
9

THE DOMAIN NAME SYSTEM
(DNS) PROTOCOL

9.1 DNS OVERVIEW—DOMAINS AND RESOLUTION*

DNS is the third cornerstone of IPAM and a foundational element of IP communications.

DNS provides the means for improved usability of IP applications, insulating end

users from typing IP addresses directly into applications like web browsers. Certainly,

to communicate over an IP network, an IP device needs to send IP packets to the

intended destination IP device; and as we have seen, the IP packet headers require source

and destination IP addresses. DNS provides the translation from a user-entered named

destination, for example, web site address, to its IP address.

As a network service, DNS has evolved from simple host name-to-IP address lookup

utility to enabling very sophisticated “lookup” applications supporting voice, data,

multimedia, and security applications. DNS has proven extremely scalable and reliable

IP Address Management: Principles and Practice, by Timothy Rooney

Copyright � 2011 the Institute of Electrical and Electronics Engineers, Inc.

* Initial sections of this chapter are based on Chapter 4 of Ref. 11.

for such lookup functions. We’ll discuss how this lookup process works after first

introducing how this information is organized.

9.1.1 Domain Hierarchy

The global domain name system is effectively a distributed hierarchical database. Each

“dot” in a domain name indicates a boundary between tiers in the hierarchy, with each

name in between dots denoted as a label. The top of the hierarchy, the “.” or root domain

provides references to top-level domains, such as .com, .net, .us, .uk, which in turn

reference respective subdomains. Each of these top-level domains or TLDs is a child of

Figure 9.1. Domain tree mapping to a fully qualified domain name (11)

144 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

the root domain. Each TLD has several children domains as well, such as ipamworld-

wide.comwith the ipamworldwide domain beneath the com domain. And these children

may have children domains and so on.

As we read between the dots from right to left, we can identify a unique path to the

host we are seeking. The text left of the leftmost dot is generally* the hostname, which is

located within the domain indicated by the rest of the domain name. A fully qualified

domain name (FQDN) refers to this unique full [absolute] path name to the node or host

within the globalDNSdata hierarchy. Figure 9.1 illustrates a fully qualified domain name

mapping to the tree-like structure of the DNS database. Note that the trailing dot after

.com. explicitly denotes the root domain within the domain name, rendering it fully

qualified. Keep in mind that without this explicit FQDN trailing dot notation, a given

domain name may be ambiguously interpreted as either fully qualified or relative to the

“current” domain. This is certainly legal and easier shorthand notation, but just be aware

of the potential ambiguity.

9.2 NAME RESOLUTION

To illustrate how domain information is organized and how a DNS server leverages this

hierarchical data structure, let’s take a look at an example name resolution. Let’s assume

I’d like to connect to a device namedpc52 per the example in Figure 9.1. Thus I enter the

host domain name,pc52.dev.ipamworldwide.com. asmy intended destination.

The application into which I type this domain name (e.g., email client and web browser)

utilizes the sockets{application programming interface (API) to communicate with a

portion of code within the TCP/IP stack called a resolver. The resolver’s job in this

instance is to translate theweb server name I typed into an IP address that may be used to

initiate IP communications.

The resolver issues a query for this hostname to my local DNS server, requesting

the server provide an answer. The IP address of this local DNS server is configured

either manually{ or via DHCP using the domain servers option (option 6 in DHCP

and option 23 in DHCPv6). This DNS server will then attempt to answer the query

by looking in the following areas in the specified order and as illustrated in the

Figure 9.2.

We often refer to this DNS server towhich the resolver issues its query as a recursive

server. “Recursive” means that the resolver would like the DNS server to try to find the

answer to its query if it does not know itself. From the resolver’s viewpoint, it issues

one query and expects an answer. From the recursive DNS server’s perspective, it

attempts to locate the answer for the resolver. The recursive server is the resolver’s

“portal” into the global domain name system. The recursive server accepts recursive

* Some environments allow dots within hostnames that is relatively uncommon though permissible.
{This API call is from the application to the TCP/IP layer of the protocol stack. The gethostbyname sockets/

Winsock call initiates this particular process.
{We’ll review how to perform this manual configuration a little later in this chapter.

9.2 NAME RESOLUTION 145

queries directly from client resolvers and performs the steps outlined below to obtain the

answer to the query on behalf of the resolver.

1. The resolver initiates a query to the recursive DNS server. The resolver knows

which DNS server to query based on configuration via manual entry or via

DHCP.

2. The queried server will first search its configured data files. That is, the DNS

server is typically configured with configuration and resource record informa-

tion for which it is authoritative. This information is typically configured using

text files, aWindows interface or an IPAMsystem. For example, your company’s

DNS servers are likely configured with resolution information for your

company’s IP devices. As such, this is authoritative information. If the answer

is found, it is returned to the resolver and the process stops.

3. If the queried server is not authoritative for the queried domain, it will access its

cache to determine if it recently received a response for the same or similar query

from another DNS server during a prior resolution task. If the answer for pc52.

dev.ipamworldwide.com. resides in cache*, the DNS server will respond

to the resolver with this nonauthoritative information and the process stops. The

fact that this is not an authoritative answer is generally of little consequence, but

the server alerts the resolver to this fact in its response.

4. If the queried DNS server cannot locate the queried information in cache, it will

then attempt to locate the information via another DNS server that has the

information. There are three methods used to perform this “escalation.”

a. If the cache information referenced in step 3 indicates a partial answer to the

query, it will attempt to contact the source of that information to locate the

ultimate source and answer. For example, a prior query to another DNS

Figure 9.2. Recursive and iterative queries in name resolution (11)

*Cache entries are temporary and are removed by DNS servers based on user configuration settings as well as

advertised lifetime of a resource record.

146 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

server, serverA,may have indicated that DNS serverA is authoritative for the

ipamworldwide.com domain. The initially queried DNS server may

then query DNS server A for information leading to resolution of pc52.

dev.ipamworldwide.com.

b. If the cache does not provide relevant information, and the queried recursive

server is configured to forward, the server will forward the query as

configured in its configuration or zone file. We’ll cover the details on this

configuration later.

c. If no information is found in cache, the server cannot identify a referral server,

or forwarding did not provide a response* or is not configured, theDNS server

will access its hints file. The hints file provides a list of root name servers to

query in order to begin traversing down the domain hierarchy to a DNS server

that can provide an answer to the query.

Note that by issuing queries to other DNS servers to locate resolution infor-

mation, the recursive server itself performs a resolver function to execute this

lookup. The term stub resolver is commonly used to identify resolvers, like those

within end user clients, that are configured only with which recursive name

servers (NSs) to query.

5. Upon querying either a root server or a server further down the tree based on

cached information, the queried server will either resolve the query by

providing the IP address(es) for pc52.dev.ipamworldwide.com. or

will provide a referral to another DNS server further down the hierarchy

“closer” to the sought fully qualified domain name. For example, upon

querying a root server, you are guaranteed that you will not obtain a direct

resolution answer for pc52.dev.ipamworldwide.com. However, the

root name server will refer the queryingDNS server to the name servers that are

authoritative for com. The root servers are “delegation-only” servers and do

not directly resolve queries, only answering with delegated name server

information for the queried TLD.

6. The recursive server iterates{ additional queries based on responses down the

domain tree until the query can be answered. Continuingwith our example, upon

querying the name server that is authoritative forcom., the answer receivedwill

be a referral to the name server that is authoritative for ipamworldwide.

com., and so on down the tree. Ultimately, a DNS server that is authoritative for

the zone of relevance to the query should be located. The authoritative DNS

server will read the corresponding zone information for a resource record of the

type being queried. The server will pass the resource record(s) to the querying

(recursive) DNS server.

* If theforwardonly option is configured, the resolution attemptwill cease if the forwarded query returns no

results; if the forward first option is configured, the process outlined in this paragraph ensues, with

escalation to a root server.
{These “point-to-point” queries are referred to as iterative queries.

