
10

DNS APPLICATIONS AND
RESOURCE RECORDS

10.1 INTRODUCTION

DNS inherently lends itself well to “translating” a given piece of information into another

related piece of information. This resolution process is the very reason for DNS’s

invention, and it has been extended beyond resolving hostnames into IP addresses and

vice versa to support a broad variety of applications. Virtually any service or application

that requires translation of one form of information into another can leverage DNS.

Each resource record configured in DNS enables this lookup function, returning a

resolution answer for a given query. The DNS server parses the query from the Question

section of the DNS message,* seeking a match within the corresponding domain’s zone

file for the query’s QNAME, QCLASS, and QTYPE. Each resource record has a Name

(aka Owner) field, Class (Internet class is assumed if not specified), and Type field.

TheRData field contains the corresponding answer to the query. The resource record type

defines the type and format of the question (owner/name field) and corresponding answer

(RData field). In some instances, multiple resource recordsmaymatch the queried name,

type, and class. In such cases, all matching records, called a Resource Record Set

(RRSet), are returned in the Answer section of the response message.

IP Address Management: Principles and Practice, by Timothy Rooney

Copyright � 2011 the Institute of Electrical and Electronics Engineers, Inc.

*Refer to Figure 9.12.

Most, but not all, new applications require new resource record types to enable

definition of application-specific information, and these new resource record types are

standardized via the IETF RFC process. This chapter describes the various forms of

information that are stored in DNS along with the applications they support. A resource

record summary is provided at the end of the chapter for reference.

10.1.1 Resource Record Format

First let’s review the format of a resource record. When responding to a query for

information, a DNS server will place the resource record information in the Answer

section of a DNS message. The “on-the-wire format” dictated by the DNS protocol was

introduced in Figure 9.13 in the context of the format of the DNS message Answer

section, and is reproduced here as Figure 10.1 for convenience.

When representing resource records in zone files, all of these fields may be entered

except the RDLength field, which is inserted when the resource record information is

placed in a DNS message by the DNS server. The textual representation of a resource

record generally follows a common convention shown below. Most resource records are

defined with the following general fields, though many have subfields within the RData

field as we shall see later in this chapter!

Owner Time to Live Class Type RData

Owner (Name). This field matches the information being queried.

Time to Live(TTL). The number of seconds for which the information contained in

this resource record is valid for servers and resolvers caching this information.

After the TTL expires, the resource record informationmust be removed from the

name server and resolver cache. The TTL can be specified on a per resource

record basis or if omitted, a zone level default TTL value is used ($TTL).

Figure 10.1. DNS resource record wire format (99).

10.1 INTRODUCTION 177

Class. The Class of the resource record, usually IN for Internet.

Type. The type of resource record corresponding to the type of information being

sought.

RData. The “record data” or answer portion corresponding to the information being

sought by matching the Owner (Name), class, and type field contents.

Now that we’ve covered the basic format, we’re ready to jump into specific applications

and the resource records that support them. As we review these resource record types,

we’ll review the interpretation of each type and provide an example.We’ll cover those that

have been “officially” accepted by the IETF, that is, they’ve been published in an RFC;

however, publication as an RFC does not guarantee universal implementation of the

resource record type across all resolvers and servers. We’ll point out some of those that

may be new or experimental versus those ol’ reliables that have been around for years.

For each record type we’ll discuss in this chapter, the resource record fields and

examples are displayed using a common format. The first row or table header, specifies

the base fields defined above for each record type. The second row displays the

interpretation of these base fields for the particular type in question. An example

resource record of the given type is displayed in the third row and optionally successive

rows as summarized below.

Resource record fields

Resource record field data types

Sample resource record(s)

Note that we will use the term “domain name” to refer to the name of a DNS domain,

while the term “host domain name”will refer to theDNSnameof a host. The host domain

name may be defined with the zone file as fully qualified (FQDN) or simply a hostname

interpreted in the context of the “current domain.” The current domain is that defined in

the zone declaration of the named.conf file, unless otherwise changedwithin the zone file

using a $ORIGIN statement.

10.2 NAME–ADDRESS LOOKUP APPLICATIONS

10.2.1 Hostname and IP Address Resolution

First and foremost, the most common DNS application is hostname resolution, looking

up a host domain name and obtaining its corresponding IP address. Two resource record

types are supported for IP address lookups, one for IPv4 and the other for IPv6 addresses.

The corresponding reverse record utilizes a common record type for both IPv4 and IPv6,

the Pointer (PTR) record type.

When managing a mixed IPv4–IPv6 network, note that DNS will strongly influence

which protocol will be used to reach a given destination host. For example, if I wish to

access a web site, my resolver may first attempt to retrieve an A record for the given web

178 DNS APPLICATIONS AND RESOURCE RECORDS

site address. Upon failing to obtain an IPv4 address, itmay then attempt anAAAA record

lookup with success. Assuming my browser (TCP/IP stack) supports IPv6, the connec-

tion will be made over IPv6. Unbeknownst to me, I’m using IPv6! Certain IPv4–IPv6

transition technologies explicitly force dual protocol lookups (A and AAAA) in DNS.

We’ll cover these technologies and the overall impact of DNS on IPv4–IPv6 networks in

Chapter 15.

A—IPv4 Address Record. The A record is a common resource record type used

to map a queried host domain name to an IPv4 address. The format follows the standard

convention per the example below. Hosts may have multiple A records to provide load

balancing or mapping of a hostname to multiple devices and/or interfaces.

Owner TTL Class Type RData

Host domain name TTL IN A IPv4 address

www.ipamworldwide.com. 86400 IN A 10.100.0.99

AAAA—IPv6Address Record. The AAAA (“quad-A”) record provides an IPv6

address based on lookup of a host domain name. Formatted and processed similarly as the

A record for hostname to IPv4 address lookup, the RData field includes an IPv6 address

which can be abbreviated using standard IPv6 abbreviation conventions.

Owner TTL Class Type RData

Host domain name TTL IN AAAA IPv6 address

www.ipamworldwide.com. 86400 IN AAAA 2001:DB8:3A::21:A450:1

PTR—Pointer Record. The PTR resource record provides mapping from an IP

address to a FQDN. The PTR record is used to map both IPv4 and IPv6 addresses. The

IPv4 version of the PTR includes the IP address reversed and concatenatedwith “in-addr.

arpa.” as the owner field and the corresponding FQDN as the RData field. The IPv6

version is formed by writing out the IPv6 address in its hexadecimal colon format, with

all zeroes included; that is, fill in leading zeroes and double-colon shortcuts. Then drop

the colons, reverse the digits, then concatenate with “ip6.arpa.”

Owner TTL Class Type RData

IP address in reverse do-

main format

TTL IN PTR Host domain name

1.32.65.10.in-addr.arpa. 86400 IN PTR sf1.ipamworldwide.com.

1.0.0.1.0.0.0.0.0.0.0.0.0.0-

.0.0.0.0. 0.0.0.0.0.0.8.B.

D.0.1.0.0.2.ip6.arpa.

86400 IN PTR sf1.ipamworldwide.com.

10.2 NAME–ADDRESS LOOKUP APPLICATIONS 179

The IPv4 address in this example corresponds to 10.65.32.1, while the IPv6 address

is 2001:0DB8:0000:0000:0000:0000:0000:1001 or 2001:DB8::1001 in abbreviated

form.

10.2.2 Alias Host and Domain Name Resolutions

The CNAME resource record type enables lookup of a host domain name by alias name.

CNAME lookups return not an IP address, but a host domain name that must then be

queried for its IP address, though most DNS servers responding to a CNAME query will

include the corresponding A and/or AAAA record within the Additional section of the

DNS response message. Meanwhile, the DNAME record provides a similar aliasing

function for domains. As we discussed in the previous chapter, CNAME and DNAME

records are useful in handling non-octet bounded reverse domains.

CNAME—Canonical Name Record. The CNAME record enables creation of

alias names for hosts. The owner field contains the alias name being looked up, and the

RData field yields the canonical host domain name. This host domain name would then

need to be resolved to obtain the host’s corresponding A and/or AAAA record.

Owner TTL Class Type RData

Alias host domain name TTL IN CNAME Canonical host domain name

w3.ipamww.com. 86400 IN CNAME www.ipamww.com.

Note that it is not legal to configure a CNAME RData field as pointing to another

CNAME owner field in order to chain records. This RData field must point directly to an

A/AAAA resource record owner name. The owner name of each CNAME record must

also be unique; a single alias cannot resolve to multiple answers. CNAME records prove

instrumental for mapping reverse domains as we discussed in Chapter 9.

DNAME—DomainAlias Record. TheDNAME resource record, defined in RFC

2672 (107), enables mapping of an entire subtree of the domain name space to another

domain. The major motivation for developing the DNAME record was to simplify DNS

impacts of IP network renumbering. For example, if the company running the ipamww.

com domain was acquired by acquired.com, the ipamww.com namespace could con-

ceivably be “moved” beneath acquired.com with the addition of a DNAME record

illustrated below.

