. This has stimulated the interest and efforts of the research community. So far,
most of the research projects and activities have been driven by telcos and Internet Service
Providers (ISPs) and, thus, they have been aimed at reducing the energy consumption mainly
in the Internet core (i.e., at routers) and at data centers [5]. Less attention has been devoted
to reducing the energy consumption of edge devices at user premises (i.e., PCs, printers, IP
phones, displays).

This chapter focuses on solutions for optimizing the energy consumption of PCs and other
user equipment connected to the Internet. These edge devices account for the major frac-
tion of the overall Internet-related energy consumption [6]. Even if the power consumed by
a single edge device is limited (e.g., about 100 W for desktop PCs and about 20 W for note-
books) – because of their large number and utilization time – the total consumed energy can be
huge. Moreover, edge devices are typically used with little or no attention to the energy prob-
lem. For example, many PCs are left on, even overnight and during the weekend, because of
laziness, carelessness, or to maintain network connectivity (e.g., for peer-to-peer file sharing).
In addition, users often do not use energy saving policies (e.g., automatic hibernation after a
certain period of inactivity). Other edge devices, such as printers, IP phones, and displays, are
typically kept always on, especially in offices and public buildings. Every year, the estimated

Green Communications: Principles, Concepts and Practice, First Edition.
Edited by Konstantinos Samdanis, Peter Rost, Andreas Maeder, Michela Meo and Christos Verikoukis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



340 Green Communications

overall energy consumption due to edge devices in United States is in the order of tens of
TWh, causing an expense of billions of dollars. The need for specific solutions to the problem
is, thus, quite apparent.

In the next sections, we consider the main approaches to power management of PCs and
other user equipment connected to the Internet. Specifically, we introduce a general taxonomy
to classify the proposed solutions. Then, according to the introduced taxonomy, we survey the
main proposals presented in the literature. Obviously, most of the proposed solutions refer to
PCs. However, some of them could be extended to other edge devices as well.

18.2 General Approaches to Power Management of Edge Devices

In order to identify possible approaches to energy efficiency in edge devices, it is necessary
to determine preliminarily the cause of energy waste. One of the fundamental causes is the
fact that many users leave their PC always on (especially in their workplace), due to laziness
and/or carelessness. This clearly emerges, for example, in the PC energy report [7] about the
energy consumption of PCs used at work, issued by the UK National Energy Foundation. This
report highlights that about 21% of PCs used at work are almost never turned off (during nights
and weekends), thus resulting in a waste of energy equal to approximately 1.5 TWh per year
(corresponding to 700,000 tons of CO2). In order to reduce this energy waste due to laziness
and carelessness, PCs and other edge devices could be forcedly turned off at a certain time,
employing common solutions, such as Nightwatchman [7], which is already used in many
environments.

There are cases, however, in which PCs are deliberately left on for the execution of certain
network activities, such as remote connection or P2P file sharing. Since the PC is used for
the execution of that particular application only for a limited time interval, most of the energy
consumed to maintain connectivity could be saved by introducing appropriate mechanisms
for power management [8]. However, to be effective these mechanisms should save energy
without introducing a significant degradation in performance. Some studies related to network
traffic [9, 10] have shown that PCs (and other edge devices) experience long idle periods,
during which they might be turned off or placed in sleep state, thus resulting in significant
energy savings. Specifically, we need mechanisms that can allow a PC to sleep during idle
periods and to resume promptly whenever an external packet is received or the user wants to
use her/his PC, so as to minimize the impact on the system responsiveness.

Figure 18.1 shows the possible approaches aimed at reducing the energy consumption of
edge devices (with particular reference to PCs) by eliminating wastes during idle time. The
approach based on on-demand wake-up consists in putting the PC in sleep state during periods
of inactivity and waking it up, later, by means of a special message called Magic Packet [11].
Conversely, proxying can be used to allow the PC to be in sleep state during periods of inactivity
and to interact, at the same time, with any remote host through the network. This technique
allows to delegate to an entity, called proxy, the management of interactions with the network.
The two mechanisms can also be combined. In this case, when the proxy is not able to handle
the request received through the network, it wakes up the PC by sending a Magic Packet and
passes the request. Thus, communications are handled in a completely transparent way to
the external network (and users). The approach known as context-aware power management,
instead, exploits some context information (for instance, the presence/absence of the user)
for a finer grained power management. This approach can be used not only for PCs, but for



Energy-Efficient Protocol Design 341

Power
management

On-demand
wake-up

Proxying
Context-aware
power mgmt

Power-aware
protocols

Figure 18.1 General approaches to power management of Internet edge devices

other edge devices as well. For example, displays used for the diffusion of information can be
turned off when no one is in the nearby area. Finally, the use of power-aware protocols and
applications is yet another approach to save power for edge devices.

In the next sections, the above-mentioned approaches and their potential to save energy are
analyzed and explored in detail. It is important to emphasize that these approaches are not
necessarily alternative but may also be used jointly.

18.3 Remotely Controlled Activation and Deactivation

Remotely controlled activation and deactivation is essentially based on the Wake-on-LAN
(WoL) mechanism, widely used in Ethernet networks, which allows a PC in sleep state to
be awakened – remotely – by sending a special message called Magic Packet [11]. The Magic
Packet is typically sent from the same LAN of the target PC; however, it could also be sent
by any device on the Internet. The WoL mechanism requires that part of the Ethernet network
interface card (NIC) remains always active. Therefore, the PC cannot be disconnected from
the power source or should use an alternative source of supply (i.e., a battery). The NIC com-
ponent that remains active introduces, of course, a standby power consumption that is much
smaller than the power consumed by the PC in the active mode.

The Magic Packet is a particular MAC frame that contains 16 repetitions of the MAC address
of the target PC. It is usually sent as a UDP message destined to a specific port (9). After
receiving a Magic Packet, the WoL component of the NIC wakes up the PC. There are two
ways to transmit a Magic Packet over the network. It can be sent to the broadcast address of
the subnet of the target PC (subnet-directed broadcast), or directly to the target PC (unicast
wake-up packet).

The former case is the most common one since subnet-directed broadcast was the original
transmission method for sending wake-up packets. With this technique, the Magic Packet is
received by all the NICs in the network; however, it is discarded by all the NICs but the one
whose MAC address matches the specified address. The main drawback is that, since Magic
Packets are sent to a broadcast address, typically, they are not forwarded by routers. However,
this limitation can be easily overcome in several ways, allowing a PC to be woken up by any
computer on the Internet. This can be achieved, for instance, by configuring routers in such
a way to allow them to forward Magic Packets. This solution, however, makes the network



342 Green Communications

vulnerable to DDoS attacks (e.g., Smurf Attacks), that is, a malicious user could send a large
amount of ICMP packets in broadcast, causing a remarkable response traffic. Another way is
using a virtual private network (VPN) so that the remote computer appears to be a member of
the same LAN as the sleeping PC.

The alternative solution is sending unicast wake-up packets. Since they are directed to the
target IP address, they are routed through the Internet like regular datagrams. Nevertheless,
this approach may not be compatible with all NICs, especially with oldest ones. In addition,
such packets will not be delivered to PCs that have changed their IP address (e.g., via dynamic
host configuration protocol (DHCP)) or whose address is no longer present in the ARP cache
of the router.

Several extensions to the basic WoL mechanism described above have been proposed. For
example, some Intel NICs allow several options, namely, Wake on Directed Packet, Wake on
Magic Packet, Wake on Magic Packet from power-off state, and Wake on Link. In particular,
Wake on Directed Packet [12] is an extension that makes the wake-on-demand mechanism
much more flexible. Basically, a sleeping PC can be woken up by any packet directed to it,
for example, by the request to open a TCP connection. Obviously, spurious wake-ups may
occur with such mechanism, thus resulting in energy waste. Moreover, a PC consumes much
more energy during the wake-up transition than during normal operating conditions. Therefore,
spurious wake-ups should be avoided by filtering wake-up requests (see also Section 18.4).