9.2 NAME RESOLUTION 147

7. When the answer is received, the recursiveDNS serverwill provide the answer to

the resolver and also update its cache and the process ends. If an answer cannot

be found, the recursive server will also cache this “negative” information as well

for use in responding to similar queries.

In summary, the resolution process entails (a) finding a name server with authoritative

information to resolve the query in question and (b) querying that server for the desired

information. In our example, the desired information was the IP address corresponding

to the domain name pc52.dev.ipamworldwide.com. This “translation” information

mapping the queried domain name to an IP address is stored in the DNS server in the

form of a resource record. Different types of resource records are defined for different

types of lookups. Each resource record contains a “key” or lookup value and a

corresponding resolution or answer value. In some cases a given lookup value for a

given type may have multiple entries in the DNS server configuration. In this case, the

authoritative DNS server will respond with the entire set of resource records, or RRSet,

matching the queried value (name), class and type. We’ll discuss resource records in

detail in the next chapter.

The bottom line is that DNS servers are configured at all levels of the domain tree as

authoritative for their respective domain information, as well as where to refer queriers

further down the domain tree. In many cases, these servers at different levels are

administered by different organizations. Not every level or node in the domain tree

requires a different set of DNS servers as an organization may serve multiple domain

levels within a common set of DNS servers.

While the top three layers of the domain tree typically utilize three sets of DNS

servers under differing administrative authority, the support of multiple levels or domains

within an organization on a single set of DNS servers is a deployment decision. This

decision hinges primarily onwhether administrative delegation is required or desired. For

example, the DNS administrators for the ipamworldwide.com domainmay desire to

retain administrative control of the dev.ipamworldwide.com. domain, but to

delegate eng.ipamworldwide.com to a different set of administrators and name

servers. This leadsus to a discussion regarding the distinctionbetweenzones and domains.

9.3 ZONES AND DOMAINS

The term zone is used to differentiate the level of administrative control with respect to

the domain hierarchy. In our example, the ipamworldwide.com zone contains

authority for the ipamworldwide.com and dev.ipamworldwide.com

domains, while the eng.ipamworldwide.com zone retains authority for the

eng.ipamworldwide.com domain as illustrated in Figure 9.3.

By delegating authority for eng.ipamworldwide.com, the DNS admini-

strators for ipamworldwide.com are agreeing to pass all resolutions for

eng.ipamworldwide.com (and below in the domain tree for any subdomains of

eng.ipamworldwide.com) to DNS servers administered by personnel operating

the eng.ipamworldwide.com zone. These eng.ipamworldwide.com

148 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

administrators can manage their domain and resource records and any children auton-

omously; they just need to inform the parent domain administrators (for ipamworld-

wide.com) where to direct queries they receive as resolvers or other DNS servers

attempt to traverse down the domain tree seeking resolutions.

Thus, administrators for the ipamworldwide.com zone must configure all

resource records and configuration attributes for the ipamworldwide.com zone,

including subdomains within the ipamworldwide.com zone such as the dev.

ipamworldwide.com domain. At the same time, ipamworldwide.com admin-

istrators must provide a delegation linkage to any child zones, such as eng.ipam-

worldwide.com. This delegation linkage is supported by entering name server (NS)

resource records within the ipamworldwide.com zone file, which indicate which

name servers are authoritative for the eng.ipamworldwide.com delegated zone.

These NS records provide the continuity to delegated child zones by referring resolvers

or other name servers further down the domain tree. Corresponding A or AAAA records

called glue records are also usually defined to glue the resolved NS host domain name to

an IP address to enable direct addressing of further queries.

The shading in Figure 9.3 indicates that the ipamworldwide.com domain

contains theipamworldwide.com node plus all of its children, highlighting this level

Figure 9.3. Zones as delegated domains (11).

9.3 ZONES AND DOMAINS 149

of responsibility for ipamworldwide.com and “below.” The ipamworldwide.com

DNS administrators are responsible for maintaining all DNS configuration information

for the ipamworldwide.com zone as well as referrals to DNS servers serving

delegated child zones. Thus, when other DNS servers around theworld are attempting to

resolve any name ending in ipamworldwide.com on behalf of their clients, their

queries will require traversal of the ipamworldwide.com DNS servers and perhaps

other DNS servers, such as those serving the eng.ipamworldwide.com zone.

The process of delegation of the name space enables autonomy of DNS configu-

ration while providing linkages via NS record referrals within the global DNS database.

As you can imagine, if the name servers referenced by these NS records are unavailable,

the domain treewill be broken at that point, inhibiting resolution of names at that point or

below in the domain tree. If the eng.ipamworldwide.com DNS servers are down,

authoritative resolution for eng.ipamworldwide.com and its children will fail.

This illustrates the requirement that each zone must have at least two authoritative DNS

servers for redundancy.

Thus, the administrators for the ipamworldwide.com zone will configure their

DNS servers with configuration and resolution information for the ipamworldwide.

com and dev.ipamworldwide.com domains; they will also configure their servers

with the names and addresses ofDNS servers serving delegated or child zones. Theyneed

know nothing further about these delegated zones; just who to contact so a referral can be

sent to the querying recursive DNS server.

DNS server configuration information consists of server configuration parameters

and declarations of all zones forwhich the server is authoritative. This information can be

defined on each server that is authoritative for a given set of zones. Additions, changes

and deletions of resource records, the discrete resolution information within each zone

configuration file, can be entered once on a master server, or more correctly, the server

that is configured as master for the respective zone. The other servers that are likewise

authoritative for this information can be configured as slaves or secondaries, and they

obtain zone updates by the process of zone transfers. Zone transfers enable a slave server

to obtain the latest copy of its authoritative zone information from the master server.

Microsoft Active Directory-integrated DNS servers support zone transfers for compat-

ibility with this standard process, but also enable DNS data replication using native

Active Directory replication processes.

9.3.1 Dissemination of Zone Information

Given the criticality of the DNS service in resolving authoritatively and maintaining

domain tree linkages, DNS server redundancy is a must. Different DNS server vendors

take different redundancy approaches. Microsoft replicates DNS information among a

set of domain controllers when DNS information is integrated into Active Directory, an

architectural foundation of the Windows Server products. The ISC BIND implemen-

tation supports DNS information replication through a hub-and-spoke model. Config-

uration changes are made to amasterDNS server as mentioned above. Redundant DNS

servers are configured as slaves or secondaries, and they obtain zone updates by the

process of zone transfers. Zone transfers enable a slave server to obtain the latest copy of

150 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

its authoritative zone information from the master server. Microsoft Active Directory-

integrated DNS servers also support zone transfers for compatibility with this standard

process.

Versions of zone files are tracked by a zone serial number thatmust be changed every

time a change is applied to the zone. Slaves are configured to periodically check the zone

serial number set on the master server; if the serial number is larger than its own value

defined for the zone, it will conclude that it has outdated information and will initiate a

zone transfer. Additionally, the server that is master for the zone can be configured to

notify its slaves that a change has beenmade, stimulating the slaves to immediately check

the serial number and perform a zone transfer to obtain the updates more quickly than

awaiting the normal periodic update check.

Zone transfers may consist of the entire zone configuration file, called an absolute

zone transfer (AXFR) or of the incremental updates only, called an incremental zone

transfer (IXFR). In cases where zone information is relatively static and updated from a

single source, for example, an administrator, the serial number checking with AXFRs as

needed works well. These so-called static zones are much simpler to administer than

their counterpart: dynamic zones. Dynamic zones, as the name implies, accept dynamic

updates, for example, from DHCP servers updating DNS with newly assigned IP

addresses and corresponding domain names. Updates for dynamic zones can utilize

IXFR mechanisms to maintain synchronization among the master and multiple slave

servers.

With BIND 9, journal files on each server provide an efficient means to track

dynamic updates to zone information. These journal files are temporary appendages to

corresponding zone files and enables tracking of dynamic updates until the server writes

these journal entries into the zone file and reloads the zone.Many server implementations

load the zone file information into memory along with incremental zone updates, which

are also loaded into memory for fast resolution. We’ll discuss more details about server

and zone configuration later in the chapter, but first let’s consider a different kind of

domain tree structure.

