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Technique for the Evaluation of Programming Ability
Based on the MTS

Abstract: In our research, by advancing Takada’s research [1] to some extent,
we set up persons creating a normal program in a base space, judged direc-
tions of two abnormal data groups using the Mahalanobis–Taguchi system
(MTS) method with Schmidt’s orthogonalization [2], and proposed a method
of assessing a programmer’s ability with data from questionnaires about
lifestyle-related matters.

1. Introduction

In a software development process, a programmer’s
ability is regarded as an important human factor
that affects software quality directly. Currently, many
companies have adopted a programmer aptitude
test as a method of evaluating a programmer’s po-
tential. However, in fact, approximately 30% of
them are not making the best of the programmer
aptitude test [3]. The main reason is its reliability
problem: that the test result is not relevant to a pro-
grammer’s ability or that the criteria for judgment
of aptitude are not clear. Therefore, establishment
of an effective method of evaluating a programmer’s
ability has been desired; in fact, many attempts have
been made. Among them is Takada’s and other re-
searchers’ evaluation method of programming abil-
ity using the MTS method.

Using two types of programs, mask calculation
and sorting programs, we gathered data for pro-
gramming ability. Table 1 shows the difference be-
tween the two programs. Lifestyle-related data were
collected through questionnaires, which consist of
56 questions and the four items of age, gender, pro-
gramming experience, and computer experience
(from now on, this questionnaire’s item is simply
called an ‘‘item’’).

Combining the data for sorting and mask calcu-
lation programs, we obtained 62 sets of data. By add-
ing the data used in Takada’s research, the total
number of data amounts to 153.

2. Setup of Normal and Abnormal Data

In the study by Takada and others, the people who
do not have a high level of programming ability
were considered as the base space, since the people
with high ability were considered as abnormal. But
since the people with low ability are also abnormal,
the base space was defined as the people who write
normal programs. It is a fact that the programs pro-
duced by the people with high ability are generally
difficult to use and do not fit well in a large system.

A program created by a testee was judged by two
examiners (Suzuki and Takada). A testee who cre-
ated a normal program was classified as a normal
datum, or a datum belonging to a base space,
whereas testees making a good and poor programs
were categorized as abnormal data. It can be seen
from Table 2 that there are not many people in the
‘‘good program’’ category, indicating the difficulty
of using these people to construct a base space.

3. Calculation of Mahalanobis Distance
Using Schmidt’s Orthogonal Variable

A Schmidt orthogonal expansion’s calculation proc-
ess is shown below. Using measurements contained
in a base space, we calculated a mean and standard
deviation for each item and computed normalized
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Table 1
Experimental difference between two programs

Sorting
Program

Mask Calculation
Program

Testee Student Businessperson and
student

Programming
time

Limited Unlimited

Programming
language

C Any language

Table 2
Classification of normal and abnormal data for software programming

Normal Data,
Normal Program

Abnormal Data

Good Program Poor Program

Judgment criterion A program after
removing abnormal
data

A program that contains no
bugs and understandable
to others

A program that contains
fatal bugs

Number of Data 102 14 23

variables, X1, X2, ... , X60. Then, with X1, X2, ... , X60,
we created orthogonalized variables, x1, x2, ... , x60.

x � X (1)1 1

x � X � b x (2)2 2 21 1

�

x � X � b x � b x � ��� � b x (3)60 60 601 1 602 2 6059 59

Next we set each variance of x1, x2, ... , x60 to V1,
V2, ... , V60. The normalized orthogonal variables, Y1,
Y2, ... , Y60, are expressed as follows:

x1Y � (4)1 �V1

x2Y � (5)2 �V2

�

x60Y � (6)60 �V60

Table 3 summarizes the calculation results above.

Next, for measurements of testees creating good
and poor programs, we computed Y1, Y2, ... , Y60, as
shown in Table 4. Then the Mahalanobis distance
D 2 was computed by Y1, Y2, ... , Y60:

12 2 2 2D � (Y � Y � ��� � Y ) (7)1 2 6060

Table 5 shows the calculation results of Mahalanobis
Distances for the base space and abnormal data.

