
Software Defined Mobile Networks (SDMN): Beyond LTE Network Architecture, First Edition.
Edited by Madhusanka Liyanage, Andrei Gurtov, and Mika Ylianttila.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

Load Balancing in Software
Defined Mobile Networks

Ijaz Ahmad,1 Suneth Namal Karunarathna,1 Mika Ylianttila,1 and
Andrei Gurtov2

1 Center for Wireless Communications (CWC), University of Oulu, Oulu, Finland
2 Department of Computer Science, Aalto University, Espoo, Finland

13.1 Introduction

Load balancing is a composition of methods to distribute workload among multiple networks
or network components such as links, processing units, storage devices, and users to achieve
optimality in respect to resource utilization, maximum throughput, and minimum response
time. It also helps to avoid overload and provide quality of service (QoS). In a situation where
multiple resources are available for a particular functionality, load balancing can be used to
maximize network efficiency and increase fairness in network resource usage while keeping a
balance between QoS and resource usage.

Network load balancing started in the form of load balancing hardware, which were
 application neutral and resided outside of the application servers. These network‐based appli-
ances could load balance using simple networking techniques. For example, virtual servers
were used to forward connections to the real server deploying bidirectional network address
translation (NAT) to load balance among multiple servers. A simple load balancing scenario
is shown in Figure 13.1, where virtual servers balance the load among multiple real servers to
ensure high availability and QoS.

Today, load balancing technologies are used mostly in the IP layer and application layer
having layer‐specific load balancing and distribution mechanisms. In this chapter, the basics
of load balancing are introduced with the commonly used load balancing technologies in
legacy wireless networks and state their problems and challenges. Moving forward to SDN,
how SDMN‐based load balancing technologies can solve the challenges existing in the

13

226 Software Defined Mobile Networks (SDMN)

 currently used load balancing technologies in legacy wireless networks is elaborated. Toward
the end of the chapter, future directions and research areas in load balancing in SDMN are
discussed.

13.1.1 Load Balancing in Wireless Networks

In wireless networks, load balancing mechanisms are used to distribute traffic evenly among
cells, nodes, and frequency bands to utilize resources of the network more efficiently. Highly
loaded cells can be off‐loaded to less heavily loaded neighboring cells, traffic on various
 backhaul or core network nodes can be shared among multiple nodes, and bandwidth can be
dynamically shared to ensure QoS to subscribers. Since the aim of next‐generation wireless
networks is to provide high data rate services to mobile users in large coverage areas, bandwidth
is a major consideration for operators to provide efficient services in dense and congested areas.

In order to use the available radio spectrum efficiently and effectively with high QoS,
 operators install small cells that significantly improve coverage and network capacity. These
cells may use different technologies, such as cellular, WLAN, CDMA, or E‐Band, to maintain
the required QoS and quality of experience (QoE) through novel load balancing mechanisms.
Technology convergence is an interesting approach to achieve high availability, fulfill QoS
requirements, offer differentiated services, and provide network redundancy for network
 resilience. These goals of technology convergence can be achieved with the help of novel load
balancing mechanisms for traffic and workload balancing.

Load balancing is a matured research topic that has been investigated for more than a decade
in the context of mobile communications. However, due to vastly differing network
 architectures, intertechnology load balancing is mostly limited to researches because of the
complexity in interoperability.

Hosts Access
technologies

Internet

Load balancing
machine (server)

Servers

Figure 13.1 Load balancing among multiple servers.

Load Balancing in Software Defined Mobile Networks 227

13.1.2 Mobility Load Balancing

In wireless networks, a user has the privilege to move around and still use network services.
A mobile device can start or terminate connections randomly while traversing various cells or
networks. Therefore, it is highly probable that a cell gets load of traffic that is beyond its
 capability with respect to its resources. Hence, mobility load balancing (MLB) is very important
in cellular networks in particular and other wireless networks in general. MLB balances the
load among available cells in certain geographical locations by means of controlling mobility
parameters and configurations including UE measurement thresholds. MLB modifies handover
(HO) regions to redistribute load between neighboring cells. The principle of MLB is adjusting
the HO regions by biasing HO measurements, causing users in a cell edge to migrate from
highly loaded cells to less heavily loaded neighboring cells to improve efficiency of resource
utilization. Since the load redistribution is carried out automatically between neighboring cells,
this MLB is an important feature of Self‐Organizing Networks (SON).

13.1.3 Traffic Steering

Traffic steering is the capability of a network to control and direct voice and data traffic to the best
suitable cell or radio technology within a network. It can be deployed in multiple layers such as
frequency layers or hierarchical layers of cells (macro‐, pico‐, or femtocells) to provide resources to
an end user in a certain geographical area. Traffic steering could optimize the network capacity and
user experience through efficient utilization of the available pool of resources from a multitude of
coexisting networking technologies in the core and edge. Traffic steering can be used to help MLB
in a network. It can also be used to off‐load macrocells toward low‐power cells, HeNB, or Wi‐Fi to
accommodate large part of the traffic demand and minimize eNB power consumption. The primary
challenge for traffic steering is coordinating mobility configurations in multiple overlaid cells.

13.1.4 Load Balancing in Heterogeneous Networks

Today, a typical smartphone can connect to the Internet via several different radio access
 technologies including 3GPP‐standardized and non‐3GPP technologies such as Wi‐Fi (802.11×).
Cellular base stations are getting diverse to satisfy user experience. Macrocells are shrunken to
microcells, and picocells, distributed antennas, and femtocells are added continuously in cellular
networks. Since the currently deployed networks are already dense in terms of nodes or base
station installations, cell splitting is not a viable solution due to high intercell interference and
costly capital expenditures (CAPEXs). Hence, the solution inclines toward overlaid structures
where different varying architectures are overlaid to cowork and cooperate. These heterogeneous
architectures would essentially use separate spectrum and different network architectures and
topologies. With the introduction of heterogeneity from many directions in wireless networks,
load balancing is crucial for the end user experience and overall system performance.