Owner TTL Class Type RData

Alias domain name TTL IN DNAME Target domain name

ipamww.com. 86400 IN DNAME ipamww.acquired.com.

180 DNS APPLICATIONS AND RESOURCE RECORDS

Resolvers seeking hosts within the ipamww.com domain subtree would be directed to

seek the same hostnames under ipamww.acquired.com domain. Note that this scenario

requires the resource records and subdomains of ipamww.com to be ported to their

corresponding zone files within the acquired.com domain subtree. RFC 2672 stipulates

that the DNAME owner (ipamww.com. in this case) zone must not have any subdomains

nor contain any resource records besides the DNAME and possibly CNAME resource

records.

10.2.3 Network Services Location

IP devices booting on a network often need to find specific services for device

initialization. While DHCP provides some level of service location via specification

of certain option values such as TFTP server IP addresses, DNS provides a services

location mechanism using the services location resource record type (SRV). The SRV

record provides a means for non-DHCP clients or for clients seeking services after

initialization to locate servers providing requested services.

If you’veworkedwithMicrosoft clients and domain controllers since the introduction

of Windows 2000, you’re probably very familiar with SRV records. When Windows

domain controllers boot up, they perform a dynamic DNS (DDNS) update for their A and

SRV records, enabling them to effectively advertise services availability. These records

are also easily recognized by underscores within the owner field. The SRV record owner

field is comprised of a concatenation of a particular service, which is available via a

particular protocol (TCP or UDP), for a given domain. The service name is prefixed with

an underscore, as is the protocol value. The underscoreswere added to eliminate collisions

with valid domain names. While technically not a valid host domain name character per

the DNS RFC 1035, Microsoft, and BIND servers can be configured to tolerate the

underscore character via the check-names option parameter.While a common example of

the use of SRV records, SRV records are certainly not limited to Windows applications,

though adoption beyond Windows applications has been limited thus far.

SRV—Services Location Record. The SRV record is used to enable resolver

clients to identify servers offering particular services such as LDAP, Kerberos, and

others. This record is critical for Microsoft Windows clients in locating Windows

Domain Controllers.

Owner TTL Class Type RData

Service encoding TTL IN SRV Priority Weight Port Target host domain name

_ldap._tcp.ipamww.com. 86400 IN SRV 10 0 389 ldap.ipamww.com.

The owner field is comprised of a concatenation of a particular service, which is available

via a particular protocol (TCP or UDP), for a given domain. The RData field includes a

priority field, which instructs clients to use numerically lower priority targets when

multiple SRV records are returned.

10.2 NAME–ADDRESS LOOKUP APPLICATIONS 181

Theweight field is used to further prioritize records with the same priority. The port

is the TCP or UDP port number to use to access the given service and the target is the host

domain name of the server running the specified service.

If not also returned as additional information by the DNS server, the client may

request corresponding A or AAAA records for hosts specified as targets to complete the

resolution process. A couple of examples follow.

_ldap._tcp.ipamww.com. 86400 IN SRV 10 5 389 ldapeast1.ipamww.com.

_ldap._tcp.ipamww.com. 86400 IN SRV 10 10 389 ldapeast2.ipamww.com.

_ldap._tcp.ipamww.com. 86400 IN SRV 20 1 389 ldapeast3.ipamww.com.

In the three sample SRV records above, the second record would be used first. It

shares the lowest priority number (10) as the first record, but it has a higher priority field

(10) than the first record (5). The third record would be used last, as it has a larger priority

value despite its lower weight.

The port, 389 in the examples above, is the TCP or UDP port number of the given

service and the target is the hostname of the server running the specified service. If not

also returned in the Additional section of the message from the DNS server, the client

may request corresponding A or AAAA records for hosts specified as respective targets

to complete the resolution process. Semantically, we didn’t need to spell out the owner

fields on the second two records assuming they were listed sequentially within the zone

file, but we did so to emphasize that these three records would be returned for an SRV

query for _ldap._tcp.ipamworldwide.com.

AFSDB—DCEorAFS Server Record (Experimental). The AFSDB record was

defined in RFC 1183 (108) and was intended to enable location of a server, particularly

for AFS (a registered trademark of Transarc Corp. and originally Andrew File System)

and for the Open Software Foundation’s Distributed Computing Environment (DCE).

Owner TTL Class Type RData

Cell domain name TTL IN AFSDB Subtype Host domain name

ipamworldwide.com. 86400 IN AFSDB 1 afsdb1.ipamworldwide.com.

The RData field consists of

. Subtype field, which identifies the AFS 3.0 volume location server for the cell

domain name (subtype¼ 1) or the DCE directory services server for the given cell

domain name (subtype¼ 2).

. Host domain name field identifies the server hostname.

TheAFSDB resource record is notwidely used, as the SRV resource record type provides

generic server location functionalitywithinDNS and in fact RFC5864 (189) specifies the

use of SRV records for AFS.

182 DNS APPLICATIONS AND RESOURCE RECORDS

WKS—Well Known Service Record (Historic). This resource record type

identifies the well-known services such as FTP, telnet, and others that are available

on a particular IP address using a particular protocol (TCP orUDP) for a host. This record

is not generally used, as the SRV record provides similar functionality.

Owner TTL Class Type RData

Host domain name TTL IN WKS IPv4 address Protocol Services

server.ipamww.com. 86400 IN WKS 10.0.199.35 TCP SMTP FTP

10.2.4 Host and Textual Information Lookup

The TXT record is one of the workhorse resource record types, often used as an interim

resource record in support of specific applications pending standardization and imple-

mentation. The TXT record enables lookup of a generic reference name, for example, a

domain name, host domain name, or other owner values, and returning arbitrary textual

information. Most recently, the TXT record has been used for interim support of DDNS

update uniqueness checking (now the DHCID record type) and for spam-reducing

applications (the SPF record type), both covered later in this chapter.

TXT—Text Record. The text record enables the association of up to 255 bytes of

arbitrary binary data with a resource record. It has proven very versatile in providing

interim support of new services.

Owner TTL Class Type RData

Reference name TTL IN TXT Arbitrary text data

txt.cfo.ipamww.com. 86400 IN TXT “CFO Office (610) 555-1212”

HINFO—Host Information Record. The RData field of the HINFO resource

record enables lookup of a host’s processor and operating system.

Owner TTL Class Type RData

Host domain name TTL IN HINFO CPU Operating system

sf1.ipamww.com. 86400 IN HINFO VAX 770/11 UNIX

HIP—Host Identity Protocol Record (Experimental). The HIP resource

record type supports the experimental host identity protocol (HIP), which essentially

abstracts the association of a hostname with an IP address by inserting a “host identity”

layer in the resolution process. This enables association of a domain name with a host

identity, which is then associated with one or more IP addresses. An application or upper

10.2 NAME–ADDRESS LOOKUP APPLICATIONS 183

layer protocol can look up a host via theHIP resource record and obtain the host identifier

(in the form of a public key) and other host identity information, including the IP address

of the host or of a rendezvous server through which to connect to mobile devices.

Owner TTL Class Type RData

Host domain name TTL IN HIP HIT

Len.

PK

Alg.

PK

Len.

HIT Public

key

RVS

hiphost.ipamww.

com.

86400 IN HIP 16 2 24 Iil. . . 8L9d. . . rs.ipamww.

com.

The RData fields are defined as

. HIT Len. Length in bytes of the Host Identity Tag (HIT); this field is inserted by

the server for wire transmission and is not displayed within a zone file.

. PK Alg. The algorithm used to generate the Public key

T 0¼ no key is present

T 1¼DSA formatted key

T 2¼RSA formatted key

. PK Len. Length in bytes of the public key; this field is inserted by the server for

wire transmission and is not displayed within a zone file.

. HIT. The Host Identity Tag, a 128-bit hash of the host identifier.

. Public Key. The public key associated with the host that can be used to validate

signed messages from the host.

. RVS (optional). One or more rendezvous server host domain name(s) for con-

necting with mobile devices.

RP—Responsible Person Record. The RP resource record enables association

of an email address and other text information with a node in the domain tree, whether an

end host or domain. The RData field contains an email address, formatted without the@

sign; instead, a dot is substituted for the @ sign. The second field of the RData field

indicates a record for which additional text information can be found as an additional

lookup.

Owner TTL Class Type RData

Host domain name TTL IN RP Email address TXT pointer

payroll.ipamww.com. 86400 IN RP cfo.ipamww.com. cfo-contactinfo.ipamww.com.