4. Selection of Items for
Measurement Ability Using the
Larger-the-Better Characteristic

As a next step, we judged the direction of a distance
and set up each item’s order. It is important in using
the Schmidt method to determine the order of
items based on their importance as well as on cost,
but these were unknown because each item in our
research was a question. Next, selecting items by a
larger-the-better characteristic based on an orthog-
onal array, after creating response graphs, we placed
all items in descending order with respect to the
magnitude of a factor effect. (Level 1 was used for
creating a standard space. Since level 2 was not used
for the purpose, items with decreasing value from
left to right are effective for judgment.) Figures 1
and 2 show the results. The former is the item-
selection response graph for testees creating a good
program, and the latter is that for those creating a
poor one.

According to Figure 1, we note that items 28, 2,
20, and 46 are effective for testees creating a good
program. In contrast, Figure 2 reveals that effective
items for those creating a poor program are 29, 32,
36, and 30. These results highlight that there is an



1180 Case 68

Table 3
Database for the base space

Item 1 Item 2 ��� Item 60

Measurement 2
3
�

�2

�1
1
�

�1

���

5
6
�
7

Average 0.24 0.66 ��� 6.42

Standard deviation 1.72 1.37 ��� 4.77

Normalized variable X 1.02
1.60
�

�1.30

�1.21
0.25
�

�1.21

���

�0.98
0.54
�
0.33

Regression coefficient b — 0.12 ��� �0.10
�0.12

�
0.70

Variance V 1 0.99 ��� 0.10

Normalized orthogonal
variable Y

1.02
1.60
�

�1.30

�1.34
0.06
�

�1.07

���

�1.20
0.04
�
1.64

Table 4
Normalized orthogonal variables of abnormal data

Item 1 Item 2 ��� Item 60

Measurement
Good program �2

2
�
0

0
0
�

�2

���

5
6
�
7

Poor program 0
1
�
1

0
2
�
1

���

2
3
�
7

Orthogonal variable
Good program �1.30

1.02
�

�0.14

�0.33
�0.61

�
�1.94

���

5.18
�3.98

�
�5.62

Poor program �0.14
0.44
�
0.44

�0.47
0.93
�
0.20

���

�2.50
1.94
�
5.01
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Table 5
Mahalanobis distance of abnormal data
calculated from a base space constructed
by the group of people who wrote
normal programs

Distance
Base
Space

Good
Program

Poor
Program

0 0 0 0

0.5 2 0 0

1 49 0 1

1.5 51 1 2

2 0 2 1

2.5 0 4 5

3 0 4 3

3.5 0 0 4

4 0 0 4

4.5 0 1 1

5 0 1 2

5.5 0 0 0

6 0 0 0

6.5 0 1 0

7 0 0 0

7.5 0 0 0

8 0 0 0

8.5 0 0 0

9 0 0 0

9.5 0 0 0

10 0 0 0

Total 102 14 23

obvious difference between those creating good and
poor programs. By performing a Schmidt orthogo-
nal expansion on the data for those creating good
and poor programs, we rearranged each item’s
order.

5. Determination of Item Order by
Normalized Orthogonal Variables

In accordance with the procedure below, using or-
thogonal normalized variables Y1, Y2, ... , Y60, we
computed larger-the-better SN ratios �1, �2, ... , �60

for A1, A2, ... , A60, and rearranged each item’s order
such that we could eliminate items leading to a
smaller SN ratio:

A � only Y is used1 1

A � Y and Y are used2 1 2

�

A � Y , Y , ... , Y are usedk 1 2 60

Then we detailed calculation of the SN ratio for tes-
tees creating a good program (refer to Table 6) as
follows.

SN ratio for A1:

1 1 1 1
� � �10 log � � ��� �� �1 2 2 214 1.20 1.20 4.99

� �5.90 dB (8)

SN ratio for A2:

1 1 1 1
� � �10 log � � ��� �� �2 2 2 214 0.86 1.38 3.57

� �5.21 dB (9)

SN ratio for A60:

1 1 1 1
� � �10 log � � ��� �� �60 2 2 214 2.18 2.52 1.54

� 4.07 dB (10)

Figure 3 shows the relationship between items
and SN ratios when using the data for testees cre-
ating a good program, and the relationship for
those creating a poor program. Up to this point,
calculations were made using software from the
Oken Company.

