
Software Defined Mobile Networks (SDMN): Beyond LTE Network Architecture, First Edition.
Edited by Madhusanka Liyanage, Andrei Gurtov, and Mika Ylianttila.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

The Controller Placement Problem
in Software Defined Mobile
Networks (SDMN)

Hakan Selvi,1 Selcan Güner,1 Gürkan Gür,2 and Fatih Alagöz1

1 SATLAB, Department of Computer Engineering, Bogazici University, Istanbul, Turkey
2 Provus—A MasterCard Company, Istanbul, Turkey

8.1 Introduction

Traditional networks consist of a large variety of network nodes such as switches, routers, hubs,
different network appliances, complicated protocols and interfaces, which are defined in detail
through standardization. However, these systems provide limited ways to develop and adopt new
network features and capabilities once deployed. Therefore, this semistatic architecture poses a
challenge against adaptation to meet the requirements of today’s network operators and end
users. To facilitate required network evolution, the idea of programmable networks and software
defined networking (SDN) has been proposed [1]. This approach is devised to simplify network
management and enable innovation through network programmability. In the SDN architecture,
the control and data planes are decoupled and the network intelligence is logically centralized in
software‐based controllers. An SDN controller provides a programmatic interface to the network,
where applications can be written to perform management tasks and offer new functionalities.
The control is centralized and applications are written as if the network is a unified system. While
this simplifies policy enforcement and management tasks, the binding must be closely main-
tained between the control and the network forwarding elements [1]. For instance, an OpenFlow
controller sets up OpenFlow devices in the network, maintains topology information, and
 monitors the network status. The controller performs all the control and management functions.
The information of host locations and external paths are also managed by the controller.

8

130 Software Defined Mobile Networks (SDMN)

Itsends configuration messages to all switches to set the entire path. The port for the flow to be
forwarded to or other actions like dropping packets is defined by the OpenFlow controller [2].

SDN paradigm provides not only facilitation of network evolution via centralized control
and simplified algorithms and programmability by enabling deployment of third‐party
 applications but also elimination of middleboxes and rapid depreciation of network devices [3].
Since the underlying network infrastructure is isolated from the applications being executed via
an open interface on the network devices, they are transformed into uncomplicated packet for-
warding devices [1]. Therefore, the controller‐related aspects of the software defined network
are paramount for addressing the emerging intricacies of SDN‐based systems.

Likewise the wired networks, current mobile networks1 suffer from complex control plane
protocols, difficulties in deployment of new technologies, vendor‐specific configuration
 interfaces, and inflexible and expensive equipment [4]. Although the demand of smart wireless
devices has experienced a quantum leap and the mobile data explosion is challenging the
 mobile networks, the mobile network infrastructure is not adapting to these conditions in a
sufficient and flexible manner [5]. In that regard, the concept of SDMN is expected to be
instrumental and alter the network architecture of the current LTE (3GPP) networks and,
accordingly, of emerging mobile systems drastically [6]. Although SDMN paradigm will
 facilitate new degrees of freedom for traffic, resource, and mobility management, it will also
bring forth profound issues such as security, system complexity, and scalability. The controller
placement‐related challenges also emerge as critical factors on the feasibility of SDMN.

In this chapter, we discuss important aspects of the Controller Placement Problem (CPP) in
SDMN. First, we briefly introduce the SDN controller concept and describe the problem.
Second, we discuss the characteristics of SMDN contrasted with wired networks and optimiza-
tion parameters/metrics of CPP in SDMN. Then we present available solution methodologies
and analyze relevant algorithms in terms of performance metrics. Finally, we conclude with
some research directions and open problems for CPP in SDMN context.

8.2 SDN and Mobile Networks

The current 3GPP LTE standard defines cellular 4G networks and is updated regularly as
releases with a perspective of 5G networks. The mobile network is separated into two
strata with current LTE architecture: a packet‐only data plane and a management plane to
manage mobility, policies, and charging rules. Data plane consists of base stations (eNo-
deB), Serving Gateways (S‐GW), and Packet Data Network Gateway (P‐GW). Mobility
Management Entity (MME), Policy Charging and Rules Function (PCRF), and Home
Subscriber Server (HSS) constitute the management plane [7]. In LTE technology, the net-
work mechanisms execute in a manner as shown in Figure 8.1. The S‐GW serves as a local
mobility anchor that enables seamless communication when the user moves from one base
station to another. It tunnels traffic to the P‐GW. It enforces quality of service (QoS) pol-
icies and monitors traffic to perform billing. The P‐GW also connects to the Internet and
other cellular data networks and acts as a firewall that blocks unwanted traffic. The policies
at the P‐GW can be very fine grained based on various parameters such as roaming status
of the user, properties of the user equipment, usage caps in the service contract, and
parental controls [4].

1 In this work, we refer to infrastructure‐based mobile networks when we use “mobile networks” term.

The Controller Placement Problem in Software Defined Mobile Networks (SDMN) 131

Although this mobile communication architecture yields to easier management, it still has several
limitations. Centralizing data plane functions such as monitoring and QoS functionality at P-GW
node introduces scalability challenges due to pecuniary reasons. In that regard, applying SDN
 principle leads to a flattening of the data plane by simplifying its elements into pure forwarding
 elements and exporting the control plane intelligence to a remote controller node. This change
makes possible to create cheaper equipments and reduces the scalability pressure on P‐GW [4].
Additionally, SDN principles are expected to provide flexibility, openness, and programmability to
the mobile networks. By means of this approach, mobile network operators can innovate inside
their domain more easily with less dependence on UE vendors and service providers [6].