13.1.5 Shortcomings in Current Load Balancing Technologies

Load balancing is a critical requirement in large commercial networks, traditionally achieved
with load balancers, which are expensive and independent entities in most of the cases.
Generally, commercial load balancers sit on the path of incoming requests and then spread

228 Software Defined Mobile Networks (SDMN)

requests over several other servers. Current load balancing algorithms assume that the requests
are entering to the network through a single gate where the load balancer is placed though
there can be several such choke points in a large network. On the other hand, servers and data
centers may dynamically move across the network by means of virtualization introduced with
programmability. Furthermore, different network sections may need totally different load
balancing or optimization techniques to achieve the expected results.

It is clear that the traditional load technologies are not capable of meeting the requirements in
today’s large commercial networks. Thus, a different approach of load balancing is needed where
the functions could come out of the box and deploy on top of traditional network elements to
enable load balancing based on network and server congestion in an intelligent manner. Therefore,
next‐generation load balancers must have the following characteristics: (i) load balancing as a
property of a network over traditional network elements, such as switches and routers; (ii) flexi-
bility in application and service level (load balancing in application and service level that enhance
ability to experiment new algorithms); (iii) dynamicity in terms of the ability to adapt to the
changing conditions of the network where server congestion and route remapping are required;
and (iv) dynamic configuration management to automatically adapt and scale with changes in
network capacity, such as virtual machine (VM) mobility and data center mobility. Thus, load
balancing in modern and future networks needs dynamism, which can be brought about by SDN
through global visibility of the network state and open interfaces for programmability.

Current load balancing methods make a number of assumptions about the services that are
not valid in the current requirements of higher data rates, need of seamless mobility, high
availability, and expected and offered QoS. These assumptions [1] are as follows:

 • Requests enter the network through a single point where load balancing devices can be
placed at a choke point through which all the traffic must pass. This condition might not
work for all networks, and hence, operators end up with congestion while using these expen-
sive devices. In enterprise networks, there can be many choke points such as egress connec-
tions to the WAN, campus backbones, and remote servers.

 • The network and servers are static, which can be true for a data center but not for wireless
networks and enterprise networks. For example, in wireless networks, a base station can get
congested at any time due to user movements, changes in channel conditions, etc. Similarly,
operators of data centers move VMs of virtualized data centers to efficiently use their
servers. With these changes, load balancers need to track changes in the network and move-
ments in data centers to direct requests to the right places.

 • Congestion is at the servers but not in the network, which might be true for data center host-
ing only one service, whereas, in cloud data centers, the network may be congested differ-
ently at different places.

 • The network load is static, and hence, the load balancers spread traffic using static schemes
such as equal‐cost multipath (ECMP) routing. Such load balancing is suboptimal since
some parts of the network might be heavily loaded and hence can be congested.

 • All services require same load balancing algorithms, meaning that HTTP and video request
can be served with same load balancing schemes. This is not feasible due to varying nature
of requirements of different services such as bandwidth, mobility, and link capacity require-
ments. It is also difficult to provide each service its own type of load balancing, since in
virtualized data centers, more and more services will be deployed by different users and
they will be moving around.

Load Balancing in Software Defined Mobile Networks 229

Since the current networking technologies have no centralized control and lack global
 visibility, MLB is yet a challenge. In cellular networks, handoff is initiated by eNB with the
help of measurements from the UE. These eNBs are weakly coordinated in terms of loose cen-
tralized control and visibility of near‐cell traffic load or resource usage. Similarly, intratechnology
mobility is not yet in practice, and hence, load balancing in heterogeneous networks (HetNet)
cannot be materialized for better user satisfaction and efficient resource usage.

13.2 Load Balancing in SDMN

SDMN drives the motivation toward load balancing with the logically centralized intelligence
or network operating system (NOS), which is capable of interoperability between different
systems or network. SDMN enablers such as OpenFlow [2] introduce common programmable
interfaces over which various network entities can talk regardless of the underlying technology.
Added to that, replacement of network entities with software applications can substantially
reduce the network cost and improve flexibility. In SDMN, load balancing mechanisms would
enable to harvest the benefits of low‐cost heterogeneous networking technologies to work in
parallel with cellular networks. Even though spectrum scarcity is a major issue faced by the
cellular network operators, cellular networks are still not capable to utilize the locally available
wireless networks due to lack of efficient load balancing technologies.

The common centralized control plane in SDMN would enable redirecting network traffic
through lower load middleboxes, links, and nodes. A common control plane in SDMN would
be like the one shown in Figure 13.2. All the logical control plane entities such as Mobility

Network
monitoring

Network
services PCRF MME

SDN
controller AAA HSS Applications

OFCF and
OCS

Control plane

OpenFlow switches

OpenFlow switch
OpenFlow switch

Moving users Moving users

UsersUsers

Figure 13.2 Software defined mobile network.

230 Software Defined Mobile Networks (SDMN)

Management Entity (MME), AAA, PCRF, HSS, etc. are logically centralized and placed in
high‐end servers. These entities would (re)direct the data plane in real time. SDMN enables
load balancing algorithms to be installed in the application server as a load balancing applica-
tion in the control plane. The SDMN controller will fetch network load statistics from the data
path and provide these statistics such as packet and byte counter values to the load balancing
application. Similarly, UE mobility reports from MME would be provided to the load balancing
application. Hence, centralized load balancing decisions based on the global view of the real
network load would be taken.