6. Directional Judgment by Schmidt
Orthogonal Expansion

By taking advantage of the rearranged data, we
made a judgment on the direction of abnormal data
as to whether the abnormal data were abnormal in
a favorable or unfavorable direction: whether ab-
normally good or abnormally bad. Since we did not
have enough data for the base space, it was decided
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Figure 1
Response graphs for item selection (for testees creating a good program)

Figure 2
Response graphs for item selection (for testees creating a poor program)

to judge one side at a time rather than judging the
sides at the same time. As a first step, we made a
separate directional judgment for each piece of the
data for those creating good and poor programs.

After each type was evaluated and classified into
two levels, we set up the levels of a signal, m, as
follows:

m : most favorable � 2 (8 testees matched)1

m : favorable � 1 (6 testees matched)2

m : unfavorable � �1 (8 testees matched)3

m : most unfavorable � �2 (15 testees matched)4

As a next step, we calculated the normalized
orthogonal variables Y ’s for each item for those

creating good and poor programs. Because the
number of items was 60, we calculated Y1, Y2, ... ,
Y60. We rearranged the data for those creating a
good program and computed the normalized or-
thogonal variables for abnormal data (Table 7).

Note the following calculation example of � for
the first item after rearranged for those creating a
good program: For the first item we computed the
average of Y1’s, denoted by for the data belongingY1

to each of m1 and then computed the same for m2,
m3, and m4. Then, for signals, setting the true value
as m and the output normalized orthogonal varia-
bles as Y, we applied a zero-proportional equation
Y � �m. Computing each belonging to each ofY1

m1, m2, m3, and m4, we estimated �1 by the least
squares method.
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Table 6
Rearranging data for testees creating a good
program

No. A1 A2 ��� A60

1 1.20 0.86 ��� 2.18

2 1.20 1.38 ��� 2.52

� � � ��� �

8 0.69 1.94 ��� 1.53

9 1.16 0.96 ��� 2.03

10 0.22 0.18 ��� 1.72

� � � ��� �

14 4.99 3.57 ��� 1.54

Figure 3
Rearrangement of items by Schmidt orthogonal expansion

for data belonging to m1:Y1

�1.20 � ��� � 0.69
Y � � �0.38 (11)1m1 8

for data belonging to m2:Y1

1.16 � ��� � (�4.99)
Y � � �0.49 (12)1m2 6

for data belonging to m3:Y

�0.73 � ��� � 0.22
Y � � �0.02 (13)1m3 8

for data belonging to m4:Y1

�0.26 � ��� � 1.16
Y � � 0.34 (14)1m4 15

m Y � m Y � m Y � m Y1 1m1 2 1m2 3 1m3 4 1m4� �1 2 2 2 2m � m � m � m1 2 3 4

� �0.19 (15)

In a similar manner, we computed �2, �3, ... , �60.
Then, for Y1, Y2, ... , Y60 (abnormal data), whose
directions we attempted to judge, for example, if we
define the direction of the first item as M1, we know
the direction of M1 by using the relationship Y1 �
�1M1 because all of �1, �2, ... , �60 are known. Sim-
ilarly, determining M2, ... , M60 for Y2, ... , Y60 with
�2, ... , �60, we calculated the sum of M ’s as the
direction of the data’s distances, M. Since we de-
fined the signals for testees creating a good pro-
gram as �2 and �1, and those for testees creating
a poor program as �2 and �1, if testees creating a
good program have a positive direction and testees
creating a poor program have a negative direction,
our judgment method can be regarded to work
properly. Table 8 shows the judgment result for both
of the cases of using the data for testees creating
good or poor programs.