In this example above, we’ve used an RP record to associate the payroll server with our

CFO, reachable at cfo@ipamww.com (substitute “.” for “@” in email address field). The

184 DNS APPLICATIONS AND RESOURCE RECORDS

TXT pointer field points to a resource record containing additional information, such as

the following example:

cfo-contactinfo.ipamww.com. 86400 IN TXT ‘‘CFO Office (610)-555-1212’’

10.2.5 DNS Protocol Operational Record Types

Two “administrative” resource record types enable specification of zone authority

information (the SOA record) and delegation name servers for this and child domains

(NS). These record types are instrumental to the efficient operation of keeping DNS

data in synch within a zone and of keeping delegation chains in effect down the domain

tree.

SOA—Start of Authority Record. One and only one SOA record is required for

each zone and follows the initial default TTL ($TTL) statement if present within the

zone file. The SOA record defines the domain name for which this zone is authoritative,

along with additional zone maintenance information. The SOA record is composed of

the following fields.

Owner TTL Class Type RData

Domain

name

TTL IN SOA mname Contact Serial

number

Refresh

interval

Retry

interval

Expire

interval

Negative

cache

ipamww.

com.

86400 IN SOA ns1.

ipamww.

com.

admin.

ipamww.

com.

3945 2h 30m 1w 1d

. Domain name for which this zone file contains authoritative information.

. TTL, time to live.

. Record class (IN for Internet).

. Record type (SOA).

. Master DNS Server Name (MNAME). The name of the DNS server that is master

for this domain (zone).

. Domain contact email address (replace “@” with “.” so that admin@ipamworld-

wide.com is written admin.ipamworldwide.com. Note that email addresses with

dots prior to the @ sign should be prefixed with a backslash. Thus, super.

admin@ipamww.com would be encoded as super\.admin.ipamww.com.

. Serial Number of the Zone. Incremented with every change to zone data—

enables slave servers to identify changes to zone data.

. Refresh Interval. Time period for slaves to query the master for zone updates.

. Retry Time. If unable to reach themaster, the slavewillwait this amount of time to

retry to reach the master.

10.2 NAME–ADDRESS LOOKUP APPLICATIONS 185

. Expire Time. If unable to reach the master after this amount of time expires, the

slaves will delete the zone information and no longer consider itself authoritative,

thereby expiring its authority for the zone.

. Negative Caching TTL. Time duration to maintain cache of negative responses

from other servers; for example, a specified domain or record doesn’t exist.

An example SOA record for our ipamww.com zone file might look like

ipamww.com. IN SOA dns1.ipamww.com dnsadmin.ipamww.com (

1 ; serial number

2h ; refresh interval of 2 hours

30m ; retry after 30 minutes

1w ; expire after 1 week

1d) ; negative caching TTL of 1 day.

NS—Name Server Record. The NS record enables lookup of an authoritative

name server for a given zone. NS records are the key to distributing the DNS database. In

delegating a child domain to another administrative authority, the child domain

administratormust be running at least two name servers for redundancy.While traversing

the domain tree, these NS records enable the queried name server along the resolution

path in the domain tree to respondwith a referral to another name server further down the

tree, which has more information about the intended destination. Each zone must also

declare at least two NS records for its authoritative name servers as well.

Owner TTL Class Type RData

Domain name TTL IN NS Name server domain name

ipamworldwide.com. 86400 IN NS ns1.ipamworldwide.com.

Note that the name server hostname in the RData field should have a corresponding A or

AAAA record to complete the required resolution to a reachable IP address. This is

referred to as a “glue” record in that it “glues” the resolution of the authoritative name

server hostname for the desired domain to the IP address of that name server.

10.2.6 Dynamic DNS Update Uniqueness Validation

DHCID—Dynamic Host Configuration Identifier Record. Dynamic DNS

enables the updating of DNS information with DHCP clients’ assigned IP address

information. Thus, a DHCP server on behalf of the client or the client itself can update

DNS with the client’s IP address and hostname association via A/AAAA and PTR*

records. It is quite possible that the same hostname/FQDN may be claimed by multiple

*Associating client identification information with PTR records is not currently specified in the DHCID RFC.

186 DNS APPLICATIONS AND RESOURCE RECORDS

DHCP clients, or that a client may claim a hostname already assigned to a predefined

(e.g., statically addressed) device.

The DHCID record provides client identification information in DNS to uniquely

associate the particular DHCP client with the hostname/FQDN being updated by the

DHCP server. The DHCID record would be defined in the Prerequisite section of the

DNS Update message to verify the record “owner” for updating. Please refer to the DNS

Update section of the previous chapter for more details and an example of this

prerequisite processing.

The DHCID record uses the same owner field as the corresponding A or AAAA

record. The RData portion of the record is formed by performing a one-way secure hash

using the SHA-256 algorithm over the following concatenated fields:

. Identifier Type Code (2 bytes). Identifies the information within the DHCP packet

that was used in creating this hash. Possibilities include client hardware address,

client identifier option, or device unique identifier (DUID).

. Digest Type Code (1 byte). Identifies the hash algorithm. The RFC defines values

of 0 (reserved) or 1 (SHA-256) though IANAmaintains a registry for future value

assignments.

. Digest of the data from the DHCP packet as identified by the identifier value

concatenated by the client’s FQDN.

Owner TTL Class Type RData

Host domain name TTL IN DHCID Identifier

Type

Digest

Type

SHA-256 hash of

{identifier type, fqdn}

w3.ipamww.com. 86400 IN DHCID A1B87Y2/AuCcg8e93aQcjl. . .

10.2.7 Telephone Number Resolution

DNS has proven very versatile and can even be used to map telephone numbers into IP

addresses, which is useful forVoIP applications or related telephonyover IP applications.

The ENUM (E.164 telephone numbermapping) service has been defined to support such

resolution. ENUM supports the mapping of telephone numbers, in ITU E.164 format,

into uniform resource identifiers (URIs).*This mapping is performed primarily using the

Naming Authority Pointer (NAPTR) resource record type.

Note thatmost enterprise IP PBX systems provide their own directories tomap intra-

PBX phone numbers to destination phones’ IP addresses, so ENUM is not commonly

implemented in such environments. However, VoIP service providers have a vested

*A URI is an Internet identifier consisting of a uniform resource name (URN) and a uniform resource

locator (URL). A simple example: for URL http://ipamworldwide.com and URN file.txt, the

corresponding URI is http://ipamworldwide.com/file.txt.

10.2 NAME–ADDRESS LOOKUP APPLICATIONS 187

interest in assuring calls remain on their or their partners’ IP and access networks to the

maximum extent, to reduce call handling costs paid to nonpartner network providers, or

worse, competitors. And ENUM is key to enabling such call routing by virtue of

telephone number mapping or resolution. That is not to say that you won’t see ENUM

within enterprise networks. ENUM provides resolution to multiple destinations with

preference settings, which may find use within reachability or contact management type

applications.

As just mentioned, the NAPTR resource record provides translation of telephone

number information into destination uniform resource identifiers. Currently defined in

RFC 3403 (109), NAPTR records were initially defined to provide a means to iteratively

resolve an arbitrary string into a URI for the Dynamic Delegation Discovery System

(DDDS). Some background on DDDS is provided in RFC 3402 (110), but it initially

stemmed from the desire to define a resolution process that could enter with a resource

name (e.g., a particular application or piece of data) which in itself, contains no network

location information, and resolve it to a destination resource identifier by applying a

series of iterative rules from a database. This separation of the specification of the

resource name from the process to locate or resolve it facilitates the making of changes

and redelegations of resources without impacting the end user application’s naming

convention.

This effort expanded beyond resolving resource names to supporting resolution of

generic lookup strings, and evolved into the DDDS, using DNS as one form of the rules

database. The NAPTR record enables the specification of such rules within DNS,

sometimes using multiple NAPTR records to fully complete the resolution process.

Each NAPTR record translates a given entry string, that is, a valid DNS domain name,

into a rule that can be applied to the string to derive the next string to lookup. This process

iterates until a terminal rule is reached and the final result is returned to the requesting

application.

NAPTR records are the building blocks of E.164 telephone numbermapping service

for service provider voice over IP services. RFC 3761 (111) provides the “application

specific” interpretation of NAPTR fields for the ENUM application. A NAPTR record

can be used to lookup a destination telephone number, and resolve the number to a

destination, for example, a Session Initiation Protocol (SIP) server, email address, or

other URI-formatted destination. NAPTR records also support the ability to define

regular expressions, which supply logical rules as “next steps” for the resolver to locate

the intended destination.

E.164 is an International Telecommunications Union (ITU) standard for formatting

telephone numbers. “Fully qualified” telephone numbers, meaning they are globally

unique given the country code prefix followed by a country-specific telephone number

format, are represented with a plus sign prefix, such as þ 1-610-555-1234. Much like

reverse domains for IP addresses, formatting a telephone number requires a similar

convention of reading the resource record from left to right as more specific to less

specific. This convention requires reversal of the fully qualified telephone number

(dropping the plus sign) and separating each digit with “dots” as illustrated below.