OpenFlow enables flow‐based routing and network virtualization with its extensions. The
legacy network elements could be programmed with OpenFlow to enable flexible forwarding
and management of commercial networks. This novel packet forwarding mechanism could be
utilized for load distribution among technologically different systems as far as they are
managed by a single controller or internetworked set of distributed controllers. The ability to
move forwarding intelligence out of legacy network elements to a logically centralized control
plane with an efficient forwarding approach is the significance behind OpenFlow. On the other
hand, efficient load balancing is a counterpart of intelligent HO between the stations that are
managed by the same NOS though they can be in technologically isolated domains.

13.2.1 The Need of Load Balancing in SDMN

Software defined networks are about a centralized control plane controlling and manipulating
the forwarding behavior of the data plane from a logically centralized network view. Hence,
load balancing is very important in SDMN to maintain a fair trade‐off between multiple con-
trol plane devices.

13.2.1.1 Server Load Balancing

SDN enables applications to interact with and manipulate the behavior of network devices
through the control layer. Applications benefit from the visibility of resources and therefore
can request the states, availability, and visibility of the resources in specific ways. Network
operators and service providers desire to control, manipulate, manage, and set policies by
using applications for various network control, configurations, and manipulation options.
These applications are deployed in operator’s clouds implemented on high‐end servers, which
must be available to the increasing number of users and applications or services. Hence, server
load balancing is required to ensure high availability to client requests and scalability by dis-
tributing application load across multiple servers. Besides that, server load balancing is of
particular interest in SDMN since the control plane functionalities could be deployed on
custom‐belt logically centralized servers.

13.2.1.2 Control Plane Scalability

In SDNs, control functions, such as load balancing algorithms, require writing control logic
on top of the control platform to implement the distribution mechanisms and deploy them on
the forwarding elements such as switches and routers as shown in Figure 13.3. The control

Load Balancing in Software Defined Mobile Networks 231

platform of SDN can be either distributed or centralized, and the entity that implements the
control plane functionalities is referred to as the SDN controller. The SDN controller is respon-
sible for managing and controlling the whole network through an NOS from a central vantage
point having global view of all the network resources.

However, centralization of the control logic of networks opens up its own type of challenges.
Control plane scalability is one such challenge, which can be solved through efficient load
balancing technologies. In SDN, most of the complexity is pushed toward the controller where
forwarding decisions are taken in a logically centralized manner. A challenge for the currently
available controller implementations is specifying the number of forwarding devices to be
managed by a single controller to cope with the delay constraints. If the number of flows on
the controller increases, there is a high probability that the sojourn time will increase, which
is deeply dependent on the processing power of the controller. Today’s controller implementa-
tions are not capable to handle the huge number of new flows when using OpenFlow in high‐
speed networks with 10 Gbps links [3]. This also makes the controller a favorite choice for
denial of service (DoS) and distributed DoS attacks by targeting its scalability limitation.
Therefore, controller efficiency has been the focus of many researches to enhance its
performance through control platform distribution, devolving and delegating controller
responsibilities, increasing memory and processing power of the controller, and architecture‐
specific controller designs. Proper load balancing mechanisms will enable the control plane
platform to cost‐effectively handle situations where scalability failure could be detrimental to

North bound interface

Application layer

Control modules

South bound interface

Infrastructure layer

Mobility
 M

gmt.

Tra
ffic

 automation

Load balancing

OF sw
itches

OF ro
uters

OF sw
itches

Figure 13.3 SDN‐abstracted control plane.

232 Software Defined Mobile Networks (SDMN)

the whole network performance. Simply increasing the number of controllers will not help
mitigate the risk of single point of failure as shown in Ref. [4] where the load of the failed
controller is distributed among other controllers. The load must be put on the controller having
the least original load so that all the controllers share the workload and increase overall system
efficiency. Such distribution of load requires efficient load balancing methodologies.

13.2.1.3 Data Plane Scalability

Data plane enables data transfer to and from users, handling multiple conversations across
multiple protocols, and manages conversations to/from remote peers. SDN enables remote
control of data plane, making it easy to deploy load balancing mechanisms in the data plane
via a remote procedure call (RPC).

OpenFlow abstracts each data plane switch as a flow table (shown in Fig. 13.4b), which
contains the control plane decisions for various flows. The switch flow table is manipulated by
the OpenFlow controller using the OpenFlow protocol. One challenge for SDN is that how

Control plane

Data plane

In Port
VLAN

ID

Ethernet

SA DA SA DA

IP TCP

Proto Src DstType

(a)

(b)

Figure 13.4 (a) The SDN data plane. (b) OpenFlow switch flow table.

Load Balancing in Software Defined Mobile Networks 233

efficiently the forwarding policies can be set from a logically centralized control plane on the
forwarding devices. A scenario is shown in Figure 13.4a, where the SDN switches acquire
flow rules from the controller. If the controller–switch path has higher delay, resources in the
switches can be exhausted. For example, a switch has limited memory to buffer TCP/UDP
packets for flow initiation until the controller issues the flow rules. Similarly, if a link to the
controller is congested or the controller is slow in installing flow rules due to any reason (e.g.,
fault), the switch resources might be already occupied to entertain new flows. Besides that,
recovering from link failure can take longer than the required time due to the centralized
c ontrol plane. These challenges necessitate using OpenFlow switches according to their
capacities through novel load balancing technologies.

13.2.2 SDN‐Enabled Load Balancing

13.2.2.1 The Basis of Load Balancing in OpenFlow

As we know that SDN separates the control and data planes in a network, the OpenFlow
variant of SDN defines an application programming interface (API) on the data path to
enable the control plane interact with the underlying data path. The controller uses packet
header fields such as MAC addresses, IP address, and TCP/UDP port numbers to install
flow rules and perform actions on the matching packets. The action set comprises of, for
example, forward to a port, drop, rewrite, or send to the controller. Flow rules can be set for
either microflow that matches on all fields or wildcard rules that have empty (don’t care
bits) fields. A typical switch can support larger number of microflow rules than wildcard
rules since wildcard rules often rely on expensive TCAM memory, while microflow rules
use the SRAM, which is larger than TCAM. The rules are installed either with a fixed
t imeout that triggers the switch to delete (called the hard timeout) or with specified time of
inactivity after which they are deleted (called the soft timeout). The switch also counts the
number of bytes and packets for each rule, and the controller can fetch these counter values
as shown in Figure 13.5.

