SOFTWARE DEFINED MOBILE NETWORKS (SDMN)

Wiley Series in Communications Networking & Distributed Systems

Series Editors: David Hutchison, Lancaster University, Lancaster, UK Serge Fdida, Université Pierre et Marie Curie, Paris, France Joe Sventek, University of Oregon, Eugene, OR, USA

The "Wiley Series in Communications Networking & Distributed Systems" is a series of expert-level, technically detailed books covering cutting-edge research, and brand new developments as well as tutorial-style treatments in networking, middleware and software technologies for communications and distributed systems. The books will provide timely and reliable information about the state-of-the-art to researchers, advanced students and development engineers in the Telecommunications and the Computing sectors.

Other titles in the series:

Wright: Voice over Packet Networks, 0-471-49516-6 (February 2001) Jepsen: Java for Telecommunications, 0-471-49826-2 (July 2001) Sutton: Secure Communications, 0-471-49904-8 (December 2001) Stajano: Security for Ubiquitous Computing, 0-470-84493-0 (February 2002) Martin-Flatin: Web-Based Management of IP Networks and Systems, 0-471-48702-3 (September 2002) Berman: Grid Computing. Making the Global Infrastructure a Reality, 0-470-85319-0 (March 2003) Turner: Service Provision. Technologies for Next Generation Communications, 0-470-85066-3 (April 2004) Welzl: Network Congestion Control: Managing Internet Traffic, 0-470-02528-X (July 2005) Raz: Fast and Efficient Context-Aware Services, 0-470-01668-X (April 2006) Heckmann: The Competitive Internet Service Provider, 0-470-01293-5 (April 2006) Dressler: Self-Organization in Sensor and Actor Networks, 0-470-02820-3 (November 2007) Berndt: Towards 4G Technologies: Services with Initiative, 0-470-01031-2 (March 2008) Jacquenet: Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments, 0-470-01829-1 (March 2008) Gurtov: Host Identity Protocol (HIP): Towards the Secure Mobile Internet, 0-470-99790-7 (June 2008) Boucadair: Inter-Asterisk Exchange (IAX): Deployment Scenarios in SIP-enabled Networks, 0-470-77072-4 (January 2009) Fitzek: Mobile Peer to Peer (P2P): A Tutorial Guide, 0-470-69992-2 (June 2009) Shelby: 6LoWPAN: The Wireless Embedded Internet, 0-470-74799-4 (November 2009) Stavdas: Core and Metro Networks, 0-470-51274-1 (February 2010) Gómez Herrero: Network Mergers and Migrations: Junos® Design and Implementation, 0-470-74237-2 (March 2010) Jacobsson: Personal Networks: Wireless Networking for Personal Devices, 0-470-68173-X (June 2010) Minei: MPLS-Enabled Applications: Emerging Developments and New Technologies, Third Edition, 0-470-66545-9 (December 2011) Barreiros: QOS-Enabled Networks, 0-470-68697-9 (December 2011) Santi: Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks, 978-1-119-99201-1 (July 2012) Tarkoma: Publish/Subscribe Systems: Design Principles, 978-1-119-95154-2 (July 2012)

SOFTWARE DEFINED MOBILE NETWORKS (SDMN) BEYOND LTE NETWORK ARCHITECTURE

Edited by

Madhusanka Liyanage Centre for Wireless Communication, University of Oulu, Oulu, Finland

Andrei Gurtov Helsinki Institute for Information Technology HIIT, Aalto University, Espoo, Finland

Mika Ylianttila Centre for Internet Excellence, University of Oulu, Oulu, Finland

WILEY

This edition first published 2015 © 2015 John Wiley & Sons, Ltd

Registered Office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Liyanage, Madhusanka.

Software defined mobile networks (SDMN) : Beyond LTE network architecture / Madhusanka Liyanage, Wireless Communication, University of Oulu, Finland, Andrei Gurtov, for Information Technology HIT, Aalto University, Finland, Mika Ylianttila, Centre for Internet Excelience, University.

pages cm.

Includes bibliographical references and index.

ISBN 978-1-118-90028-4 (hardback)

 Software-defined networking (Computer network technology) I. Gurtov, Andrei. II. Ylianttila, Mika. III. Title. TK5105.5833.L59 2015 004.6'5-dc30

2015004425

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by SPi Publisher Services, Pondicherry, India

1 2015

Contents

Editors	XV
Contributors	xvii
Foreword Ulf Ewaldsson	xxvii
Foreword Lauri Oksanen	xxix
Preface	xxxi
Acknowledgments	xxxvii
Abbreviations	xxxix
PART I INTRODUCTION	
1 Overview Madhusanka Liyanage, Mika Ylianttila, and Andrei Gurtov	3
1.1 Present Mobile Networks and Their Limitations	4
1.2 Software Defined Mobile Network	5
1.3 Key Benefits of SDMN	7
1.4 Conclusion	9
References	9

2	Mol	bile Net	twork History	11
			vn, Rob Gonzalez, and Brian Stanford	
	2.1	Overv	view	11
	2.2	The E	Evolution of the Mobile Network	12
		2.2.1	Sharing Resources	13
		2.2.2	Orchestration	14
		2.2.3	Scalability	15
	2.3	Limit	ations and Challenges in Current Mobile Networks	15
	2.4	Requi	irement in Future Mobile Networks	18
	Refe	erence		19
3	Soft	ware D	Defined Networking Concepts	21
	Xen	ofon Fa	pukas, Mahesh K. Marina, and Kimon Kontovasilis	
	3.1	Introd	luction	21
	3.2	SDN	History and Evolution	23
		3.2.1	Early History of Programmable Networks	23
		3.2.2	Evolution of Programmable Networks to SDN	25
	3.3	SDN	Paradigm and Applications	28
			Overview of SDN Building Blocks	28
			SDN Switches	30
			SDN Controllers	31
			SDN Programming Interfaces	34
			SDN Application Domains	37
		3.3.6		
			Function Virtualization	38
	3.4	-	ct of SDN to Research and Industry	39
			Overview of Standardization Activities and SDN Summits	40
			SDN in the Industry	41
		3.4.3	0	41
	Refe	erences		42
4			oftware Defined Networking	45
			audet and Yoram Haddad	
	4.1		luction	45
	4.2		for Wireless	47
		4.2.1		49
		4.2.2		50
	4.3		ed Works	50
	4.4		ess SDN Opportunities	51
		4.4.1	Multinetwork Planning	51
		4.4.2	33 0	53
		4.4.3	8	55
		4.4.4		55
		4.4.5	8	56
	4.5		ess SDN Challenges	56
		4.5.1	Slice Isolation	56
		4.5.2		56
		4.5.3	Resource Evaluation and Reporting	57

		4.5.4 User and Operator Preferences	57
		4.5.5 Nontechnical Aspects (Governance, Regulation, Etc.)	58
	4.6	Conclusion	59
	Refe	rences	59
5	Leve	raging SDN for the 5G Networks: Trends, Prospects, and Challenges	61
	Akrai	m Hakiri and Pascal Berthou	
	5.1	Introduction	61
	5.2	Evolution of the Wireless Communication toward the 5G	62
		5.2.1 Evolution of the Wireless World	62
	5.3	Software Defined Networks	64
	5.4	NFV	65
	5.5	Information-Centric Networking	67
	5.6	Mobile and Wireless Networks	68
		5.6.1 Mobility Management	68
		5.6.2 Ubiquitous Connectivity	69
		5.6.3 Mobile Clouds	70
	5.7	Cooperative Cellular Networks	71
	5.8	Unification of the Control Plane	73
		5.8.1 Bringing Fixed–Mobile Networking Together	73
		5.8.2 Creating a Concerted Convergence of Packet–Optical Networks	74
	5.9	Supporting Automatic QoS Provisioning	75
	5.10	Cognitive Network Management and Operation	76
	5.11	Role of Satellites in the 5G Networks	77
	5.12	Conclusion	79
	Refer	rences	79

PA	ART I	SDMN ARCHI	TECTURES AND NETWORK IMPLEME	NTATION
6	LTE	Architecture Integ	gration with SDN	83
	Jose	Costa-Requena, Ra	imo Kantola, Jesús Llorente Santos,	
	Vicer	t Ferrer Guasch, M	laël Kimmerlin, Antti Mikola and Jukka Mann	er
	6.1	Overview		83
	6.2	Restructuring Mo	bile Networks to SDN	84
		6.2.1 LTE Netw	ork: A Starting Point	84
		6.2.2 Options fo	r Location of the SDMN Controller	86
		6.2.3 Vision of S	SDN in LTE Networks	88
	6.3	Mobile Backhaul	Scaling	91
	6.4	Security and Dist	ributed FW	95
		6.4.1 Customer	Edge Switching	97
		6.4.2 RG		97
	6.5	SDN and LTE Int	egration Benefits	98
	6.6	SDN and LTE Int	egration Benefits for End Users	100
	6.7	Related Work and	Research Questions	103
		6.7.1 Research	Problems	104
		6.7.2 Impact		104
	6.8	Conclusions		104
	Refe	ences		105

7	EPC	c in the	Cloud	107
	Jam	es Kem	pf and Kumar Balachandran	
	7.1	Introd	uction	107
		7.1.1	Origins and Evolution of SDN	108
		7.1.2	NFV and Its Application	109
		7.1.3	SDN and Cross-Domain Service Development	112
	7.2	EPC in	n the Cloud Version 1.0	115
	7.3	EPC in	n the Cloud Version 2.0?	117
		7.3.1	UE Multihoming	117
		7.3.2	The EPC on SDN: OpenFlow Example	119
	7.4	Incorp	oorating Mobile Services into Cross-Domain	
			stration with SP-SDN	123
	7.5	Summ	ary and Conclusions	125
	Refe	erences		126
8	The	Contro	oller Placement Problem in Software	
	Defi	ned Mo	obile Networks (SDMN)	129
	Hak	an Selv	i, Selcan Güner, Gürkan Gür, and Fatih Alagöz	
	8.1	Introd	uction	129
			and Mobile Networks	130
	8.3		mance Objectives for SDMN Controller Placement	132
		8.3.1	Scalability	133
			Reliability	133
			Latency	134
			Resilience	135
	8.4	CPP		136
			Placement of Controllers	137
			Number of Required Controllers	143
			CPP and Mobile Networks	145
		Concl	usion	146
	Refe	erences		147
9			Evolution in Mobile Networks: Case of Open IaaS Cloud Platforms	149
			en and Sakari Luukkainen	
	9.1	Introd		149
			ic Technology Evolution	150
	9.3	•	Framework	152
	9.4		iew on Cloud Computing	153
	9.5	-	ple Platform: OpenStack	154
		9.5.1	OpenStack Design and Architecture	155
	0.6	9.5.2	OpenStack Community	156
	9.6		Analysis	156
		9.6.1	Openness	157
		9.6.2		157
		9.6.3	1	158
		9.6.4	Complementary Technologies	158