Note the use of the .arpa top-level domain. Similar to ip6.arpa and in-addr.arpa

domain structures, the e164.arpa domain is a “reverse” domain in that it enables lookup

188 DNS APPLICATIONS AND RESOURCE RECORDS

of a structured numerical value, a phone number. Like other .arpa lookups, the domain

structure is organized top to bottom as generalized-to-specific, or country code-to-

telephone line number. Thus, the fully formatted E.164 telephone number is reversed,

each digit is separated with dots, and the e164.arpa. domain suffix is appended as

illustrated in Figure 10.2.

This structure lends itself well to segmentation of telephone number space. For

example, the domain 1.e164.arpa refers to all country code 1 telephone numbers and

could be delegated to such a number authority. Likewise 44.e164.arpa could be delegated

to the U.K. telephone numbering authority. Within each of these domains, further

delegation may be accomplished in accordance with the numbering plan for the country.

For example, within the United States, an area code represents the next logical

administrative delegation point, followed by exchange. Thus, the administrators for

1.e164.arpa may delegate the 0.1.6.1.e164.arpa zone to the numbering administrator for

the 610 area code, who may in turn delegate 5.5.5.0.1.6.1.e164.arpa to those responsible

for the 555 exchange within the 610 area code.

NAPTR—Naming Authority Pointer Record. The NAPTR record provides

translation of a string* or telephone number information into destination uniform

resource identifiers. The NAPTR record utilizes the e164.arpa. domain naming con-

vention described abovewithin its owner field to serve as the lookup format for telephone

numbers. Unfortunately, this so far is only the easy part! The NAPTR record contains a

number of additional subfields with its RData field. The additional subfields are

described below, with examples provided for the ENUM application of NAPTR records.

. Order Field. Specifies the order inwhichmultiple recordswithin the RRSet are to

be processed; lower numbered order records are processed first.

. Preference Field. Specifies the order in which records with equal “order” values

are to be processed; lower numbered preference records are processed first.

. Flags. Provides information about the “next lookup” in the resolution process.

Thus far, four flag values have been defined, though the Flags field can be empty:

Figure 10.2. Telephone number mapping to domain structure.

* “Strings” refer to text or data strings. Fortunately, this is not the “string theory” of DNS!

10.2 NAME–ADDRESS LOOKUP APPLICATIONS 189

T “u” The output of the regular expression field of this record is a uniform

resource identifier; that is, this is a terminal resolution.

T “s” Next lookup should be for SRV records.

T “a” Next lookup should be for A, A6, or AAAA records.

T “p” Next lookup is protocol specific according to the protocol specified in the

Services field.

. Services. This field encodes the services that are available based on the appli-

cation in question. This field includes the type of resolution provided, a “þ ” sign

or colon, followed by the protocol value, for example, http, sip, mailto, ftp, tel,

among others.* Examples of types or resolution include

T I2L. URI to URL.

T N2L. Uniform Resource Name (URN) to URL.

T E2U. ENUM service to URI.

. Regular Expression. An encoded expression that is to be evaluated. The syntax of

this field is a sed-style expression.

. Replacement. An alternative “next lookup” fully qualified domain name in the

absence of a regular expression.

Owner TTL Class Type RData

Domain

name

TTL IN NAPTR Order Pref Flags Services Regexp Replacement

me.ipamww.

com.

86400 IN NAPTR 10 5 “s” “N2L þ http” “ ” www.ipamww.

com.

4.3.2.1.5.5.5.

0.1.6.1.

e164.arpa.

86400 IN NAPTR 10 20 “u” “E2U þ sip” “!^.�$!sip:me@

ipamww.com.!”

Let’s look more closely at the two example NAPTR records above. The first example

provides a rule for resolution of me.ipamww.com. The Flags field value of “s” indicates

to the resolver that the next lookup should be a query for SRV resource records. The

Services field indicates a URN-to-URL service using HTTP protocol. Since the regular

expression field is blank, the replacement field is used as the result of the resolution

process.

The second example highlights an ENUM application example, where a lookup of a

telephone number can be resolved. The “u” flag indicates that the result of the regular

expression provided will be a URI, which can then be resolved to an IP address. The

Services field indicates ENUM services using the SIP protocol. The regular expression

field is comprised of two subfields, encapsulated with the “!” character. The first field

* Please consult http://www.iana.org/assignments/enum-services for the currently assigned services values for

ENUM.

190 DNS APPLICATIONS AND RESOURCE RECORDS

contains “^.�$” and is interpreted as “match from the start of the line (^) to the end of the

line ($), zero ormore (�) characters (.)”; that is,match the entire Owner field. The second

portion of the regular expression contains “sip:me@ipamworldwide.com” which

is returned as the result of our regular expression. The Replacement field is not used in

this case.

The resulting URI, sip:me@ipamworldwide.com would then initiate a DNS

query for an address (A or AAAA) record foripamworldwide.com.Note that some

DNS servers may return relevant A or AAAA records as additional information in the

query response containing theNAPTR records. The resulting IP addresswould be used as

the destination address to initiate the sip session to the “me” user.

10.3 EMAIL AND ANTISPAM MANAGEMENT

Spam email or unsolicited bulk email, has been a nuisance since the dawn of the Internet,

though in the early days it was highly frowned upon. Nevertheless, with the explosive

growth of the Internet, the volume of spam emails has seemingly grown even faster. A

variety of techniques exist to combat spam, many of which involve the use of DNS. To

understand how DNS can help reduce spam, we’ll first look at the anatomy of an email

transmission including the role of DNS in email delivery, then review the use of DNS in

various antispamming solutions.

10.3.1 Email and DNS

An email typically originates from one person and is sent to one or more recipients. Each

email address is formatted as a mailbox@maildomain. The mailbox commonly refers to

the name of the person or owner of a mailbox or email account, while the maildomain,

typically the companyor Internet provider name, is the destination domain for delivery to

the corresponding mailbox or mail exchanger. Emails are composed using an email

client, such as Microsoft Outlook, Eudora, or web-based clients such as yahoo and

google. Regardless, when sent by the originator, the client connects to a Simple Mail

Transfer Protocol (SMTP) server (using the SMTP protocol) to send the email. Like a

default router for email, the SMTP server is responsible for forwarding the email to its

destination.

The SMTP server must resolve the maildomain to an IP address for transmission of

themessage.Naturally this is done usingDNSwith a lookup for themail exchanger (MX)

record type, as well as the corresponding A or AAAA record types.

MX—Mail Exchanger Record. The mail exchanger record is used to locate an

email server or servers for a particular domain. If I send an email destined to tim@i-

pamworldwide.com, my SMTP server will use DNS to find the host(s) that can receive

emails for users in the ipamworldwide.com domain. More than one MX record may be

created per domain, and each can be defined with a different preference value. Use of the

preference field enables the sending SMTP server to prioritize the destination host to

which it will forward the email for the given domain, and if unavailable to a second (and

10.3 EMAIL AND ANTISPAM MANAGEMENT 191

third, etc.) choice destination.The lower thepreferencevalue, themore preferred the listed

destination. In the example below, we have two MX records for the ipamworldwide.com

domain. The destination smtp1 is preferred (lower preference) over smtp2. However, if

smtp1 is unavailable, this mechanism provides a backup server for email delivery.

Owner TTL Class Type RData

Email destination domain TTL IN MX Preference Mail server host domain name

ipamworldwide.com. 86400 IN MX 10 smtp1.ipamworldwide.com.

ipamworldwide.com. 86400 IN MX 20 smtp2.ipamworldwide.com.

Note that the mail server host domain name within the RData field must have a

corresponding A or AAAA record to complete the required resolution to a reachable

IP address.ManyDNS servers supply these address recordswithin theAdditional section

of the MX query response.

Upon resolving the destination mail server, the SMTP server sends the message to

the destination using the SMTP protocol. The ultimate destination server, to which

recipient email clients connect, must support Post Office Protocol (POP) or Internet

Message Access Protocol (IMAP) to enable client retrieval of the email message. Thus,

when your email client performs a “send/receive,” it utilizes SMTP to send outgoing

messages to its configured SMTP server and POP or IMAP to retrieve incoming email

messages from the configured POP/IMAP server(s).

Figure 10.3 highlights a very simple SMTP transaction between two servers, when

my friend Mike sends me an email. On the left of the figure, Mike composes an email to

tim@ipamworldwide.com using his email client and sends it. His configured SMTP

server forwards themessage to the destination server, as resolved by theMX record(s) for

ipamworldwide.com. His SMTP server initiates a TCP connection on port 25 with the

resolved destination server.