The most basic mechanisms of load balancing in OpenFlow can use these counter values
from the switches to determine how much load a switch is handling. Thus, the traffic load on
various switches can be easily seen in the control plane, which can enable the controllers to
load balance among the switches by using various coordination mechanisms. Load balancing
in OpenFlow can also use the choice of using either the wildcard rules matching mechanism
or microflows matching. Microflows matching would require the controller to be involved in
small flows rather than aggregated flows and hence use more resources of the control plane.
There can be a trade‐off among the wildcard matching and microflows matching based on the
controller load and availability. If matching on microflows is necessary, other mechanisms
such as distributed control plane architectures can be used. That would require load balancing
mechanisms among the controllers.

In the OpenFlow standard of SDN, a controller installs separate rule for each client
c onnection, also called “microflow,” leading to installation of a huge number of flows in the
switches and a heavy load on the controller. Therefore, various approaches are suggested to
minimize the load on the controller. These include using the wildcard support in the OpenFlow
switches so that the controller directs an aggregate of client requests to server replicas. The
wildcard mechanisms exploit the switch support for wildcard rules to achieve higher s calability

234 Software Defined Mobile Networks (SDMN)

besides maintaining a balanced load on the controller. These techniques use algorithms that
compute concise wildcard rules that achieve target distribution of the traffic and automatically
adjust to changes in load balancing policies without disturbing existing connections.

13.2.2.2 Server Load Balancing

Data centers host a huge variety of online services on their servers. These services can also be
offered to other operators for CAPEX and OPEX cost savings. Since the magnitude of services in
normal data centers is huge, these data centers use front‐end load balancing technologies to direct
each client request to a particular server replica. However, dedicated load balancers are expensive
and can easily become a single point of failure and congestion. The currently used variant of SDN,
that is, the OpenFlow [2] standard, provides an alternative solution where network switches divide
traffic among the servers. An OpenFlow controller installs the packet handling rules in OpenFlow
switches on run‐time and can change these rules immediately if changes are required.

OpenFlow‐based server load balancing is proposed in Ref. [5] for Content‐Centric
Networks (CCNs). One of the important functionalities in server load balancing is imposing
policies that balance client requests in CCNs. Server load balancing in Ref. [5] proposes
three load balancing policies to balance client request on servers. The first policy uses per
client request scheme that maps every new request to a fixed content server. This client‐based
policy forwards the Address Resolution Protocol (ARP) reply of the least loaded server to a
new client that initiates the ARP request. In case the client is not new, then the same server
will reply to the user.

The second policy balances the load based on the OpenFlow switch statistics, which are
checked periodically by the OpenFlow controller, and the load is estimated. The controller in this

OpenFlow controller

O
pe

nF
lo

w
 s

w
itc

h
op

er
at

io
n

OpenFlow API

Flow tables

Flow rules

Select action

Actions Statistics

P 2 P 3 P 4

Packet
in

Packet
out

IP src/dst,
MAC src/dst,
Transport src/
dst, VLAN id

Forward to port(s)/
controller

Modify/update or Drop
packets

Flow, table,
port, group,

queue
statistics

PnP 1

Figure 13.5 Architecture of OpenFlow switch.

Load Balancing in Software Defined Mobile Networks 235

case finds the statistics of the amount of data sent through the existing flows and estimates the
load of traffic handled from each server. Hence, the traffic is distributed among the available
content servers using this load‐based policy. Whenever an overloaded server is detected, the most
demanding content requests are switched to another less congested server leading to efficient
d istribution of traffic among all the servers. The third policy is proximity based in which clients
are assigned to the servers having the most quick response using first‐come, first‐served tech-
nique. However, this technique is useful in low network traffic having negligible traffic delays [5].

Use Case: Live VM Migration
Live VM migration provides an efficient way for data centers to perform load balancing by
migrating VMs from overloaded servers to less heavily loaded servers. Administrators can
dynamically reallocate VMs through live VM migration techniques without significant service
interruptions. However, live VM migration in legacy networks is still limited due to two main
reasons. First, live VM migration is limited to LAN since the IP does not support mobility
without session breakups. Second, network state is unpredictable and hard to control in the
current network architectures.

SDN enables live VM migration since the control plane is centralized having global visibility of
the network and is independent of the layered IP stacks. Since the SDN controller has information
about the underlying network topologies, SDN‐based VM migration would diminish the chances
of migration breakups due to topological complexities existing in legacy networks. For example,
to migrate a VM, the new end‐to‐end forwarding paths can be easily established without
i nterrupting the service by pushing new forwarding rules in the switch flow tables. Modifying the
existing flow rules in OpenFlow switches would hardly require temporary storage of the existing
flow packets compared to session breakups in the current networking environments.

SDN had made it possible to migrate a whole system comprising of VMs, the network, and the
management system to a different set of physical resources. For example, the LIve Migration
Ensemble (LIME) [6] design leverages from the control–data plane separation logic of SDN to
migrate an ensemble of VMs, the network, and the network management. LIME clones the data
plane state to a new set of OpenFlow switches and then incrementally migrates the traffic sources.
OpenFlow‐based interdomain VM migration is illustrated in Ref. [7] where it is shown that
OpenFlow data center can be configured on the fly regardless of the complexity of its topology.

