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15.1 Overview

This chapter proposes to use software defined networking (SDN) to address mobility 
management in the Internet. This chapter first reviews existing mobility protocols in the Internet 
and points out their drawbacks. Then this chapter explains why SDN is a promising way to 
solve these problems, followed by a description of SDN‐based mobility management 
architecture for mobile Internet. This chapter also presents an instantiation of this architecture 
that is designed and implemented using OpenFlow, as well as related evaluation and comparison 
with existing Internet mobility solutions to illustrate the advantages of the proposal.

15.1.1 Mobility Management in the Internet

Internet mobility has been an active research topic for over two decades. Along with the 
 evolution of the Internet, especially the growing of mobile data due to more and more mobile 
devices and applications, many research efforts have been paid to address Internet mobility. 
However, so far, there is no consensus on how to provide mobility support in the Internet, 
making it remain an open issue.

15.1.1.1 Mobility Management in the Internet and Cellular Networks

Internet mobility research is different from that in cellular networks. Although cellular networking 
has been providing mobility support to global users, it may not replace the role of Internet mobility 
support because of their disparate bandwidths, costs, service models, etc. [1, 2]. Moreover, 
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mobility in the Internet is showing new features comparing with that in cellular networks, that 
is, Internet mobility refers to not only movement from one point of attachment to another but 
also inter‐ISP handover and even interdevice switching.

On the other hand, mobility management research in the Internet and cellular network is 
closely related, especially after IP is considered as the core part of future cellular networks [3]. 
Since the evolution trend of cellular networking is moving toward an all‐IP‐based infrastruc-
ture, which means all traffic leaving base stations becomes IP based and is delivered over 
packet‐switched networks, IP mobility management becomes a key role to support future 
wireless systems.

Many IP mobility solutions serve as candidates to provide mobility management in cellular 
networks [4, 5], and some proposals have already been integrated into cellular networking. 
For example, Proxy Mobile IPv6 (PMIPv6), which is a typical IP mobility solution, has been 
adopted by the cellular core network Evolved Packet Core (EPC) in the 3rd Generation 
Partnership Project (3GPP) [6]. Besides, cellular backhaul technologies are also evolving 
toward IP‐based designs, such as femtocells, which deploys home‐located cellular base 
stations to provide connectivity to cellular users over their IP networks [7].

Current and future researches on Internet mobility management will continue to contribute 
to cellular networking. Recently, along with the development of 3GPP Long‐Term Evolution 
(LTE), there is a growing trend to provide a more flexible and dynamic mobility management, 
which is also a concern in the Internet research area. The Internet Engineering Task Force 
(IETF) has already been standardizing related protocols, which may be introduced into 3GPP 
to replace its existing mobility management functions [8]. Due to the same reasons, we believe 
that this chapter also offers beneficial references for developing mobility management  systems 
in current and future cellular networks.

15.1.1.2 Existing Internet Mobility Solutions

Generally, supporting Internet mobility means to offer uninterrupted Internet connectivity to 
mobile nodes (MNs) (mobile devices, users, or other entities), which change their attachment 
points while roaming in the network. Internet mobility is difficult to realize because it was an 
unforeseen feature when the Internet was built, and unfortunately, this feature contradicts with 
the current Internet architecture: due to the tight coupling of TCP and IP [9], changing IP 
addresses will cause interruption of TCP sessions on MNs, which may seriously impact 
 experiences of mobile users.

Basically, Internet mobility solutions can be divided into two categories, that is, routing‐
based approach and mapping‐based approach [10]. Routing‐based approach makes an MN use 
the same IP address while roaming and thus requires dynamic routing to keep reachability of 
the MN. On the contrary, mapping‐based approach allows an MN to change IP addresses but 
keep a piece of stable information, known as identifier, which does not change during movement. 
To reach the MN using its identifier, a mapping mechanism is introduced to resolve identifier 
to the MN’s current locator (normally represented by its IP address). In these solutions, TCP 
sessions are always bound to identifiers instead of IP addresses; thus, they can keep surviv-
ability facing changing IP addresses. As discussed by Zhang et al. [1], routing‐based approach 
is not suitable to provide mobility support in the global Internet, because the whole network 
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requires to be informed of each MN’s movement that may not scale well in large networks. 
Therefore, this chapter focuses on mapping‐based approach.

Among all related proposals, Mobile IP (MIP) [11, 12] and its extensions [13, 14] are the 
earliest and most well‐known protocols. MIP is an IETF‐standardized protocol that allows 
MNs to keep session survivability while roaming around and changing IP addresses. Later, 
a  large number of MIP derivatives have been proposed to improve its basic functionality 
[15–18]. Recently, there are also many individual IP mobility protocols [19–22] as well as 
future Internet architectures [23–28] that arise to address mobility problems in the Internet.

15.1.2 Integrating Internet Mobility Management and SDN

From one point of view, the key of providing mobility support in the Internet is to properly 
distribute the MN’s identifier‐to‐locator mapping within the network so that its correspon-
dents can reach the MN directly or indirectly. Although there exist various ways to realize 
such a function, they have drawbacks in different aspects, making it remain an unsolved issue. 
This chapter tries to address the problem using SDN and OpenFlow. SDN is an emerging 
 network architectural approach, while OpenFlow is one of the most well‐known instantiations 
of SDN [29]. In SDN, network structures, functions, and performance can be defined in a 
 simpler way, which is usually achieved by providing programmable devices and a centralized 
control logic. As will be shown in this chapter, network functions or services required to 
support IP mobility can also be realized in a software defined way.