	9.6.5	Incumbent Role	159
	9.6.6	Existing Market Leverage	160
	9.6.7	Competence Change	160
	9.6.8	Competing Technologies	160
	9.6.9	System Architecture Evolution	161
	9.6.10	Regulation	161
9.7	Discuss	sion	162
9.8	Summa	ary	164
Ack	nowledge	ments	165
Refe	erences		165

PART III TRAFFIC TRANSPORT AND NETWORK MANAGEMENT 10 Mobile Network Function and Service Delivery

10		The Including and Service Derivery	
	Virtu	ualization and Orchestration	169
	Peter	r Bosch, Alessandro Duminuco, Jeff Napper, Louis (Sam)	
	Samu	uel, and Paul Polakos	
	10.1	Introduction	169
	10.2	NFV	170
		10.2.1 The Functionality of the Architecture	170
		10.2.2 Operation of the ETSI NFV System	174
		10.2.3 Potential Migration and Deployment Paths	177
		10.2.4 NFV Summary	182
	10.3	SDN	182
	10.4	The Mobility Use Case	183
	10.5	Virtual Networking in Data Centers	185
	10.6	Summary	186
	Refer	rences	186
11	Surv	ey of Traffic Management in Software Defined Mobile Networks	189
		ín Faigl and László Bokor	
	11.1	0	189
	11.2	Traffic Management in Mobile Networks	190
	11.3	•	191
		11.3.1 QoS for EPS Bearers	193
		11.3.2 \widetilde{QoS} for Non-3GPP Access	195
		11.3.3 \tilde{QoS} Enforcement in EPS	195
		11.3.4 \tilde{P} olicy and Charging Control in 3GPP	195
		11.3.5 Policy Control Architecture	196
	11.4	•	198
		11.4.1 Open Networking Foundation	198
		11.4.2 The OF Protocol	199
		11.4.3 Traffic Management and Offloading in Mobile Networks	200
	11.5	ALTO in SDMNs	201
		11.5.1 The ALTO Protocol	202
		11.5.2 ALTO–SDN Use Case	202

	11.6 Refer		204 205 206 206
12	Softy	vare Defined Networks for Mobile Application Services	209
14		Gopal Lakshmi Narayanan	209
	12.1	* *	209
	12.2	Overview of 3GPP Network Architecture	210
	12.3	Wireless Network Architecture Evolution toward NFV and SDN	212
		12.3.1 NFV in Packet Core	212
		12.3.2 SDN in Packet Core	213
	12.4	NFV/SDN Service Chaining	215
		12.4.1 Service Chaining at Packet Core	215
		12.4.2 Traffic Optimization inside Mobile Networks	217
		12.4.3 Metadata Export from RAN to Packet CN	221
	12.5	-F	222
		owledgments	223
	Refer	ences	223
13	Load	Balancing in Software Defined Mobile Networks	225
		hmad, Suneth Namal Karunarathna, Mika Ylianttila, and Andrei Gurtov	
	13.1	Introduction	225
		13.1.1 Load Balancing in Wireless Networks	226
		13.1.2 Mobility Load Balancing	227
		13.1.3 Traffic Steering	227
		13.1.4 Load Balancing in Heterogeneous Networks	227
		13.1.5 Shortcomings in Current Load Balancing Technologies	227
	13.2	Load Balancing in SDMN	229
		13.2.1 The Need of Load Balancing in SDMN	230
		13.2.2 SDN-Enabled Load Balancing	233
	13.3		244
	Refer	ences	244
D 4 1			
PA1 14		RESOURCE AND MOBILITY MANAGEMENT Management Framework for Internet Services in	
	-	Enabled Mobile Networks	249
		us Eckert and Thomas Martin Knoll	
	14.1	Overview	249
	14.2	Introduction	250
	14.3	State of the Art	251
	14.4	QoE Framework Architecture	252
	14.5		254
		14.5.1 Flow Detection and Classification	254
		14.5.2 Video Quality Measurement	255

		14.5.3	Video Quality Rating	255
		14.5.4	Method of Validation	257
		14.5.5	Location-Aware Monitoring	259
	14.6	Quality	7 Rules	259
	14.7	QoE Ei	nforcement (QEN)	260
	14.8	Demon	strator	261
	14.9	Summa	ary	263
	Refer	ences		264
15			ined Mobility Management for Mobile Internet	265
		i and Yo	0	
	15.1	Overvie		265
			Mobility Management in the Internet	265
			Integrating Internet Mobility Management and SDN	267
			Chapter Organization	267
	15.2		t Mobility and Problem Statement	268
			Internet Mobility Overview	268
			Problem Statement	271
			Mobility Management Based on SDN	273
	15.3		re Defined Internet Mobility Management	274
			Architecture Overview	274
			An OpenFlow-Based Instantiation	275
			Binding Cache Placement Algorithm	277
	15.4	15.3.4	2 0	281
		Conclu	sion	285
	Refer	ences		285
16			al Network Operators: A Software Defined Mobile	
		ork Pers		289
		ıla Krish		• • •
	16.1	Introdu		289
			Features of MVNO	291
			Functional Aspects of MVNO	292
	16.0		Challenges of MVNO	293
	16.2		ecture of MVNO: An SDMN Perspective	294
			Types of MVNOs	294
	16.2		Hierarchical MVNOs	294
	10.5		MVNE, and MVNA Interactions with MVNO	296
		16.3.1	Potential Business Strategies between MNOs, MVNEs, and MVNOs	299
		16.3.2	*	300
		16.3.3	Performance Gain with SDN Approach Cooperation between MNOs and MVNOs	300
		16.3.4	Flexible Business Models for Heterogeneous Environments	300
	16.4		Developments in 3G, 4G, and LTE	303
	10.4	16.4.1	MVNO User-Centric Strategies for Mobility Support	303
		16.4.2	Management Schemes for Multiple Interfaces	303
		16.4.3		304
				001

16.5	Cognitive MVNO	305
	16.5.1 Cognitive Radio Management in MVNOs	305
	16.5.2 Cognitive and SDN-Based Spectral Allocation	
	Strategies in MVNO	306
16.6	MVNO Business Strategies	307
	16.6.1 Services and Pricing of MVNO	308
	16.6.2 Resource Negotiation and Pricing	309
	16.6.3 Pushover Cellular and Service Adoption Strategy	309
	16.6.4 Business Relations between the MNO and MVNO	310
16.7	Conclusions	310
16.8	Future Directions	311
Refer	rences	311
PART V	SECURITY AND ECONOMIC ASPECTS	
17 Softw	vare Defined Mobile Network Security	317

Ahme	ed Bux Abro	
17.1	Introduction	317
17.2	Evolving Threat Landscape for Mobile Networks	318
17.3	Traditional Ways to Cope with Security Threats	
	in Mobile Networks	318
	17.3.1 Introducing New Controls	318
	17.3.2 Securing Perimeter	319
	17.3.3 Building Complex Security Systems	320
	17.3.4 Throwing More Bandwidth	320
17.4	Principles of Adequate Security for Mobile Network	320
	17.4.1 Confidentiality	321
	17.4.2 Integrity	321
	17.4.3 Availability	321
	17.4.4 Centralized Policy	321
	17.4.5 Visibility	322
17.5	Typical Security Architecture for Mobile Networks	322
	17.5.1 Pros	323
	17.5.2 Cons	325
17.6	Enhanced Security for SDMN	325
	17.6.1 Securing SDN Controller	325
	17.6.2 Securing Infrastructure/Data Center	325
	17.6.3 Application Security	326
	17.6.4 Securing Management and Orchestration	326
	17.6.5 Securing API and Communication	326
	17.6.6 Security Technologies	326
17.7	SDMN Security Applications	327
	17.7.1 Encryption: eNB to Network	327
	17.7.2 Segmentation	327
	17.7.3 Network Telemetry	329
	References	329