13.2.2.3 Load Balancing as SDN Applications

Online services, network function applications, and management plane functionalities are
implemented in the application plane in SDNs. These application plane functionalities are
implemented on high‐end servers. To properly load balance among multiple servers, front‐end
load balancing mechanisms could be used, which typically directs various requests to the right
servers and their replicas.

Most of the load balancing mechanisms in SDN reside in the SDN application plane working
on top of the control plane. For example, Aster*x [1] is a NOX application that uses the OpenFlow
architecture to measure the state of the network and directly control the paths taken by flows. As
shown in Figure 13.6 [1], the Aster*x load balancer relies on three functional units:

 • Flow Manager: This module manages the routes of flows based on the chosen load balancing
algorithm.

236 Software Defined Mobile Networks (SDMN)

 • Net Manager: This module is responsible for keeping track of the network topology and its
utilization level.

 • Host Manager: This module keeps track of the servers and monitors their state and load.

Aster*x enables service providers to load balance their network based on different types of
applications. The options that applications have include proactive versus reactive load balancing,
load balancing on individual versus aggregated flow requests, and static versus dynamic load
balancing. These choices make Aster*x a scalable distributable load balancing architecture.

13.2.2.4 Control Plane Load Balancing

In SDN, the controller implementing the control plane functionalities installs flow rules in the
data path. Since a controller can set up a limited number of flows in the forwarding devices, it is
suggested to use multiple controllers working in a logically centralized fashion. Hence, the latest
versions of OpenFlow support multiple controllers in a single network domain where switches
can have simultaneous connections to multiple controllers. Therefore, distributed OpenFlow
controller architectures such as HyperFlow [8] and Onix [9] are proposed to implement multiple
controllers to manage large networks. Load balancing among such distributed controllers plays
a vital role to maintain a fair workload distribution of the control plane and ensure quick response.
Load balancing in such scenarios will also enable maximum aggregate controller utilization and
mitigate the risks of controller being a single point of failure or bottleneck.

Distributed Control Plane
BalanceFlow [10] is a controller load balancing architecture for wide‐area OpenFlow n etworks.
BalanceFlow works at the granularity of flows and partitions control traffic load among
m ultiple controller instances in a large network. All the controllers in this architecture maintain

Load balancing application

Net manager Flow manager Host manager
Feedback

NOX OpenFlow controller

OpenFlow switches

Servers

N
et

w
or

k
st

at
es

Figure 13.6 Aster*x load balancing architecture and its functional units.

Load Balancing in Software Defined Mobile Networks 237

their own load information, which is published periodically with other controllers. The
controller architecture is hierarchical where one controller acts as a supercontroller to keep a
balance of load on the rest of the controllers in the domain. When the traffic conditions change,
the supercontroller partitions the traffic and allocates controllers to different flow setups to
maintain a balance of workload among the working sets of controllers. This architecture also
minimizes the flow setup delay since the nearest controller to the switch is allocated for the
flow setup in the switch. Figure 13.7 shows the BalanceFlow load balancing architecture.

The BalanceFlow architecture has two requirements, that is, simultaneous multiple
controller connections and controller X actions extension in the OpenFlow switches. The
controller X extension in the switches allows sending flow requests to particular controllers.
A controller, let’s say controller k, maintains an N × N matrix M

k
, where N is the number of

switches in the network. Elements in the ith row and jth column denote the average number of
flow requests from switch i to switch j. When a flow request packet is received, the controller
first learns the switch from which the packet has arrived. After checking the destination
address of the packet, the controller locates the corresponding egress switch for that flow, and
the relevant element in the matrix is updated periodically. The average number of flow requests
from switch i to switch j is calculated using the following formula:

 R i j w R i j wT i javg avg, , ,() ()() ()1 (13.1)

where w is the weighted coefficient and T(i, j) is the number of flow requests from switch i to
switch j in a certain period of time. The supercontroller collects the flow request matrixes from

Cross-controller communication

Control plane

Data plane

OpenFlow connections

Figure 13.7 Architecture of the BalanceFlow controller.

238 Software Defined Mobile Networks (SDMN)

all the controllers and calculates the average number of flow requests handled by each
controller. After calculating the total number of flow requests in the whole network, the
s upercontroller reallocates different flow setups to different controllers.

Control–Data Plane Load Distribution
Another approach for load balancing in SDN is to devolve some of the control plane
r esponsibilities back to the data plane. Devolved OpenFlow or DevoFlow [11] is one such
example. The main idea behind developing such architectures is the implementation costs of
involving the control plane too frequently. For example, in OpenFlow, the controller might be
required to install flow rules and gather switch statistics (byte and packet counters) in very
quick successions. Hence, the control plane working at such granularity would hinder the
deployment of SDN architectures in large‐scale deployment.

Two mechanisms are introduced to devolve the control from controller to a switch. The first
is rule cloning and the second one is localizing some of the control functions in the switch. For
rule cloning, the action part of wildcard rules in OpenFlow packets is augmented with a Boolean
CLOONE flag. If the flag is clear, the switch follows the normal wildcard mechanisms;
o therwise, the switch will locally clone the wildcard rule. The cloning will create a new rule by
replacing all the wildcard fields with values matching the microflow and inheriting other aspects
of the original rule. Hence, subsequent packets for the microflow will match the microflow‐
specific rule and thus contribute to microflow‐specific counters. This new rule will be stored in
the exact‐match lookup table to minimize the TCAM power cost. In the local action set of
DevoFlow, local routing actions are performed by the switch instead of involving the controller.
The set of local actions include multipath support in the switch and rapid rerouting in the switch.
DevoFlow enables multipath routing by allowing the clonable wildcard rule to select an output
port for a microflow according to some probability distribution. The rapid rerouting would
enable a switch to use one or more fallback paths if the designated output port goes down.