From the perspective of SDN and mobile networks, there are two possible paths for SDN
integration to current mobile networks:

 • Evolutionary: This is a more probable scenario since there is a huge installed base of mobile
networks, and they are envisaged to evolve rather than being completely replaced to meet
the requirements of 5G networks. Network virtualization and content‐centric operation are
expected to be more intrinsic for future networks. This trend is also rendering SDN principles
more favorable. The SDN integration is going to be intertwined with these changes.

 • Clean‐slate approach: Clean‐slate design and greenfield deployments provide more degrees of
freedom since they are not subject to constraints posed by incumbent systems. However, they
are more costly and difficult to implement. Although the design and specification of mobile
networks according to SDN paradigm poses substantial issues such as security, scalability,
and performance, it is more challenging in practical terms than those theoretical aspects.

The main enabler construct for realizing SMDN is a distributed layer of sensors and actuators
embedded in mobile network tiers for enabling centralized control and intelligence migration

UE 1

UE 2

UE 3

UE 4 eNB3

eNB2

eNB1
MME

S-GW 1

S-GW 2

Core networkRadio access
 network

P-GW

Other
ASs

Figure 8.1 Existing LTE architecture (Adapted from Ref. 4).

132 Software Defined Mobile Networks (SDMN)

to the controllers. Li et al. [4] describe a cellular SDN architecture and posit four main
 extensions to enable SDN principles in cellular networks, namely, policy support, agent‐based
operation, flexible data plane functionality, and control of virtualized wireless resources.

An SDN forwarding device contains one or more flow tables consisting of flow entries,
each of which determines how a packet performs [1], and the controller updates these flow
tables and instructs the switches as to what actions they should take via a programmatic
 interface called southbound interface [8]. Since the control is centralized and applications are
written as if the network is a single system, policy enforcement and management tasks are sim-
plified [9]. The outcome of the completed experiments in Ref. [10] shows that a single
controller has capability to manage excessive number of new flow requests in an unexpected
manner. However, in a large‐scale mobile network deployment, the centralized approach has
some limitations related to the interaction of control and forwarding elements, response time,
scalability, infrastructure support, and availability. Typically, large amount of network flows
originating from all infrastructure nodes cannot be handled by a single controller because of
the limited resource capacity. Another work by Voellmy and Wang promotes this claim and
shows that multiple controllers ensure high fault‐tolerant networks with reduced latency [11].
Therefore, one must clarify four fundamental issues for SDMN context [12]:

1. How many controllers are needed?
2. Where in topology should they go?
3. How should they interact?
4. How will the mobile network evolution toward SDN be reflected in this problem? This

effect can be on a multitude of aspects such as standardization, problem formulation, or
solution methodologies.

The answers of these essential questions depend on the network topology among other
user‐imposed requirements. From the latency perspective, a single controller would be mostly
adequate. On the other hand, fault tolerance and scalability concerns impel researchers to
 consider using multiple controllers in networks [12].

Moreover, the architecture of mobile networks and its provisioning is a challenging and
complex task due to kaleidoscopic information about the network’s topology [13]. Dynamically
changing topology is an inherent characteristic of mobile networks. Thus, the deployment of
multiple controllers requires being in harmony with related “on‐the‐fly” network units.
Nevertheless, the controllers should perform synchronously to maintain a consistent view of
the network [14]. If redundant controller(s) is integrated into the system, additional communi-
cation overhead will occur. Thus, the location of controllers should be optimal. Lastly, mobile
network traffic can fluctuate over time; controller placement scheme should regard dynamic
rearrangement of the number and the location of controllers [9].

8.3 Performance Objectives for SDMN Controller Placement

In this section, we will examine various controller requirements that affect the network state
and algorithm efficiency. It is harder for fully distributed control planes to fail compared to
centralized planes. However, for controller placement, there is a trade‐off among performance
objectives of the placement algorithm. Some algorithms could place controllers to maximize

The Controller Placement Problem in Software Defined Mobile Networks (SDMN) 133

fault tolerance, or some could minimize the propagation delay or distance to the nth closest
controller [12]. The general performance objectives for control placement and their related
effects on the network can be seen in Table 8.1. To minimize the delay of network‐based
 services, scalability and latency are considered. For scalability, service delay may be traded,
while latency minimization directly benefits service delay. For utilization of the network, the
effects of the scalability, reliability, and latency are taken into account. Fault tolerance is
directly affected by reliability and resilience objectives.

8.3.1 Scalability

For networks with more than one controller, a controller may become overloaded if the switches
mapped to this controller have large number of flows. However, the remaining controllers may
operate underutilized. It is instrumental to shift load across controllers over time depending on
the temporal and spatial variation in traffic conditions. Static controller assignment can result
in suboptimal performance since no switch will be mapped into a less loaded controller. The
replacement of the controller can help to improve performance of overprovisioned controllers.
Instead of using static mapping, elastic controller architecture can be used to map controller to
balance the load as it reflects performance.