9.3.2 Reverse Domains

Until now, we’ve introduced the common name-to-IP address resolution process,

locating a DNS server authoritative for a name resolution, which then responds

authoritatively to the query. Another popular form of query is for IP address-to-name

resolution. This “reverse” form of resolution is commonly used as a security check when

establishing virtual private network (VPN) connections or for general IP address-to-

hostname lookups. Given an IP address, how does a DNS server traverse the domain tree

to find a host domain name? Special top-level domains are defined for IP address-based

domain trees within the Address and Routing Parameter Area (arpa) domain: in-

addr.arpa. is defined for IPv4 address-to-name resolution and ip6.arpa. is for

IPv6 address-to-name resolution*.

*Technically, these are both children of the .arpa. TLD

9.3 ZONES AND DOMAINS 151

The only wrinkle in organizing IP addresses within a domain tree results from

mapping an IP address, which reads left-to-right as less detailed (network) to more

detailed (IP host), while reading a domain name left-to-right readsmore specific (specific

host, domain) to less specific (root). Therefore, the IP address is reversed to enable

representation within the domain hierarchy, reading left-to-right as more specific to less

specific. This is illustrated in Figure 9.4.

You may notice that the mapping of dotted decimal notation enables mapping of

reverse domains to octet-boundary-based network allocations. For example, if we’ve

been allocated a “class C” network as our public space, 192.0.2.0/24, it is easy* to

visualize the leaves of the in-addr.arpa. domain tree depicted above mapping to

individual hosts. And like resolution of hostnames, traversal of the in-addr.arpa.

domain tree follows a similar process to locate authoritative resolution of address-to-

name queries. The pointer or PTR resource record provides a mapping from address to

host, as we’ll discuss in the next chapter.

But what if we had been allocated a subnet on non-octet boundaries? For example, if

we had allocated a /23 instead of a /24, the network address might have been denoted

192.0.2.0/23. This /23 is in effect comprised of the 2 /24 networks: 192.0.2.0/24 and

192.0.3.0/24. The two reverse domains corresponding to these octet-normalized network

addresses, 2.0.192.in-addr.arpa. and 3.0.192.in-addr.arpa, would

need to be configured within DNS to allow reverse lookups of hosts within this /23

network.

If the allocated subnet was smaller than a class C network, a more complex

representation and zone file configuration is required. Let’s say for example that we

allocate a subnet for a remote office as 192.0.2.0/25. If we try to represent the

corresponding reverse domain as 2.0.192.in-addr.arpa, this would encompass

Figure 9.4. IP address (reverse) domain tree mapping (11).

*Of course “easy” is a relative term, but once you get accustomed to reverse domains, at least such classful

networks are easily visualized as reverse domains.

152 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

the desired half but also the “other half” of the 192.0.2.0/24 network, namely the

192.0.2.128/25 network. But this other half could be allocated to a different organization

having its own DNS authority. In that case, who would administer the classful reverse

zone since it’s split across two authorities? The solution is to indicate that portion of the

fourth octet to which the subnet applies in the reverse zone name.

RFC 2317 (93) specifies the use of the CIDR notation within the in-addr.arpa

zone name. Thus, literally reversing the numbers between the dots of the allocated

subnet, we arrive at the following: for network 192.0.2.0/25, the corresponding reverse

domain is0/25.2.0.192.in-addr.arpa.*The “other half ” of this class Cwould

be 128/25.2.0.192.in-addr.arpa. Subnets of smaller sizes would follow a

similar notation, using the fourth octet of the network address, followed by/<network

size>, followed by the remaining three octets from the IP address, reversed, then

appended with in-addr.arpa.

But when a resolver issues a query, it will be for a particular address (PTR record) in

the form of 185.2.0.192.in-addr.arpa., so how do we map this query to the

appropriate zone file, 128/25.2.0.192.in-addr.arpa in this case? The solution

calls for the use of canonical name (CNAME) records in the parent (2.0.192.in-

addr.arpa.) zone to selectively point to the proper delegated zone, each of which

may be administered by separate DNS administrators. A CNAME record serves as an

alias for a given record, directing the querier to then query for the alias name. In this case a

CNAME record for each individual IP address needs to be created to map to a

corresponding RFC 2317 style reverse zone, enabling the delegation of subsets of

records to different subzone administrators.

Let’s look at how this would work in our example case. Within the parent zone file

corresponding to this 2.0.192.in-addr.arpa. zone, we would configure the

following{:

2.0.192.in-addr.arpa. IN SOA dns.ipamworldwide.com.

admin.ipamworldwide.com. (1 2h 30m 1w 1d)

$ORIGIN 2.0.192.in-addr.arpa. //implicit

0/25 IN NS dns.A1.ipamworldwide.com. //authoritative servers

IN NS dns.A2.ipamworldwide.com. // for 0/25

1 IN CNAME 1.0/25.2.0.192.in-addr.arpa.

2 IN CNAME 2.0/25.2.0.192.in-addr.arpa.

3 IN CNAME 3.0/25.2.0.192.in-addr.arpa.

. . .

127 IN CNAME 127.0/25.2.0.192.in-addr.arpa.

*While RFC 2317 specifies slashes within these domain names, manyDNS administrators substitute dashes in

order to associate zone names with zone file names, which cannot contain slashes. Hence we could denote this

zone as 0-25.2.0.192.in-addr.arpa defined in zone file db.0-25.2.0.192.in-addr.arpa.We’ll stick to the RFC2317

format here, but dashes work just as well.
{DNS configuration file examples in this book utilize BIND DNS format (144).

9.3 ZONES AND DOMAINS 153

128/25 IN NS dns.B1.ipamworldwide.com. //authoritative servers

IN NS dns.B2.ipamworldwide.com. // for 128/25

129 IN CNAME 129.128/25.2.0.192.in-addr.arpa.

130 IN CNAME 130.128/25.2.0.192.in-addr.arpa.

131 IN CNAME 131.128/25.2.0.192.in-addr.arpa.

. . .

254 IN CNAME 254.128/25.2.0.192.in-addr.arpa.

Based on standard domain tree traversal, when the querying name server queries

the DNS server authoritative for the 2.0.192.in-addr.arpa. zone, the file above

on the corresponding DNS server provides not a resolution, but a next step, pointing the

desired IP address answer to another FQDNvia a CNAME record. So far in the process, a

query for the hostname for IP address 192.0.2.185 would result in a CNAME pointing to

185.128/25.2.0.192.in-addr.arpa.We also knowwho to ask to resolve this

query because twoNS records are listed as authoritative for the associated domain,128/

25.2.0.192.in-addr.arpa., namely dns.B1.ipamworldwide.com and

dns.B2.ipamworldwide.com.

The corresponding 128/25.2.0.192.in-addr.arpa. zone file on these

servers would contain the following:

128/25.2.0.192.in-addr.arpa. IN SOA dns.B1.ipamworldwide.com.

admin.ipamworldwide.com. (1 2h 30m 1w 1d)

128/25.2.0.192.in-addr.arpa. IN NS dns.B1.ipamworldwide.com.

128/25.2.0.192.in-addr.arpa. IN NS dns.B2.ipamworldwide.com.

129.128/25.2.0.192.in-addr.arpa. IN PTR public1.ipamworldwide.

com.

130.128/25.2.0.192.in-addr.arpa. IN PTR public2.ipamworldwide.

com.

131.128/25.2.0.192.in-addr.arpa. IN PTR www.ipamworldwide.com.

Or in abbreviated format using ‘‘relative’’ domain names:

@INSOAdns.B1.ipamworldwide.com.admin.ipamworldwide.com.(12h30m

1w 1d)

// Implicit $ORIGIN 128/25.2.0.192.in-addr.arpa.

IN NS dns.B1.ipamworldwide.com.

IN NS dns.B2.ipamworldwide.com.