Load Balancing in Case of Controller Failure
In SDN, it is highly probable that the network fails due to a controller being the single point
of failure. To avoid single point of failures, the use of multiple controllers is suggested.
However, proper load balancing is required to redistribute the traffic of the failed controller
among other controllers. Otherwise, if the load is evenly distributed, a controller already
loaded to its capacity will fail, and such process can lead to cascading failures of the c ontrollers
[4]. Therefore, the optimal strategies for handling the controller failure in multicontroller
environment must satisfy the following requirements:

 • The whole network must have enough capacity to tolerate the load of a failed controller.
 • The initial load must be balanced with respect to the capacity of controllers.
 • After failure of a controller, the load redistribution must not cause overload to another

controller having being already working to its full capacity. Rather, proper load balancing
algorithms must be used to deploy less extra load on heavily loaded controllers and vice versa.

13.2.2.5 Data Plane Load Balancing

Open Application Delivery Networking (OpenADN) [12] enables application‐specific flow
processing. It requires packets to be classified into application flow classes using cross‐layer
communication techniques. The cross‐layer design allows application traffic flows’ information

Load Balancing in Software Defined Mobile Networks 239

to be placed in the form of a label between network and transport layers. This Application
Label Switching (APLS) layer forms layer 3.5 that is handled by the OpenADN switches
enabling application traffic to be handled at the packet layer. Hence, it is possible to enable
flow‐based load balancing in the OpenFlow switches.

13.2.2.6 MLB

SDN provides a common control protocol such as OpenFlow that works across different
wireless technologies with minimal changes. This capability of OpenFlow has made the
integration of SDN into the current wireless networks straightforward where the data path
remains the same, but the network control and logical elements such as MME, PCRF, and
control part of SGW/PGW are abstracted in the control plane as shown in Figure 13.8. This
makes it easy to use the available standardized mobility mechanisms in the radio part with
the SDN‐featured control plane having novel MLB algorithms implemented on top of the
control plane. MLB in legacy networks followed by SDMN‐enhanced features is described
in the following text.

MLB in Cells
Load balancing in the cells of cellular is carried out with the help of eNBs. The aim of load
balancing through eNBs is to keep a balance of load among the neighboring cells in order to
improve the overall system capacity. Hence, load information is shared among the eNBs for
maintaining a fair distribution of workload among the pool of eNBs. The information is
shared via the X2 interface directly between eNBs since there is no central radio resource

Network
monitoring PCRF MME

SDN
controller AAA HSS Applications

Control plane

OpenFlow switches

OpenFlow switch
OpenFlow switch

Users Users

Moving usersMoving users

Figure 13.8 Software defined mobility load balancing among cells.

240 Software Defined Mobile Networks (SDMN)

management (RRM) system in LTE. Generally, the exchange of load information falls into
two categories depending on the purpose it serves. First, the exchange of load information is
used to perform load balancing on the X2 interface where the frequency of exchanging the
information is rather low. Second, the exchange of information is used to optimize the RRM
processes where the frequency of sharing the load information is high.

The load imbalance is detected by comparing the load of cells and then exchanging that
information among the eNBs. The exchanged cell load information comprise of radio
m easurements corresponding to the usage of physical resource blocks (PRBs) and nonradio
related such as processing or hardware resources usage. Normally, a server–client method is
used for sharing the information among eNBs using the Resource Status Response and Update
messages. This information is reported via X2 interface between the requesting eNB (client)
and the eNBs that have subscribed to these requests (servers). This load reporting is periodic
according to the periodicity expressed in the Resource Status Response and Update messages
that triggers the procedure. A separate load indication procedure is used for sharing load
information related to interference management. This information is also shared via X2 and
has direct influence on some RRM process in real time.

The objectives of MLB can be achieved by adjusting the HO parameters between the over-
loaded cells and its neighboring cells. By adjusting the HO parameters, some UEs in the
overloaded cells can be handed off to less loaded neighboring cells. The number of users and
utilization of PRBs in a cell can be used to indicate the load and usage of the physical resources
in LTE. Each base station (or eNB in LTE) measures its serving cell load. The distributed
s olution of MLB in 3GPP requires an eNB to cooperate with its neighboring eNBs via the X2
interface. Overloaded eNBs obtain its neighboring cell loads and adjust the HO parameters via
X2 to force some of UEs to hand off from the current cell to the neighboring cells. In LTE, the
HO decision is generally triggered by the event A3 simplified as

 M Mn s margineHO , (13.2)

where M
n
 is reference signal received power (RSRP) in dBm or reference signal received

quality (RSRQ) in dB for a neighboring cell, M
s
 is RSRP or RSRQ of the serving cell, and

HO
margine

 is a margin between M
n
 and M

s
 in DB. Each cell can have its own value of HO

margine
.

HO decision is based on formula (13.2) by measuring these parameters in UEs. When an eNB
detects that its serving cell is overloaded, the HO

margine
 to its neighboring cells will be adjusted

to trigger handoff of UEs from the current cell to the neighboring cell. For efficient and precise
MLB, the measurement reports from UEs can be used to predict the cell loads after adjusting
the HOmargine.