Once the TCP session is established, the SMTP application utilizes the session to

handshake and process themessage. The envelope portion of themessage beginswith the

HELO (or EHLO, enhanced HELO), which conveys the sending entity’s identity. The

MAIL FROM statement indicates the source of the message, followed by the RCPT TO

statement indicating the destination mailbox. At this point in the exchange, the recipient

server may refuse to accept the message and close the connection if the destination

mailbox is unknown or blocked, or if the “from address” is prohibited. Otherwise, the

transaction continues and the data or message portion* is transmitted. The receivingmail

exchanger stores the email message or forwards it to the server on which the destination

mailbox resides.

The store-and-forward approach used by the received email server may also be used

by intermediate email gateways (aka message transfer agents) to provide multihopped

email delivery. As mentioned above, the resolution of a destination mailbox domain to

*Note that themessage portion of an email consists of a header and the body. As a point of reference, RFC2821

(163) defines the SMTP specification, while RFC 2822 (164) defines the Internet message format for email,

defining valid header and data syntax.

192 DNS APPLICATIONS AND RESOURCE RECORDS

multiple MX records implies this ability to identify a “destination” mail server, which

may or may not be the final destination from which the intended recipient retrieves the

email. The MX record preference field provides control over the relative preference of

incoming mail servers or gateways, while providing selection from among multiple

choices based on availability and performance.

Figure 10.4 illustrates a two-step email delivery scenario using SMTP. In this

scenario, I’m sending the same email as shown in Figure 10.3. However, in this case,

perhaps the intended destination server, smtp.ipamworldwide.com is busy and refuses a

direct connection. Having resolved both the ipamworldwide.com server and an mta-

gateway.com server via a DNS MX query, my outgoing mail server will attempt to send

the email to the second choice, mta-gateway.com.

In accepting the SMTP transmission from my mail server, the mta-gateway.com

server effectively agrees to forward the email to the ultimate destination on my behalf.

The transaction between my mail server and the mta-gateway.com server completes

before the second leg of transmission is attempted. SMTP uses a store-and-forward

approach, not synchronous relaying of each message.

Figure 10.3. Simple SMTP transaction example.

10.3 EMAIL AND ANTISPAM MANAGEMENT 193

The first leg of the transmission looks very similar to that of Figure 10.3, except for

the difference in the SMTPserver. The second legof the connection is also similar, except

once again for the SMTP endpoints. The other difference is the insertion of theReceived:

line within the header portion of the data section of the mail. Each intermediate SMTP

serverwhich forwards themessage prefixes a “Received” line indicating its domain name

and corresponding time stamp. This enables tracing of the email from the destination

back to its path. The RCPT TO line remains the same in both segments, indicating the

mailbox to which errors in delivery should be sent.

As footnoted above, the message portion of an email consists of a header and the

body. Each header field consists of a word followed by a colon and a value. The header

contains a variety of data including the following:

. Originator Fields. From, sender, reply-to, orig-date;

. Destination Fields. to, cc, bcc;

. Identification Fields. Message-id, in-reply-to, references, msg-id, id-left, id-

right, no-fold-quote, no-fold-literal;

. Informational Fields. Subject, comments, keywords;

Figure 10.4. Email relay.

194 DNS APPLICATIONS AND RESOURCE RECORDS

. Resent Fields (informational fields relating to the reintroduction* of a message

into the Internet, for example, by an emailing service). Resent-date, resent-from,

resent-sender, resent-to, resent-cc, resent-bcc, resent-msg-id; and

. Source Trace Information. Trace, return, path received, name-val-list, name-val-

pair, item-name, item-value.

We have summarized the basic email process and types of information that may be

included in a given emailmessage because different antispam techniques utilize different

information sources in validating the sender as a legitimate or acceptable sender of

emails. We’ll discuss those techniques that utilize DNS to perform this validation next.

10.3.2 White or Black Listing

The use of white or black listing (190) provides a simple means for the recipient email

server to lookup a sender’s IP address via DNS and to validate its legitimacy. This lookup

is typically formed by reversing the IP address of the source IP address of the email

message, just as is done in forming PTR records. Note that the source IP address being

analyzed is that from which the email was received directly, perhaps an email gateway,

which may ormay not be the original transmitter. However, the intent of such listing is to

identify such senders of email by IP address as legitimate or not.

In this scenario, the reversed IP address is appended with a given domain name,

typically that of the black list provider. The “host domain name” thus formed by this

concatenation is queried in DNS using the A resource record query type, not PTR. The

query answer is interpreted based on whether the record was found, in which case often

an IP address within the 127/8 block is returned, and on whether the list publishes known

spammers (black or block list) or known nonspammers (white list).

For example, upon receiving an email message with a source IP address of

192.0.2.95, my email server formulates an A record query for hostname 95.2.0.192.

spamblacklist.org, assuming my chosen black list provider publishes lookups within the

spamblacklist.org domain. Upon receiving a reply with answer (IP address) 127.0.0.5,

my email server classifies the email as spam and rejects it. On the other hand, if

NXDOMAIN is returned for the query, the email may be permitted. Awhite list service,

publishing known genuine email server addresses would render the opposite interpre-

tation based on the DNS lookup.

10.3.3 Sender Policy Framework (SPF)

The Sender Policy Framework is currently defined with RFC 4408 (112) under exper-

imental status. SPF enables an organization to publish its own list of authorized outgoing

email server addresses, a self-published white list, though with substantially more

sophistication. Under SPF, the received email message’s envelope information is

*Reintroduction is not forwarding. The transmission of an emailwith the original sender information instead of

that of the transmitter is considered reintroduction. Forwarding uses the mailbox doing the forwarding as the

sender.

10.3 EMAIL AND ANTISPAM MANAGEMENT 195

examined, and anSPFDNSquery from the recipient is based upon the sender, the sender’s

domain, as well as the source IP address. Upon receipt of an email message, the recipient

email server would issue a query for an SPF resource record for the source domain name.

The SPF record is encoded as a string of “mechanisms” that are used to process the source

IP address from which the email originated, the domain portion of the MAIL FROM or

HELO identity, and the sender from the MAIL FROM or HELO identity.

SPF—Sender Policy Framework Record. The Sender Policy Framework

attempts to provide validation of what hosts are configured to send email for a given

domain. That is, SPF seeks to eliminate spam emails from spoofed domains. A recipient

email host can look up the SPF records for the sender’s domain to verify that the sending

email host matches those authorized by the sender. SPF version 1 or SPF classic as it is

also called, is documented in RFC 4408 and utilizes the SPF resource record. Domain

administrators can configureDNSwith email hosts mapping to each host’s mailfrom and

SMTPHELO identities. SenderID is a related spamdetection technique that also uses the

SPF resource record type, though it analyzes different information from an incoming

email message. We’ll cover SenderID a bit later.

Note that due to actual implementations of SPF using TXT records prior to IETF

publication of RFC 4408, most implementations will use both SPF and TXT records for

backward compatibility, though an SPF compliant resolver will discard the TXT records

if both TXTandSPF records are returned. The format of the SPF record is identical to that

of the TXT record; however, a particular syntax is employed for SPF applications instead

of arbitrary text. The syntax includes a version string (v¼spf1 for SPF, spf2.0 for

SenderID covered next) followed by a space, then one ormore terms that define qualifiers

on resource record types or IP network addresses, modifiers, and even macros.

Owner TTL Class Type RData

Domain name TTL IN SPF Version, directives, and/or modifiers

smtp.ipamww.com. 86400 IN SPF v¼ spf1 þ ip4:192.0.2.32/30 –all

smtp.ipamww.com. 86400 IN SPF spf2.0 pra þ ip4:192.0.2.32/30 –all

Mechanisms. Mechanisms enable specification of the match criteria within the

SPF (or TXT) record, which a receiving email server can query to validate the sender of a

given email message. Mechanisms are defined within the SPF record’s RData field after

specification of the SPF version, currently version 1, “v¼ spf1.” Mechanisms are

evaluated left to right. If a mechanism passes based on evaluation of the mechanism,

theverification passes; otherwise, the nextmechanism is tested until a pass or fail is found

or no further mechanisms are defined.

Each mechanism can be defined with a qualifier, a prefix that instructs the mail or

spam filter server how to interpret a given “match”:

. þ ¼ pass (default). Consider this mechanism a pass, if this mechanism matches.

. -¼ fail. Consider this mechanism a fail, if the mechanism matches.

196 DNS APPLICATIONS AND RESOURCE RECORDS

. �¼ soft-fail. Consider this mechanism somewhere between neutral and fail, if

this mechanismmatches; this interpretation would not fail this check outright if it

matched, but would hold it for closer scrutiny.

. ?¼ neutral. Consider this mechanism neutral, if this mechanism matches.

Qualifiers may be used with the following resource record check based mechanisms to

define the interpretation of a given mechanism as shown in the examples following:

. a¼ lookup the A record for the source domain (from the MAIL FROM or HELO

identity); if it matches the source IP address of the message, this mechanism

matches. This can be scoped to a specific domain and/or number of CIDR bits to

compare in the addresses as illustrated in the following examples:

T þa¼ pass, if the A record query for the source domain matches the source IP

address.