129 IN PTR public1.ipamworldwide.com.

130 IN PTR public2.ipamworldwide.com.

154 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

131 IN PTR www.ipamworldwide.com.

. . .

185 IN PTR server-x.ipamworldwide.com.

Querying this zone file for this referenced CNAME alias, to 185.128/

25.2.0.192.in-addr.arpa., we find our PTR record pointing to the associated

hostname server-x.ipamworldwide.com, completing the resolution.

For non-octet bounded networks larger than class C networks (i.e., /9 - /15 and /17 -

/23), domain alias (DNAME) records can be used. For example, the 172.16.0.0/14 network

could be allocated and delegated to an administrator in the engineering group. Reverse

queries on this network can be referred to the engineering group’s DNS server,

dns[1-2].eng.ipamworldwide.com per the following example, configured within the

172.in-addr.arpa. zone file:

16/14.172.in-addr.arpa. IN NS dns1.eng.ipamworldwide.com

16/14.172.in-addr.arpa. IN NS dns2.eng.ipamworldwide.com

16.172.in-addr.arpa. IN DNAME 16.16/14.172.in-addr.arpa.

17.172.in-addr.arpa. IN DNAME 17.16/14.172.in-addr.arpa.

18.172.in-addr.arpa. IN DNAME 18.16/14.172.in-addr.arpa.

19.172.in-addr.arpa. IN DNAME 19.16/14.172.in-addr.arpa.

These entries delegate the reverse lookups for all four /16 networks comprising the

engineering group’s /14 to the their DNS servers as indicated by the first two records

shown above. The next four records map these four /16 reverse domains to this delegated

16/14.172.in-addr.arpa. domain.

We’ve essentially inserted an artificial layer in the reverse tree to serve as a

consolidation point. Thus, to resolve the PTR record for a host with IP address

172.18.45.94, the resolving name server would traverse down the 172.in-addr.arpa.

tree. The next node down, 18.172.in-addr.arpa., has a domain alias of 18.16/14.172.in-

addr.arpa. by virtue of the DNAME lookup. Next, by querying the dns1.eng.ipamworld-

wide.com DNS server, which is authoritative for the 16/14.172.in-addr.arpa. zone, we

resolve the corresponding PTR entry within this zone:

94.45.18.172.in-addr.arpa. IN PTR host.eng.ipamworldwide.com.

9.3.3 IPv6 Reverse Domains

IPv6 reverse domain mapping is a bit more cumbersome. As with IPv4, the IPv6 address

must be reversed, maintaining its hexadecimal format. But the IPv6 address must first be

“padded” to the full 32-hex digit representation; that is, the two forms of abbreviation

discussed in Chapter 2 must be removed by including leading zeroes between colons and

filling in double-colon-denoted implied zeroes. Figure 9.5 illustrates an example of the

9.3 ZONES AND DOMAINS 155

process for the IPv6 address 2001:DB8:B7::A8E1. The address must be expanded or

padded and the digits reversed. Then, this result must be “domain-ized” by removing the

colons, inserting dots between each digit, and appending the ip6.arpa. upper level

domains.

Figure 9.6 illustrates the logic in reversing the IPv6 address in order to be

represented in a domain hierarchy as read left-to-right as more specific to less specific.

This is directly analogous to Figure 9.4, which illustrates this concept for IPv4 addresses.

The full 32-hex digit representation used in Figure 9.6 provides a unique, though lengthy,

traversal down the ip6.arpa. domain tree (not shown).

Note that this example illustrates the reverse domain representation for a full 128-bit

IPv6 address. Subnets can have corresponding reverse domain definitions as in IPv4. For

a /64 allocation, only the first 64 bits (16-hex digits) would be included. Thus, for the host

above, its /64 subnet reverse zone notation would be defined as

0.0.0.0.7.B.0.0.8.B.D.0.1.0.0.2.ip6.arpa.

Notation for reverse domains of IPv6 networks allocated on non-nibble boundaries

was not formally addressed in RFC 2317; however, the same techniques specified in the

RFC can be mapped to IPv6 reverse zones corresponding to non-nibble bounded IPv6

block allocations. Let’s illustrate this by example. Say the North America team desires

to allocate four /54 blocks from its 2001:db8:4af0:8000::/52 block, namely 2001:

Figure 9.5. IPv6 address to reverse domain mapping.

Figure 9.6. The IPv6 reverse domain notation.

156 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

db8:4af0:8000::/54, 2001:db8:4af0:8400::/54, 2001:db8:4af0:8800::/54, and 2001:

db8:4af0:8c00::/54. Using CNAME resource records to refer queriers to servers re-

sponsible for these corresponding reverse zones, the 8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa

zone file would look something like

8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa. IN SOA dns.ipamworldwide.com.

admin.ipamworldwide.com. (1 2h 30m 1w 1d)

$ORIGIN 8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa. //implicit

0/54 IN NS dns.A1.ipamworldwide.com. //authoritative servers

IN NS dns.A2.ipamworldwide.com. // for 2001:db8:4af0:8000::

/54

0 IN CNAME 0.0/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

1 IN CNAME 1.0/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

2 IN CNAME 2.0/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

3 IN CNAME 3.0/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

4/54 IN NS dns.B1.ipamworldwide.com. //authoritative servers

IN NS dns.B2.ipamworldwide.com. // for 2001:db8:4af0:

8400::/54

4 IN CNAME 4.4/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

5 IN CNAME 5.4/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

6 IN CNAME 6.4/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

7 IN CNAME 7.4/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

8/54 IN NS dns.C1.ipamworldwide.com. //authoritative servers

INNSdns.C2.ipamworldwide.com. //for2001:db8:4af0:8800::/54

8 IN CNAME 8.8/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

9 IN CNAME 9.8/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

a IN CNAME a.8/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

b IN CNAME b.8/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

c/54 IN NS dns.D1.ipamworldwide.com. //authoritative servers

INNSdns.D2.ipamworldwide.com. //for2001:db8:4af0:8c00::/54

c IN CNAME c.c/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

d IN CNAME d.c/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

e IN CNAME e.c/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

f IN CNAME f.c/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

9.3 ZONES AND DOMAINS 157

Following standard domain tree traversal, when the querying name server queries

the DNS server authoritative for the 8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.

arpa. zone, the file above on the corresponding DNS server provides not a resolution,

but a next step, pointing the desired IPv6 address answer to another FQDNvia a CNAME

record. So far in the process, a PTR query requesting the hostname for IP address 2001:

db8:4af0:8d03::f6 results in a CNAME pointing to d.c/54.8.0.f.a.4.8.b.

d.0.1.0.0.2.ip6.arpa.We also know who to ask to resolve this query because

two NS records are listed as authoritative for this domain, namely dns.D1.ipam-

worldwide.com and dns.D2.ipamworldwide.com.

The corresponding d.c/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa.

zone file on these servers would contain the following:

c/54.8.0.f.a.4.8.b.d.0.1.0.0.2.ip6.arpa. IN SOA dns.D1.ipamworld-

wide.com. admin.ipamworldwide.com. (1 2h 30m 1w 1d)

IN NS dns.D1.ipamworldwide.com.

IN NS dns.D2.ipamworldwide.com.

1.0.b.0.0.0.0.0.0.0.0.0.0.0.0.0.3.0.c IN PTR public1.ipamworld-

wide.com.

0.2.0.a.4.0.0.0.0.0.0.0.0.0.0.0.3.0.c IN PTR public2.ipamworld-

wide.com.

f.c.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.0.d IN PTR www.ipamworldwide.

com.

. . .

6.f.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.0.d IN PTR server-y.ipamworld-

wide.com.

Querying this zone file for this referenced CNAME alias, that is, 6.

f.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.0.d.c/54.8.0.f.a.4.8.b.

d.0.1.0.0.2.ip6.arpa., we find our PTR record pointing to the associated

hostname server-y.ipamworldwide.com, completing the resolution.