SDN helps to solve problems in IP mobility protocols for the following reasons: firstly, pro-
grammable SDN devices enable the flexibility of SDN‐based mobility solution, which is a lack 
of existing IP mobility solutions. Specifically, the mapping of each MN can be flexibly placed 
on any SDN device instead of fixed Home Agents (HAs) or CNs, and this feature provides the 
basis to make SDN‐based mobility solution become adaptive to diverse mobility scenarios. 
Secondly, centralized control let SDN‐based mobility solution be aware of all kinds of mobility 
details, for example, how the MN moves, how the CN‐to‐MN traffic flows, etc. These details 
help to generate optimal strategies to handle different mobility scenarios via a lightweight 
algorithm without introducing complex distributed protocols. Thirdly, IP mobility in SDN 
architecture requires less host involvement. Most mobility functions can be realized on the 
network side as will be shown in Section 15.3, and this implies faster handoff without IP 
reconfiguration, less signaling overhead especially on wireless links, as well as higher security 
and privacy assurance.

15.1.3 Chapter Organization

The remainder of this chapter is organized as follows: Section 15.2 gives a classification and 
overview of related Internet mobility solutions. To further make clear of the problem this 
chapter addresses, Section 15.2 also presents a study on the mobility management functions 
of related solutions and discusses on their pros and cons. Section 15.3 proposes an SDN‐based 
mobility management architecture for mobile Internet, together with an instantiation of this 
architecture that is designed and implemented using OpenFlow as well as performance 
 evaluations and experiments.



268 Software Defined Mobile Networks (SDMN)

15.2 Internet Mobility and Problem Statement

This section gives an overview of Internet mobility solutions and then discusses on the draw-
backs of these solutions to further make clear of the problem this chapter focuses. Finally, a 
brief discussion on addressing Internet mobility in an SDN way is presented. Detailed pro-
tocol design, implementation, and evaluation of the solution this chapter proposes are given in 
the next section.

15.2.1 Internet Mobility Overview

One of the earliest Internet mobility solutions is MIP, which began its standardization in the 
IETF about two decades ago. Since then, various MIP derivatives have been proposed to 
improve the original protocol in order to adapt to the evolving Internet. Another category of 
solutions mainly relies on end hosts to realize mobility management. These protocols belong 
to “Identifier/Locator Split” (ILS) designs. ILS is an architectural model that points out that 
IP address has embedded both identifier and locator semantics and a split of the two is 
necessary. The concept of ILS had also been discussed many times during the past two decades 
and currently has got wide acceptance [30–32].

Besides MIP and ILS solutions, many future Internet architecture proposals also try to 
 provide Internet mobility support. However, future Internet architecture proposals are usually 
clean slate and require substantial changes to the current Internet. They even do not rely on IP 
to work, which makes it difficult and inappropriate to compare them with current IP‐based 
mobility solutions. Therefore, this chapter does not go further into mobility management 
 proposals in future Internet architectures.

15.2.1.1 MIP and Its Derivatives

MIP derivatives are based on two origin protocols: MIP [11] and Mobile IPv6 (MIPv6) [12]. 
The core idea of MIP is illustrated in Figure 15.1a by taking MIPv6 as an example: the  protocol 
uses a special type of IP address called Home Address (HoA) to identify an MN. When an MN 
moves to a new network, it obtains a Care‐of Address (CoA), which can be used to reach the 
MN. Then it communicates with the HA located in its home network to update the binding 
cache that maps the MN’s HoA to its current CoA. Since a CN does not know the MN’s CoA, 
it sends packets to the MN using its HoA; thus, the packets are forwarded to the HA. With 
up‐to‐date binding cache, the HA can then encapsulate and redirect packets toward the MN’s 
current CoA.

MIP centralizes both mobility signaling and data forwarding functions into a single HA, 
which increases signaling cost when MN is not within the home network. To address the 
problem, some extensions to MIP are proposed. Hierarchical Mobile IPv6 (HMIPv6) [13] 
deploys Mobility Anchor Points (MAP) in the network and uses them to localize mobility 
 signaling when the MN is away from HA. Specifically, MN attaches to a nearby MAP, which 
is located using a Regional CoA (RCoA), and then the MAP is responsible for keeping the 
bindings between the MN’s HoA and a Local CoA (LCoA), which is exactly the MN’s current 
location, and tunneling packets to the MN. When attaching to a new MAP, MN informs HA of 
the new MAP’s RCoA to keep reachability of the MN. PMIPv6 [14] is a similar solution, and 
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it frees MNs from mobility signaling and employs Mobile Access Gateways (MAG) to  perform 
mobility management functions on behalf of MNs.

The major drawback of MIP and its extensions mentioned earlier is that all the packets from 
CN to MN have to take a detour to pass the HA, which is known as the triangle routing 
problem. Triangle routing can result in routing path stretch, which means the actual routing 
path is longer than the shortest one, as well as heavy load on HA. In recent years, a series of 
MIP derivatives [15–18], which follow Distributed Mobility Management (DMM) architec-
tural paradigm [8, 33, 34], arise to address the problem. As shown in Figure 15.1b, DMM 
solutions distribute the functionality of HA to multiple mobility anchors deployed in the 
 network so that the MN can always choose a nearby mobility anchor to maintain its binding 
cache and perform packet redirection. Thus, the MN’s HoA never represents a fixed location, 
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and triangle routing can be alleviated or even eliminated. In order to reach the MN, the 
 relationship of the MN and its current mobility anchor is propagated among the deployed 
mobility anchors in the network, which can be realized in either a push or a pull mechanism 
[8, 33]. DMM research is still in the early stage, but it is considered as a promising way to 
evolve MIP networks and is currently under standardization in the IETF DMM group.

15.2.1.2 ILS Designs

ILS designs in the broad sense can be divided into two categories: one proposes to separate IP 
address space of core networks from edge networks, which is usually called core‐edge 
 separation. The main goal of core‐edge separation protocols is to improve global routing 
 scalability; thus, they usually focus on the network side. The other proposes a more clear 
 separation of IP address’s dual roles, and it usually introduces a new namespace as identifiers 
for the hosts/nodes in the Internet and treats the entire IP address space as locators. What is 
concerned in this chapter is the latter category, which always takes mobility handling as one 
of its goals. Host Identity Protocol (HIP) [19], Identifier/Locator Network Protocol (ILNP) 
[20], Name‐Based Sockets (NBS) [21], and LISP Mobile Node (LISP‐MN) [22] are typical 
solutions that fall into this category.