8.3.2 Reliability

According to IEEE, reliability is defined as “the probability that a system will perform its
intended functions without failure, within design parameters, under specific operating
 conditions, and for a specific period of time” [15]. If the connection between controller and
the forwarding planes is broken because of the network failures, some switches will be left
without any controller and thus will be disabled in SDN‐based networks. Network availability
should be ensured to assure the reliability of SDN. Therefore, improving reliability is
 important to prevent disconnection between controller and the switch or between controllers.
To reflect the reliability of the SDN controller and to find the most reliable controller
placement for SDN, a metric can be defined as the expected percentage of the valid control
paths when network failures happen [12]. A control path is defined as the route set between
switches and their controllers and between controllers. Consistency of the network should
also be ensured when multiple controllers are in the network.

Each control path uses existing connection between switches. If control path is represented
as a logical link, SDN control network is responsible to enable a healthy communication

Table 8.1 Performance objectives and their effects on networks

Scalability Reliability Latency Resilience

Fault tolerance

Service delay

Utilization

134 Software Defined Mobile Networks (SDMN)

 between switches and their controllers, which is a requirement for control paths to be valid.
The failure of control paths, which means the connection is broken between switch and its
controller or among controllers, results in the case where control network will lose its
 functionality. If the number of the control paths is too large, forwarding service may fail,
which causes severe problems. So to define a controller placement algorithm, reliability must
be considered as a placement metric. To formulate reliability better, various statistical and
empirical approached are possible [12].

The optimization target to define a reliable network is to minimize the expected percentage of
control path loss. To maximize reliability of SDN, several placement algorithms are developed
to automate controller placement decision that work in a reliability‐aware manner [10]. These
 algorithms are described in Section 4.1.

8.3.3 Latency

Latency is simply “the delay between the time the data is sent from its origin and received at
its destination” [16] and a critical QoS metric for communication networks. It is more
 important for multimedia communications since that kind of traffic is delay sensitive. For
 instance, one of the envisaged requirements of 5G networks is to have a delay smaller than
1 ms, which implies an order of reduction compared to 4G networks. For large‐scale networks,
single controller deployment is typically not sufficient to reach adequate performance due to
various factors. However, when the network has several controllers, a new matter of conten-
tion emerges. Since several controllers maintain the control logic of the network, these
 controllers need to communicate with each other to maintain network consistency. The latency
between controllers has to be considered, especially if controller communication traffic is
 frequent [17]. The latency in that setting comprises of processing, transmission, and
 propagation latencies.

Even though latency between controllers is considered during placement, the reaction of the
remote controller and the time to pass for delivering the reaction to a switch bound the overall
network performance. It can be called as propagation latency, which should be at reasonable
levels for speed and stability. It is enough for propagation delay to become infeasible for real‐
time tasks or slow down unacceptably even for small delay. Adding some intelligence to
switches can reduce these delays. However, this method adds complexity to the system, and it
is against the idea that SDN uses a simple and dump switch model.

Controller placement algorithms are developed to minimize latencies or maximize some
latency‐based parameters, which are defined as:

 • Average‐case latency: If the network is simplified as a network graph, the connections
 between components represent edges. The weight of the edge represents propagation
latency. The average propagation latency L

avg
 for a placement of controllers is average of

minimum propagation latencies on each edge. d(v, s) is the shortest path from node v ∈ V to
node s ∈ V:

 L S
n

d v s
v V

s Savg ,() min ()′ =
∈

∈ ′∑1

The Controller Placement Problem in Software Defined Mobile Networks (SDMN) 135

 • Worst‐case latency: This value is defined as the maximum propagation delay from node to
controller:

 L S d v s
v V s Swc ,() maxmin ()
() ()

′ =
∈ ∈ ′

 • Nodes within a latency bound: Instead of minimizing the average or worst case, it might be
better to place controllers in a way that it maximizes the number of nodes within a latency
bound. This approach is called as maximum cover. For most topologies, adding controllers
yields slightly less than proportional reduction [12].

8.3.4 Resilience

A good controller placement should minimize latencies between nodes and controllers or
among controllers. However, minimizing latency is not always sufficient. According to Ref.
[17], the placement of the controller should also meet some resilience constraints. These con-
straints are defined in this section.

8.3.4.1 Controller Failures

Using more than one controller not only decreases latencies but also increases tolerance of the
network to failures in case the controllers stop working. In a related work [18], it is assumed
that a node is not able to route anymore and becomes practically off if it loses its connection
to the controller. However, Hock et al. [17] suppose that in case a controller is out of order, all
the switches assigned to the failed controller can be reassigned to the second closest controller
by using a backup assignment or signaling‐based shortest path routing. Until the last controller
survives, all nodes are functional in this way. Although resilience is considered, this solution
will probably increase the latency of the reassigned nodes and their new controller. The new
controller may be much further away compared to the previous one. This situation would
result in higher latency. The described failure scenario is an example of the worst case, since
the last surviving controller is located furthest from the center of the network such that some
of the nodes need to pass through the whole network to reach the controller. However, a
placement algorithm to increase resilience should also consider this worst‐case scenario
 during failure‐free routing.

8.3.4.2 Network Disruption

In a network, not only controller failures occur. Network components, links, and nodes may
also suffer damage, which is more important to consider because the topology itself is changed.
Because of link failures, paths between some nodes are severed. This situation causes nodes
to be assigned to some other controllers even though latencies may increase. Additionally,
some parts of the network may be in danger because of these link failures, and many nodes
cannot be assigned to any controller. Although these nodes may be working and are able
to perform forwarding operations, they cannot get control messages from any controller.