Since these measurement reports from UEs can contain M
s
 and M

n
 in the formula (13.2), the

eNB can collect information of M
s
 and M

n
 of each UE located at cell edge between the serving

cell and its neighboring cells. Hence, the eNB can measure PRB utilization of UEs at the
s erving cell. Therefore, the PRB utilization at the neighboring cell can be estimated in
a ccordance with the user throughput and modulation and coding scheme on the neighboring
cell. This would enable to allocate users to the neighboring cells while not congesting the cell
and effectively balance load among neighboring cells. However, in such mechanisms and
techniques, the eNBs itself adjust the HO

margine
 of the serving cell cooperating with its

n eighboring eNBs. The eNBs are required to cooperate and exchange information that makes

Load Balancing in Software Defined Mobile Networks 241

the network rather complex and difficult to scale and maintain. SDN on the other hand cen-
tralizes all the control plane functionalities where centralized servers collect the network
information and direct individual entities such as eNB to set HO parameters and perform HOs
when required. An SDMN architecture having mobile users in neighboring cells is shown in
Figure 13.8. Due to mobility, the PRB usage of resources will either increase or decrease. The
centralized control plane in SDMN will collect information regarding usage of PRBs in neigh-
boring cells and hence be able to easily compare the load in the two cells. Since implementing
new functionalities in SDN requires writing software logic on top of the control plane, the
mobility management algorithms can be implemented on top of the control plane, which will
utilize global visibility of the network physical resources. For example, the MLB algorithm
can be implemented as an SDN application that has real visibility of the physical resources of
the neighboring cells and will be in better state to adjust the HO margins between neighboring
cells. Another advantage of such centralized MLB would be to distribute the unbalanced cell
load when several cells close to each other are overloaded.

MLB in MME
In cellular networks, a UE is associated with one particular MME for all its communications
where the MME creates a context for that UE. The MME is selected by the Nonaccess Stratum
(NAS) Node Selection Function (NNSF) in the first eNB from which the UE connected to the
network. When a UE becomes active with an eNB, the MME provides the UE context to that
eNB using the Initial Context Setup Request message. With the transition back to idle mode,
a UE Context Release Command message is sent to the eNB from the MME to erase the UE
context, which then remains only in the MME.

For mobility within the same LTE system or inter‐eNB HO, the X2 HO procedure is nor-
mally used. However, when there is no X2 interface between the two eNBs or if the source
eNB is configured to initiate HO toward a particular eNB, the S1 interface is used. In HO
process through the X2 interface, the MME is notified only after completion of the HO pro-
cess. The process of HO and control flow during HO on the S1 interface is shown in Figure 13.9.
The HO process comprises of a preparation phase where resources at the core network are
prepared for HO, followed by an execution phase and a completion phase. Since MME is
actively involved in HOs and context maintaining, it is very important to perform load
balancing among the MMEs in a cellular network.

The aim of MME load balancing is to distribute traffic among the MMEs according to their
respective capacities. S1 interface is used to perform load balancing among MMEs in a pool
of MMEs in cellular networks. MME carries out three types of load management procedures
over the S1 interface. These include a normal load balancing procedure to distribute the traffic,
an overload procedure to overcome a sudden rise in load, and a load rebalancing procedure to
either partially or fully off‐load an MME. The MME load balancing depends on the NNSF
present in each eNB, which contains weight factors corresponding to the capacity of each
MME node. A weighted NNSF carried out at each eNB in the network achieves statistically
balanced distribution of load among MMEs. However, there are some specific scenarios that
require specific load balancing actions. First, if a new MME is introduced, the weight factor
corresponding to the capacity of this node may be increased until it reaches an adequate level
of load. Similarly, if an MME is supposed to be removed, the weight factor of this MME
should be gradually decreased so that it catches minimum traffic and its traffic must be

UE Source eNB Target eNB

1. Decision to trigger a relocation via s1

2. Handover required

Source MME Target MME

3. Forward relocation request

4. Handover request

5. Resource setup

6. Handover request ACk

7. Handover relocation response

8. Handover command

9. Handover command

12. Handover confirm

11. MME status transfer

13. Handover notify

14a. Forward relocation complete

14b. Forward relocation complete ACK

15. Tracking area update request

16. Release resources

10. eNB status transfer

10b. Only for direct forwarding of data

Figure 13.9 S1 handover control flow.

Load Balancing in Software Defined Mobile Networks 243

d istributed among the remaining MME nodes. Second, if there is an unexpected peak in the
load, an overload message can be sent over the S1 interface to eNBs to temporarily restrict
certain types of traffic to that particular MME. The MME can also adjust the number of eNBs
and restrict the types of traffic it needs to avoid. Third, if an MME wants to rapidly remove the
UEs, it will use the rebalance function to force UEs to reattach to other MMEs using a specific
cause value in the UE Release Command S1 message [13].

In SDN, MME becomes part of the control plane and interacts with eNBs through the S1
interface. Along with MME, the control planes of the SGW and PGW are also abstracted to
the control plane. Since MME is now a logical entity in the SDMN‐centralized control plane,
checking its load and maintaining a fair load on MME would be easy. There can be a separate
application for load balancing among MMEs, or the MME load balancing algorithms can be
part of the overall load balancing application. Since the current MME load balancing is
dependent on the load measurement values of NNSF in the eNB, these values represent only
the load of the MMEs, which are attached to that particular eNB. Thus, each eNB has limited
visibility of those MMEs that are not listed in its NNSF. This makes the current MME load
balancing rather inefficient. In SDMN, the load of all the MMEs in a certain geographic

HSS Applications(MLB)

PCRF

MME

SDN controller

S1-interface

eNB

Users Control plane
User plane

OF switch OF switch S-GW P-GW

Figure 13.10 MME load balancing in SDMN.

244 Software Defined Mobile Networks (SDMN)

l ocation would be gathered to the MME load balancing application. This could be done either
through getting the load measurement values directly from the MMEs or through the S1 inter-
face by fetching the measurement values (weight factors and current load) from the NNSF of
all the eNBs. Hence, the MME load balancing in SDMN would be carried out in the presence
of load values of all the MMEs. Such a load balancing scenario is shown in Figure 13.10.