18		rity Aspects of SDMN	331
		rdo Montes de Oca and Wissam Mallouli	
	18.1	Overview	331
	18.2	State of the Art and Security Challenges in SDMN Architectures	331
		18.2.1 Basics	332
		18.2.2 LTE-EPC Security State of the Art	332
		18.2.3 SDN Security in LTE-EPC State of the Art	334
		18.2.4 Related Work	339
	18.3	Monitoring Techniques	344
		18.3.1 DPI	347
		18.3.2 NIDS	348
		18.3.3 Software Defined Monitoring	349
	18.4	Other Important Aspects	351
		18.4.1 Reaction and Mitigation Techniques	351
		18.4.2 Economically Viable Security Techniques for Mobile Networks	352
		18.4.3 Secure Mobile Network Services and Security Management	353
	18.5	Conclusion	354
	Refer	rences	355
19	SDM	N: Industry Architecture Evolution Paths	359
19		IN: Industry Architecture Evolution Paths Zhang, Tapio Levä, and Heikki Hämmäinen	359
19	Nan Z	•	359 359
19	Nan Z	Zhang, Tapio Levä, and Heikki Hämmäinen	
19	Nan 2 19.1	Zhang, Tapio Levä, and Heikki Hämmäinen Introduction	359
19	Nan 2 19.1	Zhang, Tapio Levä, and Heikki Hämmäinen Introduction From Current Mobile Networks to SDMN	359 360
19	Nan 2 19.1	Zhang, Tapio Levä, and Heikki Hämmäinen Introduction From Current Mobile Networks to SDMN 19.2.1 Current Mobile Network Architecture	359 360 360
19	Nan 2 19.1 19.2	Zhang, Tapio Levä, and Heikki HämmäinenIntroductionFrom Current Mobile Networks to SDMN19.2.1Current Mobile Network Architecture19.2.2Evolutionary SDMN Architecture	359 360 360 361
19	Nan 2 19.1 19.2	 Zhang, Tapio Levä, and Heikki Hämmäinen Introduction From Current Mobile Networks to SDMN 19.2.1 Current Mobile Network Architecture 19.2.2 Evolutionary SDMN Architecture 19.2.3 Revolutionary SDMN Architecture 	359 360 360 361 363
19	Nan 2 19.1 19.2 19.3	Zhang, Tapio Levä, and Heikki HämmäinenIntroductionFrom Current Mobile Networks to SDMN19.2.1Current Mobile Network Architecture19.2.2Evolutionary SDMN Architecture19.2.3Revolutionary SDMN ArchitectureBusiness Roles of SDMN	359 360 360 361 363 364
19	Nan 2 19.1 19.2 19.3	Zhang, Tapio Levä, and Heikki HämmäinenIntroductionFrom Current Mobile Networks to SDMN19.2.1Current Mobile Network Architecture19.2.2Evolutionary SDMN Architecture19.2.3Revolutionary SDMN ArchitectureBusiness Roles of SDMNIndustry Architectures of Evolutionary SDMN19.4.1Monolithic MNO	359 360 361 363 364 366
19	Nan 2 19.1 19.2 19.3	Zhang, Tapio Levä, and Heikki HämmäinenIntroductionFrom Current Mobile Networks to SDMN19.2.1Current Mobile Network Architecture19.2.2Evolutionary SDMN Architecture19.2.3Revolutionary SDMN ArchitectureBusiness Roles of SDMNIndustry Architectures of Evolutionary SDMN	359 360 361 363 364 366 366
19	Nan 2 19.1 19.2 19.3	 Zhang, Tapio Levä, and Heikki Hämmäinen Introduction From Current Mobile Networks to SDMN 19.2.1 Current Mobile Network Architecture 19.2.2 Evolutionary SDMN Architecture 19.2.3 Revolutionary SDMN Architecture Business Roles of SDMN Industry Architectures of Evolutionary SDMN 19.4.1 Monolithic MNO 19.4.2 Outsourced Subscriber Management 19.4.3 Outsourced Connectivity 	359 360 361 363 364 366 366 366
19	Nan 2 19.1 19.2 19.3 19.4	 Zhang, Tapio Levä, and Heikki Hämmäinen Introduction From Current Mobile Networks to SDMN 19.2.1 Current Mobile Network Architecture 19.2.2 Evolutionary SDMN Architecture 19.2.3 Revolutionary SDMN Architecture Business Roles of SDMN Industry Architectures of Evolutionary SDMN 19.4.1 Monolithic MNO 19.4.2 Outsourced Subscriber Management 	359 360 361 363 364 366 366 368 370
19	Nan 2 19.1 19.2 19.3 19.4	 Zhang, Tapio Levä, and Heikki Hämmäinen Introduction From Current Mobile Networks to SDMN 19.2.1 Current Mobile Network Architecture 19.2.2 Evolutionary SDMN Architecture 19.2.3 Revolutionary SDMN Architecture Business Roles of SDMN Industry Architectures of Evolutionary SDMN 19.4.1 Monolithic MNO 19.4.2 Outsourced Subscriber Management 19.4.3 Outsourced Connectivity Industry Architectures of Revolutionary SDMN 	359 360 361 363 364 366 366 368 370 371
19	Nan 2 19.1 19.2 19.3 19.4	 Zhang, Tapio Levä, and Heikki Hämmäinen Introduction From Current Mobile Networks to SDMN 19.2.1 Current Mobile Network Architecture 19.2.2 Evolutionary SDMN Architecture 19.2.3 Revolutionary SDMN Architecture Business Roles of SDMN Industry Architectures of Evolutionary SDMN 19.4.1 Monolithic MNO 19.4.2 Outsourced Subscriber Management 19.4.3 Outsourced Connectivity Industry Architectures of Revolutionary SDMN 19.5.1 MVNO 19.5.2 Outsourced Interconnection 	359 360 361 363 364 366 366 366 370 371 371
19	Nan 2 19.1 19.2 19.3 19.4	 Zhang, Tapio Levä, and Heikki Hämmäinen Introduction From Current Mobile Networks to SDMN 19.2.1 Current Mobile Network Architecture 19.2.2 Evolutionary SDMN Architecture 19.2.3 Revolutionary SDMN Architecture Business Roles of SDMN Industry Architectures of Evolutionary SDMN 19.4.1 Monolithic MNO 19.4.2 Outsourced Subscriber Management 19.4.3 Outsourced Connectivity Industry Architectures of Revolutionary SDMN 19.5.1 MVNO 	359 360 361 363 364 366 366 366 368 370 371 371 371
19	Nan 2 19.1 19.2 19.3 19.4 19.5	 Zhang, Tapio Levä, and Heikki Hämmäinen Introduction From Current Mobile Networks to SDMN 19.2.1 Current Mobile Network Architecture 19.2.2 Evolutionary SDMN Architecture 19.2.3 Revolutionary SDMN Architecture Business Roles of SDMN Industry Architectures of Evolutionary SDMN 19.4.1 Monolithic MNO 19.4.2 Outsourced Subscriber Management 19.4.3 Outsourced Connectivity Industry Architectures of Revolutionary SDMN 19.5.1 MVNO 19.5.2 Outsourced Interconnection 19.5.3 Outsourced Mobility Management 	359 360 361 363 364 366 366 366 368 370 371 371 371 372 374

Index

xiii

Editors

Madhusanka Liyanage

Centre for Wireless Communication, University of Oulu, Oulu, Finland

Madhusanka Liyanage received the B.Sc. degree in electronics and telecommunication engineering from the University of Moratuwa, Moratuwa, Sri Lanka, in 2009; the M.Eng. degree from the Asian Institute of Technology, Bangkok, Thailand, in 2011; and the M.Sc. degree from University of Nice Sophia Antipolis, Nice, France, in 2011.

He is currently a research scientist with the Centre for Wireless Communication, Department of Communications Engineering, University of Oulu, Oulu, Finland. In 2011–2012, he was a research scientist at I3S Laboratory and Inria, Shopia Antipolis, France. His research interests are SDN, mobile and virtual net-

work security. He is a student Member of IEEE and ICT.

Madhusanka is a coauthor of various publications including books chapters, journals, and research papers. He is also one of the work package leaders of Celtic call 2012 SIGMONA (SDN Concept in Generalized Mobile Network Architectures) project.

Andrei Gurtov

Helsinki Institute for Information Technology HIIT, Aalto University, Espoo, Finland

Andrei Gurtov received his M.Sc. (2000) and Ph.D. (2004) degrees in computer Science from the University of Helsinki, Finland. He is a principal scientist at the Helsinki Institute for Information Technology HIIT, Aalto University.

He is also adjunct professor at Aalto University, University of Helsinki and University of Oulu. He was a Professor at University of Oulu in the area of Wireless Internet in 2010– 2012. Previously, he worked at TeliaSonera, Ericsson NomadicLab, and University of Helsinki. He was a visiting scholar at the International Computer Science Institute (ICSI), Berkeley in 2003, 2005, and 2013.

Dr. Gurtov is a coauthor of over 130 publications including two books, research papers, patents, and five IETF RFCs. He is a senior member of IEEE.

Mika Ylianttila

Centre for Internet Excellence, University of Oulu, Oulu, Finland

Mika Ylianttila received his doctoral degree in communications engineering at the University of Oulu, in 2005. He has worked as a researcher and professor at the Department of Electrical and Information Engineering.

He is the director of the Centre for Internet Excellence (CIE) research and innovation unit. He is also docent at the Department of Computer Science and Engineering. He was appointed as a part-time professor at the Department of Communications Engineering for a 3-year term from January 1, 2013. The field of the professorship is broadband communications networks and systems, especially wireless Internet technologies.

He has published more than 80 peer-reviewed articles on networking, decentralized (peerto-peer) systems, mobility management, and content distribution. Based on Google Scholar, his research has impacted more than 1500 citations, and his h-index is 19. He was a visiting researcher at Center for Wireless Information Network Studies (CWINS), Worcester Polytechnic Institute, Massachusetts, and Internet Real Time Lab (IRT), Columbia University, New York, USA. He is a senior member of IEEE, and editor in *Wireless Networks Journal*.

Contributors

Ahmed Bux Abro (CCDE, CCIE Security, CISSP) is a technologist, strategist, and contributor for multiple technology fronts such as Digital Transformation, IoE, ITaaS, Cloud, SDDC, and SDN. Bringing change through the technology innovation and being distinguished in developing new technologies, architectures, frameworks, solutions, and services to solve complex and challenging business problems have remained his area of focus. He has introduced various new frameworks, architectures and standards around Cloud, Network Function Virtualization, and SDN. He is author of a book, multiple drafts, and papers with some patents on the waiting list. Playing an influential and mentor role for the professional community by leading a program that enables senior architects and experts, and help them in attaining necessary professional skillset and certifications. He has played technology leader role in Fortune 50 in diverse markets (North America, EMEA, Asia) and industry sectors. He is also a frequent public speaker in multiple industry events.

Ijaz Ahmad received his B.Sc. degree in computer systems engineering from University of Engineering and Technology (UET), Peshawar, Pakistan, in 2008. He completed his M.Sc. (Technology) degree of wireless communications engineering with major in telecommunications engineering from University of Oulu, Oulu, Finland, in 2012. Currently, he is a doctoral student with the Department of Communications Engineering, University of Oulu, Oulu, Finland, and a research scientist in Centre for Wireless Communications (CWC), Oulu, Finland. His research interest includes software defined mobile networks, network security, and network load balancing.

Fatih Alagöz is a professor in the Department of Computer Engineering, Bogazici University. He received the B.Sc. degree in electrical engineering from Middle East Technical University, Turkey, in 1992, and the M.Sc. and D.Sc. degrees in electrical engineering from the George Washington University, USA, in 1995 and 2000, respectively. His current research interests are in the areas of wireless/mobile/satellite networks. He has contributed/managed to ten research projects for the US Army of Intelligence Center, Naval Research Laboratory, UAE

Research Fund, Turkish Scientific Research Council, State Planning Organization of Turkey, BAP, etc. He has published more than 150 scholarly papers in selected journals and conferences.

M. Bala Krishna received the B.E. degree in computer engineering from Delhi Institute of Technology (presently Netaji Subhash Institute of Technology), University of Delhi, Delhi, India, and the M. Tech. degree in information technology from University School of Information Technology (presently University School of Information and Communication Technology), GGS Indraprastha University, Delhi, India. He had received his Ph.D. in computer engineering from JMI Central University, New Delhi, India. He had earlier worked as Senior Research Associate and Project Associate at Indian Institute Technology, Delhi, India, in the areas of Digital Systems and Embedded Systems. He has worked as Faculty Member and handled projects related to Networking and Communication. He is presently working as Assistant Professor in University School of Information and Communications Technology (formerly University School of Information Technology), GGS Indraprastha University, New Delhi, India. His areas of interest include computer networks, wireless networking and communications, mobile and ubiquitous computing, and embedded system design. He has publications in International Journals, Conferences and book chapters. His teaching areas include wireless networks, mobile computing, data and computer communications, embedded systems, programming languages, etc. His current research work includes wireless ad hoc and sensor networks, green networking and communications, cognitive networks and smart grid communications. He is member of IEEE and ACM Technical Societies.

Kumar Balachandran received his B.E. in electronics and communications engineering with honors in 1986 from the Regional Engineering College, Tiruchirapalli, India, and his masters and doctorate in computer and systems engineering from Rensselaer Polytechnic Institute, Troy, NY, in 1988 and 1992, respectively. His postgraduate work was on convolutional codes and trellis-coded modulation. He started his career at PCSI where he helped specify and build Cellular Digital Packet Data (CDPD). Since 1995, he has worked at Ericsson Research on a broad range of topics in wireless communications. He is well published and frequently invited as speaker and panelist. He is named on 54 US patents. He is currently Principal Research Engineer at Ericsson Research at San Jose. His recent work is on spectrum issues and 5G Systems.