136 Software Defined Mobile Networks (SDMN)

Link failures prevent rerouting of nodes even if they are physically connected, since path will
no longer be available.

8.3.4.3 Load Imbalance

If the nodes are assigned to the nearest controller using latency as a metric or shortest path
distance between the node and controller, there may be situations when some controllers are
 overloaded due to excessive traffic flow. There can be an imbalance in the number of nodes
per controller in the network. Typically, the higher the number of nodes attached to a controller,
the greater the load on that controller. The increase in number of node‐to‐controller requests
in the network induces additional delay due to queuing at the controller system. Resilience for
controller placement requires nodes of different controllers to be well-balanced.

8.3.4.4 Intercontroller Latency

Since single controller is not sufficient to ensure resilience in a network, if any two controllers
are far away from each other, the messages from one to the other need to pass through the
entire network, which increases intercontroller latency.

8.4 CPP

The controller placement strategies affect every aspect of SDN, from node‐to‐controller
latencies to network availability and from operational costs to performance. In addition, the
peculiarities of SMDN such as mobility compared to wired networks complicate the problem
structure. Optimizing every variable in this problem is NP hard, so it is very important to find
an efficient controller placement algorithm [19]. Heller et al. concluded that finding optimal
solution is computationally feasible but within failure‐free scenarios in [12]. They took into
consideration just latency requirements like average‐case latency and worst‐case latency, and
reasonably, they presented that in most topologies, one single controller is enough to fulfill the
existing latency requirements. If we broaden our viewpoint to CPP with various goals, which
include reliability, network resilience, fault tolerance, or load balancing, many more controllers
communicating with each other are necessary to meet these resilience requirements [17].

In Figure 8.2, we depict various factors or parameters in CPP setting. The fundamental
factors determining the solution space are the location and number of controllers and their
 communication requirements. Moreover, the SDN controllers may be of different characteris-
tics entailing processing capability, supported communication primitives, and intelligence. This
condition implies nonidentical controllers leading to heterogeneity. The network characteristics
also affect the problem structure drastically. For our focus in this chapter, this phenomenon is
paramount since mobile networks exhibit peculiar inherent characteristics due to mobility,
wireless transmission, and dynamic network structure. For any algorithm or scheme for CPP,
there are practical constraints such as complexity. Although these factors are assumed to be
operative for relatively asynchronous execution of controller, CPP algorithm may need to be
more active and executed frequently when network function virtualization becomes more
common.

The Controller Placement Problem in Software Defined Mobile Networks (SDMN) 137

Since a single controller cannot handle large amount of flows within the network with
desired performance capabilities due to capacity limitation, multiple controllers are employed
for better network management. However, one must specify the number of controllers to use
and the locations of them in the network architecture [19]. While trying to find these important
questions’ answers, the main objective should be not only to minimize the latencies between
nodes and controller but also to maximize resilience by fulfilling certain constraints.

8.4.1 Placement of Controllers

The separation of forwarding and control planes allows forwarding plane to be simple with the
controller plane entailing and managing the network intelligence. However, this separation can
impair system performance, e.g. reduce reliability of the communication. Thus, in network
design, placement of controller(s) should be considered in a way that it achieves both reliability
and performance.

8.4.1.1 Single Controller Placement

In single controller placement (SCP), the aim is to place a single controller according to some
predefined objective. A very common objective is to assure a high level of resilience ‘i.e. to
protect the controller from being disconnected from nodes. This is important due to the fact
that the first requirement for successful operation of a controller is to keep it capable of com-
municating with its peers in the network.

Fundamental

CPP

Heterogeneity

Network
characteristics

Location

Communication

Number of
controllers

Algorithmic constraints

Practicality Complexity

P
erform

ance
objectives

Figure 8.2 CPP parameters and performance objectives.

138 Software Defined Mobile Networks (SDMN)

In Algorithm 8.1 (optimal placement), all possible locations are scanned to find one node,
which maximizes the resiliency of the network. Assume there is a switch A in the network.
The switch is protected if and only if a switch B is not downstream of A and there is a link
between A and B, which is not a part of the controller routing. For evaluating the protection
status of switch u, the existence of the link, which satisfies the condition, is picked. The
 algorithm’s final step is to find a location for controller, which minimizes the probability that
when there is a failure in the network, a node is disconnected from a controller [20].

When the network size is large so that searching among all locations is not practical, a heu-
ristic method is required. Algorithm 8.2 is a heuristic method that selects the node with the
largest number of directly connected nodes. D′(v) denotes the number of the protected neigh-
bors of the node. The algorithm continues until it finds a node with the maximum number of
protected neighbors [20].