T –a:ipamworldwide.com¼ fail, if an A record query for ipamworldwide.

com matches the source IP address.

T �a/24 soft-fail, if the first 24 bits of the IP address retrieved via A record

lookup of the source domain matches the first 24 bits of the source IP

address.

. mx¼ lookup the MX record for the source domain (from the MAIL FROM or

HELO identity); for each MX lookup resolved, look up the corresponding A

record; if it matches the source IP address of the message, this mechanism passes.

As with the amechanism, the mxmechanism can be scoped to a specific domain

and/or number of CIDR bits to compare in the addresses as illustrated in the

following example:

T þmx:ipamworldwide.com/28¼ pass, if an A record associated with a

MX record lookup is returnedwhere the first 28 bitsmatch the first 28 bits of the

source IP address of the message.

. ptr¼ lookup the PTR record (up to 10) corresponding to the source IP address of

the email message; then compare two things with each domain name returned in

the PTR lookup:

T Check that the domain name returned matches the source domain of the email

message.

T Check that the corresponding A or AAAA record returns an IP address

matching the source IP address.

If both conditions hold, this mechanism passes. This mechanism can be further

scoped by a domain name, which can be used to filter multiple returned PTR-

lookup domain names as illustrated in the following examples:

T –ptr: fail, if a domain name returned during the PTR lookup of the source IP

address matches the source domain and if the A/AAAA domain name corre-

sponding to the domain name returned during the PTR lookup matches the

source IP address of the email.

10.3 EMAIL AND ANTISPAM MANAGEMENT 197

T þptr:ipamworldwide.com: pass, if a domain name returned during the

PTR lookup of the source IP address matches the source domain while falling

within the ipamworldwide.com domain and if the A/AAAA domain name

corresponding to the domain name returned during the PTR lookupmatches the

source IP address of the email.

. ip4¼ verify that the source IP address matches the IPv4 address specified; this

mechanism may be qualified by CIDR length as illustrated in the following

example:

T ?ip4:192.0.2.32/30. Neutral, if the source IP address of the message

falls within 192.0.2.32-192.0.2.35.

. ip6¼ verify that the source IP address matches the IPv6 address specified; this

mechanism may be qualified by prefix length as illustrated in the following

example:

T þip6:2001:db8:f02b:2a::/64. Pass, if the source IP address of the

message falls within the 2001:DB8:F02B:2A::/64 network.

. exists:domain_name¼ lookup the A record (not AAAA) corresponding to

the domain_name; this mechanismmatches if any answer (IP address) is provided

(this mechanismmust be scoped with a domain name to match as illustrated in the

following example).

T exists:ipamworldwide.com: matches, if an A record lookup for the

ipamworldwise.com domain returns an IP address.

. include:domain_name¼ recursively evaluate the domain_name to lever-

age its SPF policies, for example, to utilize the policy of a domain from multiple

ISPs or from other domains from which you send email.

. all¼matches everything; often used as the final parameter as –all to fail if no

prior mechanism matches.

Modifiers. Modifiers may be specified within SPF records to provide additional

information. Modifiers are name-value pairs, two of which have yet been defined:

. redirect¼domain_name: enables “aliasing” of SPF records, for example,

to apply a common SPF processing record to multiple domains. This provides a

convenience for ongoing change management: change the processing in one

record,minimizing errors, andmaximizing consistency. In the following example,

the MX record check for the ipamworldwide.com domain would apply to the hq

and euro subdomains as well.

hq.ipamww.com. IN SPF ‘‘v=spf1 redirect=_spf.ipamworldwide.com’’

euro.ipamww.com. IN SPF ‘‘v=spf1 redirect=_spf.ipamworldwide.com’’

_spf.ipamworldwide.com. IN SPF ‘‘v=spf1 +mx:ipamworldwide.com –all’’

198 DNS APPLICATIONS AND RESOURCE RECORDS

The redirect can be used explicitly as in the above example, or as a “last resort”, for

example, listed as the rightmost mechanism.

. exp¼domain_name: explanation, which defines the domain for which a TXT

record lookup must be done to identify the string to be presented as results upon a

mechanism match failure.

Macros. Technically, the domain_name for any of the above mechanisms and

modifiers need not be an explicitly defined (hard coded) domain, but one that can be

defined using macros to dynamically formulate a domain name based on the message

envelope under evaluation. Even the TXT record fetched by processing an exp modifier

may be populated with macros. Macros are identified using the percent sign (%). The

following macros have been defined

. %{s}¼ the sender’s email address

. %{l}¼ the local part of the sender’s email address

. %{o}¼ the domain of the sender’s email address

. %{d}¼ the current domain, usually the same as the sender’s domain butmay also

have been processed, for example, via the include mechanism

. %{i}¼ the source IP address of the message sender

. %{p}¼ the validated domain namevia PTR lookup of the source IP address of the

message sender

. %{v}¼ the literal string “in-addr” if the source IP address is an IPv4 address and

“ip6” if the source IP address is IPv6

. %{h}¼ the domain part of the HELO/EHLO identity

. %%¼ the literal %

. %_¼ space “ “

. %-¼ a URL-encoded space, for example “%20”

The following macros are available for use in the TXT record referenced by an exp

mechanism and may not be used elsewhere:

. %{c}¼ the SMTP client IP address

. %{r}¼ the domain name of the host performing the SPF check

. %{t}¼ the current time stamp.

Macro transformers enable use of a subset of the results of a macro, for example, by

specifying an integer quantity of domain name labels, or the reversal of the results of a

macro, for example, reversing an IP address. Reversal is performed by adding an r into

the macro curly brackets.

MacroExamples. Consider the exampleofFigure 10.3,whereMike (mike@ipam-

ww.com) sends me an email to tim@ipamworldwide.com from my SMTP host on IP

10.3 EMAIL AND ANTISPAM MANAGEMENT 199

addresses 192.0.2.32. Using this and other information from the figure, we can define the

macro values for this email transmission as

. %{s}¼mike@ipamww.com

. %{l}¼mike

. %{o}¼ipamww.com

. %{d}¼ipamww.com

. %{d3}¼ipamww.com

. %{d2}¼ipamww.com

. %{d1}¼com

. %{i}¼192.0.2.32

. %{ir}¼32.2.0.192

. %{v}¼in-addr

. %{h}¼ipamww.com

. %{ir}.%{v}._spf.%{d}¼32.2.0.192.in-addr._spf.ipamww.

com

SPF provides a powerful macro language to granularly articulate email policies for your

organization. However, it is an experimental protocol, as is a close cousin, Sender ID.

10.3.4 Sender ID

Another experimental mechanism for identifying potential spam email is called Sender

ID. The Sender ID algorithm seeks to identify whether a given email from a given SMTP

client at the given source IP address is authorized to send the email. Like SPF, Sender ID

can examine the sender, sender domain, and source IP address of the email message

based on the MAIL FROM field. Unlike SPF, Sender ID can also or alternatively verify

the sender and sender domain based on message header information. Sender ID, like

SPF, utilizes the SPF resource record type, as defined in the previous section with a few

modifications:

. the version string (“v¼ spf1”) is replaced with “spf2.0”;

. Sender ID includes a scope for the record: “mfrom” indicates the mailfrom

entity as in SPF, and/or “pra” the purported responsible address, discussed

next; and

. modifiers are extended from the SPF definition to enable positional context as an

alternative to the SPF-defined global context. That is, a modifier can affect a

preceding mechanism, unlike SPF where a modifier is always applied globally.

The scope field is used to derive the sender and sender domain for validation (i.e., the

MAIL FROM entity and/or the PRA). The purported responsible address, PRA, scope

relates to the identity of the sender closest to the receiving email system. The PRA

200 DNS APPLICATIONS AND RESOURCE RECORDS

algorithm examines the message header, not the envelope, and seeks a sender address by

examining the following headers in order, taking the first address found:

. Resent–Sender header

. Resent–From header

. Sender header

. From header

A single valid sender mailbox address (i.e., of the form mailbox@maildomain) found in

one of these headers is the PRA. In the simple cases illustrated in Figures 10.3 and 10.4,

the purported responsible address would be mike@ipamww.com as derived from the

“From” header value. In the casewhere a third party is used to transmit email on behalf of

a legitimate sender, the “Resent–From” or other header value would be used. The term

“purported” is used since the algorithm relies on information supplied in the message

header, which is supplied by the sender.

There is a bit of controversy around Sender ID versus SPF, which is one of the

reasons why both techniques are deemed experimental. For example, Sender ID

processing of “v¼ spf1” (SPF) records could result in valid messages being deemed

spam. Hopefully, an agreeable unified approach can be derived in the future.