Compared with MIP that places identifier‐to‐locator mapping functions at the network side, 
ILS mobility solutions can be regarded as host‐based solutions, since most mobility 
management functions are implemented at the host side. Figure  15.1c shows how these 
 solutions works: when CN starts communication with MN, it first obtains the current IP 
address of the MN by querying a global mapping system (DNS plays the role in most cases), 
which always stores up‐to‐date identifier‐to‐locator mapping of each MN. When the MN 
moves to a new network, it keeps its identifier unchanged and obtains a new IP address as 
locator, and then the MN sends its new IP address to not only the global mapping system but 
also the CN side so that CN can directly reach its current location in time. Therefore, the 
mobility handoff is actually realized in an end‐to‐end way in such solutions. To keep session 
survivability, the transport layer only deals with identifiers in these solutions, and a mapping 
function is called to map the identifiers to IP addresses before data packets are sent out from 
the network layer. To realize such a function, these solutions either introduce a new layer or 
modify existing layers in the TCP/IP stack.

Though ILS protocols share the same core idea, they differ in ways to realize the idea 
including the formatting of identifiers, implementation of mapping functions on the host side 
and in the global mapping system, etc. HIP uses self‐authenticating identifiers, called Host 
Identity (HI), to identify mobile hosts. HI is obtained by hashing the public key of a key pair 
that belongs to the host. With self‐authenticating identifiers, each host is able to prove owner-
ship to its HI through cryptographic methods. HIP use HI together with a port number to 
uniquely identify a transport layer session. To handle the mapping between HI and IP addresses 
on the host side, HIP inserts a new layer, called Host Identity Layer, between the network and 
transport layer in the protocol stack. HIP utilizes DNS together with additional rendezvous 
points to form a global mapping system, which stores the HI‐to‐IP address mappings of all 
 mobile hosts. When communication begins, the initiator sends DNS request and fetches cor-
respondent’s HI and location of related rendezvous point. Then, the first data packet goes via 
the rendezvous point to reach the correspondent. After the initiator receives a data reply from 
the correspondent, following data stream travels directly between both communicating ends.
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ILNP does not introduce new namespaces but utilizes IPv6 address space to identify mobile 
hosts, whose idea is derived from earlier research related to ILS [35]. ILNP splits IPv6 address 
space into an identifier part and a locator part: the first 64 bits of IPv6 address remains to be 
used for routing in the network, while the last 64 bits are used to uniquely identify mobile 
hosts. ILNP modifies the transport layer of mobile hosts to ensure that the session state only 
contains the identifier part of the entire IPv6 address (with port number). Different from HIP, 
ILNP completely relies on DNS to store the identifier‐to‐locator mappings.

NBS proposes to use domain names as identifiers of mobile hosts. NBS adopts a different 
approach to realize the mapping function by inserting a layer above the transport layer, which 
gives applications new socket interfaces and calls existing interfaces of TCP and UDP for data 
delivery. Using this method, mobility is hidden from the applications, and no change to TCP/
IP stack is required. However, applications need to be redesigned to adapt the new socket 
interface, which implies that stale application cannot benefit from the mobility features offered 
by NBS. NBS also makes DNS as its global mapping system.

LISP‐MN is developed based on research on Locator Identifier Separation Protocol (LISP) 
[36], which is a core‐edge separation design. LISP proposes a separation of endpoint identi-
fiers (EID) from routing locators (RLOC) and deploys ingress/egress tunnel routers (TR) to 
maintain EID‐to‐RLOC mappings. LISP‐MN utilizes EID as identifier and RLOC as locators 
of mobile hosts and implements a lightweight TR on each mobile host to realize the mapping 
functions. LISP‐MN does not rely on DNS, but makes use of several alternative map servers 
proposed by LISP as its global mapping system.

15.2.2 Problem Statement

Although there exist various methods to support Internet mobility, they have drawbacks in 
different aspects including triangle routing, large handoff latency, heavy signaling overhead, 
etc. This subsection gives a problem statement of existing Internet mobility solutions by ana-
lyzing mobility management functions of current solutions and pointing out a trade‐off bet-
ween routing path stretch and handoff efficiency.

15.2.2.1 Mobility Management Analysis

One of the main differences among existing Internet mobility solutions is how they implement 
handoff management functions. Handoff management is responsible for maintaining session 
survivability when the communicating nodes are moving. Different handoff management 
approaches can be classified into three categories. MIP comprises the first category, which we 
call local‐scope handoff management, since the handoff signaling is always confined within a 
limited scope, that is, between the MN and the HA (or a local HA in HMIPv6 and PMIPv6). 
Thus, CNs only know one way to reach the MN, that is, via the HA. On the contrary, ILS designs 
adopt global‐scope handoff management. The MN always sends mapping updates to the CN 
side, making all the CNs know the MN’s exact location and send packets directly to the MN.

DMM solutions fall into the third category, which is a hybrid of the first two approaches: 
local‐scope handoff signaling is always triggered to propagate the MN’s mapping to a 
close HA, but global‐scope handoff signaling is also required when the MN leaves one HA 
and attaches to another. Therefore, packets from the CNs can always be forwarded to an 



272 Software Defined Mobile Networks (SDMN)

intermediary node that is close to the MN and knows how to reach the MN. Then the 
packets are routed to the MN based on its current IP address. Note that usually some agent 
near the CN is responsible for handling the signaling on behalf of the CN, making the 
handoff process transparent to CN.

There exist similarities in all three approaches. During handoff management, the MN must 
announce its up‐to‐date mappings into the network so that the CNs can reach the MN directly 
or indirectly. Specifically, some identifier‐aware nodes in the network, we call rendezvous, 
must receive the mapping announcement and store the mappings, and then the CNs are able to 
reach the MN via the rendezvous (note that CNs themselves can also be rendezvous). The 
difference among these approaches is the scope of the mapping announcements: local scope, 
global scope, or a mixture of the two.