13.3 Future Directions and Challenges for Load
Balancing Technologies

Wireless networks are constrained from system capacity and user QoE. Therefore, various
types of wireless networking technologies are proposed and used that comprise of varying cell
sizes, differing architectures, and heterogeneous infrastructures. Each type of networking
technology has its own limitations, and hence, a trade‐off is always desired, which should be
part of future load balancing technologies. Small cells such as femtocells, picocells, and Wi‐Fi
AP provide better data rates, but these data rates will most likely be backhaul constrained
since the wired backhaul has a fixed capacity. Therefore, intelligence must be imbedded into
the network to off‐load macrocells to smaller cells while taking the backhaul constraint into
account so that the cells are not loaded beyond a certain threshold.

Seamless mobility based on seamless HOs between various networks in a HetNet is very
important to maintain fair load distribution among cells and provide the best possible services
to end users. However, HOs involve signaling overhead costs with complicated procedures
from network management point of views. Added to that, wireless networks are prone to
i nstantaneous saturation and varying interference that might force the UE to hand over again,
thus introducing a ping‐pong behavior. Therefore, it may be preferable from a system‐level
view to temporarily tolerate a suboptimal base station than a ping‐pong behavior. Power con-
straints cause another challenge for interoperable networks where small cell base stations have
less power compared to macrocells. UEs can transmit at the same power level in uplink regardless
of the base station type where the need of strong coordination among the femto‐, pico‐, micro‐,
and macrocell base station is very important for load balancing. Such asymmetries require a
centralized control mechanism where load balancing mechanisms direct the base station and
maintain a balanced load among the cells irrespective of their transmit power capabilities. 3GPP
has initiated work items on device‐to‐device (D2D) communication allowing direct communi-
cation between cellular users. Such direct communication opens up new directions for load
balancing technologies motivated by off‐loading the load from cellular networks.

Although network security is an integral part of network management, it has been rarely
researched in parallel to network load balancing. It is extremely important in SDMN to develop
load balancing architectures that work according to network security policies. For example,
security lapses of the controller can introduce delay in setting flow rules in the switches leading
to congestion in switches with unsolicited traffic flows. Therefore, it is necessary to consider
network security while designing and deploying traffic load balancing technologies in SDMN.

References

[1] Handigol, Nikhil, Mario Flajslik, Srini Seetharaman, Ramesh Johari, and Nick McKeown. “Aster*x: Load‐
b alancing as a network primitive.” In ninth GENI Engineering Conference (Plenary), Washington, DC, 2010.

Load Balancing in Software Defined Mobile Networks 245

 [2] McKeown, Nick, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. “OpenFlow: Enabling innovation in campus networks.” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2 (2008): 69–74.

 [3] Jarschel, Michael, Simon Oechsner, Daniel Schlosser, Rastin Pries, Sebastian Goll, and Phuoc Tran‐Gia.
“Modeling and performance evaluation of an OpenFlow architecture.” In Proceedings of the 23rd International
Teletraffic Congress, San Francisco, CA, USA, pp. 1–7, 2011.

 [4] Yao, Guang, Jun Bi, and Luyi Guo. “On the cascading failures of multi‐controllers in software defined net-
works.” 21st IEEE International Conference on Network Protocols (ICNP), pp. 1–2, October 7–10, 2013.
DOI:10.1109/ICNP.2013.6733624.

 [5] Choumas, Kostas, Nikos Makris, Thanasis Korakis, Leandros Tassiulas, and Max Ott. “Exploiting OpenFlow
resources towards a cContent‐cCentric LAN.” In Second European Workshop on Software Defined Networks
(EWSDN), pp. 93–98. IEEE, October 10th–11th, 2013, Berlin, Germany.

 [6] Keller, Eric, Soudeh Ghorbani, Matt Caesar, and Jennifer Rexford. “Live migration of an entire network (and its
hosts).” In Proceedings of the 11th ACM Workshop on Hot Topics in Networks, pp. 109–114. ACM, Redmond,
WA, 2012.

 [7] Boughzala, Bochra, Racha Ben Ali, Mathieu Lemay, Yves Lemieux, and Omar Cherkaoui. “OpenFlow support-
ing inter‐domain virtual machine migration.” In Eighth International Conference on Wireless and Optical
Communications Networks, pp. 1–7. IEEE, Paris, 2011.

 [8] Tootoonchian, Amin and Yashar Ganjali. “HyperFlow: A distributed control plane for OpenFlow.” In Proceedings
of the 2010 Internet Network Management Conference on Research on Enterprise Networking, pp. 3–3.
USENIX Association, San Jose, CA, 2010.

 [9] Koponen, Teemu, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu, Rajiv
Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, Scott Shenker. “Onix: A distributed control plat-
form for large‐scale production networks.” Ninth USENIX Conference on Operating Systems Design and
Implementation, vol. 10, Vancouver, BC, Canada, pp. 1–6, 2010.

[10] Hu, Yannan, Wendong Wang, Xiangyang Gong, Xirong Que, and Shiduan Cheng. “BalanceFlow: Controller
load balancing for OpenFlow networks.” In IEEE 2nd International Conference on Cloud Computing and
Intelligent Systems (CCIS), vol. 2, pp. 780–785. IEEE, Hangzhou, 2012.

[11] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet Sharma, and Sujata Banerjee.
“DevoFlow: scaling flow management for high‐performance networks.” In Proceedings of the ACM SIGCOMM
2011 Conference (SIGCOMM ’11), pp. 254–265. ACM, New York, 2011. DOI:10.1145/2018436.2018466.

[12] Paul, Subharthi and Raj Jain. “OpenADN: Mobile apps on global clouds using OpenFlow and software defined
networking.” In Globecom Workshops (GC Wkshps), 2012 IEEE, Palo Alto, CA, USA, pp. 719–723, 2012.

[13] Alcatel‐Lucent, “The LTE network architecture: strategic white paper.” Available at: http://www.cse.unt.
edu/~rdantu/FALL_2013_WIRELESS_NETWORKS/LTE_Alcatel_White_Paper.pdf (accessed on February
19, 2015), 2013.