Algorithm 8.1 Controller Placement: Optimal Algorithm

procedure Optimal Placement (T)
 for each node v ∈ V do
 T = controller routing tree rooted at v
 Γ(T) = The weight of a routing tree to be the sum
of the weights of all its unprotected nodes

 for each node u ≠ v do
 W = 0
 if u is not protected then
 W = number of downstream nodes of u in T
 end if
 Γ(T) = Γ(T) + W
 end for
 controller location = node v with minimum Γ(T)
 end for

Algorithm 8.2 Controller Placement: Greedy Algorithm

procedure Greedy Placement ()
 Sort nodes in V such that D(v(1)) ≥ D(v(2)) ≥
D(v(n))

 controller location = v(1)
 for i = 1 to n do
 A=set of neighbors of node v(i)
 D′(v(i))=number of members of A that are
connected to other

The Controller Placement Problem in Software Defined Mobile Networks (SDMN) 139

In previous two algorithms, no controller routing is considered. Any arbitrary routing tree
can be chosen to maximize the protection of the network against component failures or opti-
mizing performance. Since finding a routing that maximizes the protection of the network for
any controller location is an NP‐hard problem, algorithms can be used to find a suboptimal
solution. Algorithm 8.3 is a resilience‐improved routing scheme. The algorithm starts with a
shortest path tree and modifies the tree to add to the resilience of the network. Iteration is
continued until no further improvement is possible that increases the resiliency [20]. From all
these three algorithms, Greedy Routing Tree algorithm performs better than the two other
according to Ref. [20].

Algorithm 8.3 Greedy Routing Tree (GRT) Algorithm

procedure Routing Greedy (G, controller loc)
 T = shortest‐path tree
 i = 1
 repeat
 for nodes v with d(v,
controller) == i do

 if v is the only node
with d(v,controller)==i then

 next;
 end if
 for every node u ∈ V \
{downstream nodes of v} and

 (v, u)∈ E and (v, u)∉ T
do

 if d(u,
controller) ≤ d(v, controller) then

T′(u) = tree built by replacing (v,

 members, either directly or through one hop
other

 than the controller.
 if D′(v(i)) > D′(controller location) then
 controller location = v(i)
 end if
 if (D′(v(i)) == D(v(i)) then
 break;
 end if
 end for

140 Software Defined Mobile Networks (SDMN)

8.4.1.2 Multiple Controller Placement

As the size of the network increases, using a single controller reduces the reliability and
degrades the performance of the network. Therefore, multiple controllers are employed for
better network availability and management. The CPP for this setting is denoted as multiple
controller placement (MCP). As in SCP, in case of deploying multiple controllers, consistency
of the network state must be achieved in the communication between controllers. The answer
to where to place controllers depends on the metric choices and network topology itself. To
place the multiple controllers efficiently, the CPP should have a near‐optimal solution once
the optimal solution is unattainable.

Graph‐Theoretic MCP Problem Formulation
The CPP is inherently suitable for graph‐theoretic modeling since it addresses a node selection
problem in network graph. If we define the network as a graph (V, E), V is the set of nodes and
E ⊆ V × V is the set of links. Let n be the number of nodes n = ∣V∣. Network nodes and links are
typically assumed to fail independently:

 • p is the failure probability for each physical component l ∈ V ∪ E.
 • path

st
 is the shortest path from s to t, given that s and t are any two nodes.

 • V
c
 ⊆ V is the set of candidate location where controllers can be placed.

 • M
c
 ⊆ V denotes the set of controllers to be placed in the network.

 • M and P(M) denote the number and a possible topological placement of these controllers,
respectively.

To reduce propagation delay, each switch is connected to its nearest controller using the
 shortest path algorithm. If several shortest paths exist, the most reliable one is picked. A good
placement should maximize the existing connectivity among the switches. All controllers can
be connected to all switches forming a mesh. However, this will increase the complexity and
the deployment cost. It will decrease the scalability of the network since the network size
grows as switches spread across the geographic locations. To maximize network resilience
and connectivity, to increase scalability, and to decrease probability of failure, controllers
should be placed accordingly, which is an optimization problem [18].

In the following part, we describe and discuss some MCP algorithms studied in literature.

 upstream node of v in
T) by (v,u)

 if (T′) < Γ(T) then
 replace T by T′
 end if
 end if
 end for
 end for
 i = i + 1
 until all nodes checked

The Controller Placement Problem in Software Defined Mobile Networks (SDMN) 141

Random Placement
Although this is usually not a practical algorithm, it is typically used as a baseline case for
performance evaluation. In random placement algorithm, each candidate location may have a
uniform probability of hosting a controller. In that case, RP algorithm randomly chooses k
locations among all potential sites, where k = 1 for single controller. Another option is to
 utilize a biased probability distribution, which reflects a preference among potential controller
locations. This scheme is instrumental to concentrate controller deployments to specific
 network segments.

Greedy Algorithms
Greedy algorithms adopt the locally optimal solution at each stage of the algorithm’s run.
Although a greedy algorithm does not necessarily produce an optimal solution, it may
yield locally optimal solutions that approximate a global optimal one in a reasonable
amount of time.

The MCP problem naturally lends itself to greedy approaches since controllers can be placed
one by one during the solution. Hu et al. [19] describe l‐w‐greedy algorithm (Algorithm 8.4)
where controllers are placed iteratively in a greedy way. k controllers are needed to be replaced
among ∣V∣ potential locations. A list of potential locations is generated, which are then
ranked increasingly according to failure probabilities of switches. One location at a time is
selected from w∣V∣(0 < w ≤ 1). For first iteration l = 0, the algorithm computes the cost associated
with each candidate location under the assumption that connections from all switches converge
at that location. Location with the highest value is picked. In the second iteration, the algorithm

Algorithm 8.4 l‐w‐Greedy Controller Placement Algorithm [19]

procedure l-w-greedy Controller Placement
 Sort potential location V

c
 in descending order of node

failure properties, the
 first w∣Vc∣elements of which is denoted as array L

c

 if k ≤ 1 then
 Choose among all sets M′ from L

c
 with ∣M′∣ = k the set

M" with maximum ∂
 return set M"
 end if
 Set M′ to be the most reliable placement of size l
 while ∣M′∣ ≤ k do
 Among all set X of 1 element in M′ and among all
set Y of l + 1 elements

 in L
c
 − M′ + X, choose sets X, Y with maximum ∂

 M′ = M′ + Y − X
 end while
return set M′

142 Software Defined Mobile Networks (SDMN)

searches for a second controller with the highest cost from candidate locations. The algorithm
is iterated until all k controllers have been chosen and placed.