Table 8 reveals that in the case of using the data
for those creating a good program, 8 of 14 testees
creating a good program and 12 of 23 creating a
poor program were judged correctly. On the other
hand, in the case of using the data for testees cre-
ating a poor program, 8 of 14 creating a good pro-
gram and 13 of 23 creating a poor program were
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Table 7
Normalized orthogonal variables of abnormal data

No. m Level

Normalized Orthogonal Variable

Y1 Y2 ��� Y60

Testees creating good program 1
2
�
8
9

10
�

14

m1

m1

�
m1

m2

m2

�
m2

�1.20
�1.20

�
0.69
1.16
0.22
�

�4.99

�0.35
�0.35

�
�2.04

1.59
�1.98

�
�1.39

���
���
���
���
���
���
���
���

�2.84
�5.38

�
�0.98
�0.85

2.87
�

0.92

Testees creating poor program 1
2
�

15
16
17
�

23

m2

m3

�
m3

m4

m4

�
m4

�0.73
0.22
�

0.22
�0.26

0.22
�

1.16

1.07
�1.98

�
0.23

�0.46
0.96
�

0.85

���
���
���
���
���
���
���
���

1.71
0.53
�

2.06
�3.67
�1.69

�
�2.19

judged correctly. However, the data do not neces-
sarily indicate an accurate judgment.

Item Selection for Programming Ability Evaluation
To improve the accuracy in judgment, by using the
SN ratio, we evaluated item selection for program-
ming ability evaluation whether or not outputs for
signals from �2 to �2 were stable (the linearity of
Y � �M). For the first item obtained after rearrang-
ing the data for testees creating a good program, we
calculated the SN ratio as below.

Total variation:

2 2 2 2S � Y � Y � Y pl Y � 0.50 (16)T 1M1 1M2 1M3 1M4

Variation of �:

2(M Y � M Y � M Y � M Y )1 1M1 2 1M2 3 1M3 4 1M4S �� r

� 0.36 (17)

Effective divider:

2 2 2 2r � M � M � M � M � 10 (18)1 2 3 4

Error variation:

S � S � S � 0.14 (19)e T �

Error variance:

SeV � � 0.05 ( f � 3) (20)e f

SN ratio:

(1/r) (S � V )� e� � 10 log � �1.62 dB (21)
Ve

Similarly, we computed the SN ratios for items 2
through 60. By picking up stable items from all of
the SN ratios (no item with an SN ratio of less than
�10 dB was used), we calculated the directions of
distances again. Table 9 shows the result.

The table demonstrates that in the case of using
the data for those creating a good program, 12 of
14 testees creating a good program and 17 of 23
creating a poor program were judged correctly. The
number of items used for this analysis was 17.

On the other hand, in the case of using the data
for testees creating a poor program, for 12 of 14
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Table 8
Directional judgment using all items

Good
Program

No.

M for
Good

Program

M for
Poor

Program

Poor
Program

No.

M for
Good

Program

M for
Poor

Program

1

2

3

4

5

6

7

8

9

10

11

12

13

14

2125.61

3973.87

�4842.26

�1027.02

�3437.98

�3258.63

5805.01

5062.20

�2984.79

4531.27

1095.78

4209.38

�1011.24

2580.05

780.12

�527.55

428.87

140.29

897.78

631.64

�594.37

�753.75

�1713.75

464.39

�321.21

1084.77

�670.23

170.22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

12.51

118.96

7785.43

�2097.13

�3453.95

�2755.32

�1602.08

�1070.22

7412.83

�2571.95

1006.82

905.96

6814.81

1184.24

�2647.86

5393.82

589.65

3003.96

�350.94

456.86

3193.06

�3413.29

�1104.85

391.49

�10.84

316.39

�1702.27

1185.03

�1036.88

966.77

�731.54

192.16

713.33

1890.32

�216.42

�2039.88

�143.26

�1052.03

121.56

�964.47

�248.19

385.61

10.69

�71.63

253.36

�287.06

creating a good program and 15 of 23 creating a
poor program, were correctly judged. The number
of items used was 11. Consequently, these results
prove that the accuracy in judgment was improved
compared with the former analysis.