9.3.4 Additional Zones

Root Hints. We mentioned a hints file during the overview of the resolution

process. This file should provide a list of DNS server names and addresses (in the form of

NS, A and AAAA resource records) that the server should query if the resolver query

cannot be resolved via authoritative, forwarded, or cached data. The hints file will

typically list the Internet root servers, which are authoritative for the root (.) of the

domain tree. Querying a root server enables the querying server to start at the top to begin

the traversal down the domain tree in order to locate an authoritative server to resolve the

158 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

query. The contents of the hints file for Internet root servers may be obtained fromwww.

internic.net/zones/named.root, though BIND and Microsoft DNS server implementa-

tions include this file with their distributions.

Aswe’ll discuss in Chapter 11, some environmentsmay require use of an internal set

of root servers, where Internet access is restricted by organizational policy. In such cases,

an internal version of the hints file can be used, listing names and addresses of internal

root servers instead of the Internet root servers. The organization itself would need to

maintain the listing of internal root servers, as well as their requisite root zone

configurations.

Localhost Zones. Another zone file that proves essential is the localhost zone.

The localhost zone enables one to resolve “localhost” as a hostname on the given server.

A corresponding in-addr.arpa. zone file resolves the 127.0.0.1 loopback address. A single

entry within the 0.0.127.in-addr.arpa zone maps address 1 to the host itself. This zone is

required as there is no upstream authority for the 127.in-addr.arpa domain or subdo-

mains. Likewise, the IPv6 equivalents need to be defined for the corresponding IPv6

loopback address, ::1. The localhost zone simply maps the localhost hostname to its

127.0.0.1 or ::1 IP address using an A and AAAA record, respectively.

9.4 RESOLVER CONFIGURATION

Like DHCP transactions, DNS resolution occurs behind the scenes and involves a client

and server. Ideally, end users don’t even know it happens; they type in a web address and

connect! The resolver software must be configured regarding which DNS server(s) to

query for resolution. Thus, unlike DHCP that requires no initial client configuration

(since it simply broadcasts or multicasts to a well-known address), DNS does require

some basic client configuration prior to use. This initial configuration may be performed

manually or by obtaining this information from a DHCP server.

Figure 9.7 illustrates the configuration of a Microsoft Windows resolver in terms of

manually defining the DNS server to query or the use of DHCP to obtain DNS server

addresses automatically.

Microsoft Windows enables entry of multiple DNS servers to query within its

graphical interface. Notice there are two entries in the “brute force”method shown on the

screen on the right of Figure 9.7, one for preferred and another for alternate. Clicking the

Advanced tab enables entry of more than two and in particular order. We recommend

havingat least twoDNS servers configured for the resolver so should aDNS server be out

of service, the resolver will automatically query an alternate server. If the “Obtain DNS

server address automatically” radio button is selected, as shown in Figure 9.7, the

resolver will obtain a list of DNS servers via DHCP.

On Unix or Linux-based systems, the /etc/resolv.conf file can be edited with

to configure the resolver. The key parameter in this file is one or more nameserver

statements pointing to DNS servers, but a number of options and additional directives

enable further configuration refinement as described below. The italicized text should be

9.4 RESOLVER CONFIGURATION 159

replaced by actual data referenced, for example,domain should be replacedwith aDNS

domain name.

. nameserverIP_address. The IP address of a recursiveDNS server to query

for name resolution; multiple nameserver entries are allowed and encouraged.

The nameserver entry instructs the resolver where to direct DNS queries.

. domain domain. The DNS domain where this host (on which this resolver is

installed) resides. This is used when resolving relative hostnames, as opposed to

fully qualified host domain names.

. searchdomain(s). The search list of up to six domains in which to search the

entered hostname for resolution. Thus if we type in www for resolution, the

resolver will successively append domains configured in this parameter in an

attempt to resolve the query. If the entry search ipamworldwide.com.

exists in resolv.conf, entry of www will result in a resolution attempt for www.

ipamworldwide.com.

. sortlist address/mask list. Enables sorting of resolved IP addresses in

accordance with the specified list of address/mask combinations. This enables the

resolver to choose a “closer” destination if multiple IP addresses are returned for a

query.

. options. Keyword preceding the following that enables specification of

corresponding resolver parameters including the following:

T debug. Turns on debugging.

T ndots n. Defines a threshold for the number of dots within the entered name

required before the resolver will consider the entered name simply a hostname

Figure 9.7. Microsoft Windows configuration of IP address DNS servers to query.

160 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

or a qualified domain name.When considered a hostname, the hostnamewill be

queried as appended with domain names specified within the domain or

search parameter.

T timeout n. Number of seconds to wait before timing out a query to a DNS

server.

T attempts n. Number of query attempts before considering the query a

failure.

T rotate. Enables round robin querying amongDNS servers configuredwithin

the nameserver directives. Queries will be sent to a different server each

time and cycled through.

T no-check-names. Turns off name checking of entered hostnames for

resolution. Normally, underscore characters are not permitted for example,

so setting this option enables query processing to proceedwithout validation of

the entered hostname.

T inet6. Causes the resolver to issue a query for a AAAA record to resolve the

entered hostname before attempting an A record query.

search and options settings can also be overridden on a per process basis via

corresponding environment variable settings.

9.5 DNS MESSAGE FORMAT

9.5.1 Encoding of Domain Names

So far, we’ve discussed the organization of DNS information into a domain hierarchy as

well as the basics of how a client or resolver performs resolution by issuing a recursive

query to a DNS server that in turn iterates the query in accordance with the domain

hierarchy (or forwarding) to obtain the answer to the query.Nextwe’ll dig deeper into the

DNS query and general message format, but first we’ll first introduce the representation

of domain names within DNS messages. Domain names are formatted as a series of

labels. Labels consist of a one byte length field followed by that number of bytes/ASCII

characters representing the label itself. This sequence of labels is terminated by a length

field of zero indicating the root “.” domain. For example, the series of labels for www.

ipamworldwide.com. would look like the following in ASCII format, where length

bytes are highlighted in darker shading in Figure 9.8.

Starting at the upper left, the value “3” of the first length byte indicates that the

following three bytes comprise first label, “www”. The fifth or next byte after this is our

next length byte, which has a value of “13” (0xD), which is the length of

“ipamworldwide.” After this label, the following byte of value “3” is the length

of “com.” Finally, the zero-value byte indicates the root “.” domain, fully qualifying the

domain name. Note that the darker shaded bytes in the figure are encoded as length bytes

to differentiate them from host or domain name characters containing numbers. The first

9.5 DNS MESSAGE FORMAT 161

byte in a name will almost always* be a length byte followed by that number of bytes

representing the first label, immediately followed by another length byte to eliminate

ambiguity.

9.5.2 Name Compression

A given DNS message may contain multiple domain names, and many of these may

have repetitive information, the ipamworldwide.com. suffix for example. The

DNS specification enables message compression in order to reduce repetitive

information and thereby reduce the size of the DNS message. This works by using

pointers to other locations within the DNS message that specify a common domain

suffix. This domain suffix is then appended at the point of location referenced by the

pointer.

Let’s say for example, that our query forwww.ipamworldwide.com. returns a pair of

DNS servers that can be queried for more information: ns1.ipamworldwide.

com., and ns2.isp.com. The ipamworldwide.com. portion of these domain

names is common to the query and one of the answers, while only the .com portion is

common to the question, first answer and the second answer. Thus, the message is

formulated by fully specifying the domain name www.ipamworldwide.com. as

illustrated above in Figure 9.8. Then when specifying ns1, instead of fully specifying

ns1.ipamworldwide.com, only ns1 is specified, followed by a pointer to the

ipamworldwide.com. suffix earlier in the message. When identifying ns2.isp.

com, the ns2.isp labels are specified, followed by a pointer to the .com suffix within

the message.

How do DNS resolvers and servers differentiate a pointer from a standard label

length byte? The DNS standard stipulates that each label may be of length 0–63 bytes.

In binary, this is 000000000 to 00111111. Thus, the first two bits, [00]2 in this case,

identify the byte as a standard length byte, indicating the length of the following label.