15.2.2.2 Routing Path Stretch and Handoff Efficiency

Existing efforts to handle Internet mobility expose a trade‐off between routing path stretch and 
handoff efficiency: if the scope of mapping announcement is limited, as the MIP approach 
does, CNs may have to take a detour to reach the MN, which then causes routing path stretch; 
while if the mappings are announced to the CN side, as the ILS approach does, it may bring 
heavy overhead and large latency during the handoff, because the CNs can be distance from 
the MN and the number of CNs can be large.

A simple explanation of the trade‐off is given here by drawing an analogy to the Internet 
routing. One common understanding in the routing research area is a fundamental trade‐off 
between the routing table size and routing path stretch in a static network [37–39]. This trade‐
off implies a node in the network must store one routing table entry for each of the other nodes 
in the worst case to achieve the shortest path routing. Otherwise, one can only trade off an 
increase of the routing path stretch for a drop of the routing table size, because once a node 
loses the routing table entry for some remote node, it may not be able to forward packets to 
that node via the optimal path. The situation in mobility management is analogous: to ensure 
optimal routing path, mapping announcements must reach the CN side in the worst case; 
while if the scope of mapping announcement is limited to reduce the signaling overhead and 
latency, CNs will lose the exact location of the MN and have to reach the MN via indirection, 
which may lead to potential routing path stretch.

Internet mobility solutions take different ways to make the trade‐off and get their own pros 
and cons: MIP only announces mappings to the HA; thus, it gains potential large routing path 
stretch but low handoff latency and overhead especially when MIPv6 extension (e.g., HMIPv6) 
is applied; ILS approach announces mappings to all the CNs; thus, it always gets none routing 
path stretch but may suffer from large handoff latency and overhead; DMM solutions are 
 seeking a balance between the two.

It is still an open question on how to make the trade‐off in DMM solutions. If an MN moves 
slowly and seldom changes HA, deploying HAs close to MNs can indeed reduce handoff 
latency and overhead without bringing routing path stretch. However, it may not be the case in 
real mobility scenarios. Considering the scenario that an MN simultaneously connects to 
 multiple ISPs (e.g., the MN have both Wi‐Fi and 3G/4G accesses), switch between different 
ISPs may become more common. Furthermore, a mobile user in future Internet may be able 
to switch ongoing communications from one device to another, which may also lead to 
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 frequent switch among ISPs. In both scenarios described earlier, there exists a large possibility 
that an MN changes HA frequently, which may significantly decrease the handoff efficiency 
of the hybrid handoff management. Therefore, it still needs investigation on how the third 
approach behaves when applied to more complex mobility patterns.

15.2.3 Mobility Management Based on SDN

To address the problems in current Internet mobility solutions, this chapter proposes to use 
SDN and OpenFlow. Before introducing the detailed protocol design, this subsection reviews 
existing research on SDN‐based mobility and discusses benefits of handling Internet mobility 
using SDN.

15.2.3.1 Existing Research on SDN‐Based Mobility

Researchers have already begun studying on how to offer better mobility support under SDN 
architecture. Yap et al. [40, 41] proposed OpenRoads to improve robustness during mobility 
handoff using multicast in OpenFlow networks. They showed how this is achieved by demon-
stration and also described their testbed deployment. In the following paper [42], they further 
abstract their idea as separating wireless services from infrastructures and rename OpenRoads 
to OpenFlow Wireless, which serves as a blueprint for an open wireless network. The focus in 
this chapter differs from the research earlier: this chapter focuses on improving basic IP 
mobility functions commonly adopted by existing protocols, while they paid more attention to 
adding new features, such as multicast, to basic mobility functions.

Pupatwibul et al. [43] proposed to enhance MIP networks using OpenFlow, which share 
 similar goals to the proposal in this chapter. However, as will be shown, they only proposed one 
possible way to solve the problem, which may not be optimal in many scenarios, while this 
chapter abstracts the problem and gives a general discussion to seek for the best solution.

15.2.3.2 Benefits of SDN‐Based Mobility

A summary of benefits of SDN‐based mobility solution is already given in Section 15.1.2, 
while this subsection presents a further analysis based on the problem statement earlier. Recall 
the conclusion in the problem statement in Section  15.2.2.2, existing Internet mobility 
 solutions adopt different ways to realize mapping announcement in handoff management and 
thus make different trade‐offs between routing path stretch and handoff efficiency. SDN‐based 
mobility solution can serve as a promising way to seek an ideal balance for the performance 
trade‐off. It is because programmable devices and centralized control enable the flexibility to 
perform mapping announcement according to the MN’s movement details. Specifically, since 
each device is programmable in SDN, they are all potential rendezvous for MNs, which makes 
SDN‐based mobility management no longer restricted to local‐scope or global‐scope handoff 
management, but can perform mapping announcement in an arbitrary scope. Moreover, 
 centralized control can decide in which scope the mappings should be announced according 
to the movement of MNs: if an MN moves within a limited area, only local‐scope mapping 
announcement is sufficient, and along with the increasing of the MN’s movement distance, the 
controller may find it necessary to announce the mappings to a larger scope.
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Therefore, to seek an algorithm that optimizes the scope of mapping announcement in 
different mobility scenarios is one of the most important goals of this chapter. Section 15.3.3 
describes how to seek such an algorithm, and it also proves optimality of the algorithm in 
terms of both optimal routing path and minimum handoff latency as well as signaling 
overhead.

15.3 Software Defined Internet Mobility Management

This section describes an SDN‐based mobility management architecture for mobile Internet. 
Firstly, an overview of the architecture is given. Secondly, an instantiation of the architecture is 
presented that is designed using OpenFlow. Thirdly, an algorithm problem is addressed that serves 
as a key component of the architecture. At last, an implementation of the architecture is presented 
together with experiments to compare the proposal with existing Internet mobility solutions.