Pascal Berthou is an associate professor of computer science in the University of Toulouse, France, and Senior Research Scientist at LAAS-CNRS French research Labs, Toulouse, France. His current research focuses on network QoS-support for autonomic applications, wireless sensor networks, multinetwork communication architecture, software defined networking, network virtualization, multimedia applications over QoS-based broadband satellite systems, 5G broadband wireless networks, middleware-based communication, and network emulation.

Jun Bi received the B.S., M.S., and Ph.D. degrees in computer science from Tsinghua University, Beijing, China. He was a postdoctoral scholar at Bell Laboratories Research, and a research scientist at Bell Labs Research and Bell Labs Advanced Communication Technologies Center. Currently, he is a full professor and director of Network Architecture & IPv6 Research

Division at Institute for Network Sciences and Cyberspace, Tsinghua University. His research interests include Internet architecture and protocols, future Internet (SDN and NDN), Internet routing, and source address validation and traceback. Please visit http://netarchlab.tsinghua. edu.cn/~junbi for more information. Jun Bi is the corresponding author of this chapter.

László Bokor graduated in 2004 with M.Sc. degree in computer engineering from the Budapest University of Technology and Economics (BME) at the Department of Telecommunications. In 2006, he received an M.Sc.+ degree in bank informatics from the same university's Faculty of Economic and Social Sciences. He is a Ph.D. candidate at BME, member of the IEEE, Multimedia Networks Laboratory, and Mobile Innovation Centre of BME where he works on advanced mobility management related projects (i.e., FP6-IST PHOENIX and ANEMONE, EUREKA-Celtic BOSS, FP7-ICT OPTIMIX, EURESCOM P1857, EUREKA-Celtic MEVICO, EUREKA-Celtic SIGMONA, and FP7-ICT CONCERTO).

Peter Bosch currently addresses cellular and noncellular packet routing combined with in-line service routing for 5G mobile systems. Before Peter designed and implemented the MobileVPN routing system used to manage mobility between cellular and non-cellular access systems by way of IP VPN/MP-BGP, codesigned and implemented the world's first UMTS HSDPA systems with MIMO technology, codesigned and implemented the UMTS base station router (BSR), designed and implemented LTE mobility solutions before these were standardized and worked on cloud operating systems and virtual radio access networks. Peter worked at Bell Labs, Alcatel-Lucent and Juniper before joining Cisco.

Brian Brown, CCIE #4805, is a solutions architect in the service provider group within the Cisco Advanced Services organization. In his 14 years at Cisco, he has supported large mobile and wireline networks around design and implementation of new technology. Brian earned his B.S. degree in computer engineering from Virginia Polytechnic and State University, and has worked in the networking industry for 20 years.

Claude Chaudet received his Ph.D. in 2004 from Insa de Lyon, France. He is now Associate Professor at Telecom ParisTech, where he conducts his research in the domains of wireless infrastructureless networks and embedded communicating devices. He published several articles on ad hoc, sensors and body area networks. Besides, he is also interested in large-scale networks where global properties can emerge from local behaviors and published papers related to intelligent transportation systems, smart grids and critical infrastructures protection.

Jose Costa-Requena is a research manager in the COMNET department. He has participated in several EU projects since 2002. Dr. Costa-Requena has been working both in AALTO and Nokia Ltd. for more than 10 years. He has been working as System Program Manager at Nokia with the development of mobile terminals, network infrastructures, and home appliances. He has managed large multisite projects with 10+ subcontractors and over 100 developers. He was in Nokia patenting board for 7+ years and holds 15+ granted patents and 40+ filed applications. He has several journal and conference publications. He is also a coauthor of IETF RFCs, and he has been delegate in 3GPP standardization forum working in architecture CN1, Security SA3 and Services SA2 working groups. Besides 10+ of experience in industry, he has large experience in managing EU projects such as MobileMan, DC2F, SCAMPI, MEVICO, SIGMONA, and PRECIOUS.

Alessandro Duminuco received a bachelor degree in 2003 and a master degree in 2006 in computer science engineering from Politecnico di Torino (Turin, Italy). In 2009, he received a Ph.D. in computer science from Telecom ParisTech at Eurecom (Sophia Antipolis, France), where he worked on distributed systems and defended a thesis on peer-to-peer backup technologies. From 2009 to 2011, he worked for Alcatel-Lucent as researcher in the system infrastructure group, where he worked on cloud technologies applied to telcos focusing on distributed elastic MME for LTE and cloud operating systems. From 2011 to 2012, he worked for Accenture as senior consultant in the IGEM Cloud offering team. Since 2012, Alessandro is part of the mobility CTO team in Cisco, where he works on software defined networks and network function virtualization focusing in particular on in-line services for 4G and 5G mobile systems.

Marcus Eckert studied Information and Communications Systems at TU-Chemnitz, Germany. During the studies, he specialized in communication networks as well as high frequency technics. In April 2011, he received the engineering diploma (Dipl.-Ing.) in information and communications science. In May 2011, he started his work as a research assistant, and since then he have been a member of the research staff at the chair of communication networks within Chemnitz University of Technology. The chair is led by Professor Bauschert. There he is working on my Ph.D. in the field of QoE estimation and management for different Internet services (like Video Services).

Zoltán Faigl received his M.Sc. degree in telecommunications from Budapest University of Technology and Economics (BUTE), Hungary, in 2003. Currently, he works on his Ph.D. at Mobile Innovation Centre, BUTE. His fields of interests are communication protocols, network architectures, information security, mobile and wireless networks, network dimensioning, and decision making. He has participated in several international projects such as FP6-IST PHOENIX and ANEMONE, EURESCOM P1857, EUREKA-Celtic MEVICO, and EUREKA-Celtic SIGMONA.

Xenofon Foukas holds a diploma in computer science from the Department of Informatics in the Athens University of Economics and Business (AUEB) in 2012, and an M.Sc. in advanced computing from the Department of Computing at Imperial College London in 2013, where he was awarded a departmental scholarship on academic distinction. He has collaborated with various institutions including the R&D department of Intracom Telecom S.A. and the Informatics Laboratory (LIX) of École Polytechnique in France. Currently, he has a joint appointment, with NCSR "Demokritos," as a Marie-Curie research fellow for the GREENET project, and with the University of Edinburgh where he is pursuing a Ph.D. degree in wireless networks. His research interests include software defined mobile networks, energy-efficient wireless communication networks, wireless network management, and distributed algorithms.

Rob Gonzalez (CCDE 20130059, CCIE 20547) is a solutions architect at Cisco Systems, working in advanced services with service provider customers. He has worked on large-scale

projects from physical layer optical networks to the latest IP NGN and Mobile backhaul networks for many of the largest ISP's in the United States. His influence ranges from the planning and design phase of a project through implementation and support. He has earned two CCIE certifications and the CCDE certification. Rob received his B.S. degree in electrical engineering from Georgia Tech in Atlanta, GA, in 1993 and has worked in the telecommunications and networking industry for 20 years.

Vicent Ferrer Guasch received his M.Sc. in communications engineering from Aalto University, Finland, in 2014, with major in networking technology. He has worked as IT support for HP in Spain. In Finland, he has worked as a research assistant and Ph.D. student at the Department of Communications and Networking in Aalto University since September 2014. His research interests include Future Internet architectures, SDN, and LTE networks.

Selcan Güner is a master degree student in Bogazici University in Computer Engineering department. Her research activities for master thesis has a focus on software defined networks. She received her B.Sc. degree in computer engineering from Bogazici University in 2011. She received her BA degree in management from Anadolu University in 2009. Outside the academia, she has been working in industry as a full-time software developer. She has been specialized in the mobile operating systems as a senior developer.

Gürkan Gür received his B.S. degree in electrical engineering in 2001, and Ph.D. degree in computer engineering in 2013 from Bogazici University. Currently, he is a senior researcher at Provus—A Mastercard Company. His research interests include cognitive radios, green wireless communications, small cell networks, network security, and information-centric networking.

Yoram Haddad received his B.Sc., Engineer diploma and M.Sc. (Radiocommunications) from SUPELEC (leading engineering school in Paris, France) in 2004 and 2005, and his Ph.D. in computer science and networks from Telecom ParisTech in 2010 all awarded with honors. He was a Kreitman postdoctoral fellow at Ben-Gurion University, Israel, between 2011 and 2012. He is actually a tenured senior lecturer at the Jerusalem College of Technology (JCT)-Lev Academic Center in Jerusalem, Israel. Yoram's published dozens of papers in international conferences (e.g., SODA) and journals. He served on the Technical Program Committee of major IEEE conferences and is the chair of the working group on methods and tools for monitoring and service prediction of the European COST action on Autonomous Control for a Reliable Internet of Services (ACROSS). He is the recipient of the Henry and Betty Rosenfelder outstanding researcher award for year 2013. Yoram's main research interests are in the area of wireless networks and algorithms for networks. He is especially interested in energy-efficient wireless deployment, Femtocell, modeling of wireless networks, device-to-device communication, wireless software defined networks (SDNs) and technologies toward 5G cellular networks. He has been recently awarded a grant as a PI on SDN "programmable network" within the framework of the MAGNET NEPTUNE consortium from the Office of Chief Scientist of Israel.

Akram Hakiri, Ph.D., is an associate professor of computer science at the University of Haute-Alsace, and Research Scientist at LAAS-CNRS. His current research focuses on developing novel solutions to emerging challenges in wireless networks, QoS-based broadband satellite systems, network virtualization, middleware-based communication, Cloud networking and software defined networking for heterogeneous networks, 5G broadband communication, and multi-technologies communication systems.

Heikki Hämmäinen is a professor of network economics at Department of Communications and Networking, Aalto University, Finland. His main research interests are in technoeconomics and regulation of mobile services and networks. Special topics recently include measurement and analysis of mobile usage, value networks of cognitive radio, and diffusion of Internet protocols in mobile. He is also active in International Telecommunications Society, national research foundations in Finland, in addition to several journal and conferences duties.

Raimo Kantola holds an M.Sc. in computer science from St. Petersburg Electrotechnical University (1981), and Dr. of science degree from Helsinki University of Technology (1995). He has 15 years of industry experience in digital switching system product development and architecture, product management, marketing, and research. Since 2005, he is a full professor of networking technology at Aalto University, Finland. He has held many positions of trust at the Helsinki University of Technology, now Aalto University, among them being the first Chairman of the Department of Communications and Networking. He has done research in routing, peer-to-peer, MANET protocols, traffic classification, etc. His current research interests are new networking paradigms, network security, privacy, and trust.