A pointer is identified by setting the first two bits to [11]2, and is comprised of two

Figure 9.8. DNS labels.

*As we’ll discuss next, the length byte may alternatively consist of a two-byte pointer or a DNS extensions

label.

162 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

bytes, where the [11]2 bits are followed by 14 bits identifying the offset in bytes from

beginning of the DNS header. The first byte of the DNS message header is considered

byte 0, and as the message is created, pointers are defined pointing to byte offsets from

this point.

Let’s look at how this maps out from our prior example. Let’s say that beginning

12 bytes from the DNS header, we’ve included the domain name, www.ipamworld-

wide.com. Now, later in the message, beginning at byte 56 from the beginning of the

header, we would like to encode responses ns1.ipamworldwide.com and ns2.

isp.com.

Figure 9.9 indicates how this would look. The first portion is as we discussed

earlier, with length bytes (dark shading) followed by the respective number of name

bytes (light shading). At byte position 56 in our example, thens1 portion of the name is

encoded normally, using a label length of “3”, followed byns1. However, the next byte

is not a standard length byte but a pointer “double-byte” as it begins with [11]2 and is

shown as shaded black in the figure. The value encoded in the 14-bit offset field of the

pointer is “16”, indicating that the portion of the domain name starting at an offset of

16 bytes from the start of the DNS header should be appended to the ns1 label already

specified. The first row of bytes in the figure below enumerates the individual byte

offsets (italics), and byte 16 is the length byte of value “13”, followed by encoding for

ipamworldwide, followed by a length byte of value “3”, then com, then. (length

byte of value “0”). Concatenating this together, we arrive at the result: ns1.

ipamworldwide.com.

Returning to the next domain name after processing the pointer, we find encoding for

ns2.isp followed by a pointer to byte offset 30*, which points to the length byte of “3”,

followed by com., completing the domain name as ns2.isp.com. Considering just

these three example domain names, the number of bytes in the message occupied by

domain names can be compressed from 59 to 39 bytes.

Figure 9.9. Name compression with pointers.

*Note that pointer double bytes shown above in black are displayed with their byte-wise decimal number

representation, which in our example conveniently displays the offset in decimal in the second byte. But just to

state the obvious, don’t rely on just this secondbytewhenparsing a pointer, as a pointer value can range from0 to

214¼ 16,384, which at this maximum value the decimal representation would be 255-255.

9.5 DNS MESSAGE FORMAT 163

9.5.3 International Domain Names

DNS resolvers and servers communicate hostname queries and responses in ASCII-

formatted messages. Configuration information is stored in ASCII* text files. Unfortu-

nately, while ASCII characters have been defined to effectively represent the English

language, they do not enable formatting of characters from other languages, especially

those using a non-Latin-based alphabet. This limitation certainly impacts the ease-of-use

of IP applications in countries where people do not use the English language. RFC 3490

(94) is a standards track RFC that addresses this limitation{.

TheRFC is entitled, InternationalizingDomainNames inApplications (IDNA). The

“in applications” qualifier in the title insinuates the involvement of applications in this

process. Indeed, the onus is placed on the application, such as a web browser or email

client, to convert the user’s native language entry into an ASCII-based string that can be

communicated to a DNS server for resolution. This ingenious approach enables

application level support of international character sets for end users without affecting

the DNS protocol (or other ASCII-based IP protocols like SMTP). Existing DNS servers

can be configured to resolve these ASCII-encoded domain names as they would for

native ASCII-based domain names.

International character sets are encoded as Unicode characters. The Unicode

standard “provides a unique number for every character, no matter what the platform,

no matter what the program, no matter what the language,” according to the Unicode

Consortium web site (www.unicode.org). Every character is represented as a unique

2–3 byte hexadecimal number. RFC 3490, and its related RFCs 3491 (95), 3454 (96), and

3492 (97), describes the process of converting a Unicode-based domain name to an

ASCII-formatted domain name. Note that technically, the domain labels are each

converted, not the “domain name.”

To resolve international domain names, a DNS server must be configured with

resource records encoded in ASCII format, specifically Unicode-mapped ASCII char-

acters referred to as punycode. The output of the punycode algorithm results in an ASCII

string, which is then prefixed with the ASCII Compatible Encoding (ACE) header, xn--.

Thus, within the DNS infrastructure, domains denoted as xn--<additional ASCII

characters> are likely punycode representations of an international domain name. The

application, for example, web browser, is responsible for converting the user-entered

URL into Unicode format, then into punycode. The punycode domain name is passed to

the resolver on the client for resolution via DNS using ASCII characters. The punycode

algorithm is specified in RFC 3492 and several web sites are available for performing

conversions for entry into DNS.

Consider an example (98): let’s consider aweb server host address in the�zd�zbło.com
domain. as www.�zd�zbło.com. The domain name contains diacritics and has characters

outside of the ASCII character set. The web browser in which this URL is entered would

*RFC 2673 (182), initially a standards track RFC, defined the use of binary data within DNS names but RFC

3363 (183) reverted RFC 2673 to experimental status.
{Note: RFC 3490 which defines “IDNA2003”, has been updated by RFCs 5890-4 (184–188), referred to as

“IDNA2008”, each version denoted by the year specification work began. There are some differences between

these versions but material in this section generally applies to both.

164 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

convert this to ASCII characters or punycode as www.xn--dbo-iwa1zb.com. A

corresponding A or AAAA record entry in DNS for the www.xn--dbo-iwa1zb.com.

host would enable the end user to enter a native language URL while utilizing the existing

base of DNS servers deployed throughout the world to identify and connect via the IP

address of the destination web server. The net result is that these DNSmessages sent on the

wire are encoded in ASCII characters.

9.5.4 DNS Message Format

Now let’s look more closely at the format of DNS messages used to perform this

overall resolution function, incorporating the label formatted domain names we

discussed earlier. DNS messages are transmitted over UDP by default, using port 53.

TCP can also be used on port 53. The basic format of a DNS message is illustrated in

Figure 9.10.

. Themessage header contains fields that define the type of message and associated

information, including the number of records for each of the following fields.

. The Question section specifies the information being sought via this message.

. The Answer section contains zero or more resource records that answer the query

specified in the Question section.

. The Authority section contains zero or more resource records referring to

name servers authoritative for the given answer or pointing to delegated name

servers down the domain tree to which a successive iterative query may be

issued.

. The Additional section contains zero or more resource records that contain

supplemental information related to the question but are not strictly answers

to the question.

Figure 9.10. DNS message fields (99).

9.5 DNS MESSAGE FORMAT 165

Message Header. The DNS message header is included on every DNS message

and conveys what type of message is enclosed as well as associated parameters as

illustrated in Figure 9.11.

The message header is comprised of six 16-bit fields:

. Message ID. Also referred to as transaction ID, an identifier assigned by the

resolver and copied in replies from the DNS server to enable resolver correlation

of responses with queries.

. Codes. Message codes germane to this message. We’ll examine these code fields

next.

. Question Count (QDCOUNT). The number of questions contained in the Ques-

tion section of the DNS message.

. Answer Record Count (ANCOUNT). The number of resource records contained

in the Answer section of the DNS message.

. Authority RecordCount (NSCOUNT). The number of resource records contained

in the Authority section of the DNS message.

. Additional Record Count (ARCOUNT). The number of resource records con-

tained in the Additional section of the DNS message.

The following codes bits have been defined:

. QR (Query/Response). This flag indicates that this message is a query (0) or a

response (1).

. Opcode. The operation code for thismessage. Presently, the following values have

been defined:

T 0¼Query

T 1¼Reserved (formerly inverse query, now retired)

T 2¼ Server status request

T 3¼Reserved

T 4¼Notify—enables a master zone server to inform a slave zone server with

the same zone (and for a slave to acknowledge) that a change has been made to

Figure 9.11. DNS message header (99).

166 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

the zone data. For Notify messages, the Authority and Additional sections are

not used and respective record counts in the DNS header should be set to 0.