For l > 0, after l controllers have placed, the algorithm allows for l steps backtracking in
each subsequent iteration. All possible combinations are checked of removing l of already
placed controllers and replacing them with l + 1 new controllers [21].

Metaheuristics
A metaheuristic is a higher‐level heuristic designed to find, generate, or determine a lower‐
level heuristic that may provide a suboptimal, albeit sufficiently good, solution to an optimi-
zation problem. They are typically utilized when the optimization problem is too complex for
the computational resources or incomplete or imperfect information is available. Some
 examples are tabu search, evolutionary computation, genetic algorithms, and particle swarm
optimization.

Hu et al. [21] investigate various CPP algorithms including simulated annealing (SA)
 metaheuristic. SA is a probabilistic method for global minimum of a cost function that may
 possess several local minima [22]. Although SA is a known technique for global optimization
problems, the key of effective usage is optimizing the configuration of the algorithm. It is
 important to reduce the search space and converge to the vicinity of optimal placement rapidly.

For the MCP problem, SA can be devised as follows:

1. Initial state: Place k controllers at the k most reliable locations.
2. Initial temperature: To make any neighbor solution to be acceptable, the initial temperature

T
0
 should be a large value. P

0
 is acceptance probability in the first k iterations.

Δ
0
 is the cost difference between the best and the worst solutions obtained in Y executions

of the random placement. T
0
 can be computed by −∣Δ

0
∣/lnP

0
.

3. Neighborhood structure: P(M) denotes a possible placement of k controllers. x
c
 controller

location of P(M). x
k
 location of (V − P(M)). The best exchange x

k
 in (V − P(M)) is defined

such that Δ
ck

 = min
j
 ∈ (V − P(M))Δ

cj
 where Δ

ij
 is the reduction in the objective function that

is obtained when x
i
 ∈ (V − P(M)). The cycle of the algorithm is completed when all x

c
s in

P(M) are examined.
4. Temperature function: The temperature decreases exponentially. That is, T

new =
 αT

old
 [21].

Brute Force
With a brute‐force approach, all possible combinations of k controllers in every potential
 location are calculated. Then, the combination with the best cost is picked. This approach is
exhaustive and optimal result is obtained after an extremely long execution time even for small
networks. Feasible solution can be found by the brute‐force algorithm, but it is infeasible to run
a brute force to completion, which can take weeks to complete for large topologies [9].

Experimental Results
Figure 8.3 shows the cumulative distribution (CDF) of the relative performance of the
 algorithms on the Internet2 OS3E (Open Science, Scholarship and Services Exchange)
topology according to Ref. [21]. The result of the algorithm comparison is 2‐1‐greedy and
1‐1‐greedy, and SA performs the best. SA performs better than 2‐1‐greedy, which finds better
placement than 1‐1‐greedy. The random placement has the worst performance as expected.

The Controller Placement Problem in Software Defined Mobile Networks (SDMN) 143

8.4.2 Number of Required Controllers

If the employed controllers are located efficiently but without a predetermined number, one
should also find the answer of the following challenging question: how many controllers
should we use in order to meet our objectives? Apparently, the answer is a variable according
to trade‐off considerations between related objectives/metrics. Heller et al. [12] studied to get
a result from just latency point of view. Figure 8.4 shows that although the effect of controller
numbers varies from average‐case latency to worst‐case latency, increasing controller numbers
implies a proportionally reduction in both. Hu et al. approach the problem from a different
viewpoint and focuses on reliability as the main concern [21]. The results of their experiments
showed that the optimizations on different topologies provide very similar results. Using too
few (even a single) controllers reduced reliability expectedly. However, the results also show
that after a certain controller proportion in the network, additional controllers and expected
path loss is inversely correlated because if large numbers of controllers are employed redun-
dantly, too many controller paths between controllers cause low reliability.

According to Hock et al. [17], if one considers fulfilling more resilience constraints, which
are addressed in Section 8.3.4, he must locate the controllers in a controller‐failure and
 network‐disruption tolerated way. Thus, there must be no controller‐less node in the net-
work, and “a node is considered controller-less if it is still working and part of a working
subtopology (consisting of at least one more node), but cannot reach any controller. Nodes
that are still working, but cut off without any working neighbors, are not considered to be
controller‐less.” as defined in Ref. [17]. Therefore, number of controllers should be increased

1.0

0.8

0.6

0.4

0.2

0.0
1.00 1.05 1.10 1.15 1.20

Relative performance

C
D

F
 (

%
)

0-1-greedy

0-0.8-greedy

1-1-greedy

1-0.8-greedy

2-1-greedy

2-0.8-greedy

SA

Random

Figure 8.3 The CDF of relative performance of the placement algorithms on OS3E topology [21].