James Kempf graduated from University of Arizona with a Ph.D. in systems engineering in 1984, and immediately went to work in Silicon Valley. Prior to his current position, Dr. Kempf spent 3 years at HP, 13 years at Sun Microsystems, primarily in research, and 8 years at Docomo Labs USA as a research fellow. Dr. Kempf worked for 10 years in IETF, was chair of three working groups involved in developing standards for the mobile and wireless Internet, and was a member of the Internet Architecture Board for 2 years. He is the author of many technical papers and three books, the latest of which, *Wireless Internet Security: Architecture and Protocols* was published by Cambridge University Press in 2008. Since 2008, Dr. Kempf has worked at Ericsson Research in Silicon Valley on Software Defined Networking (SDN)/ OpenFlow and cloud computing.

Maël Kimmerlin received his B.Sc. in information technology from Télécom SudParis in 2012. He is working in the Department of Communications and Networking at Aalto University as a research assistant.

Thomas Martin Knoll studied electrical engineering at the Chemnitz University of Technology, Germany, and at the University of South Australia, Adelaide. He specialized in information technology and earned the Dipl.-Ing. degree in 1999. From then on, he has been a member of the research staff at the chair of communication networks within Chemnitz University of Technology. Besides ongoing teaching tasks in data communications, he is focusing on carrier network technologies for QoS support within and between AS, as well as the resulting QoE of Internet services. In 2009, he received a Ph.D. from Chemnitz University for his thesis about a coarse grained Class of Service based interconnection concept. Thomas Martin Knoll is member IEEE, ACM, ITU, and VDE.

Kimon Kontovasilis holds a 5-year diploma and a Ph.D. in electrical engineering from the National Technical University of Athens, and an M.Sc. in computer science from North Carolina State University. He is with the Institute for Informatics & Telecommunications of the National Center for Scientific Research "Demokritos" since 1996, currently ranking as a research director and serving as the Head of the Telecommunication Networks Laboratory. His research interests span several areas of networking, including modeling, performance evaluation and resource management of networks, management and optimization of heterogeneous wireless networks, energy-efficient wireless networks, and mobile ad hoc and delay-tolerant networks. He has participated in a considerable number of research projects at a national and international scale and has been involved in the organizing or technical program committees of numerous international conferences in the field of networking. He is a member of IFIP WG6.3.

Ram Gopal Lakshmi Narayanan is a Principle architect, Verizon, USA. For the past 20 years, he has been working on various research projects in the area of wireless networking, Internet security and privacy, network analytics and video optimization, and machine learning. He is one of the authors for ForCES requirement and protocol specification in IETF standards. He has contributed to several standards working groups including Internet Engineering Task Force, Network Processing Forum, Service Availability Forum, trusted computing group and held NPF high availability task group chair position. He holds more than 25 patents and published several papers. He received the B.S. degree in information systems from Birla Institute of Technology and Science, Pilani, India, M.S. degree in computer science from Boston University, and Ph.D. from the University of Massachusetts.

Tapio Levä received his M.Sc. in communications engineering from Helsinki University of Technology (TKK), Finland, in 2009, with major in networking technology and minors in Telecommunications Management and Interactive Digital Media. He is currently finalizing his dissertation in the Department of Communications and Networking at Aalto University concerning the feasibility analysis of new Internet protocols. His research interests include techno-economics of Internet architecture evolution, Internet standards adoption, and Internet content delivery.

Sakari Luukkainen took his D.Sc. at Helsinki University of Technology. In the 1990s, he worked in the Technical Research Centre of Finland, where he directed the Multimedia Communications research group. He also has practical managerial experience in technology companies of the telecommunications industry. Today, he works as a senior research scientist in the Department of Computer Science and Engineering at Aalto University, and is responsible for the Networking Business education program, which combines business and technology studies in the telecommunications field. Mr. Luukkainen's research interests include technology innovation management and commercialization of new network services. Currently, a part of his research effort is directed to studying the effects of virtualization and cloud computing in mobile networking business.

Wissam Mallouli, senior R&D engineer at Montimage, has graduated from the National Institute of Telecommunication (INT) engineering school in 2005. He received his masters degree from Evry Val d'Essonne University also in 2005, and his Ph.D. in computer science

from Telecom and Management SudParis, France, in 2008. His topics of interest cover formal security testing of embedded systems and distributed networks. He is expert is testing methodologies. He has a strong background in monitoring and testing network security (protocols and equipment). He also has a solid experience in project and R&D management. He is involved in several projects such as the FP6/FP7 IST calls, CELTICPlus, ITEA projects, and national ones. He also participates in the program committees of numerous national and international conferences. He published more than 20 papers in conference proceedings, books, and journals.

Jukka Manner received his M.Sc. (1999) and Ph.D. (2004) degrees in computer science from the University of Helsinki. He is a full professor (tenured) of networking technology at Aalto University, Department of Communications and Networking (Comnet). His research and teaching focuses on networking, software, and distributed systems, with a strong focus on wireless and mobile networks, transport protocols, energy-efficient ICT, and cyber security. He was the academic coordinator for the Finnish Future Internet research programme 2008–2012. He is an active peer reviewer and member of various TPCs. He was the local co-chair of Sigcomm 2012 in Helsinki. He has contributed to standardization of Internet technologies in the IETF since 1999, and was the co-chair of the NSIS working group. He has been principal investigator and project manager for over 15 national and international research projects. He has authored over 90 publications, including 10 IETF RFCs. He is a member of the ACM and the IEEE.

Mahesh K. Marina is a reader in the School of Informatics at the University of Edinburgh, UK. Prior to joining Edinburgh, he had a 2-year postdoctoral stint at UCLA. During 2013, he was a visiting researcher at ETH Zurich and Ofcom (the UK telecommunications regulator) Head Office in London. He received his Ph.D. from the State University of New York at Stony Brook. His current research interests include wireless network management (including network monitoring and dynamic spectrum access), mobile phone sensing, next-generation mobile cellular networks, and software defined networking. His research has received recognition in the form of awards/nominations for best papers/demos at IEEE SECON 2013, IEEE IPIN 2013, IEEE WiNMee 2012, and ACM WiNTECH 2010. His work on the Tegola rural wireless broadband project won the NextGen Challenge 2011 Prize for its positive community/societal impact. A co-founder of the ACM MobiCom WiNTECH workshop focusing on experimental wireless networking, he has chaired two ACM/IEEE international workshops in wireless networking and mobile computing areas, and also served on 30+ technical program committees of international conferences/workshops in those areas. He is an IEEE senior member.

Antti Mikola received his B.Sc. in communications engineering from Aalto University in 2013 with a major in networking technology. He has worked as a research assistant at the Department of Communications and Networking in Aalto University since April 2014.

Edgardo Montes de Oca graduated as engineer in 1985 from Paris XI University, Orsay. He has worked as research engineer in the Alcatel Corporate Research Centre in Marcoussis, France, and in Ericsson's Research centre in Massy, France. In 2004, he founded Montimage, and is currently its CEO. He is the originator and main architect of Montimage Monitoring Tool (MMT). His main interests are network and application monitoring and security;

detection and mitigation of cyberattacks; and, building critical systems that require the use of state-of-the-art fault-tolerance, testing, and security techniques. He has participated and participates as company and WP leader of several EU and French national projects (e.g., CelticPlus projects MEVICO and SIGMONA, CIP-PSP projects ACDC and SWEPT). He is also member of the APWG (Anti-Phising Working Group).

Suneth Namal Karunarathna received the B.Sc. degree in computer engineering from the University of Peradeniya, Peradeniya, Sri Lanka, in 2007. He completed M.Eng. degree in information and communications technologies from the Asian Institute of Technology, Bangkok, Thailand, in 2010, and M.Sc. degree in communication network and services from Telecom SudParis, Paris, France, in 2010. Currently, he is a doctoral student with the Department of Communication Engineering, University of Oulu, Oulu, Finland, and a research scientist of Centre for Wireless Communications, Oulu, Finland. His research interest includes software defined wireless networks, communication security, mobile femtocells, fast initial authentication, and load balancing.

Jeff Napper currently works for Cisco developing proof-of-concept systems for mobile service providers. After graduating from the University of Texas at Austin, he worked on Grid Computing systems for VU University Amsterdam and on developing new operating systems for Bell Labs, Alcatel-Lucent before joining Cisco.

Paul Polakos is currently a Cisco fellow in the Mobility CTO Group at Cisco Systems where he is focusing on emerging technologies for future mobile networks. Prior to joining Cisco, he was a senior director of wireless networking research and Bell Labs Fellow at Bell Labs, Alcatel-Lucent in Murray Hill, NJ and Paris, France. He holds B.S., M.S., and Ph.D. degrees in physics from Rensselaer Polytechnic Institute and the University of Arizona.

Louis (Sam) Samuel recently joined Cisco, and is currently a director of engineering in the Chief Technical Office of Cisco's Mobility Business Group. Sam covers such topics as virtualization and orchestration of mobility products and small cell technologies. Prior to joining Cisco, Sam held several posts in Alcatel-Lucent. Among these were the posts of Chief Architect for Alcatel-Lucent's Software, Solutions and Services Business Group (S3G). In this role, Sam was responsible for the strategic technical leadership of S3G covering a wide remit of areas from software architecture innovation to innovation of Services.

Jesus Llorente Santos received his M.Sc. in communications engineering with honors from Aalto University, Finland, in 2012, with major in networking technology. He has worked as IT support for Telefonica in Spain. In Finland, he has worked as a Research Assistant and PhD student at the Department of Communications and Networking in Aalto University since April 2011. His research interests include Future Internet architectures, Network Address Translator, Realm Gateway, and Customer Edge Switching.

Hakan Selvi is a master degree student in the Department of Computer Engineering, Bogazici University. His current researches and thesis are related with software defined networks. He received his bachelor of science degree in computer engineering in 2010 from Bogazici University.

Brian Stanford is a solutions architect in the service provider group within the Cisco Advanced Services organization. His breadth of experience encompasses a wide variety of areas including IP NGN, IP RAN, Data Center, and Campus technologies. He joined the Wan Switching group in 1999 where he focused on Global Frame Relay & ATM networks. In his 15 years at Cisco, he has supported Global Enterprise customers as well as Global Service Providers. In his most recent role, his focus has been on promoting the adoption of a Network Architecture approach in US mobile carrier networks. As a solutions architect, He has acquired a thorough understanding of technology and how to apply those technologies to solve complex business problems. He has been CCIE certified since 1999 and currently holds four CCIE certifications (Routing & Switching, Wan Switching, SP, Security). He is also a project management professional (PMP) # 292000.

Antti Tolonen is a master's student at Aalto University School of Science studying in the master's programme in mobile computing—services and security. He has been working in both teaching and research assistant roles at Aalto University's Department of Computer Science and Engineering for the past several years during his studies. The research topics he has taken part in have consisted of peer-to-peer networking, cloud computing, and modern Web-based data transfer technologies. Currently, he is finishing his master's thesis on building and validating a testbed that allows studying the utilization of cloud computing in the LTE core network. Mr. Tolonen's future interests include software development in the fields of virtualization and networking.