Several power management systems for large-scale distributed systems have been proposed
that make use of the wake on-demand mechanisms. Polisave [13] is a client–server system
that allows to schedule actions for PCs associated with the service. In order to avoid energy
waste, it is possible to specify the time when a client PC must be turned on/off, or must go
into standby or hibernation state (i.e., the energy states defined in the ACPI standard [14]). In
Polisave the client PC periodically queries the server in order to find out if there are actions
scheduled for it. If a shutdown (or hibernation) is planned, the PC turns off. Conversely, if a
PC is scheduled to be switched on, the server sends a Magic Packet to the NIC of the target PC.

Gicomp [15] is another similar system that allows to install/modify power management
policies on controlled PCs. In particular, it allows to define the time to dim and turn off the
display, the disk spin-down time-out, the suspend time-out, the hibernate time-out, and other
options, according to the features offered by the operating system. Like Polisave, it follows a
client–server paradigm. Clients and server communicate through the XMPP protocol, which
guarantees confidentiality and authentication.

Both Polisave and Gicomp are able to work in the presence of network address translation
(NAT) servers and Firewalls. They allow users to remotely control (through a web interface)
all PCs associated with their personal account. PCs can be turned off, suspended, or turned on
(through WoL). Finally, Gicomp solves the problem of Magic Packets’ routing, using a specific
Waker in each served IP subnet. Wakers are proxies, acting on behalf of the main server, that
take care of waking up PCs on their IP subnet.

The on-demand wake-up technique has some limitations. First, it can be used only when
the PC has a NIC with WoL support, that is, an Ethernet card. It also requires a proper con-
figuration of both BIOS and operating system. It also suffers from security limitations. An
attacker could turn on a sleeping PC through WoL, provided that she/he is on the same IP
subnet of the sleeping PC. This is because the wake-up procedure does not require authentica-
tion and the content of the magic packet is transmitted as plaintext. To mitigate this problem,
some NICs allow to insert a password in the Magic Packet, in addition to the MAC address.



Energy-Efficient Protocol Design 343

However, this method can be easily overcome by sniffing the network traffic, as Magic Packets
are not encoded. For these reasons, some PCs have an improved chipset to provide security
for WoL. For instance, Intel AMT (a component of Intel vPro technology) supports transport
layer security (TLS) encryption in order to secure an out-of-band communication tunnel for
remote management commands such as WoL [16, 17].

18.4 Proxying

In this section, we analyze solutions on the basis of the use of a proxy. A proxy is an entity
capable of responding to requests coming from the network on behalf of a sleeping device
(e.g., a PC). The idea of using a proxy for energy conservation is not new. Indeed, proxy-based
architectures have been proposed to guarantee an energy-efficient Internet access from mobile
devices [18, 19]. However, in that case, the proxy architecture was designed to support a
mobile device running standard client–server applications [19]. More recently, the idea of
a proxy-based architecture has been extended to implement energy-aware solutions in the
Internet [20]. In this case, the proxy acts on behalf of a host to respond to minimal network
interactions and wakes up the host if needed.

A power management proxy works as shown in Figure 18.2. Initially, the edge device (e.g.,
a PC) has to associate with the proxy. Then, when the device is in sleep state and a request
arrives from the network, there are two possible options. If the proxy is able to manage the
received request by itself, it immediately serves it on behalf of the device, which can thus
remain in sleep state. Otherwise, the proxy sends a wake-up message to the device and, then,
forwards the received request to it.

Edge device Proxy

Network

2. Request

3. Answer
Sleeping

On

1. Association

Edge device Proxy

Network

2. Request

Sleeping

1. Association

3. wake up

4. answer

(a) Simple task

(a) Complex task

Figure 18.2 Power management proxy operation scheme



344 Green Communications

Table 18.1 List of proxy-based solutions

Category Research work

Application-specific proxy UPnP low power [21]
SIP catcher [22]
Proxy for Gnutella [23]
EE-BitTorrent [24, 25]

Network connectivity proxy Concept, design and
implementation

[26, 20, 27–32]
Somniloquy [33]
SleepServer [34]
ECMA-393 [35]

Proxy-based solutions can be further divided into two categories, depending on the kind
of proxy they rely upon. We can distinguish between application-specific proxy and network
connectivity proxy. The main proxy-based solutions proposed in the literature are listed in
Table 18.1 and are discussed in the following subsections.

18.4.1 Application-Specific Proxy

Proxying is a very common technique in distributed computing. Traditionally (server) proxies
have been used in distributed applications to improve the system performance and reduce the
network traffic (e.g., web proxies). More recently, proxies have been considered in the field of
mobile computing to cope with a number of factors, including limited computational capabili-
ties, scarce energy resources, user mobility, and intermittent or weak connectivity. Specifically,
a (client) proxy is used as a surrogate of the mobile client on the fixed network, thus allowing
the mobile device to be temporarily disconnected from the system, so as to lengthen the life-
time of its battery [18]. In this section, however, we focus on desktop PCs, connected to the
power supply with the objective to eliminate energy wastes.

The UPnP Low Power architecture [21] represents an example of protocol-specific proxy.
Universal Plug and Play (UPnP) [36] is a protocol, defined by the UPnP Forum, that allows
devices to seamlessly connect and form spontaneous networks, for example, for data sharing,
entertainment, software installation, and so on. The legacy UPnP architecture [36] relies on
a distributed discovery protocol that requires all devices to be always powered on in order
to respond to discovery messages. The UPnP Low Power architecture defines a low-power
proxy to allow devices in the UPnP network to sleep and still be discovered by UPnP control
points.

Another example of application-based proxy (in addition to a mechanism for on-demand
wake-up) is the SIP Catcher [22]. It is a system that allows IP phones to remain in sleep
mode for a long time without compromising the application performance. Because of their
widespread availability, IP phones are responsible for a significant energy waste, despite their
low power consumption. In fact, they remain constantly active but are used for very short
periods. SIP is the Session Initiation Protocol used to connect IP phones to the Internet. Basi-
cally, a user registered with the SIP server and sends an invite message to the SIP server when



Energy-Efficient Protocol Design 345

she/he wants to call another IP phone. This locates the recipient IP phone over the Internet
and forwards the invite message from the caller. The IP phone responds with a trying and a
ringing message and then rings. At this point, the caller and the called party can start commu-
nicating. However, if the IP phone is in sleep mode, it will be obviously unreachable. In this
case, a SIP catcher can overcome the drawback. The SIP catcher is a system that runs on the
last hop router and acts as a proxy for SIP calls. Specifically, when it detects an invite message
directed to the sleeping IP phone, it wakes the IP phone up and, once reactivated, transmits
the invite message. Meanwhile, the catcher responds to the caller sending the trying message.
Once reactivated, the IP phone sends the ringing message, thus completing the SIP protocol
handshake, while being completely transparent to the caller.

Proxying techniques have been also proposed to increase the energy efficiency of
peer-to-peer (P2P) applications, such as file sharing/distribution. Recent studies indicate
that a large amount of the overall Internet traffic originates from P2P applications [37].
Nevertheless, P2P file sharing protocols – such as BitTorrent and Gnutella – have been
designed assuming that PCs are always on and, thus, they are not energy efficient. To this end,
various solutions have been proposed, including proxy-based architecture (other proposals
taking different approaches will be presented in the subsequent sections).