15.3.1 Architecture Overview

Internet mobility management functions based on SDN can be separated into control plane 
functions and data plane functions as demonstrated in Figure 15.2. In the control plane, two 
subfunctions are required to realize mobility management. One subfunction requires SDN 
controllers to collect the current location of each MN and maintain a mapping for each MN. 
The mapping dynamically binds identifier of an MN to locator of the MN. The definition of 
identifier is the same as that in ILS‐related researches, that is, some stable information that 
does not need to change when the MN changes its location in the network. Identifiers do not 
have a restricted format but can be any field in the packet that can be recognized by SDN con-
trollers and devices. MN’s locators should be represented by some packet field that can be 
used to reach the MN’s current location. Normally, IP addresses serve as locators of MNs.
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location of each CN

Controller
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Controller downloads mapping table
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the mapping table

Figure 15.2 Architecture overview.
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To realize this subfunction, SDN devices are required to inform controllers of the attach-
ment and detachment of each MN. When an MN leaves one SDN domain and enters another, 
inter‐SDN domain mechanism is required to synchronize mappings of the MN between con-
trollers in different domains.

The other control plane subfunction requires the controller to download each MN’s map-
ping to related SDN devices. It can be subdivided into two cases: in the first case, the controller 
downloads an MN’s mapping to the SDN devices that are requesting the mapping; in the 
second case, after the controller updates an MN’s mapping, it downloads the mapping to some 
SDN devices that has already stored the mapping. The purpose of the downloading in the 
second case is to replace stale mappings on SDN devices with up‐to‐date ones so that packets 
toward the MN can be forwarded to its current location in time. Note that both CN and MN 
are hardly involved in the control plane functions and most mobility management functions in 
the control plane are realized on the network side.

In the data plane, SDN devices directly receive packets destined to MNs from CNs and for-
ward the packets according to the mappings downloaded from controllers. When an SDN 
device lacks required mapping for packet delivery, it triggers a control plane function to 
request the mapping from the controller.

The control and data plane functions described above comprise the basic mobility management 
functions based on SDN. Protocol details such as how the mappings are collected and down-
loaded are explained using an OpenFlow‐based example in the following subsections.

15.3.2 An OpenFlow‐Based Instantiation

This subsection describes an OpenFlow‐based instantiation of the proposed architecture. Note 
that though the detailed protocol design described in this chapter is based on OpenFlow, the 
proposed architecture can also be designed and implemented in a similar way using other 
techniques that realize the idea of SDN.

15.3.2.1 Protocol Description

The OpenFlow‐based design employs IP addresses to identify and locate MNs. Like all the 
other mobility protocols, a stable identifier is assigned to each MN. The identifier is also 
called HoA, which is nonroutable and should belong to a specific address block. An MN’s 
location is represented by CoA, which is not owned by MN, but its first‐hop OpenFlow switch. 
It means MNs never require to reconfigure IP addresses when attaching to new networks, but 
the network side helps to accomplish the work, which is similar to PMIPv6. CoAs are routable 
addresses and thus are used to reach MNs when they are moving around.

OpenFlow controller is responsible for maintaining binding cache that maps an MN’s HoA to 
CoA. For each MN, a subset of OpenFlow switches in the network serve as indirection point for 
the MN. They store replica of the MN’s binding cache in the form of flow table, which is 
 downloaded from the controller, and redirect packets toward the MN according to the flow table.

Figure 15.3 illustrates how CN reaches MN in both communication initiation and handoff 
procedures. HoA of MN and CN are IP_M and IP_C, respectively. First, when switch S3 
detects the attachment of MN, it learns the MN’s HoA, assigns a CoA IP_S3 to the MN, 
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and  then sends a Binding Update message, which contains a (IP_M, IP_S3) tuple to its 
controller. The controller stores the binding locally and immediately downloads a flow table 
entry to S3 that indicates “for all packets with destination address IP_S3, rewrite their 
 destination addresses to IP_M.”

The communication initiation process is described as follows, assuming that CN is commu-
nicating with MN: since CN only knows HoA of the MN, the destination address in the packets 
it sends to MN is IP_M. When CN’s first‐hop switch S1 receives such a packet, it learns IP_M 
is nonroutable, and there are no local flow tables that match the address. Thus, it forwards the 
packet to its controller via packet‐in. The controller (for simplicity, here, the controllers of S1 
and S3 are assumed to be the same one, and the case with multiple controllers will be  discussed 
in the following subsection) looks IP_M up in local binding cache table and gets the 
corresponding CoA. Then the controller forwards the packet to S3 via packet‐out and at the 
same time places the binding cache to S1 by downloading a flow table entry indicating “for all 
packets with destination address IP_M, rewrite their destination addresses to IP_S3.” Then the 
following packets can flow directly from CN to MN: first from S1 to S3 and then from S3 to 
the MN.

The handoff process is described as follows, assuming that the MN leaves S3 and attaches 
to S4: similarly, detecting the attachment, S4 assigns IP_S4 to the MN and sends Binding 
Update to the controller. The controller receives the update and learns that the MN has just 
moved; thus, it is responsible for accomplishing the handoff by modifying existing CN‐to‐MN 
flow path toward MN’s new location. Take the scenario in Figure 15.3 as an example: since 
the controller knows how the flow goes from CN to MN, it places the new binding cache to S2 
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by downloading a flow table entry to S2 that indicates “for all packets with destination address 
IP_S3, rewrite their destination addresses to IP_S4.” Then the new CN‐to‐MN flow will go 
through three redirections: S1 to S2, S2 to S4, and S4 to MN. In practice, there may exist 
 various ways to place the binding cache, and Figure 15.3 only shows one possibility. The 
binding cache placement algorithm is further discussed in Section 15.3.3.