You Wang received the B.S. degree in computer science from Tsinghua University, Beijing, China. He is now a Ph.D. candidate at Department of Computer Science, Tsinghua University. His research interests include Internet mobility management, identifier/locator split and software defined networking (SDN).

Nan Zhang received her M.Sc. (Tech.) in communications engineering from Aalto University School of Science and Technology, Finland, in 2010, with major in Data Networks and minor in strategy and international business. She is currently doing her postgraduate studies at the Department of Communications and Networking at Aalto University, Finland. Her research interests include techno-economics of Internet content delivery solutions, such as content delivery networks, information-centric based solutions, and software defined networks.

Foreword

Originally, the Internet was designed as a decentralized packet switching network that is multiply redundant, fault-tolerant and with mostly peripheral computational components. Today, the Internet has usurped the majority of all information and communications technology (ICT) functions in society, spanning the range of media access services such as television, music and video streaming, Web access, and interactive telecommunications (voice and video telephony), as well as supporting a diverse range of applications that connect machine devices in various environments to each other and to the network. In parallel, the relentless reduction in price, power consumption, and device size driven by Moore's law has led to computation, storage, and networking becoming so inexpensive that intelligence can be incorporated into almost all manufactured goods. Enterprise IT systems are also rapidly being centralized with cloud technologies, creating huge efficiencies in the way computation, networking, and storage are provisioned and deployed. The broad impact that the Internet and inexpensive computation are having on life is leading to a networked society, in which anything that would benefit from being connected, will be connected.

Central among the supporting technologies for a networked society are mobile networks which provide connectivity both for the devices that constitute the Internet of Things, as well as for devices used for communication by people. Mobile networks face increasing challenges going forward as the characteristics of the data transported over them will vary widely, from large volumes of small and periodic sensor readings to large high-definition video streams. New services such as vehicular communications and critical infrastructure for industrial applications of the Internet pose exacting requirements on security, latency, and reliability. Mobile operators must build and provision their networks to accommodate this flood of data, and simplify the way new services are defined and provisioned in accordance with their customers' needs. Vendors must in turn provide operators with systems that solve the posed challenges in a cost-effective manner.

Fortunately, new technologies in the pipeline will help the ICT industry rise to the challenge. Cloud computing and software defined networking (SDN), originally developed in enterprise networks, are now moving into operator networks, including mobile networks, through the European Telecommunication Standards Institute (ETSI) Network Function Virtualization xxviii

(NFV) effort. The articles in this book address important research questions in software defined mobile networking (SDMN), and represent the fruits of academic and industrial research over the recent years. Research in SDMN, such as that described in this volume, will play a critical role in defining NFV and in the 5G mobile network.

Ulf Ewaldsson Senior Vice President, Chief Technology Officer Ericsson

Foreword

Mobile networking is entering an exciting era of development, driven both by user needs and new technologies. Key new technologies are network function virtualization (NFV) and software defined networking (SDN). They are often considered together or even confused with each other. Simplified, NFV separates the network functions from the underlying hardware and software platforms, whereas SDN separates network control from the user data routing. They bring benefits in capacity scaling, cost reduction, and flexibility and speed in the introduction of new services. NFV concepts are already rather broadly agreed, for example, via the ETSI specification work and NFV-based products are entering into commercial service. Similar broad agreement on how to utilize SDN in mobile networks is missing, so this book is a timely contribution to that discussion. To get the full benefit of NFV and SDN in mobile networks, we need to take a new look at the network architecture as it now stands.

This book takes that look, both broad and deep. It introduces current state of the art and probes potential ways to evolve mobile networks to take better advantage of SDN and NFV. It discusses system wide and product architectures and key issues like network management, quality of service, and security. The technologies exposed in this book are central to the evolution of mobile networking and future definition of the 5G architecture. While there are no final answers, yet the book provides a good update on the leading edge of research in SDN and NFV for mobile networks.

Lauri Oksanen VP, Research and Technology Nokia Networks

Preface

The main objective of this book is to provide the cutting-edge knowledge about software defined mobile network (SDMN) architecture. SDMN is one of the promising technologies that are expected to solve the existing limitations in current mobile networks. SDMN architecture provides the required improvements in flexibility, scalability, and performance to adapt the mobile network to keep up with the expected future mobile traffic growth.

This book gives an insight into the feasibility of SDMN concept and its opportunities. It also evaluates the limits of performance and scalability of the SDMN architecture. The book discusses theoretical principles of beyond long-term evolution (LTE) mobile network architectures and their implementation aspects.

The SDMN architecture is based on software defined networking (SDN) and network virtualization principles. The book aims at evaluation, specification, and validation of SDN and network function virtualization (NFV) relevant to future SDMNs. The SDMN concept will change the network architecture of the current LTE mobile networks. It is foreseen that SDMN architecture will offer new opportunities for traffic, resource, and mobility management. Moreover, it will introduce new challenges on network security and impact on the cost of the network, value chain, business models, and the investments on mobile networks. This book presents a well-structured, readable, and complete reference of all these aspects of SDMN architecture. It contains both introductory level text as well as more advanced reference to meet the expectation of readers from various backgrounds and levels.

The Need for SDMN

The first mobile telecommunication network was introduced in the 1980s. During past four decades, the mobile communication technologies have achieved a significant development. The evolving mobile services, rapidly increasing broadband speed and inherent mobility support attract many subscribers. Thus, mobile communication is becoming the primary or even sole access method for more and more people. The present mobile networks support

sophisticated network services such as Voice over IP (VoIP), high-density video streaming, high-speed broadband connectivity, and mobile cloud services. As a result, the mobile traffic volume is drastically increasing in each year. It is foreseen that the mobile data traffic usage is growing faster than the fixed Internet for the coming years. Thus, mobile networks must upgrade to keep up with the traffic growth and support rapidly evolving mobile services market. However, it is always challenging to increase the mobile network bandwidth due to the limited radio bandwidth resources and remarkably complex and inflexible backhaul devices.

On the other hand, the present business environment of telecommunication is changing rapidly. Usually, the telecommunication market is highly competitive. However, today's mobile operators must compete with a new class of competitors such as over-the-top (OTT) players, cloud operators, and established Internet service provider (ISP) giants. Thus, it is required to minimize CapEx of the network by reducing the cost of hardware and minimize OpEx by maximizing the utilization from hardware assets. In order to overcome these challenges, mobile networks have not only to go through architecture processes to optimize the current resources but also to add new components/technologies which increase the capacity.

On these grounds, SDN and NFV are promising technologies which are expected to solve these limitations in current mobile networks. SDN provides the required improvements in flexibility, scalability, and performance to adapt the mobile network to keep up with the expected growth. NFV offers a new way to design, deploy, and manage networking services. NFC allows decoupling the network functions from proprietary hardware appliances, so they can run in software. SDMN architecture is based on both SDN and NFV principles.

The adaptation of SDN concepts is expected to solve many limitations in current mobile networks. In SDN enables telecom networks, each operator has the flexibility to develop new networking concepts, optimize their network, and address specific needs of subscribers. Furthermore, software-programmable network switches in SDMN use modern agile programming methodologies. These software methodologies can be developed, enhanced, and upgraded at much shorter cycles than the development of today's state-of-the-art mobile backhaul network devices.

SDN and NFV Development

During the past few decades, many similar initiatives such as Telecommunications Information Networking Architecture (TINA), intelligent networks, and active networks which were proposed to solve the flexibility, scalability, and performance issues in telecommunication networks. These architectures were not finally realized due to failures at the implementation stage and the lack of support from industrial giants. However, the adaptation of SDN and NFV concept has extended up to commercial production level already. Almost all the device manufactures are working on the designing of devices to support SDMNs. Some telecommunication device manufactures already started to ship SDMN products for mobile network operators.¹

¹Josh Taylor, Telstra taps Ericsson for software defined networking, Technical report, 2014, URL http://www.zdnet.com/ au/telstra-taps-ericsson-for-software defined-networking-7000032689/.

On the one hand, we have seen plenty of innovation in devices we use to access the network, the applications, and services. However, the network infrastructure has always consisted of remarkably complex and inflexible devices. The rapid traffic growth has demanded a significant change in these devices. The SDMN architecture changes the underlying infrastructure of telecommunication networks. Both SDN and NFV concepts are offering new ways to design, build, and operate the telecommunication networks.

The adaptation of SDN concepts propose to decouple the control plane from the data plane and make the control plane remotely accessible and remotely modifiable via third-party software clients. Thus, it is directing the current mobile network toward a flow-centric model that employs inexpensive hardware and a logically centralized controller. NFV concepts enable ubiquitous, convenient, on-demand network access to a shared pool of configurable network resources.

Thus, SDN and NFV concepts create a new telecommunication network environment which can support rapid service innovation and expansion. It also scales and optimizes the utilization of network resources more efficiently and cost effectively without compromising customer's experience.

SDMN Standardization

Many standardization bodies already started standardization efforts on SDMN concepts. Standardization is the first step toward the wide adoption of a new technology. Thus, the benefits of such standardization efforts are very significant for all stakeholders of the telecommunication field.

European Telecommunications Standards Institute (ETSI) is an industry-led standards development organization. It is the biggest telecommunication community which is working on the adaptation of NFV concepts for future mobile networks since 2012. Initially, seven of the world's leading telecoms network operators started Industry Specification Group for NFV (ISG NFV) at ETSI. During the past 2 years, this group has grown significantly. ISG NFV is now consisting of over 220 individual companies including 37 of the world's major service providers. This large community of experts are working intensely to develop the required standards for NFV as well as sharing their experiences of NFV development and early implementation.

On the other hand, Open Networking Foundation (ONF) is a non-profit organization dedicated to accelerating the adoption of open SDN, and it is the leading standardization organization in SDN domain. ONF was founded in 2011, and the membership of ONF as grown to over 100 company-members including telecom operators, network service providers, equipment vendors, and virtualization software suppliers. In 2014, ONF has formally launched one working group called Wireless & Mobile Working Group (WMWG). WMWG analyzes architectural and protocol requirements for extending SDN technologies to wireless and mobile domains include wireless backhaul networks and cellular Evolved Packet Core (EPC).

These two communities have started to share their standardization works since 2014. ETSI signed a strategic partnership agreement with ONF to further the development of NFV specifications by utilizing SDN concepts.

Furthermore, several Study Groups (SGs) of ITU (International Telecommunication Union)'s Telecommunication Standardization Sector (ITU-T) are already working on the

adaptation of SDN concepts for public telecommunication networks. For instance, SG13 (Future networks) is focusing on functional requirements and architecture development for SDN enabled mobile networks. SG11 (signaling) works aligns with SG13 to develop signaling requirements and protocols for their SDN architectures.