10.3.5 Domain Keys Identified Mail (DKIM)

DKIM specifies ameans for a sender of email to cryptographically sign an emailmessage

such that recipients may validate it upon receipt via retrieval and application of the

sender’s domain key. DKIM utilizes digital signatures, which enable the originator of a

given set of data (an email message in this case) to sign the data such that those receiving

the data and the signature, along with a corresponding public key for deciphering the

signature, can perform data origin and integrity verification. DKIM employs an

asymmetric key pair (private key/public key) model. In such a model, the email message

and selected header fields are encrypted with a private key and can be validated by

decrypting the data with the corresponding public key. The private key and public key

form a key pair. Themathematical details are very complex but conceptually, the private/

public key pairs provide a means for holders of the public key to verify that data was

signed using the corresponding private key. This provides authentication that the data

verified was indeed signed by the holder of the private key. Digital signatures also enable

verification that the data receivedmatches the data published and was not tampered with

in transit.

Referring to Figure 10.5, the data originator, shown on the left of the figure,

generates a private key/public key pair and utilizes the private key to sign the data. The

first step in signing the data is to produce a hash of the data, sometimes also referred to as a

digest. Hashes are one-way functions* to scramble data into a fixed length string for

simpler manipulation, and represent a “fingerprint” of the data. This means that it is very

*A one-way function means that the original data is not uniquely derivable from the hash. One can apply an

algorithm to create the hash, but there is no inverse algorithm to performon the hash to arrive at the original data.

10.3 EMAIL AND ANTISPAM MANAGEMENT 201

unlikely that another data input could produce the same hash value. Thus, hashes are

often used as checksums but don’t provide any origin authentication (anyone knowing

the hash algorithm can simply hash arbitrary data). Common hash algorithms include

HMAC-MD5, RSA-SHA-1, andRSA-SHA-256. DKIMnot only uses RSA-SHA-256 by

default but also supports RSA-SHA-1. The hash is encrypted using the private key to

produce the signature. The encryption algorithm is fed the hash and the private key to

produce the signature.

Both themessage and its associated signature are transmitted to the recipient. A new

email header field, dkim-signature, has been defined to store the DKIM signature with

information on retrieving the public key. Based on our prior review of how SMTPworks,

youmay bewondering howmodification of envelope data and insertion of headers affect

the signature. DKIM offers a “simple” or strict form of canonicalization and a “relaxed”

form. The simple form tolerates very little modification while the relaxed form permits

white space replacement and header line rewrapping without impacting the signature

validity.

DKIM Signature Email Header Field. The recipient must extract the signature

from the dkim-signature header field. The dkim-signature field also contains the

following:

. the DKIM version (e.g., v¼1)

. the algorithm used to generate the signature (e.g., a¼rsa-sha256)

. signature (e.g., b¼dqdVx0fAK9. . .)

. hash of the canonicalizedmessage body (bh¼7Dkw0eE35Jlkjexcmpol. . .)

. canonicalization method (c¼relaxed)

. the signing domain identifier—the domain of the signing entity (e.g., d¼ipam-

worldwide.com)

. user or agent on whose behalf the message is signed (i¼rooney@ipam-

worldwide.com)

. the selector or key reference within the domain (allows multiple keys per domain

which aids in key rollover and more granular signatures) (e.g., s¼europe)

. enumeration of the header fields that were signed (e.g., h¼from:to:sub-

ject:date)

Figure 10.5. Digital signature creation and verification process.

202 DNS APPLICATIONS AND RESOURCE RECORDS

. additional optional information, including query methods to use to retrieve the

public key. The default (and currently only) query method, q¼dns/txt,

instructs the recipient to perform a DNS query of querytype “txt” to retrieve the

public key that corresponds with the private key that was used to sign themessage.

Another optional field of interest, the i¼ tag provides the identity of the user or

agent on whose behalf this message was signed.

DKIM TXT Record. Using the query method q¼ dns/txt, the recipient performs a

DNS query for a TXT record within the signing domain. The Question section of the

query is formulated by concatenating the selector value (s¼ value), the string

“_domainkey” and the specified signing domain (d¼ value). Using the example

where s¼europe and d¼ipamworldwide.com as specified in the dkim-sig-

nature field of an incoming email, a TXT query for europe._domainkey.

ipamworldwide.com would be issued. The RData portion of the corresponding

TXT record includes one or more tags similar to the dkim-signature field

. DKIM version (v¼DKIM1)

. Granularity of the key, which if specified, must match the local part of the user or

agent (i¼) flag in the dkim-signature header (g¼ �)
. Hash algorithm(s) accepted (e.g., h¼sha256)

. Key type (k¼rsa)

. Notes for human consumption (n¼updated_key)

. The public key (p¼Dkjeijf8d98Kz. . .)

. Service type (s¼email)

. Flags indicating such things as the compliance rules among the i¼ tag in the

dkim-signature header and the d¼ domain tag (encoded in the TXT record as

t¼s), as well as whether this domain is testing DKIM (t¼y).

The only required tag is the p tag, the public key. An example TXT record follows

europe._domainkey.ipamworldwide.com IN TXT

(‘‘v=DKIM1; p=Dkjeijf98Kz...’’)

Upon retrieving the public key, the recipient computes a hash of the received

message body and signed header fields, as did the originator. The recipient applies the

hash algorithm to the received signature using the originator’s public key. The output of

this decryption, the original data hash, is comparedwith the recipient’s computed hash of

the data. If they match, the data has not been modified and the private key holder signed

the data.

If an incoming email message contains a dkim-signature header field, it’s clear that

the sender is using DKIM and has signed themessage. But if an incoming email message

does not contain a dkim-signature header field, does this mean that the sender does not

sign messages? This in fact could create an opening for a SPAM attacker issuing

10.3 EMAIL AND ANTISPAM MANAGEMENT 203

unsigned email messages from a spoofed source domain. DKIM relies on publication of

Author Domain Signing Practices (ADSP), which enables a recipient email server to

determinewhether themessage from a given domain by policy should be signed and if so,

by whom and with what signature(s).

A recipient determines the sending domain’s signing practices by issuing a query

for Qtype¼TXT and Qname¼_adsp._domainkey.signing-domain-

identifier, where signing-domain-identifier is again the d¼ value. The

corresponding TXT record indicates whether email from this domain is always signed,

may be signed, and is always signed and any unsigned email should be discarded.

Please refer to RFC 5617 (113) for details.

10.3.6 Historic Email Resource Record Types

These resource record types were defined in the early days of DNS and are no longer

used. We list them here purely for historical significance.

MR—Mail Rename Record. TheMR resource record type translates email to an

alias or list into an individual (or multiple, one per MR record). In the simplest sense, it

provides an alias for a mailbox name.

Owner TTL Class Type RData

Emailbox alias name TTL IN MR Emailbox name

cfo 86400 IN MR finance

MB—Mailbox Record. The MB record is defined in RFC 1035 and enables

association of a user ID with the desired host containing the user’s email box.

Owner TTL Class Type RData

Email ID TTL IN MB Mailbox hostname

joe 86400 IN MB smtp.ipamworldwide.com.

MG—Mail GroupMember Record. RFC 1035 defined theMG resource record

to enable association of email users with a user group.

Owner TTL Class Type RData

Email group name TTL IN MG Email ID

finance 86400 IN MG joe

MINFO—Mailbox/Mailing List Information. The MINFO record was also

defined inRFC1035 andwas intended to providemailbox andmailing list information. It

204 DNS APPLICATIONS AND RESOURCE RECORDS

provides two email box addresses one to request addition to themailing list and another to

report errors.

Owner TTL Class Type RData

Mailbox name TTL IN MINFO Requests mailbox Errors mailbox

newsalerts 86400 IN MINFO hostmaster majordomo

10.4 SECURITY APPLICATIONS

10.4.1 Securing Name Resolution—DNSSEC Resource Record Types

Chapter 13 is devoted to the topic of DNS security extensions (DNSSEC), so we will

summarize the DNSSEC required resource record types for completeness within this

chapter. We’ll provide the full context and description of DNSSEC in Chapter 13.

DNSKEY—DNSKey Record. TheDNSKEY resource record is used in DNSSEC

to publish public keys used for validating signatures on zone information. The server

signs its authoritative resource record sets within a zone using a private key and the

corresponding public key is published in the zone file in the form of theDNSKEY record.

Two types of keys are published: a zone signing key (ZSK), which signs resource record

data and a key signing key (KSK) which signs the ZSK. The resolver can use this public

key to validate a given RRSet’s signature.

Owner TTL Class Type RData

Key name TTL IN DNSKEY Flags Protocol Algorithm Key

ipamww.com. 86400 IN DNSKEY 256 3 5 AweE8F(le. . .

In this example, the RData fields are interpreted as follows:

. the Flags field provides information on the type and status of the key. Currently

defined values for the Flags field are as follows.