144 Software Defined Mobile Networks (SDMN)

until there is no controller‐less node. It can be deduced from the definition that if a node has
at most two neighbors, one of them should be controller node to be not controller‐less when
both neighbors fail. (They limit defects to the case of two simultaneous failures in that work.
Because if more than two arbitrary failures happen concurrently, the topology can be
 completely disrupted and no controller placement would help it anymore.) The experiment
results show that on Internet2 OS3E topology, the number of controller‐less nodes decreases
with increasing number of controllers (k) and it is possible to eliminate all controller‐less
nodes in all one and two failure scenarios with a number of seven controllers.

So to calculate the number of required controllers, the network must be divided into virtual
subtopologies consisting of at least two nodes that can be totally cut off from the remaining
part of the entire network by at most two link/node failures, and one of the internal nodes must
be controller node [17]. Then, we can find the number of necessary controllers in two phases:

1. Find all possible subtopologies of at least two nodes, which do not include any smaller
subtopology in itself. Since all found subtopologies need a separate controller, the
maximum count of necessary controllers is 8 in Figure 8.5.

2. Since it is aimed to use a minimum number of controllers covering all subtopologies, try to
minimize the number, which is found in (1). There are three intersected subtopologies in
the network as shown at the upper right‐hand corner of Figure 8.5. Two controllers are
sufficient to manage these three subnetworks. Thus, the minimum required controller
number is 7.

There are 34 nodes in Figure 8.5, so there are (34/7) = 5.4 million possible placements with
seven controllers, but there are two possible controller nodes for each subtopology, and
three possibilities for intersected subtopologies reduce possible controller placements to
25 × 3 = 96. However, the best placement of these 96 possibilities in terms of maximum
overall node‐to‐controller latencies is colored by red and the magnitude is 44.9% of diameter

1

0.8

0.6

0.4

0.2

0
2 4 6 8 10 12

Number of controller

Average latency

Worst-case latency
C

os
t/b

en
ef

it
ra

tio
 fo

r
op

tim
iz

ed
 la

te
nc

ie
s

Figure 8.4 Cost/benefit ratio: a value of 1.0 indicates proportional reduction, where k controllers
reduce latency to 1/k of the original single controller latency [12].

The Controller Placement Problem in Software Defined Mobile Networks (SDMN) 145

of the network, which is shown 22.5% in [12] regardless of any resilience constraint. That
indicates that there is a trade‐off between resilience constraints and latencies [21]. When
optimizing for average latency in OS3E topology, the best placement for a single controller
also provides the optimal reliability. However, if the network uses more controllers,
 optimizing for latencies reduces reliability by ~13.7%; in a similar vein, optimizing
 reliability increases the latencies, but it is possible to find an equilibrium point where it pro-
vides latency and reliability constraints [12].

8.4.3 CPP and Mobile Networks

The ramifications of mobile networks on CPP are depicted in Figure 8.6. For mobile networks,
resilience is a critical issue considering the multitiered structure especially for heterogeneous
wireless networks. Moreover, load variance is much larger, which affects the processing and
response times of the controller. The load variance and characteristics of mobile networks are
required to be integrated into these problem definitions. The practicality of the algorithm
needs to be considered considering the information and protocol data exchange of mobile
 network specs.

The complexity factor has two aspects: offline corresponding to the complexity of the
algorithm execution versus online corresponding to the complexity of the controller
 signaling and operation in the mobile network. Moreover, the complexity is higher due to
the diversity of network nodes and mobile end devices. This is also reflected in the
 heterogeneity‐related challenges caused by multiple network tiers and network function
 virtualization in the system.

2 possibilities

Large subtopology protected by controller in smaller one

2

2

2 2

3 possibilities to cover these
3 subtopologies with 2 controllers

Figure 8.5 Subtopologies needing a controller to eliminate controller‐less nodes [17]. There are
25 × 3 = 96 potential placements in total.

146 Software Defined Mobile Networks (SDMN)

The mobility attribute of mobile networks results in a dynamic topology and potential
 network disruptions in addition to load variance. This challenge needs to be addressed via
adaptive and dynamic controller provisioning in the network. It complicates the problem
structure with spatiotemporal changes in system parameters used in placement algorithms.

8.5 Conclusion

Current mobile networks suffer from complex control plane protocols, difficulties in deployment
of new technologies, vendor‐specific configuration interfaces, and expensive equipment.
However, the wireless applications and services have become indispensable with the ever‐
increasing traffic volumes and bit rates. Therefore, mobile network infrastructure is supposed
to adapt and evolve to address this stringent level of requirements in a sufficient and flexible
manner. In that regard, the concept of SDMN is expected to be instrumental and emerge as an
integral part of future mobile networks. Although SDN paradigm will facilitate new degrees of
freedom in mobile networks, it will also bring forth profound issues related to mobile network
characteristics. In that regard, the centralized controller and how to place it is a key issue for
SDMN design and operation. Therefore, the controller placement‐related challenges emerge as
critical elements for the feasibility of SDMN. For practical SDMN, the controller placement
algorithms have to be devised, which considers scalability, complexity, mobile network charac-
teristics, and compatibility with generic SDN systems.

Design factors

Complexity
• Offline (the complexity of the algorithm execution)
• Online (the complexity of the controller signaling
and operation)

• Is the algorithm feasible considering the
ínformation and protocol data exchange of mobile
network specs?
• Compatibility requirements

• Mobility
• Dynamic topology
• Network disruptions

• Multiple network tiers
• Network function virtualization
• RAN characteristics
• Diverse network nodes

Practicality

Network
characteristics

Heterogeneity

Ramifications on CPP

Figure 8.6 Ramifications on CPP due to mobile network domain.