Moreover, various other research communities such as Software Defined Networking Research Group (SDNRG) in Internet Engineering Task Force (IETF), Optical Internet Forum (OIF), Broadband Forum (BBF), and the Metro Ethernet Forum (MEF) are also working of the SDN and NFV deployment in various network scenarios.

It is always tricky to predict what will be the future of telecommunication networks beyond the LTE architecture. However, the benefits of applying the SDMN principles and the tremendous support by both the research community and the industry giants make SDMN a very promising candidate for future mobile networks.

Intended Audience

The book will be interesting for Industry/SMEs to design new telecommunication devices, network engineers implementing new technologies in the operator network, researchers working in the area of next-generation mobile network, and students working on master or doctoral theses in the areas of network security, mobility management, and Techno-economics.

This book provides a cutting-edge knowledge in areas such as network virtualization and SDN concepts relevant to next-generation mobile networks. This helps Industry/SMEs to create innovative solutions based on the research results in this book. It can be transferred to their products enabling the company to maintain its competitiveness in the challenging telecommunication market. Network operators can gain knowledge on latest network concepts such as SDN and virtualization. Also they can foresee the advantages of SDMN in terms of cost savings, scalability, flexibility, and security. The new possibilities of SDMN concept can help operators to cope with the increased cost pressure and competition.

Finally, this book facilitates the transfer of up-to-date telecommunication knowledge to university students and young scientists in research institutes and universities. Furthermore, the book will provide a complete introduction of SDMN concept for fresh researchers in the field. On the other hand, the book includes an overview of several related research areas such as virtualized transport/network management, traffic, resource and mobility management, mobile network security, and techno-economic modeling.

Organization of the Book

The book is organized into five parts: (I) Introduction, (II) SDMN architectures and network implementation, (III) Traffic transport and network management, (IV) Resource and mobility management, and (V) Security and techno-economic aspects.

The first part includes a general overview and background on SDN and present mobile network architectures. It presents the brief history and evolution of both SDN concepts and mobile network architectures. In the overview (Chapter 1), we present the SDMN architecture. Initially, we discuss the limitations of present-day mobile architectures. Then, we explain the advance features and key benefits of SDMN architecture. Chapter 2 presents the evolution of mobile networks. It analyzes the market trends and traffic projections of mobile communication.

Based on that, this chapter also explains requirements in future mobile networks. Chapter 3 explains the general SDN concepts. The chapter presents the history, the evolution and various application domains of SDN. It also provides a short summary of some of the prominent SDN related activities in industry and standardization bodies. Chapter 4 examines how the SDN concept and technologies could be applied in the wireless world. This chapter reviews opportunities and challenges which will happen during the adaptation of SDN concepts to wireless networks. Chapter 5 presents the role of SDN in the design of future 5G wireless networks. It also contains a survey on the emerging trends, prospects and challenges of SDN based 5G mobile systems.

The second part covers the basic of SDMN architectures and various implementation scenarios. It provides the state of the art in SDMN and describes changes to the current LTE architecture which is useful for wider SDMN deployment. Part II starts with Chapter 6 which provides an overview of LTE network architecture and its migration towards SDN based mobile network. This chapter describes how SDN based mobile networks benefit both mobile operators and end users. Chapter 7 presents a deployment model of the evolved packet core (EPC) where the EPC functions are deployed as services on a virtualized platform in a cloud computing infrastructure. It also explains the advantages of SDN which offers the potential to integrate the EPC services into the broader operator network using cross-domain orchestration. Chapter 8 discusses important aspects of the controller placement problem (CPP) in software defined mobile networks (SDMN). It presents the available solution methodologies and analyzes relevant algorithms in terms of performance metrics. Chapter 9 analyzes the factors influencing the future evolution of telecommunication clouds controlled by opensource platform software.

The third part discusses the impact of SDN concepts on traffic transport and network management functions of future mobile networks. It also explains the scalability of SDMNs and optimization of traffic transportation in SDMNs. Chapter 10 describes the European Telecommunications Standards Institute (ETSI) Network Function Virtualization (NFV) architecture and underlying support provided by SDN in the mobile network context. Chapter 11 introduces the main building blocks of traffic management in mobile networks, and provides an overview of quality of Servic (QoS) provisioning and dynamic policy control in 3G/4G networks. Then, it discusses the QoS enforcement features of OpenFlow switches and presents a future technology for improved resource selection using the application-layer traffic optimization protocol integrated into software defined networks. Chapter 12 describes the applicability of SDN to mobile applications by allowing dynamic service chaining inside the packet core, radio access networks and between user equipment (UE) for direct device-todevice communication. Chapter 13 provides platforms and technologies used for load balancing in software defined mobile networks. It also discusses the main challenges existing in current load balancing technologies and explains the requirements of novel load balancing technologies for software defined mobile networks.

The fourth part explains the various challenges on resource and mobility management of future mobile networks while adapting the SDN concepts. Chapter 14 presents the SDN enabled QoE monitoring and enforcement framework for Internet services. This framework augments existing quality-of-service functions in mobile as well as software defined networks by flow based network centric quality of experience monitoring and enforcement functions. Chapter 15 discusses SDN-based mobility management in the Internet. It reviews existing Internet mobility protocols and explains why SDN is beneficial to solve current Internet.

mobility problems. Chapter 16 reviews the existing MVNO architectures and explains the limitation in current architectures. Moreover, it explains SDN perspective of MVNOs which adds the reconfigurable mobile network parameters to the existing MVNO and enhances the features of the mobile network.

The fifth part covers the security and techno-economic aspects. It includes comprehensive literature review in security challenges in future mobile architectures and security management aspects in SDMNs. Moreover, it discusses the business cases in virtualized mobile network environments and presents both evolutionary and revolutionary industry architectures for SDMNs. Chapter 17 explains the limitation on traditional security models and presents the requirement to develop an inclusive and intrinsic security model across the SDMN. Chapter 18 presents the security issues introduced by SDN, NFV and future mobile networks that integrate these technologies to become software defined mobile networks (SDMNs). Finally, Chapter 19 defines the key business roles and presents both evolutionary and revolutionary industry architectures for SDMN, as well as discusses the perspectives of different stakeholders in the mobile network industry.

Acknowledgments

This book focuses on software defined mobile networks, which has been created by the joint effort of many people. First of all, we would like to thank all of the chapter authors for doing a great job!

This book would not have been possible without the help of many people. The initial idea for this book originated during our work in SIGMONA (SDN Concept in Generalized Mobile Network Architectures) project. Many of the partners not only motivated us but also contributed with various chapters. We would like to acknowledge the contributions of all the partners in CELTIC SIGMONA project.

Also we thank all the reviewers for helping us to select suitable chapters for the book. Moreover, we thank anonymous reviewers who have evaluated the proposal and gave plenty of useful suggestions for improving it. Ulf Ewaldsson (Ericsson) and Lauri Oksanen (Nokia) wrote nice forewords for the book and we really appreciate their effort. We thank Clarissa Lim, Sandra Grayson, Liz Wingett, and Anna Smart from John Wiley and Sons for help and support in getting the book published. Also, we would like to thank Brian Mullan (Cisco), Jari Lehmusvuori (Nokia), and James Kempf (Ericsson) for their continuous support on various occasions to complete this book.

Also, Madhusanka is grateful to the Centre for Wireless Communication (CWC) and University of Oulu for hosting the SDN mobile related research projects which helped him to gain the fundamental knowledge for this book. We also thank the Finnish Funding Agency for Technology and Innovation (Tekes) and Academy of Finland that funded research work at CWC and HIIT. Madhusanka thanks his wife Ruwanthi Tissera not only for her encouragement but also for help on proof reading and indexing tasks.

Last but not least, we would like to thank our core and extended families and our friends for their love and support in getting the book completed.

Madhusanka Liyanage, Andrei Gurtov, and Mika Ylianttila

Abbreviations

1G	First generation
2G	Second generation
3D	Three-dimensional
3G	Third generation
3GPP	Third-Generation Partnership Project
4G	Fourth generation
5G	Fifth generation
AAA	Authentication, authorization, and accounting
ACID	Atomicity, consistency, isolation, and durability
ACK	Acknowledgment
ADC	Application Detection and Control
ADC	Application delivery controllers
ADSL	Asymmetric digital subscriber line
AF	Application function
AKA	Authentication and key agreement
ALTO	Application-layer traffic optimization
AMPS	Advanced mobile phone system
AN	Access network
API	Application programming interface
APLS	Application label switching
APN	Access Point Name
APN-AMBR	Per APN aggregate maximum bit rate
APS	Access point services
APT	Advance persistent threat
AQM	Active queue management
ARP	Address Resolution Protocol
ARP	Allocation and retention priority
AS	Access stratum
110	

ASS	Application Service Subsystem
ATM	Asynchronous Transfer Mode
BBERF	Bearer Binding and Event Reporting Function
BBF	Broadband Forum
BGP	Border Gateway Protocol
BR	Business revenue
BS	Base station
BSC	Base station controller
BSS	Base station subsystem
BSS	Business service subsystem
BT	Business tariff
BTR	Bit transfer rate
BTS	Base transceiver station
BYOD	Bring your own device
CAGR	Compound annual growth rate
CAM	Content-addressable memory
CAP	Cognitive access point
CapEx	Capital expenditure
CAPWAP	
CBTC	Communication-Based Train Control
CCNs	Content-centric networks
CDF	Cumulative distribution function
CDMA	Code division multiple access
CDN	Content delivery network
CDNI	Content Delivery Networks Interconnection
CE	Control element
CES	Customer edge switching
CGE	Carrier-grade Ethernet
CG-NAT	Carrier-grade network address translation
CGW	Charging gateway
CIA	Confidentiality, integrity, and availability
C-MVNO	Cognitive mobile virtual network operator
CN	Core network
CoA	Care-of address
COTS	Commercial off the shelf
СР	Control plane
CPP	Controller placement problem
CPU	Central processing unit
C-RAN	Cloud—radio access network
CRM	Cognitive radio management
D2D	Device to device
DDoS	Distributed denial of service
DFI	Deep flow inspection
DHCP	Dynamic Host Configuration Protocol
DiffServ	Differentiated services
DL	Downlink