15.3.2.2 Discussions

If CN and MN are located far apart from each other or located in different domains, it is 
 possible that the controllers of their first‐hop switches are different. If the two controllers 
belong to the same administrative domain, the problem may become simpler since intrado-
main communication between controllers is more common. If the two controllers belong to 
different administrative domains, interdomain interactions between controllers are required, 
which may bring larger cost comparing with the intradomain case. Specifically, interdomain 
communication initiation between MN and CN is less costly than interdomain handoff of MN, 
because the former only requires a query and response of binding cache and is easier to handle, 
but the latter requires the controller to know the CN‐to‐MN flow path, which is not a 
 preknowledge of the controller in interdomain case.

However, interdomain handoff is not common in practice. There are two common ways to 
trigger an interdomain handoff: in one case, the MN moves for a long distance and then 
leaves one domain and enters another, which can be quite infrequent; in the other case, the 
MN switches between different providers (e.g., different Wi‐Fi or 3G/4G networks) without 
long‐distance movement. As for the second case, its occurrence probability can be further 
reduced by making multiple heterogeneous local networks be controlled by one logical 
controller. Using this method, MN’s switching among different access networks is analogous 
to intradomain handoff.

However, though infrequent, interdomain handover is unavoidable. To improve interdo-
main handover efficiency, the protocol can temporarily fall back to triangle routing that only 
requires one flow table downloading to the MN’s previously attached switch. After MN–CN 
communication is restored, further operations can be performed to optimize the path between 
MN and CN.

15.3.3 Binding Cache Placement Algorithm

This subsection further researches into the binding cache placement during MN’s handoff 
procedure. Theoretically, any switch on the CN‐to‐MN flow path before MN’s movement 
(e.g., S1, S2, and S3 in Fig. 15.3) can serve as a candidate switch, which is called Target 
Switch (TS). However, choosing some TS may lead to serious performance drawbacks. For 
example, it is a straightforward idea to choose MN’s first‐hop switch before movement (e.g., 
S3 in Fig. 15.3) as TS, but this method will result in triangle routing in most cases. Another 
idea is to choose CN’s first‐hop switch (e.g., S1 in Fig. 15.3) as TS, but this method may 
result in a large number of flow table downloading and high handoff latency, which is analo-
gous to the end‐to‐end Binding Update manner adopted by HIP‐like protocols. Therefore, the 
binding cache placement problem (BCPP) requires further study. The following of this 
 section formalizes and solves the problem.
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15.3.3.1 BCPP

First, the goals of the binding cache placement algorithm are given as follows:

Goal 1: Keep optimal forwarding path. This goal ensures the shortest forwarding data path 
between MN and CN and avoids triangle routing.

Goal 2: Minimize the distance between MN and TS. The purpose of proposing this goal is to 
localize the signaling caused by MN’s mobility events.

Goal 3: Minimize flow entry downloading per movement. This goal can help to both limit the 
mobility‐related flow table maintained on switches and reduce the signaling overhead 
 introduced by flow table downloading.

Then a general BCPP is defined as an optimization problem: given a set of TS to place 
the binding cache for an MN, the BCPP is to find a subset of the switches that optimizes 
some goals.

However, the proposed goals conflict with each other in many cases, for example, selecting 
MN’s first‐hop switch before movement as TS will always satisfy Goal 3 but has a large 
 possibility to conflict with Goal 1. Thus, BCPP is further specified into the following two 
problems:

BCPP‐1: BCPP that takes Goal 2 as optimization objective and Goal 1 as constraint.
BCPP‐2: BCPP that takes Goal 3 as optimization objective and Goal 1 as constraint.

15.3.3.2 Problem Formalization and Solution

BCPP‐1
Assume that during a handoff procedure, MN moves from switch s

n
 to s

n′ and CN stays attach-
ing to switch s

1
 as shown in Figure 15.4. A set of definitions are given before formalizing 

BCPP‐1:

Definition 15.1
path

prev
 is defined as a set of switches on the MN–CN path before movement of MN, for 

example, {s
1
, s

2
, …, s

i
, …, s

n
} in Figure 15.4.

path
current

 is defined as a set of switches on the MN–CN path after movement of MN, for 
example, {s

1
, s

2
, …, s

i
, …, s

n′} in Figure 15.4.
Path pair is a (path

prev
, path

current
) tuple.

Switch s satisfies path pair p means after placing the binding cache (of the MN) on s, the 
new MN–CN path path

new
 equals to path

current
. This ensures Goal 1, that is, optimality of the 

forwarding path (no triangle routing).

Then BCPP‐1 is formalized as:

Problem 15.1
Given each path pair p, find a switch s that satisfies p and at the same time minimizes its dis-
tance to the MN.

The solution to Problem 15.1 is relatively simple. First, another group of definitions is given 
as follows:
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Definition 15.2
Satisfactory switch set C

p
 for path pair p is defined as ∀ ∈s Cp ,  s satisfies p, for example,  

{s
1
, s

2
, …, s

i
} is a satisfactory switch set for path pair (path

prev
, path

current
) in Figure 15.4.

Fork node of path pair p is defined as the node where two paths of the path pair “fork,” for 
example, s

i
 is the fork node of path pair (path

prev
, path

current
) in Figure 15.4.

Then the solution to Problem 15.1 is given:

Algorithm 15.1
Given a path pair p, find its fork node s.

The complexity of the algorithm is O d n( )⋅  where n represents number of path pairs and d 
represents length of the path. Related proof is omitted here.

BCPP‐2
More definitions are given to formalize BCPP‐2:

Definition 15.3
Switch s satisfies a set of path pairs P means ∀ ∈p P,  s satisfies p.
A set of switches S satisfies a set of path pairs P means ∀ ∈p P, ∃ ∈s S  s.t. s satisfies p.

Problem 15.2
Given a set of n path pairs P, find the smallest set of switches S that satisfies P.

Problem 15.2 can be solved in two steps:

Step 1: For each path pair p, find the largest satisfactory switch set C
p
.

Step 2: Find the smallest set S s.t. for each C
p
, S Cp∩ ≠ ∅.