The Controller Placement Problem in Software Defined Mobile Networks (SDMN) 147

References

 [1] Mendonca, M., Nunes, B. A. A., Nguyen, X., Obraczka, K., and Turletti, T. (2014) A Survey of Software‐
Defined Networking: Past, Present, and Future of Programmable Networks. IEEE Communications Surveys and
Tutorials, vol. 99, pp. 1–18.

 [2] Fernandez, M.P. (2013) Comparing OpenFlow Controller Paradigms Scalability: Reactive and Proactive. IEEE
27th International Conference on Advanced Information Networking and Applications (AINA), pp.
1009–1016.

 [3] Limoncelli, T. A. (2012) Openflow: A Radical New Idea in Networking. Communications of the ACM, vol. 55
no. 8: 42–4.

 [4] Li, E., Mao, Z. M., and Rexford, J. (2012) Towards Software Defined Cellular Networks. Software Defined
Networking (EWSDN), European Workshop 2012, Darmstadt, Germany.

 [5] Cisco Visual Networking Index (VNI): Global Mobile Data Traffic Forecast, 2013–2018 Report. http://www.
cisco.com/c/en/us/solutions/collateral/service‐provider/visual‐networking‐index‐vni/white_paper_c11‐520862.
html. Accessed January 21, 2015.

 [6] Pentikousis, K., Wang, Y., and Hu, W. (2013) MobileFlow: Toward Software‐Defined Mobile Networks. IEEE
Communications Magazine, vol. 51, no. 7, 44–53.

 [7] Mahmoodi, T. and Seetharaman, S. (2014) On Using a SDN‐Based Control Plane in 5G Mobile Networks.
Wireless World Research Forum, meeting 32, Marrakech, Morocco.

 [8] Ashton, M. and Associates (2013). Ten Things to Look for in an SDN Controller. https://www.necam.com/
Docs/?id=23865bd4‐f10a‐49f7‐b6be‐a17c61ad6fff. Accessed January 21, 2015.

 [9] Bari, M. F., Roy, A. R., Chowdhury, S. R., Zhang, Q., Zhani, M. F., Ahmed, R., and Boutaba, R. (2013) Dynamic
Controller Provisioning in Software Defined Networks, Network and Service Management (CNSM), 2013 9th
International Conference on, 18–25, Zürich,Switzerland.

[10] Tootoonchian, A., Gorbunov, S., Ganjali, Y., Casado, M., and Sherwood, R. (2012) On Controller Performance
in Software‐Defined Networks. In USENIX Workshop on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services (Hot–ICE), vol. 54.

[11] Voellmy, A. and Wang, J. (2012) Scalable Software Defined Network Controllers. Proceedings of the ACM
SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer com-
munication, SIGCOMM’12, pp. 289–290, New York, NY, USA.

[12] Heller, B., Sherwood, R., and McKeown, N. (2012) The Controller Placement Problem. ACM HotSDN 2012,
pp. 7–12.

[13] Mülec, G., Vasiu, R., and Frigura‐Iliasa, F. (2013) Distributed Flow Controller for Mobile Ad‐Hoc Networks.
8th IEEE International Symposium on Applied Computational Intelligence and Informatics, pp. 143–146.
Timisoara, Romania.

[14] Levin, D., Wundsam, A., Heller, B., Handigol, N., and Feldmann, A. (2012) Logically Centralized?: State
Distribution Trade‐Offs in Software Defined Networks. ACM HotSDN 2012, pp. 1–6.

[15] IEEE. (1999) IEEE standard for communication-based train control (CBTC) performance and functional
requirements. IEEE Std 1474.1-1999, New York, USA.

[16] IEEE. (2005) IEEE standard communication delivery time performance requirements for electric power substa-
tion automation. IEEE Std 1646-2004, New York, USA.

[17] Hock, D., Hartmann, M., Gebert, S., Jarschel, M., Zinner, T., and Tran‐Gia, Phuoc (2013) Pareto-Optimal
Resilient Controller Placement in SDN-based Core Networks. Proceeding of the 25th Int. Teletraffic Congress
(ITC), Shangai, China.

[18] Zhang, Y., Beheshti, N., and Tatipamula, M. (2011) On Resilience of Split‐Architecture Networks. IEEE
GLOBECOM 2011, pp. 1–6.

[19] Hu, Y., Wendong, W., Gong, X., Que, X., and Siduan, C. (2012) On the Placement of Controllers in Software‐Defined
Networks, The Journal of China Universities of Posts and Telecommunications, vol. 19, no. 2, pp. 92–97.

[20] Behesti, N. and Zhang, Y. (2012) Fast Failover for Control Traffic in Software‐Defined Networks. Next Generation
Networking and Internet Symposium. IEEE GLOBECOM 2012, Anaheim, CA, USA, pp. 2665–2670.

[21] Hu, Y., Wendong, W., Gong, X., Que, X., and Shiduan, C. (2013) Reliability-aware Controller Placement for
Software-Defined Networks. IFIP/IEEE International Symposium on Integrated Network Management (IM2013),
Ghent, Belgium.

[22] Bertimas, D. and Tsitsiklis, J. (1993) Simulated Annealing. Statistical Science, vol. 8, no 1, pp. 10–15.