In Ref. [23] the authors present a proxy-based solution for Gnutella that also exploits the
WoL mechanism. Gnutella uses a flooding mechanism to find files over the overlay network.
It defines five different messages, namely Ping, Pong, Query, Query Hit, and Push. The Query
and Query Hit message are used to find files and respond to query messages, respectively. In the
solution presented in Ref. [23] the power management proxy is a microcontroller with limited
storage capacity and low energy consumption (much less than the host) and it is positioned on
the Ethernet NIC of the host or in a LAN switch. The proxy detects requests for files directed
to the sleeping host and wakes it up through a Magic Packet. Thus, the host can serve the
requested files. In order to take over for the sleeping host, the proxy shares information with
it, about the power state of the host (sleeping or fully powered-on), the IP list of its neighbors,
and the list of the shared files. The P2P proxy supports only a subset of Gnutella functionalities.
Specifically, it can start and accept neighbor connections, receive and forward Query messages,
send Query Hit messages, and wake up the sleeping host. Instead, it cannot serve files or store
them. When the PC goes to sleep, its TCP connections with neighbors are terminated and
established again by the proxy. When the proxy wakes the PC up, the opposite occurs. In both
cases, everything happens transparently to the user.

Still in the framework of P2P file sharing, EE-BitTorrent [24, 25] is another proxy-based
solution for making the BitTorrent protocol energy efficient. BitTorrent is the most commonly
used protocol for P2P file sharing; however it was not designed with energy efficiency in mind.
In particular, it requires that a peer is always active while downloading a file and remains active,
for some time, after completing the download, so as to provide the same file to other peers.
EE-BitTorrent relies on a BitTorrent proxy that serves a large number of BitTorrent peers.
When a user requests a file, the query is sent to the proxy in a transparent way to the user.
The proxy also implements a caching mechanism. Hence, in most cases the requested file
is already available on the proxy cache and can be immediately downloaded, thus reducing
the download time and energy consumption at the user PC. When the file is not immediately
available, the download service is undertaken by the proxy and the user can, thus, turn off
her/his PC (Figure 18.3(a)). The proxy gets a copy of the file from the overlay network, acting
as a regular BitTorrent peer (Figure 18.3(b)). When the copy is available, the proxy wakes the



346 Green Communications

PC

Proxy

R
E

Q
 file

A
C

K

0%

Proxy

List of .torre
nt

peers

Peer

Peer

Peer

Tracker Torrent server

PC

Overlay
network

55%

PC

Proxy

G
E

T
 file

M
agic packet

P
U

T
 file

100%

0%

0%

55%

(a) (c)(b)

Figure 18.3 EE-BitTorrent operation scheme

PC up, through a Magic Packet, and transfers the file to it (Figure 18.3(c)). If the on-demand
wake-up mechanism is not available, the PC can explicitly require the file to the proxy after its
reactivation. An important aspect of the system concerns the proxy location. Since the behavior
of EE-BitTorrent does not depend on the proxy location, there are many options for placing the
proxy, mainly driven by the specific deployment scenario. In an enterprise environment (e.g.,
a university or business department) the proxy could be located in the same LAN of the served
PCs. In a residential scenario, instead, this is not a reasonable option as the proxy would serve
only a limited number of PCs (those in the same home). In such a scenario, it could be located
in the ISP network and offered as a (free) service to users, or it could be a cloud proxy. Also,
a group of users could manage a social (i.e., shared) proxy – connected to the Internet through
a high-speed network – for reducing energy consumptions at their home PCs.

Another proxy-based solution, similar to EE-BitTorrent, is presented in Ref. [38], taking
into account the efficient sharing (in terms of energy consumption) of files for which only a
very limited number of copies are available on the Internet. Downloading such a file often
results in a client–server transfer from the peer that provides the file to the peer that requests
it, at a very low bit rate. Hence, the benefits of the P2P paradigm are lost, resulting in an
increased energy consumption. In the proposed solution, peers are coordinated in such a way
that only a limited number of them remains active and act as proxies for the other peers that
go in sleep mode.

For the sake of completeness, we also mention here some proxy-based solutions for mobile
devices that use a simplified version of the BitTorrent protocol [39, 40]. In this case, however,
the main objective is to increase as much as possible the battery lifetime of the mobile device.



Energy-Efficient Protocol Design 347

18.4.2 Network Connectivity Proxy

The proxy-based solutions presented above are application-specific as they refer to a particu-
lar application or protocol. Therefore, it is necessary to use a different proxy for each specific
application. In addition, they typically require the user intervention, that is, they are not trans-
parent. Ideally, a PC should transparently enter sleep mode, whenever it is idle, in order to
save energy. At the same time, it should still appear connected and fully operational to the
other network devices. This would maximize energy savings while minimizing the impact on
the performance of network applications. This goal can be achieved by using a network con-
nectivity proxy (NCP), that is, an entity that is capable of maintaining the network presence
on behalf of a sleeping PC, managing all packets destined to that PC. The concept of NCP
was originally proposed in Ref. [27] for Ethernet networks and, then, extended in subsequent
papers [20, 28, 29] for IP networks in general. Key challenges in the design and implemen-
tation of an NCP have been addressed in Ref. [30], where the authors propose some possible
solutions and show that using an NCP can result in significant energy savings, up to 70%. A
sleep proxy similar to the NCP proposed in Ref. [27] is also proposed in Ref. [31].

In order to design an NCP, it is necessary to have a detailed knowledge of the activities
carried out by a host (e.g., a PC) to maintain network connectivity. Basically, a host performs
a series of actions. Specifically, it replies to periodic ARP requests, generates periodic DHCP
requests to maintain the IP address, replies to ICMP messages (e.g., ping requests), accepts
TPC connections by replying to TCP SYN segments, and, more generally, manages all incom-
ing packets appropriately. A detailed analysis about the packets received by a PC during idle
periods, and the related protocols, was carried out in Ref. [29] and, more recently, in Ref. [32].
The latter considers both home and office environments. Once the type and fraction of received
packets are known, they can be classified according to the class of actions they require. Hence,
NCP requirements can be defined accordingly [26, 32]. In summary, when a packet directed
to the sleeping PC is received, the NCP should perform one of the following actions:

(a) Directly respond to the packet.
(b) Discard the packet.
(c) Redirect the packet to another (active) PC for further processing.
(d) Wake up the host and pass the packet for appropriate processing.
(e) Put the packet in a queue to transfer it to the host when this is reactivated.

In addition, the NCP could be instructed to generate periodic requests on behalf of the sleep-
ing PC (e.g., DHCP lease requests for maintaining the IP address) [26].

According to the NCP model outlined above, several practical variants can be envis-
aged [32]. In fact, the design space is quite large since different solutions may vary in
many aspects, including complexity (the set of functionalities implemented by the proxy),
degree of transparency (the possible differences in the user/application behavior with and
without the proxy), deployment (the place where the proxy is physically located, e.g.,
individual PC, router/firewall, separate PC), and implementation (e.g., device attached to the
NIC/motherboard of the PC, external USB-connected device).

In Ref. [32] the authors consider four different proxies with different complexity and com-
pare their performance in terms of energy efficiency. They also propose a general and flexible
NCP architecture that can accommodate different design choices and present a simple imple-
mentation, wherein the NCP is assumed to be a standalone machine and, thus, it is in charge



348 Green Communications

of maintaining the network connectivity of several PCs in the same LAN. The following NCP
variants are considered in the analysis.

• Proxy-1: drops all packets classified as ignorable and wakes up the PC for handling all other
packets.

• Proxy-2: drops all packets classified as ignorable, responds directly to protocol packets that
require a minimum handling, and wakes up the PC for all other packets.

• Proxy-3: performs the same actions as Proxy-2, but it is more selective as it wakes up the
sleeping PC only when the received packet belongs to a set of user-specified applications.

• Proxy-4: performs the same actions as Proxy-3 with respect to incoming packets. In addition,
it can be instructed to wake up the PC to perform scheduled task such as network backups,
antivirus updates, software updates, and so on.

The performance comparison is based on traces derived from real measurements, carried out
both in home and office environments. The obtained experimental results show that Proxy-1
is inadequate in office environments and only marginally adequate in home environments.
Proxy-3 provides significant energy savings in both home and office scenarios (it allows the
PC to sleep for most of the idle time). Instead, the performance of Proxy-2 largely depends
on the specific environment. Specifically, the additional complexity, compared to Proxy-1,
makes it a good choice in home environments, although it is not a good candidate for office
environments, where the amount of traffic to manage is much higher. Finally, the performance
of Proxy-4 is close to that of Proxy-3 since scheduled tasks are typically infrequent.