	Distributed and illiter mene compart
DMM	Distributed mobility management
DNS Das	Domain name server Denial of service
DoS	
DP	Data plane
DPDK	Data Plane Development Kit
DPI	Deep packet inspection
DSCP	Differentiated services code point
DSL	Digital subscriber line
DTLS	Datagram Transport Layer Security
EAP	Extensible Authentication Protocol
EAP-AKA	Extensible Authentication Protocol—Authentication and Key Agreement
EAP-SIM	Extensible Authentication Protocol—Subscriber Identity Module
EC2	Elastic Compute Cloud
ECMP	Equal-cost multipath
EDGE	Enhanced data rates for GSM evolution
EID	Endpoint identifiers
EM	Element manager
Email	Electronic mail
eNodeB	Enhanced NodeB
EPC	Evolved packet core
ePCRF	Enhanced Policy and Charging Rules Function
EPS	Evolved packet services
E-RAB	Evolved radio access bearer
ETSI	European Telecommunications Standards Institute
E-UTRAN	Evolved UMTS terrestrial radio access network
EVDO	Evolution-Data Optimized
FE	Forwarding element
FLV	Flash video
FM	Frequency modulation
FMC	Fixed-mobile convergence
ForCES	Forwarding and Control Element Separation
FQDN	Fully qualified domain name
FRA	Future radio access
FTP	File Transfer Protocol
FW	Firewalls
GBR	Guaranteed bit rate
GENI	Global Environment for Networking Innovations
GGSN	Gateway GPRS Support Node
GPL	General public license
GPRS	General Packet Radio Service
GRX	GPRS roaming exchange
GSM	Global System for Mobile Communications
GTP	GPRS Tunneling Protocol
GUTI	Globally Unique Temporary Identity
H2020	Horizon 2020
HA	Home agent
	Tome about

HA	High availability
HAS	HTTP Adaptive Streaming Services
HD	High definition
HeNB	Home eNodeB
HetNet	Heterogeneous network
HFSC	Hierarchical fair-service queue
HIP	Host Identity Protocol
HLR	Home location register
HLS	HTTP live streaming
HMAC	Hash message authentication code
HMIPv6	Hierarchical mobile IPv6
HoA	Home address
HRPD	High-rate packet data services
HSPA	High-speed packet access
HSS	Home Subscriber Server
HTB	Hierarchical token bucket
HTTP	Hypertext Transfer Protocol
I2RS	Interface to the Routing Systems
IaaS	Infrastructure as a service
IA-MVNO	Intramodular mobile virtual network operator
ICN	Information-centric networks
ID	Identifier
IDPS	Intrusion Detection and Prevention Systems
IDS	Intrusion Detection System
IEEE	Institute of Electrical and Electronics Engineers
IE-MVNO	Intermodular mobile virtual network operator
IETF	Internet Engineering Task Force
ILNP	Identifier/Locator Network Protocol
ILS	Identifier/Locator Split
IMS	IP Multimedia Subsystem
IMSI	International Mobile Subscriber Identity
IoT	Internet of Things
IP	Internet Protocol
IPsec	Internet Protocol security
IPTV	Internet Protocol television
IPX	Internetwork Packet Exchange
ISAAR	Internet Service quality Assessment and Automatic Reaction
ISP	Internet service providers
ISV	Independent software vendor
IT	Information technology
ITU	International Telecommunication Union
KASME	Key Access Security Management Entity
KPI	Key Performance Indicator
L1	Layer 1
L2	Layer 2
L3	Layer 3

т 4	Larran A
L4	Layer 4
L7 LAN	Layer 7
LAN	Local area network
LISP	Locator Identifier Separation Protocol
LMA	Local mobility anchor
LR-WPAN	Low-rate wireless personal area networks
LSP	Label-switched path
LTE	Long-Term Evolution
LTE-A	Long-Term Evolution-Advanced
M2M	Machine to machine
MaaS	Mobility as a service
MAC	Media access control
MAC	Message authentication code
MAG	Mobile Access Gateway
MANO	Management and orchestration
MAP	Mobility anchor points
MBR	Maximum bit rate
MCP	Multiple controller placement
ME	Mobile equipment
MEF	Metro Ethernet Forum
MEUN	Mobile end user nodes
MEVICO	Mobile Networks Evolution for Individual Communications Experience
MIMO	Multiple input and multiple output
MIP	Mobile IP
MIPv6	Mobile IPv6
MLB	Mobility load balancing
MM	Mobility management
MME	Mobility management entity
MNO	Mobile network operator
MO	Mobile operator
MOS	Mean Opinion Score
MPG	Mobile Personal Grid
MPLS	Multiprotocol label switching
MSC	Mobile switching center
MSOP	Mobile virtual network operator service optimization
MSS	Mobile switching systems
MTC	Machine-type communications
MTU	Maximum transmission unit
MVNA	Mobile virtual network aggregator
MVNE	Mobile virtual network enabler
MVNO	Mobile virtual network operator
MVO	Mobile virtual operator
NaaS	Network as a service
NAS	Nonaccess stratum
NAT	Network address translation
NBI	Northbound interface

NDC	
NBS	Name-based sockets
NFV	Network function virtualization
NFVI	Network function virtual infrastructure
NFVO	Network function virtualization orchestrator
NGN	Next-generation network
NIDS	Network Intrusion Detection Systems
NMS	Network monitoring system
NNSF	NAS Node Selection Function
NOMA	Nonorthogonal multiple access
NOS	Network operating system
NRM	Network resource manager
NSC	Network service chaining
NSD	Network Service Descriptor
NSN	Nokia Solutions and Networks
NSS	Network Service Subsystem
NVP	Network virtualization platform
OAM	Operation and management
OF	OpenFlow
OFDM	Orthogonal frequency division multiplexing
OIF	Optical Internet Forum
ONF	Open Network Foundation
OpenSig	Open signaling
OpEx	Operational expenditure
OS	Operating system
OS3E	Open Science, Scholarship, and Services Exchange
OSS	Optimal subscriber services
OTT	Over the top
OVS	Open virtual switch
OWR	Open wireless architecture
P2P	Peer to Peer
P4P	Provider Portal for P2P Applications
PaaS	Platform as a service
PC	Personal computers
PCC	Policy Control and Charging
PCEF	Policy Control Enforcement Function
PCRF	Policy and Charging Rules Function
PDCP	Packet Data Convergence Protocol
PDN-GW	Packet Data Network Gateway
PDP	Packet Data Protocol
PDSN	Packet Data Serving Node
PFB	Per-flow behavior
P-GW	Packet Data Network Gateway
PID	Provider-defined identifier
PIN	Place in the network
PKI	Public key infrastructure
PMIPv6	Proxy Mobile IPv6

РО	Primary operator
PoC	Push over cellular
POP	Points of presence
POS	Packet over SONET
POTS	Plain old telephone systems
PPP	Point-to-Point Protocol
PR	Path Record
PSTN	Public switched telephone network
PTT	Push to talk
QCI	QoS class identifier
QEN	Quality enforcement
QMON	Quality monitoring
QoE	Quality of experience
QoS	Quality of service
QRULE	Quality rules
RAN	Radio access network
RAP	Radio access point
RBAC	Role-based access control
REST	Representational State Transfer
RF	Radio frequency
RFC	Request for Comments
RLOC	Routing locators
RLSE	Regional-level spectral efficiency
RMON	Remote monitoring
RNAP	Resource Negotiation and Pricing
RNC	Radio network controller
ROI	Return of investment
RPC	Remote Procedure Calls
RRC	Radio Resource Control
RRM	Radio Resource Management
RTP	Real-Time Transport Protocol
RTT	Round-trip time
S/P-GW	Serving/Packet Data Network
SaaS	Security as a service
SaaS	Software as a service
SAE	System architecture evolution
SatCom	Satellite communication
SBC	Session border controller
SBI	Southbound interface
SCTP	Stream Control Transmission Protocol
SD	Standard definition
SDM	Software-defined monitoring
SDM CTRL	Software-defined monitoring controllers
SDMN	Software-defined mobile networks
SDN	Software-defined networks
SDNRG	Software-Defined Networking Research Group

SDP	Session Description Protocol
SDR	Software-defined radio
SDS	Software-defined security
SDWN	Software-defined wireless networks
SENSS	Software-defined security service
SG	Study groups
SGSN	Serving GPRS Support Node
S-GW	Serving Gateways
SHA	Secure Hash Algorithm
SID	Service identifier
SIEM	Security Information and Event Management
SIGMONA	SDN Concept in Generalized Mobile Network Architectures
	Simulation Language for User Mobility Models
SILUMOD SIM	Subscriber identity module
SIM	Signal-to-interference-plus-noise ratio
	Session Initiation Protocol
SIP	
SLA	Service-level agreement
SMS	Short Message Services
SNMP	Simple Network Monitoring Protocol
SNR	Signal-to-noise ratio
SO	Secondary operator
SOA	Service-oriented architecture
SON	Self-organizing networks
SONET	Synchronous Optical Networking
SP	Service providers
SPR	Subscription Profile Repository
SP-SDN	Service provider SDN
SRAM	Static random access memory
SSID	Service set identifier
SSL	Secure Sockets Layer
SSS	Standard subscriber services
STUN	Simple traversal of UDP over NAT
SUMA	Software-defined unified monitoring agent
SuVMF	Software-defined unified virtual monitoring function for SDN-based networks
TAI	Tracking area ID
TCAM	Ternary content-addressable memory
TCP	Transmission Control Protocol
TDF	Traffic Detection Function
TDM	Time-division multiplexed
TDMA	Time-division multiple access
TEID	Tunnel endpoint identifier
TFT	Traffic flow template
TLS	Transport Layer Security
ToR	The Onion Router
ToS	Theft of Service
TR	Tunnel routers

TV	Television
UDP	User Datagram Protocol
UDR	User Data Repository
UE	User equipment
UE-AMBR	UE aggregate maximum bit rate
UGC	User-generated content
UL	Uplink
UMTS	Universal Mobile Telecommunications Systems
URI	Uniform resource identifier
URL	Uniform resource locator
USIM	Universal Subscriber Identity Module
USS	User-Supportive Subsystem
VDI	
vEPC	Virtual desktop infrastructure
	Virtual evolved packet core
VHF VIM	Very high frequency Virtualized infrastructure manager
VIRMANEL	Virtualized infrastructure manager Virtual MANET Lab
VLAN	Virtual local area network
VLAN	Virtual Link Descriptor
VLR	Visitor Location Register
VER	Virtual machines
VN	Virtual networks
VNE	Virtualized network element
VNF	Virtualized network function
VNFD	Virtual Network Function Descriptor
VNFD	VNF Descriptor
VNFFGD	Virtual Network Function Forwarding Graph Descriptor
VNFM	VNF manager
VNI	Visual Networking Index
VNO	Virtual network operator
VO	Virtual operator
VOD	Video on demand
VoIP	Voice over IP
VPMNO	Virtual private mobile network operator
VPN	Virtual private networks
VPNS	Virtual private network systems
VS	Virtual switches
WAP	Wireless Application Protocol
WCDMA	Wideband code division multiple access
Wi-Fi	Wireless fidelity
WiMAX	Worldwide Interoperability for Microwave Access
WLAN	Wireless local area network
WPAN	Wireless personal area network
WWAN	Wireless wide area network
XML	Extensible Markup Language