T 5¼Update—enables a client or DHCP server to update zone data on a DNS

server. For Update messages, the interpretation of DNS message fields and

corresponding header fields differs from that described above. The message

format for Update messages is described in the next section.

T 6–15¼Unassigned.

. AA (Authoritative Answer). When set, this message contains an authoritative

answer to the question. This means the response was derived from a DNS server

that was configured with the zone’s information. If it is not set, the answer was

derived from a nonauthoritative DNS server, likely cached information from a

prior query. Where multiple answers are provided, this flag pertains to the first

record in the Answer section. When set by the client on the query, this indicates

that an authoritative answer (not cached) is required.

. TC (TruncatedResponse). This code indicates that thismessagewas truncated for

transmission. This is generally due to the packet length restriction ofUDPpackets,

the default transport layer protocol used by DNS.

. RD (Recursion Desired). This flag indicates that the querier would like the DNS

server to iteratively resolve the query, traversing the domain tree as necessary.

Most resolvers set this flag to indicate a query as a recursive query, while a DNS

server will generally not set this flag when querying other servers.

. RA (Recursion Available). This flag indicates that recursive query support is

available from this DNS server.

. Reserved or Z bit. Reserved (0).

. AD (Authentic Data). Used within the context of DNS security extensions

(DNSSEC), this bit is set by a name server to indicate that information within

the Answer and Authority sections is authentic, meaning it has been

authenticated.

. CD (Checking Disabled). Used within the context of DNSSEC, this bit enables a

DNSSEC resolver to disable signature validation in a DNSSEC name server’s

processing of this particular query.

. Response Code (RCODE). Provides result status to the client. The currently

defined response codes are summarized in Table 9.1. Note that given the 4-bit

RCODE field, decimal values 1–15 are encoded within the DNS header

RCODE field.

The DNS extensions (EDNS0, discussed later in this chapter) OPT resource

record adds a capacity for 8 additional RCODE bits, bringing the total to 12 bits

(up to decimal value 4095) when used in combination with the header RCODE

bits.

You’ll notice two interpretations of the decimal value 16. BADVERS is the interpretation

when encodedwithin theOPTresource recordwhile BADSIG is the result when encoded

within a TKEY or TSIG resource record.

9.5 DNS MESSAGE FORMAT 167

T A B L E 9.1. DNS Message Response Codesa (106)

RCODE

Decimal Hex Name Description Reference

0 0 NoError No errors RFC 1035 (99)

1 1 FormErr Format error—server unable to

interpret the query

RFC 1035 (99)

2 2 ServFail Server failure—server problem

has prevented processing of this

query

RFC 1035 (99)

3 3 NXDomain Nonexistent domain—domain

name does not exist

RFC 1035 (99)

4 4 NotImp Not implemented—query type not

supported by this server

RFC 1035 (99)

5 5 Refused Query refused—server refused the

requested query, for example,

refusal of a zone transfer request

RFC 1035 (99)

6 6 YXDomain Name exists when it should not

as determined during DNS

update prerequisite processing

RFC 2136 (100)

7 7 YXRRSet RRSet exists when it should not

as determined during DNS

update prerequisite processing

RFC 2136 (100)

8 8 NXRRSet RRSet that should exist does not

as determined during DNS

update prerequisite processing

RFC 2136 (100)

9 9 NotAuth Server is not authoritative for the

zone listed in the zone section

of the DNS Update message

RFC 2136 (100)

10 A NotZone Name used in the prerequisite or

update section of aDNSUpdate

message is not contained in

zone denoted by the zone

section of the message

RFC 2136 (100)

11–15 B–F Available for assignment

16 10 BADVERS Unsupported (bad) OPT RR

version

RFC 2671 (101)

16 10 BADSIG TSIG Signature Failure RFC 2845 (102)

17 11 BADKEY Key not recognized RFC 2845 (102)

18 12 BADTIME Signature out of the valid server

signature time window

RFC 2845 (102)

19 13 BADMODE Invalid TKEYMode—requested

mode not supported by this

server

RFC 2930 (103)

20 14 BADNAME Nonexistent or duplicate key name RFC 2930 (103)

21 15 BADALG Algorithm not supported RFC 2930 (103)

168 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

Question Section. The Question section within the DNS message format con-

tains, as you might have guessed, the question that is being asked for this query. This

section can contain more than one question, as identified by the number referenced in the

QDCOUNT header field. Each of these questions has the following format (Figure 9.12).

The QNAME field contains the domain name, formatted as a series of labels. The

QTYPE field indicates the query type, or for what purpose is this question being asked.

Any resource record typemay be included, whichwewill cover in detail the next chapter.

However, there are some QTYPE values that are unique to requesting zone transfers for

example that are presently defined including the following (Table 9.2).

The QCLASS field indicates for which class this query is being made, for example,

IN for Internet class, the most common class. Classes essentially enable management of

parallel namespaces. Currently defined QCLASSes (and DNS CLASSes) in general are

defined in Table 9.3.

Answer Section. The Answer section contains zero or more answers in the form

of resource records. The number of answers is specified in the ANCOUNT header field.

We’ll discuss the different types of resource records in the next chapter, and they all share

a common generic format as defined in Figure 9.13.

TheName field, also called theOwner name field, is the lookup name corresponding

to this resource record (corresponding to the lookup value or QNAME in the original

question).

T A B L E 9.1. (Continued)

RCODE

Decimal Hex Name Description Reference

22 16 BADTRUNC Bad truncation—Message

Authentication Code (MAC)

too short

RFC 4635 (104)

23–3840 14-F00 Available for assignment

3841–4095 F01-FFF Reserved for private use RFC 5395 (105)

aIf you consult the IANA web site (www.iana.org/assignments/dns-parameters), you’ll notice values above

4095. Technically these are not RCODEs but reflect the 16-bit error field within the TSIG and TKEY meta

resource record types, providing a capacity up to 65,535 for these two resource record types.

Figure 9.12. Question section format (99).

9.5 DNS MESSAGE FORMAT 169

The Type field indicates the type of information that is provided for this name. For

example, a type of A means that this resource record provides IPv4 address information

for the given name. Resource record types are covered in the next chapter and are

summarized in Table 10.1.

The Class field represents the namespace class, such as IN for Internet. Valid classes

are displayed in Table 9.3.

The TTL or Time-to-Live field provides a time value in seconds with respect to the

valid lifetime of the resource record. The receiver of this information may cache this

information for TTL seconds and may use it reliably. However, upon expiration of the

TTL, the cached information should be discarded and a new query issued.

T A B L E 9.3. DNS Classes (106)

CLASS

Decimal Hexadecimal Name Description Reference

0 0 Reserved Reserved RFC 5395

1 1 IN Internet RFC 1035

2 2 Unassigned N/A IANA

3 3 CH Chaos RFC 1035

4 4 HS Hesiod RFC 1035

5–253 5-FD Unassigned N/A IANA

254 FE NONE None RFC 2136

255 FF �(Any) Any class (valid as

QCLASS but not

on resource records)

RFC 1035

256–65,270 100-FEFF Unassigned N/A IANA

65,280–65,534 FF00-FFFE Reserved for

private use

RFC 5395

65,535 FFFF Reserved Reserved RFC 5395

T A B L E 9.2. DNS QTypesa (106)

QTypes

Only Query Purpose

QType ID

(decimal) IETF Status

Defining

Document

� All resource records 255 Standard RFC 1035

MAILA Mail agent resource records 254 Experimental RFC 1035

MAILB Mailbox resource records 253 Obsolete RFC 1035

AXFR Absolute zone transfer (entire zone) 252 Standard RFC 1035

IXFR Incremental zone transfer

(changes only)

251 Proposed

Standard

RFC 1995

aIn addition to RRTypes in Table 12.1 that may be used as QTypes.

170 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

The RDLength field indicates the length in bytes of the results (RData) field. The

RData field contains the corresponding information of the specifiedType in the identified

Class, for the given Owner. The RData field has a variable format as we shall see when

examining the wide variety of resource record types.