Somniloquy [33] is a private NCP, that is, it is supposed to serve just one PC. It is conceived
as an external device, connected to the PC through a USB port, which includes a low-power
processor capable of running an embedded operating system, flash memory to store data (e.g.,
files) while the PC is sleeping, and one or more network interfaces to communicate with the
external network. When the PC is sleeping, network connectivity is maintained through the
NIC of the proxy. The latter uses a packet filter – defined in the form of regular expressions – to
select packets and wake up the PC in case of a match. This allows to respond to network appli-
cations, such as remote Secure Shell (SSH), file access requests, and VoIP calls, even when
the PC is sleeping. In addition, Somniloquy can act as an application proxy for some common
network applications such as instant messaging and P2P file sharing. This is accomplished
by implementing a lightweight version of the specific application (stub) on the proxy. The
application stub allows the proxy to manage autonomously the majority of actions required by
the application and wakes up the PC only on complex events. A prototype implementation of
Somniloquy based on the Gumstix1 platform is described in Ref. [33]. The prototype includes
a 200 MHz XScale processor with 2 GB of flash memory and 64 MB of RAM, a wired Eth-
ernet (or wireless WiFi) NIC for connectivity, and two USB ports (one for sleeping/waking
up the PC, the other one for relaying data received from NIC to the PC), and runs a version
of Embedded Linux that supports a full TCP/IP protocol stack. To give an idea of the amount
of energy saved by Somniloquy we can consider that a common PC consumes approximately
100 W in normal operating conditions, while the total power consumed by the PC in sleep
mode and the external device implementing Somniloquy is approximately 5 W.

Somniloquy and the different proxy variants considered in Ref. [32] are not able to preserve
TCP connections when the PC is in sleep state. Instead, this issue is specifically addressed in

1 http://www.gumstix.com/



Energy-Efficient Protocol Design 349

Ref. [26]. In addition to the outlined tasks (i.e., discarding ignorable packets, directly replying
to packets that require minimal actions, and waking up the host when needed), the NCP pro-
posed in Ref. [26] is also able to maintain TCP connections and UDP data flows. This is
achieved by splitting the TCP connection at the proxy (see Section 18.6.1 for details about
splitting). We assume that the proxy runs in the same network of the PC (e.g., on a router) and
can, thus, cover several hosts. TCP packets destined to a given PC are buffered locally at the
NCP when the PC is sleeping, and are later relayed, when the PC is awake again. Queuing of
packets for later processing may actually make sense for some network applications such as
instant messaging and SSH.

SleepServer [34] is another proxy-based solution that allows a host (e.g., PC, printer) to go in
sleep mode while remaining reachable at the application layer. It does not require any change
to the network infrastructure or any additional hardware, but only software agents installed
on hosts. Indeed, it is completely implemented in software, using virtualization techniques.
Specifically, the proposed architecture is physically composed of one or more SleepServer
(SSR) machines on the same subnet as the hosts (but it can also work for hosts on differ-
ent subnets using the VLANs mechanism). Each SSR serves a set of hosts and contains their
images, in the form of virtual machines (VM). An SSR maintains the presence of the hosts
in the network when they are in a state of sleep. On each SSR, a SSR-Controller is installed.
It is a software component that manages (i) the creation of host images, (ii) the communi-
cation between hosts and their images, (iii) the resources allocation, and (iv) sharing among
the images, providing isolation between images. Each host has also a software component,
the SSR-Client, that connects the host to the SleepServer, passing its MAC and IP addresses
and its firewall configurations. Before going to sleeping state, it sends its applications’ state
and all its open TCP and UDP ports to the SSR-Controller that creates the host image on the
SSR machine. The image uses the same configuration parameters as the corresponding host.
Hence, while the host is asleep, the image interacts with the network on behalf of it. If the host
interaction is required, the SSR-Controller wakes up the host and disables its image on the
SleepServer. In Ref. [34] it is shown that this solution allows significant energy savings (about
60–80%) and is able to support heterogeneous operating systems. Due to its high scalability,
it is especially suitable for enterprise LAN environments with a large number of hosts (PCs,
printers, etc.) connected to the network.

Finally, ECMA-393 [35] is a standard, adopted in February 2010, that specifies the mainte-
nance of network connectivity and presence by proxies in order to extend the sleep duration of
hosts, so as to save energy. The standard defines the behavior and the architecture of the proxy.
In particular, it specifies the capabilities that a proxy may expose to a host, the information that
must be exchanged between a host and a proxy, the proxy behavior with 802.3 (Ethernet) and
802.11 (WiFi) NICs and, more generally, the behavior of a proxy, including responding to
packets, generating packets, ignoring packets, and waking up the host.

18.5 Context-Aware Power Management

In order to minimize energy consumption, PCs and other edge devices should be ideally turned
off, or put in sleep mode, whenever they are not used. Also, they should be switched on
again as soon as the user needs to use them. However, manually managing the power state of
edge devices could be too onerous and frustrating for users. For these reasons, Context-Aware
Power Management (CAPM) strategies have been developed, that is, strategies that use context



350 Green Communications

information to automatically manage the power state of a device at runtime. Essentially, they
aim to determine – by means of proper sensors – if the user is using, is not using, or is about
to use a device. Through this information, the system is able to change the power state of
the device, thus resulting in energy savings, while providing, at the same time, an acceptable
service quality to the user.

CAPM strategies can also be used to optimize the energy consumption of specific compo-
nents of a PC – such as hard drive, NIC, CPU, or display – according to the actual usage by
the user. For example, the authors of Ref. [41] propose a solution that relies on a camera to
determine if a user is looking at the display and turns off the display if the user is not present.
Specifically, the CAPM system periodically acquires images by the laptop camera, which are
processed by a face detector algorithm. If the user’s face is not found, the system turns off the
display.

However, more significant energy savings can be achieved by switching the entire machine
to a low-power state during idle periods. Obviously, the power management system cannot turn
off the PC as soon as the interaction with the user ceases, but it must infer from the context
whether the user has actually stopped using the computer. In fact, transitions from one state to
another have a significant cost in terms of

(i) energy: switching on a sleeping PC causes a considerable power consumption (much
higher than the consumption in idle state);

(ii) time: in order to resume a PC to a fully operational state, tens of seconds could pass and,
during this time interval, the user is unable to use her/his PC;

(iii) lifetime of the device: switching off and on frequently a device may reduce its lifetime.

The remarks above suggest that a too aggressive power management strategy, characterized
by frequent shutdowns, would not lead to significant energy savings (due to the consumption
during the wake-up phase) and could be highly frustrating for the user (forced to wait long
resume periods). Therefore, it is possible to define a break-even time, that is, the minimum
time interval that a device must spend in a sleep state in order to justify the passage to the
low-power state and the subsequent reverse transition. For PCs, this time is in the order of
minutes. Hence, a CAPM strategy requires accurate information to predict whether an idle
period is long enough to justify the cost of the state change.

The required information can be obtained by means of a location-aware system, that is, a
system able to determine the user’s position with respect to the PC. Depending on the distance
from the machine, the system can, thus, evaluate if the user is leaving her/his workplace or has
temporarily discontinued the use of the PC. Hence, it can decide whether or not to put the PC
into standby mode. Similarly, it can recognize when the user is back to the PC and switch it on,
if necessary. In the literature there are various power management approaches that rely on the
user’s location estimation. They can be classified into two main categories that are discussed
below.

The first category includes CAPM mechanisms that rely on very accurate information about
the user’s location, obtained through sophisticated location systems. For instance, the solution
presented in Ref. [42] exploits an ultrasonic system that provides the user’s location with high
accuracy. Alternatively, a ultra-wideband (UWB) radio system can offer a good compromise
between accuracy (below 1 m) and deployment costs. This kind of approach can be defined as
reactive, since the system defines some spatial zones and triggers special events (i.e., switch



Energy-Efficient Protocol Design 351

on or suspend a PC) when a user enters or leaves a specific zone. Obviously, although these
solutions provide excellent performance, their complexity and costs are typically very high.