The complexity of Step 1 is O d n⋅( ) . Step 2 can be reduced by Set Covering Problem that 
is NP hard; thus, Problem 15.2 is an NP‐hard problem.

Obviously, Problem 15.2 can be solved using exhaustive search, but its complexity is O(dn) 
and is unacceptable. We find that under certain circumstance, Problem 15.2 can be solved 
using a simple algorithm. The circumstance is described as:

Assumption 15.1
Two paths to the same destination share identical “suffix” after they “meet.”

s2 s2 si

sn

sn′

Pathprev

Pathcurrent

Fork node

Figure 15.4 This figure helps to demonstrate Definitions 15.1, 15.2, and 15.3: path
prev

 consists of nodes 
from s

1
 to s

n
, while path

current
 consists of nodes from s

1
 to s

n′, and s
i
 is the fork node.
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Assumption 15.1 is satisfied as long as packet forwarding between MN and CN only relies 
on destination IP address, which is a common case in current intradomain scenarios. With this 
assumption, the solution to Problem 15.2 is proposed as the following algorithm:

Algorithm 15.2 
Find the fork node s

i
 of each path pair p P∈ , S si= ∪{ }.

Actually, Algorithm 15.2 is similar to Algorithm 15.1 except that Algorithm 15.2 works on 
a set of path pairs. Algorithm 15.2 takes O d n⋅( )  to get the optimal result. The proof of the 
optimality of Algorithm 15.2 is omitted in this chapter.

Obviously, Algorithm 15.2 also optimizes Problem 15.1. Thus, if Assumption 15.1 is 
 satisfied, Algorithm 15.2 can generate optimal results for both Problems 15.1 and 15.2, which 
means all three goals can be simultaneously achieved.

When Assumption 15.1 cannot be satisfied, another algorithm is given to solve Problem 15.2:

Algorithm 15.3
Greedy Set Covering.

Step 1: Let X P= , S = ∅.
Step 2: Repeat the following process until X = ∅ ; find i s.t. S

i
 contains the largest number of 

elements in X, and then let S S si= ∪{ }, X X Si= \ .

According to existing research [44], Greedy Set Covering algorithm takes O d n( )⋅ 2  to get 
a result with approximation ratio ln n +1.

Note that Algorithm 15.3 also generates optimal result when Assumption 15.1 is satisfied. 
The proof is omitted in this chapter.

15.3.3.3 Evaluation

This subsection evaluates the previously proposed algorithms to see how they perform in real 
network topologies. Since it is difficult to get real intradomain routing data that conflicts with 
Assumption 15.1, only Algorithm 15.2 is evaluated under Assumption 15.1 using real intrado-
main topology with the shortest path routing. Two additional algorithms are introduced as 
comparatives:

Algorithm‐random: For each path pair p, this algorithm randomly selects a switch s that 
satisfies p as TS.

Algorithm‐CN: For each path pair p, this algorithm selects the first‐hop switch of CN as TS.
All three algorithms satisfy Goal 1; thus, the comparison uses metrics from the other two 

goals: one metric is MN–TS distance, and the other metric is the number of binding cache 
downloaded per MN per movement.

The evaluation topology and routing data are calculated using intradomain topologies from 
RocketFuel [45] including AS1221, AS1755, AS6461, AS3257, AS3967, and AS1239. As 
evaluations based on different topologies show similar results, three of them are chosen to 
demonstrate the results, and they are AS1221 with 208 nodes, AS3257 with 322 nodes, and 
AS6461 with 276 nodes. To study the performance of the algorithm based on various 
 topologies, another two topologies are generated to add differentiation: one is a 200‐node 
 hierarchical topology with a densely interconnected core network and several treelike edge 
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 networks, and the other is a 200‐node flat topology in which nodes randomly connect to each 
other with an average degree.

For each one of the topologies above, the evaluation runs for 100 turns. In each turn, a dif-
ferent node in the topology is selected as the MN, and 10 randomly located nodes are chosen 
as CNs. The MN performs 10 movements per turn using a modified Markov chain‐based 
random walk model: during each movement, the MN randomly attaches to a new node that is 
one hop away from its previous location.

Evaluation results are demonstrated in Figure 15.5. As shown in the figures, Algorithm 15.2 
has the lowest value. Figure 15.5a shows that MN–TS distance of Algorithm 15.2 only takes 
10–20% of the network diameter, which means TS is located about two hops away from MN 
on average, and this offers a good guarantee on the handoff efficiency. Algorithm‐CN has the 
largest MN–TS value since it always pushes binding cache to the CN side. The value of 
Algorithm‐random stays between Algorithm‐CN and Algorithm 15.2. Also, when evaluation 
topology becomes more flat, MN–TS values of three algorithms approximate to each other. It 
is because with the “flatten” of topology, average distance between nodes also drops.

Figure 15.5b shows that, on average value, Algorithm 15.2 only generates about 0.3–0.5 
flow  table downloading per each CN in three intradomain topologies, while the other two 
 algorithms always require downloading one flow table for each CN. Again, Algorithm 15.2 
requires more flow table downloading in flat topologies. Just as the fact that hierarchical 
topology helps to reduce routing table size, it also helps to reduce binding cache maintenance.

15.3.4 System Design

This subsection describes system design of the proposal including an implementation based 
on Mininet and experiments that compares this proposal with another two representative 
Internet mobility protocols.

15.3.4.1 Implementation

The protocol is implemented based on Mininet 2.1.0 [46]. Pox [47] is chosen as the controller 
in the implementation. Figure 15.6a demonstrates the protocol flow. When switch S3 detects 
MN’s attachment, it assigns a CoA to the MN and registers (HoA, CoA) tuple on the controller 
using port‐status message. Receiving registration from S3, controller stores the binding cache 
locally and downloads a “rewrite” flow entry (the same as that in Section 15.3.2.1) to S3 using 
flow‐mod message.