After obtaining the results that single-directional
judgment produced satisfactory accuracy, we at-
tempted two-directional judgment. More specifi-

cally, after combining the data for testees creating
good and poor programs into a single set of abnor-
mal data, we selected items by using an orthogonal
array, rearranged them according to the response
graphs shown in Figure 4, and reordered them by
a Schmidt orthogonal expansion (figure 5) such
that items leading to a smaller SN ratio can be
eliminated.
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Table 9
Directional judgment using only stable items

Good
Program

No.

M for
Good

Program

M for
Poor

Program

Poor
Program

No.

M for
Good

Program

M for
Poor

Program

1

2

3

4

5

6

7

8

9

10

11

12

13

14

11.92

0.64

104.51

10.62

95.44

�11.47

16.24

34.97

29.00

37.79

40.22

26.22

33.57

87.14

48.48

6.49

72.78

13.21

7.22

14.04

24.18

5.35

�31.36

22.85

32.68

�1.93

14.21

61.13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

�60.26

39.77

�80.13

�10.76

�28.88

14.21

26.12

�88.30

�44.31

�72.51

�16.22

�24.20

�13.18

�52.91

�12.71

10.68

32.93

�66.87

�59.76

�61.35

�15.74

74.36

�38.94

�19.46

4.19

�38.91

�33.91

�4.31

7.94

18.67

�25.71

19.67

�53.59

�3.78

�25.94

�17.04

3.27

2.45

11.67

�12.76

�93.26

�33.73

�22.68

�16.04

10.28

�26.52

Then, based on the rearranged order of the
items, we made a directional judgment focused on
the SN ratio, indicating a linear trend. Table 10
shows the result of directional judgment on abnor-
mal data.

Table 10 shows that 13 of 14 testees creating a
good program and 19 of 23 creating a poor pro-
gram were judged correctly. Eleven items were used
for this analysis. Although initially, we attempted to
make a separate directional judgment on each

group of testees creating good and poor programs,
because of the small number of data used, the two
groups’ combined double-directional judgment re-
sulted in higher accuracy.

7. Results

Observing the Mahalanobis distances of normal
(base space) and abnormal data, it was found that
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Figure 4
Response graphs for item selection

Figure 5
Rearrangement of items by Schmidt orthogonal expansion

the center of distribution of each case was separate;
therefore, it is possible to distinguish between nor-
mal and abnormal data. Regarding the directional
judgment for abnormal data, its accuracy was poor
if all items were used. As an alternative approach,
the SN ratio was calculated to observe the linearity
of Y � �M. Then those items with good linearity
were used. It means that the items useful for dis-
crimination of normal/abnormal data were not nec-
essarily useful for the judgment of direction unless
they have linearity on y � �m. As a result, judging
accuracy was improved and the direction of all ab-
normal data was judged correctly for almost all the
data.

In our experiment, two types of abnormal data
were used. By taking advantage of a Schmidt or-
thogonal expansion, with direction expressed by a
positive or negative sign, we judged successfully
whether the abnormal data were abnormal in a fa-
vorable or unfavorable direction. According to this
result, after creating a base space with data for per-
sons creating a normal program, we can assess each
programmer’s ability by comparing abnormal data
for persons creating good and poor programs with
the base space. The remaining issue is to form a
more stable base space consisting of a larger num-
ber of data. Additionally, while we classified a signal,
m, into four groups, to improve accuracy in direc-
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Table 10
Directional judgment using abnormal data

Good
Program

No.
Direction of
Distance M

Poor
Program

No.
Direction of
Distance M

1

2

3

4

5

6

7

8

9

10

11

12

13

14

53.17

18.92

55.64

3.11

28.49

7.04

17.66

12.49

�29.90

15.67

23.18

0.47

7.77

60.18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

�40.63

9.31

�45.33

�18.44

�23.91

19.25

�7.10

�38.26

17.12

�35.41

�5.86

�29.15

�12.16

9.74

4.83

�3.24

�4.79

�61.08

�29.90

�11.70

�16.68

�3.69

�22.33

tional judgment, we should set up a separate signal
for a different programmer.
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