The second category includes solutions that do not rely on very accurate location infor-
mation. They typically exploit low-power sensors that provide only approximate information
about the user’s position. For instance, they check the radio connectivity of personal mobile
devices, such as smartphones, to infer the presence/absence of the user in the working area
[43, 44]. The solution proposed in Ref. [44] uses a policy called Sleep/Wake-up on Bluetooth.
Specifically, the PC periodically runs the Bluetooth discovery procedure to detect the pres-
ence of the user’s Bluetooth phone. If the latter is not discovered, the PC enters the standby
mode. Then, when the user comes back within the Bluetooth coverage area, a nearby server
detects the phone and wakes up her/his PC. Approaches falling in this second category can be
defined proactive, as the system guesses the user’s intentions and changes the power state of
the PC accordingly. They are easy to implement; however, they are much less accurate than
the previous ones. Hence, they may cause undesired shutdowns or activations of the PC.

When using low-power low-accuracy sensors, data provided by different sensors can be
combined together, using AI techniques, in order to get more accurate location information.
For instance, in Ref. [45] the authors exploit not only the information provided by Bluetooth
phones (as in Ref. [44]), but also other context information provided by acoustic sensors and
software sensors that monitor the user’s activity on the PC. All these data are then processed
using Bayesian inference techniques, so as to infer the user’s position and activity, and act
on the power state of the PC accordingly. Another interesting solution, called non-intrusive
location-aware power management scheme (NAPS) is presented in Ref. [46]. NAPs is specif-
ically designed for PCs and does not require very accurate location information. It divides the
space around a PC in some virtual zones and then uses the received signal strength indicator
(RSSI) of a sensor node, carried on by the user, to estimate the zone where the user is located.
According to the estimated distance from the computer, the system performs different actions.
If the user moves away from her/his PC, the system acts first at the application level, closing
unnecessary applications that use the CPU (e.g., web browsers) and, then at the device level,
switching off some components, such as video and hard disk. If the user moves further away,
the PC is put into the sleep state.

Obviously, the efficiency of a CAPM solution depends on several factors. For instance,
the use of very accurate location methods, or the addition of context information, can increase
the performance of the power management system. On the other hand, we also need to con-
sider the additional cost of sensors and their energy consumption. The study in Ref. [47]
analyzes the costs and potentialities of CAPM systems. The obtained results show that con-
text information and location methods must be carefully chosen in order to maximize the ratio
between energy saved through power management and energy consumed by sensors. At the
same time, the system should be capable not only of saving energy, but also be transparent
to the user. Forcing the user to manually turn on her/his PC, or to wait long resuming times,
could be irritating and lead the user to disable the power management system. It is thus prefer-
able to reduce the intrusiveness of the system, at the cost of a slightly higher energy usage.
Anyway, as shown in Refs. [42, 45, 47], CAPM systems are able to produce significant energy
savings, although occasional unnecessary shutdowns or switches-on are unavoidable. Obvi-
ously, CAPM systems can never achieve an optimal performance, because their effectiveness
strictly depends on the particular use that the user makes of her/his PC and requires an accurate
prediction of the user’s future intentions.



352 Green Communications

18.6 Power-aware Protocols and Applications

In this section we describe some techniques for designing power-aware protocols and appli-
cations. All common protocols (e.g., TCP) have been implicitly designed assuming that the
hosts on which they run are continuously active and, therefore, they are not power-aware. To
be used in hosts that can switch between sleep and active modes, these protocols (applications)
must be properly adapted. To this end, there are two viable approaches: (i) modifying existing
protocols (applications) in order to make them power-aware, or (ii) defining new protocols and
applications from scratch.

To implement new energy-efficient protocols and applications, it is recommended to use
specific software tools, such as the ones presented in Refs. [48, 49]. These tools perform an
energy profiling of the protocol/application in all its parts and assist the developer during pro-
gramming, so that she/he can make design choices aimed at reducing energy consumption.
However, the approach (i) is the most widely used for very common protocols and applica-
tions. Therefore, in the following we refer to techniques to modify existing protocols and
applications, in an energy-efficient perspective. According to Ref. [49], it is possible to act
both at the transport and the application layer. The two approaches are discussed below.

18.6.1 Transport Protocols

In this section we survey solutions working at the transport layer of the networking protocol
stack. The main advantage of this approach is that energy-aware capabilities added to the
transport protocol (e.g., TCP) can be exploited by all the applications running on top of it.

With reference to TCP, many research activities have been carried out to make the protocol
energy efficient in the context of mobile/wireless networking [50–54], where an improvement
in the efficiency of the networking subsystem can significantly increase the lifetime of the
mobile computer. Although the above-mentioned solutions could also apply to stationary PCs,
in the following we focus mainly on solutions specifically targeted at energy efficiency in
stationary/wired environments.

In Ref. [55] the authors analyze the energy cost of TCP, due to computational activities,
by investigating the protocol consumption on different hardware platforms and with different
(Unix and Linux) operating systems. In addition, they propose solutions to improve the energy
efficiency of the existing TCP implementations.

The computational energy cost of TCP includes the energy consumption due to the following
activities:

1. moving data from the user space into kernel space (user-to-kernel copy), as data sent
through a TCP socket is first queued in the socket buffer and then copied into kernel space
for further processing;

2. copying packets to the network card (kernel-to-NIC copy);
3. processing in the TCP/IP protocol stack, including the cost for computing the checksum,

preparing ACKs, responding to time-out events and to triple duplicate ACKs, and other
costs (window maintenance, estimation of Round Trip Time, interrupt handling, etc.).

The experimental results clearly show that a large part of the energy consumption associated
with TCP is because of the copy operations, while only about 15% of the consumed energy



Energy-Efficient Protocol Design 353

is linked to TCP processing. Considering a more detailed breakdown of the energy costs, the
authors estimate the consumption for each phase of the protocol. In particular, the step of
computing the checksum alone covers about 30% of the energy consumption of the entire TCP
processing. In order to reduce the energy consumption, the authors present some solutions. For
instance, using zero copy technique – that is, directly copying the user data from the user buffers
to the NIC – it is possible to skip the user-to-kernel copy phase. Instead, in order to reduce
the kernel-to-NIC copy cost, two methods are proposed, aiming at decreasing the number of
copies: (i) maintain the TCP send buffer on the NIC itself and (ii) maximize the data transfer
size from the kernel to the NIC. Using all of these mechanisms, the authors showed that it is
possible to achieve a reduction in the overall cost at a sender of about 30%.

A significant problem concerning energy efficiency in TCP is the maintenance of a con-
nection when a PC goes to sleep. Many applications (e.g., SSH, Instant Messaging) need a
permanent TCP connection between the client and the server. To maintain the persistence of
the connection, hosts must generate (and respond to) periodic keep-alive messages even when
the TCP connection is idle, that is, when neither the client nor the server needs to send data.
These messages can be generated directly by the TCP protocol (at least once every 2 hours) or
by the application. Nevertheless, when a PC is in the sleep state, its processor is stopped and,
thus, it cannot process incoming packets and reply with ACK packets. After a predetermined
time-out period, data packets (e.g., keep-alive messages) are assumed to get lost and retrans-
mitted. If no answer is received after a certain number of attempts, the sending host drops the
connection, cleaning up all the resources associated with the connection. The application is
then notified that the connection is closed, resulting in an error, since the application expected
a persistent connection. In the literature, two solutions have been proposed to modify the TCP
protocol in order to overcome this problem, namely, Green TCP/IP [56] and splitting [29].