When switch S1 receives a packet toward an unknown host, it sends the packet to controller 
using packet‐in message. Upon receiving packet‐in, controller rewrites its destination IP 
address and resends it out using packet‐out message. At the same time, controller downloads 
MN’s binding cache to S1 using flow‐mod message. In order to generate the path pairs used 
in the binding cache placement algorithm, the controller needs to keep a record of all the CN‐
to‐MN paths, which we call Path Record (PR). For example, in this case, when the controller 
downloads MN’s binding cache to S1, it adds one entry into PR indicating that “There exists 
a flow from S1 to the MN.” When the binding cache on S1 expires, S1 will acknowledge the 
controller, and then the controller will delete the related entry in PR.
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After MN moves to S2, another similar procedure handles related registration and flow 
table downloading procedures. To deal with the handoff, the controller runs the binding 
cache placement algorithm discussed previously. It uses PR to get all path pairs related to the 
MN (only one path pair in this case). To obtain the path pairs, the controller looks up in the 
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Figure 15.5 The two figures show results of comparison among three proposed algorithms based on 
five different topologies. (a) Shows normalized average MN–TS distance, and (b) shows average number 
of binding cache placed per CN. Algorithm 15.2 outperforms the other two in all scenarios.
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PR and calculates the previous path from S1 to MN via S3, as well as the current path from 
S1 to MN via S2. After running the binding cache placement algorithm, the controller gets a 
set of switches that require updating. Then the controller downloads the MN’s up‐to‐date 
binding cache to these switches using flow‐mod messages. Note that the controller also needs 
to update PR after this turn of flow table downloading.

15.3.4.2 Experiment

Methodology
Several experiments are made based on the implementation to compare the proposed protocol 
with another two IP mobility protocols: PMIPv6 and ILNP. The two protocols are chosen 
because they serve as good representatives of the solutions reviewed in Section  15.2.1: a 
 network‐based protocol and a host‐based protocol. To make comparisons, another two 
 controllers are implemented to realize the basic mobility functions of PMIPv6 and ILNP, 
respectively. PMIPv6 is easier to implement based on Mininet since it is a network‐based pro-
tocol. But ILNP is more difficult; thus, the protocol is simulated in an approximate way: the 
mobility functions are moved from hosts to their first‐hop switches.

The experiment topology is shown in Figure 15.6b, which consists of one controller, two 
hosts, and eight switches. The topology is divided into three interconnected subdomains: (S7, 
S2, S3), (S8, S4, S5), and (S6, S1). Delays of intersubdomain links, intrasubdomain links, 
and “wireless links” (between H2 and attached switches) are 20, 2, and 10 ms, respectively. 
Bandwidths of the above three types of links are 100, 100, and 10 Mbps, respectively. Since 
in the current version of Mininet in‐band control between switches and controller is not 
 supported, thus, control traffic is out of band in the experiments. H2 serves as the MN and 
moves back and forth between switches S2 and S5. H1 serves as the CN and keeps immobile. 
The experiments run Iperf, which is a commonly used network testing tool, between the two 
hosts and collect end‐to‐end performance including round‐trip time (RTT), packet loss rate, 
as well as throughput.
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Figure 15.6 (a) Protocol flow and (b) experiment topology of the implementation.
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When simulating PMIPv6 in this topology, S7 serves as the HA; S2, S3, S4, and S5 serve 
as MAG; and S7 and S8 serve as Local Mobility Anchor (LMA). H2’s moving from S3 to S4 
indicates that it leaves its home network and needs to rely on S7 and S8 for packet indirection. 
When simulating ILNP, each time H2 moves, its first‐hop switch will send Binding Update to 
S1 on behalf of H2, and then S1 handles the update on behalf of H1. Note that the experiments 
actually favor PMIPv6 and ILNP for two reasons: firstly, IP reconfiguration is ignored in the 
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handoff process of the two protocols. Secondly, Binding Update process is simplified and only 
takes one‐way delay: MN‐to‐HA delay in PMIPv6 case and MN‐to‐CN delay in ILNP case. 
Both simplifications help to improve handoff efficiency of the two protocols.

Experiment Results
The first experiment runs Iperf between H1 and H2 for 10 s during which period H2 moves 
from S2 to S5 and performs three handoffs. Figure 15.7a shows collected TCP sequence of 
PMIPv6, ILNP, and the SDN‐based solution within the simulation time, from which we can 
infer that SDN‐based solution generates smoother handoff than the other two: TCP based on 
ILNP experiences time‐out and slow start during each handoff, which makes ILNP performs 
the worst in the experiment. It is because ILNP needs to send Binding Update from the MN 
side toward the CN side, and this may seriously degrade handoff efficiency especially when 
both sides are located away from each other. TCP based on PMIPv6 experiences only one 
time‐out during the second handoff, as the other two handoffs can be handled locally by LMA, 
while the second handoff is an intersubdomain handoff and requires interactions with HA. In 
contrast, TCP on the SDN‐based solution can always recover from packet loss during handoff 
using fast retransmit.

Figure  15.7b shows RTT of three protocols collected in the same experiment scenario, 
where we observe that RTT value of all three protocols temporarily raises to a higher value 
during handoff process. Besides, RTT of PMIPv6 stays at a higher value after the second 
handoff. It is because when H2 leaves the home network (after moving from S3 to S4), all 
packets to H2 are relayed by the HA S7, which results in triangle routing. The SDN‐based 
solution avoids triangle routing as the binding cache placement algorithm ensures optimal 
forwarding path, and in this scenario, it is achieved by downloading binding cache to S6.

15.4 Conclusion

This chapter addresses mobility in IP network under SDN architecture. SDN has advantages 
in handling problems in current mobility protocols because of its programmable devices, cen-
tralized control, as well as other features. By proposing an SDN‐based mobility management 
architecture together with an OpenFlow‐based protocol design, implementation, and experi-
ments, this chapter demonstrated that SDN enables the flexibility of mobility management, 
making it adaptive to various mobility scenarios in future mobile Internet.
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