Authority Section. The Authority section contains NSCOUNT number of

answers in the form of resource records of the same format as discussed in the Answer

section. Generally only NS (name server) resource records are valid within the Authority

section, though most name servers return an SOA record in this section if the queried

name server is authoritative but the answer section is empty. This section also contains

information about other name servers that are authoritative for the queried information.

This information is used by the querying resolver or more likely, recursive name server,

to determine the next name server to query in traversing the domain tree to find the

ultimate answer.

Additional Section. The Additional section contains ASCOUNT number of

answers in the form of resource records, which provide additional or related information

to the query, in the same format as discussed in the Answer section.

9.5.5 DNS Update Messages

Update messages enable a client, DHCP server, or other source to perform an update

(add, modify, or delete) of one or more resource records within a zone. While Update

messages utilize the same basic format as DNS messages just described, the interpre-

tation of some of the fields varies. Update messages, denoted with Op Code¼ 5 in the

DNS message header, are encoded as follows (Figure 9.14).

Contrast this formatwith that for non-UpdateDNSmessages depicted inFigure 9.10.

Themessage header is of the same format as that of “normal” DNSmessages, though the

interpretation of the remaining sections differs.

Figure 9.13. Answer section format (99).

9.5 DNS MESSAGE FORMAT 171

TheZone section identifies theDNS zone to be updated by thisUpdatemessage. The

Prerequisite section enables the specification of conditions that must be satisfied in order

to perform the update successfully. The condition and type of condition are determined

by the value of each resource record-encoded parameter within the Prerequisite section.

The following table defines how DNS update prerequisites are interpreted based on the

values of the Owner, Class, Type and RData fields within the Prerequisites section.

Owner Class Type RData Prerequisite Interpretation

Match ANY (255) ANY Empty The matching owner name is in use in

this zone

Match ANY (255) Match Empty AnRRSet withmatching owner and type

exists (value independent, i.e., any

RData match)

Match NONE (254) ANY Empty Thematching owner name is not in use in

this zone

Match NONE (254) Match Empty AnRRSet withmatching owner and type

does not exist in this zone

Match Same as Zone

Class

Match Match An RRSet with matching owner, type,

and RData exists in this zone (value

dependent, i.e., RData match)

The Update section contains the resource records to be added to or deleted from the zone

using a similar encoding as used in the Prerequisite section as follows.

Owner Class Type RData Update Interpretation

Owner to

add

Same as Zone

Class

RR type RR RData Add this resource record(s) of the

specified owner, type, and RData

to the zone’s RRSet

Figure 9.14. DNS Update message format (100).

172 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

(Continued)

Owner Class Type RData Update Interpretation

Owner to

delete

ANY (255) RR type Empty Delete the resource records of the

specified owner and type

Owner to

delete

ANY (255) ANY Empty Delete all resource records of the

specified owner name

Owner to

delete

NONE (254) RR type RR RData Delete the resource record(s) of the

specified owner, type, and RData

from the zone

TheAdditional Data section contains resource records related to this update, for example,

out of zone glue records.

Consider an example of an Update message received with the prerequisite and

update fields encoded as follows:

Field Owner Class Type RData

Prerequisite host.ipamworldwide.com. IN DHCID H8349aþ)3jELeA¼¼ES1

Update host.ipamworldwide.com. IN A 10.0.0.200

The Update section contents will only be considered only if the prerequisite condition is

met. In this case, the prerequisite condition is that the host.ipamworldwide.com.

IN DHCID H8349aþ)3jELeA¼¼ES1 record exists in the zone, that is, prereq-

uisite type RRSet with matching owner, type, and RData (value dependent). If it does

exist, then the host.ipamworldwide.com. IN A 10.0.0.200 resource record

from theUpdate sectionwill be added to the zone. If not, the updatewill not be performed.

This particular example illustrates how the ISC DHCP server performs dynamic

updates of DNS data upon assigning an IP address, in this case 10.0.0.200 to host.

ipamworldwide.com. The DHCID record provides a hash of the host’s hardware address

receiving the IP address to uniquely identify the host. The prerequisite condition for

updating the address record provides a means to assure that only the original holder of

this A record can modify it, minimizing naming duplication or hijacking.

9.5.6 DNS Extensions (EDNS0)

Thus far in our discussion of the DNSmessage header, onemay observe that all code bits

are assigned but one, and additional response code assignments have been required by

necessity. In addition, many hosts can process larger multipart UDP packets than the

originally specified size limit of 512 bytes. As a result of these limitations, as well as the

desire to add additional domain name label types, DNS extensions were defined in RFC

2671 (101).

RFC 2671 defines version 0 of extension mechanisms for DNS, which is denoted

EDNS0. The RFC addresses the above constraints by defining the following extensions:

9.5 DNS MESSAGE FORMAT 173

. A new domain label type is defined to denote DNS extensions. As we discussed,

the first two bits of the domain label uniquely identify the label as a length byte

(first two bits¼ [00]2) or as a pointer (first two bits¼ [11]2). The extended label

type has been assigned [01]2 as its first two bits.

. EDNS0 defines a pseudoresource record, the OPT record (i.e., RRType¼OPT).

The OPT record is placed in the Additional section by the resolver or server to

advertise its respective capabilities. The OPT resource record is used to advertise

capabilities of the sender (client or server) to the recipient, and only one OPT

record should be present.

The OPT pseudoresource record is encoded as follows, enabling specification of the

sender’s UDP packet size and additional response code bits (Figure 9.15).

The OPT record should never appear in a zone file. Thus, while the OPT pseudor-

esource record utilizes the same wire format as other resource records, the definition of

standard fields has been modified to provide only extension information. The NAME

field is zero for the OPT record. The TYPE is OPT, and the CLASS field indicates the

maximum size of the sender’s UDP payload. The 32-bit TTL field is divided into three

fields:

. Extended Response Code. Adds 8 bits to the 4-bit RCODE in the DNS message

header to provide 12 bits total.

. EDNS version number.

. Extended Header Flags. Bit 0 is currrently defined as “DNSSEC Answer OK”

meaning that the querying server is capable of processing DNSSEC resource

records. The remaining 15 bits of the extended header are currently reserved.

TheRDLength field indicates the length of the RData field, which consists of a set of zero

or more options, each encoded with an option code, option length, and option value.

One option has been officially defined thus far via RFC 5001 (191): the name server

identifier (NSID) option. This option, defined with option code¼ 3, enables a resolver to

request and a server to provide its identity as defined by the server administrator as its

name, IP address, pseudorandom number, or other character string (configurable in

Figure 9.15. EDNS0 format (101).

174 THE DOMAIN NAME SYSTEM (DNS) PROTOCOL

BIND using the server-id statement). This EDNS0 option is useful for debugging in

environments wheremany servers share a common IP address, such as in deployments of

anycast addressing or with load balancers. Two additional options, Long-Lived Query*

(LLQ; option code¼ 1) and Update Lease Life{ (UL; option code¼ 2) are currently on

hold as RFCs and have not been officially published regarding these settings.

9.5.7 Resource Records

This chapter has covered the organization of DNS data and traversal of the domain tree,

as well as the format of messages to do so. Once we’ve navigated the tree and located a

DNS server authoritative for the information for a domain, how do we actually get the

lookup information we’re seeking for a particular purpose or application?

Resource records associated with the given domain provide the means to map the

question to an answer. The type of resource record defines the desired result type, for

example, the A resource record type will provide an IPv4 address as an answer while the

AAAA type will provide an IPv6 address. The answer may be “the final answer” or

information that can be used to obtain the desired answer via additional queries or other

means.

*A Long-Lived Query is a mechanism for a resolver to request receipt of notification of zone information

changes; something like a DNSNOTIFY for clients.
{The Update Lease Life mechanism would enable a DHCP server to inform the DNS server within a DNS

Update message of the corresponding client’s lease length in seconds for new and renewed leases.

9.5 DNS MESSAGE FORMAT 175