Green TCP/IP, proposed in Ref. [56], adds the concept of connection sleep state to the
legacy TCP protocol. Basically, the Green TCP/IP client notifies the Green TCP/IP server that
it is going to sleep. Thus, the server logically keeps the connection alive but does not send any
data or ACK packet to the sleeping client. Besides, the socket associated with the connection is
blocked in the server so as to avoid excessive queuing of data to send. When the client wakes up,
it has to notify the server – simply sending a data packet on the sleeping connection – and, thus,
the data flows between the server and client can be immediately resumed. Obviously, the Green
TCP/IP must be compatible with legacy TCP, in order to allow the coexistence with regular
TCP/IP hosts. To this end, a new TCP_SLEEP option has been introduced into the header of
the segment. This field is used to inform the server that the client is entering the sleep mode.
When the server receives a packet containing the TCP_SLEEP option, it will avoid dropping
the connection for that client. Considering that – according to the TCP protocol – a host ignores
each option that it does not understand, this solution is, therefore, backward compatible.

An alternative approach to Green TCP/IP is proposed in Ref. [29] and is based on split-
ting. The main goal of this solution is to allow an application to receive replies for keep-alive
messages even if the host at the other end of the TCP connection is sleeping. In addition, it
provides a quick way to fully resume the TCP connection toward a sleeping host in case the
application needs data to be transmitted. In order to realize this solution, the TCP connection
at each host can be split in two parts, adding a shim layer between the socket interface and the
application. This shim layer presents a socket interface to the application (so the application
does not need any changes) and uses the existing socket layer of the TCP software implemen-
tation. The shim layer ‘deceives’ applications making them see an established connection at



354 Green Communications

Application Shim layer Socket Socket Shim layer Application

Client Server

Client is sleeping

Connection resumed from App to App

Data transfer

Data transfer

Data transfer

Connection opened

Open connection request

Shim to Shim: magic packet

Shim to Shim: connection closed

Shim to Shim: client is up

Shim to Shim: close connection

Server sends
data

Client is going to
sleep 

The connection
from app to shim

 is still active 

The connection
from App to Shim

 is still active 

Figure 18.4 TCP connection splitting mechanism

all times. Actually, splitting the TCP connection, applications continue to see the connection
with the shim layer, even when the TCP connection between the client and the server hosts has
been closed. The shim layer’s functionality is used only when power management is enabled
(i.e., the client goes into sleep mode) and it works transparently to the application. Figure 18.4
shows how the splitting mechanism works. When the client enters the sleep state, its shim layer
notifies the corresponding layer in the server, so as to drop the current TCP connection. If the
server wants to send data to a sleeping client, its shim layer preliminarily wakes up the client,
through a wake-up message. When the client is up again, the shim layer reestablishes the TCP
connection with the opposite shim layer so that data transfer can start.



Energy-Efficient Protocol Design 355

18.6.2 Application-Layer Protocols

In addition to improving transport-layer protocols at kernel level, it is also possible to design
energy-efficient applications at user level. In this section we review the main energy-aware
application-layer protocols proposed in the literature.

Green Telnet [57] is a very relevant example of power-aware application-layer protocol, and
the approach used in Green Telnet can be easily extended to other client/server applications.
The goal is to allow clients to go into sleep state without losing their session with the server.
For this purpose, the authors propose some changes both at server and client side. Basically,
Green Telnet decouples the state of the TCP connection from the state of the Telnet server, by
an abstraction process. The application server (gtelnetd) does not operate directly on a socket
but uses an intermediate buffer. In practice, when a client goes to the sleep state, it notifies the
server – with a special message – of its intention to interrupt the communication. While the
client is sleeping, the application at the server side continues to write data. Nevertheless, such
data is not sent immediately to the client but is stored in the buffer. When the client wakes
up, it creates a new TCP connection with the server (on a proper port communicated by the
server before the power state change) and receives all the data stored during the inactive period.
The software has been implemented through three processes at the server side that control the
phase of client reconnection, the sending and the receiving of data to and from the buffer shared
with the gtelnetd demon, respectively. Since gtelnetd acts on the intermediate buffer, all the
sleep/wake-up operations occur transparently. The original Telnet protocol has been modified
to implement Green Telnet by inserting a new field in the packet header and defining the new
control messages that regulate the communication of the power state change.

Various methods for reducing the energy consumption have also been proposed for P2P
protocols. A detailed survey of energy-efficient P2P systems and applications is available in
Ref. [58]. We describe below the main solutions proposed in the literature, from a protocol
perspective.

Significant energy savings can be achieved in P2P systems by properly allocating tasks to
peers. A “client” peer that needs a service has to find a “server” peer that can satisfy its request.
Hence, this “server” peer can be suitably chosen so as to minimize the energy consumption. In
Refs. [59] and [60] the authors consider a Web application on P2P overlay networks. This is a
typical example of a transaction-based application, in which the main cost for the fulfillment of
the request consists in the consumption of CPU resources (i.e., in processing) while the expense
for the content distribution is absolutely marginal. Thus, the authors present a computation
model and a power consumption model in order to describe how processes run on a server
peer and how much energy their execution consumes. In particular, two versions – a simple
and a multilevel version – of the power consumption model are proposed. The simple model is
more suitable for PCs with one CPU, whereas a server computer with multiple CPUs follows
the multilevel model. Exploiting these models, the authors propose an algorithm by which a
client peer can select a server peer in a set, so as to satisfy some constraints (e.g., temporal
constraints) and reduce power consumption. Simulation results show energy savings up to
12.2%, compared to traditional Round Robin algorithms.

The most common use of peer-to-peer applications consists in file sharing. In this context,
BitTorrent is the most commonly used protocol over the Internet. Hence, a number of solutions
has been proposed to make it energy efficient. Green BitTorrent [61] is a modified version of the



356 Green Communications

BitTorrent protocol that allows peers that have completed their download process (seeds) and
that are not currently involved in any upload operation, to go into sleep mode. From the point
of view of a generic peer P, the other peers in the same swarm can be in one of the following
states: connected, if the TCP connection is active; sleeping, if the peer is disconnected but the
TCP connection could be reestablished and unknown. When P detects a peer disconnection, it
sets, in a list, the state of that disconnected host to “sleeping.” However, the TCP connection
is not dropped. When the number of connected peers is less than a predefined threshold, peer
P can explicitly wake up a sleeping peer, by sending a special wake-up message (i.e., a Magic
Packet or another WoL mechanism). Once P completes its download, it starts an inactivity
timer to clock the idle periods (i.e., without upload operations). After the timer expiration,
the peer can go to sleep. Basically, it communicates its intentions sending a message to all
the connected peers and, then, it enters the sleep state. While P is in this state, it can receive a
wake-up message from another peer. In this case, it establishes a TCP connection with the peer
that sent the message and starts exchanging data with it. Green BitTorrent is compatible with
the legacy version of the protocol, even if peers using legacy BitTorrent protocol experience a
slight performance degradation, in terms of higher average download time. It allows to obtain
a considerable reduction of the energy consumption [61].

18.7 Conclusions

In this chapter we have addressed the problem of energy-efficient protocol design for reducing
energy wastes because of edge devices (i.e., PC, printers, IP phones, etc.) that are typically left
on even when they are not needed. Specifically, we have surveyed the main solutions proposed
in the literature to address this problem and presented a taxonomy. According to the pro-
posed taxonomy, we can classify these solutions into four main categories, namely, on-demand
wake-up, proxying, context-aware power management, and power-aware protocols.

Solutions exploiting on-demand wake-up allow to turn on a host remotely, by sending a
special packet called Magic Packet. These solutions are very common and used in many power
management systems, also for large-scale distributed systems. However, they exhibit a number
of limitations, mainly in terms of security and privacy. Some proprietary solutions have been
proposed to overcome these issues. However, they have not yet reached the same degree of
diffusion and compatibility as the original solution.

Solutions based on proxying allow a host to delegate the answer to certain types of requests
to a proxy and go to sleep. Both application-specific and network connectivity proxies are
available. Network connectivity proxies are application independent and allow significant
energy savings, up to 70%, depending on the usage model of the host, while guaranteeing
continuous network connectivity. A network connectivity proxy can be either a private
proxy serving just one host or a shared proxy capable of serving many hosts. The former
solution is suitable for PCs, while the latter one is more appealing for large distributed
systems.

Context-aware power management strategies allow to manage the power state of a host by
exploiting proper context information. They rely on specific sensors to determine the user’s
position and turn off the PC when the user is far from it. Several approaches can be used to
obtain the required context information. They can make use of accurate and expensive sensors
or low-cost general devices (such as Bluetooth phones). Also, it is necessary to consider the
additional energy consumed (e.g., by sensors), and the intrusiveness of the power management



Energy-Efficient Protocol Design 357

system. Ideally, power management should be totally transparent to the user. Instead, forcing
the user to manually turn on her/his host or to wait long resuming times due to wrong decisions
could be irritating and lead the user to disable power management. Currently, to the best of
our knowledge, no such strategy is used in commercial systems. This is mainly because it is
very difficult to predict the users’ intentions. However, context-aware power management is a
stimulating research field.

Finally, the last approach consists in designing power-aware protocols and applications. In
particular, we have focused on methods to modify existing protocols and applications in order
to make them energy efficient. While designing new energy-efficient solutions from scratch
would be more effective, some protocols (e.g., TCP, BitTorrent) are so common that it is almost
impossible to reimplement them from scratch. Hence, modifying existing protocols and appli-
cations in a green perspective is the only way to achieve energy efficiency while preserving
backward compatibility.

Before concluding this chapter, it may be worthwhile emphasizing that the previous
approaches are not necessarily alternative. Instead, some of them can coexist. For instance,
network connectivity proxies typically rely on magic packets to wake up the served host,
when necessary. Also, power-aware protocols and applications can coexist with context-aware
power management strategies or proxy-based solutions.

References
[1] K. Kawamoto, J. Koomey, B. Nordman, R. Brown, M. Piette, M. Ting, and A. Meier, “Electricity used by office

equipment and network equipment in the U.S.: detailed report and appendices,” Technical Report LBNL-45917,
Energy Analysis Department, Lawrence Berkeley National Laboratory, 2001.

[2] B. Raghavan, J. Ma, “The Energy and emergy of the Internet”, Proceedings of ACM Workshop on Hot Topics
in Networks (Hotnets 2011), Cambridge, Massachusetts, USA, November 14–15, 2011.

[3] P. Bertoldi, B. Hirl, N. Lab, “Energy efficiency status report 2012 – electricity consumption and efficiency trends
in the EU-27”, JRC Scientific and Policy Reports, European Commission, Joint Research Centre, Institute for
Energy and Transport, 2012.

[4] S. Ruth, “Green IT – more than a three percent solution”, IEEE Internet Comput. Mag., vol. 13, no. 4, pp. 74–78
2009.

[5] R. Bolla, R. Bruschi, F. Davoli, F. Cucchietti, “Energy efficiency in the future Internet: a survey of exist-
ing approaches and trends in energy-aware fixed network infrastructures”, IEEE Commun. Surveys Tutorials,
vol. 13, no. 2, 2011.

[6] R. Bolla, R. Bruschi, K. Christensen, F. Cucchietti, F. Davoli, S. Singh, “The potential impact of green technolo-
gies in next generation wireline networks – is there room for energy savings optimization?”, IEEE Commun.
Mag., vol. 49, no. 8, pp. 80–86, 2011.

[7] S. Karayi, “The PC energy report, 1E”, National Energy Foundation (NEF), London [Online], 2007. Available
at: http://www.1e.com/energycampaign/downloads/1E_reportFINAL.pdf

[8] G. Newsham, D. Tiller, “A case study of the energy consumption of desktop computers”, Proceedings of IEEE
Industry Applications Society Annual Conference, Houston, Texas, USA, October 4–9, 1992.

[9] K. Christensen, “The next frontier for communications networks: power management”, Proceedings of SPIE -
Performance and Control of Next-Generation Communications Networks, Vol. 5244, pp. 1–4, 2003.

[10] K. Christensen, P. Gunaratne, B. Nordman, A. George, “The next frontier for communications networks: power
management”, Comput. Commun., vol. 27, no. 18, pp. 1758–1770, 2004.

[11] Magic Packet Technology, White Paper, Publication# 20213, Rev: A, Amendment/0, 1995.
[12] “Remote Wake-Up: Intel® Network Adapters User Guide”, Intel Corporation [Online], 2008, Available at:

http://driveragent.com/archive/17228/image/7-0-93.
[13] L. Chiaraviglio, M. Mellia, “Polisave: efficient power management of campus PCs”, Proceedings of International

Conference on Software, Telecommunications and Computer Networks (SoftCOM 2010), Split, Dubrovnik,
Croatia, September 23–25, 2010.



358 Green Communications

[14] “Advanced Configuration and Power Interface Specification, revision 5.0”, Hewlett-Packard, Intel Corpora-
tion, Microsoft, Phoenix Technologies, Toshiba, December 6 [Online], 2011. Available at: http://acpi.info
/DOWNLOADS/ACPIspec50.pdf.

[15] K. Kurowski, A. Oleksiak, M. Witkowski, “Distributed power management and control system for sustain-
able computing environments”, Proceedings of International Conference on Green Computing (IGCC 2010),
Chicago, Illinois, USA, August 15–18, 2010.

[16] “Hardening Measures Built into Intel® Active Management Technology”, Intel ®, 2010 [Online]. Available at:
http://software.intel.com/en-us/articles/hardening-measures-built-into-intel-active-management-technology/.

[17] “Intel® Core™ vPro™ Technology: Intelligence Adapts to Your Needs”, White Paper, Intel® [Online].
Available at: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/remote-support-
vpro-intelligence-that-adapts-to-your-needs-paper.pdf

[18] E. Pitoura, G. Samaras, “Data Management for Mobile Computing”, Norwell, Massachusetts, USA: Kluwer
Academic Publishers, 1997.

[19] G. Anastasi, M. Conti, E. Gregori, A. Passarella, “Performance comparison of power saving strategies for mobile
web access”, Perform. Eval., vol. 53, no. 3–4, pp. 273–294, 2003.

[20] B. Nordman, K. Christensen, “Improving the energy efficiency of ethernet-connected devices: a proposal for
proxying”, White Paper, Version 1.0, Ethernet Alliance, 2007.

[21] UPnP Low Power Architecture V1.0, UPnP Forum, August 27, 2007 [Online]. Available at: http://www.upnp
.org/specs/lp.asp.

[22] M. Jimeno, “The SIP Catcher: a Service to Enable IP Phones to Sleep” [Online]. Available at: http://www
.youtube.com/watch?v=KdAm4olcVoo.

[23] M. Jimeno, K. Christensen, “A prototype power management proxy for Gnutella peer-to-peer Ffile sharing”
Proceedings of IEEE Conference on Local Computer Networks (LCN 2007), Dublin, Ireland, October 15–18,
2007.

[24] G. Anastasi, M. Conti, I. Giannetti, A. Passarella, “Design and evaluation of a BitTorrent proxy for energy
saving”, Proceedings of IEEE Symposium on Computers and Communications (ISCC 2009), Sousse, Tunisia,
July 5–8, 2009.

[25] G. Anastasi, I. Giannetti, A. Passarella, “A BitTorrent proxy for green Internet file sharing: design and experi-
mental evaluation”, Comput. Commun., vol. 33, no. 7, pp. 794–802, 2010.

[26] M. Jimeno, K. Christensen, B. Nordman, “A network connection proxy to enable hosts to sleep and save energy”,
Proceedings of IEEE International Performance Computing and Communications Conference (IPCCC 2008),
Austin, Texas, USA, December 7–9, 2008.

[27] K. Christensen, F. Gulledge, “Enabling power management for network-attached computers”, Int. J. Netw.
Manag., vol. 8, no. 2, pp. 120–130, 1998.

[28] K. Christensen, B. Nordman, R. Brown, “Power management in networked devices” IEEE Comput., vol. 37,
no. 8, pp. 91–93, 2004.

[29] C. Gunaratne, K. Christensen, B. Nordman, “Managing energy consumption costs in desktop PCs and LAN
switches with proxying, split TCP connections, and scaling of link speed”, Int. J. Netw. Manag., vol. 15, no. 5,
pp. 297–310, 2005.

[30] R. Khan, R. Bolla, M. Repetto, R. Bruschi, M. Giribaldi, “Smart proxying for reducing network energy consump-
tion”, Proceedings of International Symposium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS 2012), Genoa, Italy, July 8–11, 2012.

[31] S. Cheshire, “Method and apparatus for implementing a sleep proxy for services on a network”, United States
Patent N. 7,330,986, February 12, 2008.

[32] S. Nedevschi, J. Chandrashekar, B. Nordman, S. Ratnasamy, N. Taft, “Skilled in the art of being idle: reducing
energy waste in networked systems”, Proceedings of USENIX Symposium on Networked System Design and
Implementation (NSDI, 2009), Boston, Massachusetts, USA, April 22–24, 2009.

[33] Y. Agarwal, S. Hodges, J. Scott, R. Chandra, P. Bahl, R. Gupta, “Somniloquy: augmenting network interfaces to
reduce PC energy usage”, Proceedings of USENIX Symposium on Networked System Design and Implemen-
tation (NSDI, 2009), Boston, Massachusetts, USA, April 22–24, 2009.

[34] Y. Agarwal, S. Savage, and R. Gupta, “SleepServer: energy savings for enterprise PCs by allowing them to
sleep”, Proceedings of USENIX Annual Technical Conference, Boston, Massachusetts, USA, 2010.

[35] Standard ECMA-393 “ProxZzzy for Sleeping Hosts, 1st edition,” 2010.
[36] UPnP Device Architecture, UPnP Forum [Online]. Available at: http://www.upnp.org/standardizeddcps/

default.asp.
[37] H. Schulze, K. Mochalski, IPOQUE – Internet Study 2008/2009, Leipzig, Germany, 2007.



Energy-Efficient Protocol Design 359

[38] H. Hlavacs, R. Weidlich, T. Treutner, “Energy efficient peer-to-peer file sharing”, J. Supercomput., vol. 62, no. 3,
pp. 1167–1188, 2012.

[39] I. Kelenyi, A. Ludanyi, J. Nurminen, “BitTorrent on mobile phones-energy efficiency of a distributed proxy
solution”, Proceedings of International Green Computing Conference (IGCC 2010), Chicago, Illinois, USA,
August 15–18, 2010.

[40] I. Kelenyi, A. Ludanyi, J. Nurminen, I. Pusstinen, “Energy-efficient mobile BitTorrent with broadband router
hosted proxies”, Proceedings of IFIP Wireless and Mobile Networking Conference (WMNC 2010), Budapest,
Hungary, October 13–15, 2010.

[41] A. Dalton, C. Ellis, “Sensing user intention and context for energy management”, Proceedings of Workshop on
Hot Topics in Operating Systems (HotOS IX), Lihue, Hawaii, USA, May 18–21, 2003.

[42] R. K. Harle, A. Hopper, “The potential for location-aware power management”, Proceedings of International
Conference on Ubiquitous Computing (UbiComp 2008), Seoul, South Korea, September 21–24, 2008.

[43] M. Youssef, A. Agrawala, “The Horus WLAN location determination system”, Proceedings of International
conference on Mobile Systems, applications, and services (MobiSys 2005), Seattle, Washington, USA, 6–8
2005.

[44] C. Harris, V. Cahill, “Power management for stationary machines in a pervasive computing environment”, Pro-
ceedings of Hawaii International Conference on System Sciences (HICSS 2005), Hawaii, USA, January 3–6,
2005.

[45] C. Harris, V. Cahill, “Exploiting user behaviour for context-aware power management”, Proceedings of IEEE
International Conference on Wireless And Mobile Computing, Networking And Communications (WiMob
2005), Montreal, Canada, August 22–24, 2005.

[46] Z.-Y. Jin and R. K. Gupta, “RSSI based location-aware PC power management”, In Workshop on Power Aware
Computing and Systems (HotPower 2009), Big Sky, Montana, USA, October 10, 2009.

[47] C. Harris, V. Cahill, “An empirical study of the potential for context-aware power management”, Proceedings
of International Conference on Ubiquitous computing (UbiComp 2007), Innsbruck, Austria, September 16–19,
2007.

[48] A. Kansal, F. Zhao, “Fine-grained energy profiling for power-aware application design”, ACM SIGMETRICS
Perform. Eval. Rev., vol. 36, no. 2, pp. 26–31, 2008.

[49] W. Baek, T. Chilimbi, “Green: a framework for supporting energy-conscious programming using controlled
approximation”, Proceedings of ACM SIGPLAN conference on Programming language design and implemen-
tation (PLDI 2010), Toronto, Canada, June 5–10, 2010.

[50] A. Ayadi, P. Maille, D. Ros, “TCP over low-power and lossy networks: tuning the segment size to minimize
energy consumption”, Proceedings of IFIP International Conference on New Technologies, Mobility and Secu-
rity (NTMS 2011), Paris, France, February 7–10, 2011.

[51] C. Song, S. W. Turner, H. Sharif, “An energy-efficient TCP quick timeout scheme for wireless LANs”, Proceed-
ings of IEEE International Performance, Computing, and Communications Conference (IPCCC 2003), Phoenix,
Arizona, USA, April 9–11, 2003.

[52] F. Keceli, I. Inan, E. Ayanoglu, “Fair and efficient TCP access in IEEE 802.11 WLANs”, Proceedings of
IEEE Wireless Communications and Networking Conference (WCNC 2008), Las Vegas, Nevada, USA, March
31–April 3, 2008.

[53] N. Cho, K. Chung, “TCP-New veno: the energy efficient congestion control in mobile ad-hoc networks”, Pro-
ceedings of International Conference on Embedded and Ubiquitous Computing (EUC 2006), Seoul, South Korea,
August 1–4, 2006.

[54] A. Seddik-Ghaleb, Y. Ghamri-Doudane, S. Senouci, “A performance study of TCP variants in terms of energy
consumption and average goodput within a static ad hoc environment”, Proceedings of International Conference
on Wireless Communications and Mobile Computing (IWCMC 2006), Vancouver, Canada, July 3–6, 2006.

[55] B. Wang, S. Singh, “Computational energy cost of TCP”, Proceedings of Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2004), Hong Kong, China, March 7–11, 2004.

[56] L. Irish, K. Christensen, “A’Green TCP/IP’ to reduce electricity consumed by computers”, Proceedings of IEEE
Southeastcon 1998, Orlando, Florida, USA, April 24–26, 1998.

[57] J. Blackburn, K. Christensen, “Green telnet: modifying a client-server application to save energy”, Dr. Dobb’s J.,
vol. 414, pp. 33–38, 2008.

[58] A. Malatras, F. Peng, B. Hirsbrunner, “Energy-efficient peer-to-peer networking and overlays”, Chapter 20 in
Handbook of Green Information and Communication System, M. S. Obaidat, A. Anpalagan, I. Woungang, Eds,
Elsevier: Academic Press, 2012.



360 Green Communications

[59] T. Enokido, A. Aikebaier, M. Takizawa, “A model for reducing power consumption in peer-to-peer systems”,
IEEE Syst. J., vol. 4, no. 2, pp. 221–229, 2010.

[60] T. Enokido, A. Aikebaier, M. Takizawa, “Process allocation algorithms for saving power consumption in
peer-to-peer systems”, IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2097–2105, 2011.

[61] J. Blackburn, K. Christensen, “A simulation study of a new green BitTorrent”, Proceedings of International
Workshop on Green Communications (GreenComm 2009), Dresden, Germany, June 18, 2009.