T Bit 7. This key is a zone signing key (Decimal¼ 256)

T Bit 8. Revoke this Key

T Bit 15. This key is a key signing key (Decimal¼ 1)

T Other bits. Unassigned

. the Protocol field must have a value of “3” indicating DNSSEC (this is the only

value currently defined).

. the Algorithmhas a value of “5” in the example above, indicating the RSA-SHA-1

algorithm. Algorithms currently supported are encoded as follows:

T Value¼ 1. RSA/MD5, which is not recommended according to RFC 4034

10.4 SECURITY APPLICATIONS 205

T Value¼ 2. Diffie–Hellman

T Value¼ 3. DSA*/SHA-1

T Value¼ 4. Reserved for Elliptic Curve

T Value¼ 5. RSA-SHA-1, which is mandatory according to RFC 4034

T Value¼ 6. DSA-NSEC3-SHA-1—an alias for algorithm 3, but with the

qualifier that NSEC3 records instead of NSEC records are used

T Value¼ 7. RSA-SHA-1-NSEC3-SHA-1—an alias for algorithm 5, but with the

qualifier that NSEC3 records instead of NSEC records are used

T Value¼ 8. RSA-SHA-256

T Value¼ 10. RSA-SHA-256

T Value¼ 12. GOST R 34.10-2001

T Value¼ 252. Indirect

T Values¼ 253-254. Private

T Values¼ 0, 123-251, 255. Reserved

T Other values. Unassigned.

. the Key is the public key.

DS—Delegation Signer Record. RFC 4034 (114) defines the DS resource

record type, which essentially extends the chain of trust to a signed delegated domain

(zone). The DS resource record enables a parent zone to authenticate its child zone’s

public Key SigningKeys (DNSKEY record for theKSK). As such, each DS record refers

to a specific (by key tag) DNSKEY resource record in the delegated child zone.

Authenticating the DS record enables clients to authenticate the child zone’s DNSKEY.

Owner TTL Class Type RData

Delegated domain TTL IN DS Key tag Alg. Type Digest

child.ipamww.com. 86400 IN DS 32284 5 1 75CF28D3OQ35. . .

TheAlgorithmfield identifies the algorithm field on the correspondingDNSKEY record.

The DS record refers to a DNSKEY record by including a digest (hash) of the DNSKEY

RR in theDigest field; the [Digest] Type field indicates the algorithm utilized to construct

the digest.

DLV—DNSSEC Lookaside Validation Record. Specified in RFC 4431 (115),

the DLV resource record is used within DNSSEC for publishing trust anchors outside of

the normal DNS domain tree hierarchy, that is, the chain of trust. The DLV record is

structured identically to the DS record in that it identifies a “proxy parent zone” and it

thus authenticates the “child” zone’s public key signing key records (DNSKEY).

*DSA¼U.S. Government Digital Signature Algorithm.

206 DNS APPLICATIONS AND RESOURCE RECORDS

Lookaside validation is intended to provide an alternative upstream trust anchor, such as

dlv.isc.org, in the absence of root and TLD zone signings.

Owner TTL Class Type RData

DLV domain TTL IN DLV Key tag Alg. Type Digest

ipamww.com.dlv_reg.net. 86400 IN DLV 32284 5 1 90df80DF89lLe. . .

NSEC—Next Secure Record. The NSEC resource record type provides two sets

of information. The set of NSEC RRs in a zone forms a chain of authoritative owner

names in the zone and indicates which authoritative RRSets exist in the zone. The NSEC

resource record contains the next owner name that identifies associated authoritative

owner nameswithin the chain, aswell as the set of RR types present at theNSEC resource

record’s owner name.

Owner TTL Class Type RData

RRSet Owner TTL IN NSEC Next RRSet Owner Type Bit Maps

ns1.ipamww.com. 86400 IN NSEC ns2.ipamww.com. A NS RRSIG NSEC

The Next RRSet Owner field contains the next owner name in the canonical ordering of

the zone that has authoritative data or contains an RRSet of typeNS defining a delegation

point. This provides authenticated denial of existence of resource records between the

RRSet identified within the NSEC Owner field and the Next RRSet Owner RData field.

The Type Bit Maps field identifies the resource record types that exist at this NSEC

resource record’s owner name. Within this field, if a bit¼ 1, then the RRType corre-

sponding to this bit number exists. Thus if bit 1 is 1, corresponding to RRType¼ 1 or A

record, then an A RRSet is present. Fortunately, the text representation of this is in the

familiar resource record type mnemonic.

NSEC3—NSEC3 Record. The NSEC resource record provides authenticated

denial of existence for RRSets, but it also enables easy enumeration of RRSets in the

zone, which can be considered an information security risk. In other words, a curious or

malicious querier could attempt to resolve a bogus name and receive the pair of resource

record owner names surrounding the queried hostname.

Like NSEC, the NSEC3 record provides authenticated RRSet denial of existence,

but obfuscates the chain of RRSets in the zone. This obfuscation renders the footprinting

of a zone’s contentsmuchmore computationally intensive. Instead of pointing to the new

owner name field, NSEC3 points to the next hashed owner name field in hash order. And

the salt value that is appended to each owner name prior to hash generation further

complicates the generation of hashed owner names by someone attempting to footprint

the zone.

10.4 SECURITY APPLICATIONS 207

For each RRSet in the zone, the owner field is hashed using the specified hash

algorithm applied to the owner name concatenated with the salt field iteratively

<Iterations> þ 1 times. The following pseudocode states this in another way:

x = {RRSet owner field concatenated with Salt value}

y = H (x) a hash of x as defined in the prior statement

for (i = Iterations value; i > 0; i–) {

y = H (y)

}

Owner TTL Class Type RData

Hashed

RRSet

Owner

TTL IN NSEC3 Hash

Alg.

Flags Iterations Salt

Len.

Salt Hash

Len.

Next

Hashed

Owner

Name

Type

Bit

Maps

jAdfJE; . . . 8640 IN NSEC3 1 0 2 8 a808f6ce

1a950b1c

18 k0Lse7. . . A

RRSIG

NSEC3

The RData fields for the NSEC3 record are defined as follows:

. Hash Algorithm. The algorithm used to construct the hash value; valid values are

T Reserved

T 1¼RSA-SHA-1

T 2-255. Unassigned

. Flags. Consisting of a set of eight boolean flags, the Flags field has currently a

single flag defined (bit 0). If bit 0 is set, this indicates that this record covers one or

more unsigned delegation records. This Opt-Out flag enables “opting out” of

securing delegations to unsigned zones (i.e., validating the non-existence of a

child zone’s DS record).

. Iterations. Specifies the number of additional applications of the hash function.

. Salt Length. Included in the wire format but not presented in the resource record

text format, this field indicates the length in bytes of the Salt field (valid

values¼ 0–255).

. Salt. The value of the Salt field is appended to the RRSet owner prior to

application of the hash function and is represented in case-insensitive

hexadecimal.

. Hash Length. The length in octets of the next hashed owner name field, included

on the wire but not represented in resource record text format.

. Next Hashed Owner Name.

. Type Bit Maps. This field defines the resource record types defined for this owner

within the zone and is encoded in the samemanner as the corresponding field in the

NSEC record.

208 DNS APPLICATIONS AND RESOURCE RECORDS

NSEC3PARAM—NSEC3Parameters Record. TheNSEC3PARAMrecord type

defines the parameters needed to compute hashed owner names and hence the corre-

sponding NSEC3 records within the zone upon signing. The NSEC3PARAM record is

used by the server to identify negative answers in response to a query. Thus, when a query

arrives for a nonexistent RRSet within the zone, the server applies the NSEC3PARAM

parameters to hash the queried owner name in order to provide an appropriate NSEC3

response, that is, between which two hashed RRSets does this queried owner name

fall? Only one NSEC3PARAM record should be present within the zone file. The

NSEC3PARAM record is also used by the server when signing new or changed RRSets

automatically.

The RData fields have identical meanings as corresponding fields within the NSEC3

RData fields.

Owner TTL Class Type RData

Domain name TTL IN NSEC3PARAM Hash

Alg.

Flags Iterations Salt

Len.

Salt

ipamww.com. 86400 IN NSEC3PARAM 1 0 2 8 a808f6ce1a950b1c

RRSIG—Resource Record Set Signature Record. The Resource Record Set

Signature resource record contains the digital signature associated with a given RRSet.

This signature, along with the zone’s public [zone signing] key, are used to authenticate

the corresponding RRSet’s integrity and origin.

Owner TTL Class Type RData

RRSet

Owner

TTL IN RRSIG Type

Cov.

Alg. Labels Orig.

TTL

Expire Incep-

tion

Key

tag

Signer Signa-

ture

ftp1.ipamww.

com.

86400 IN RRSIG A 5 3 86400 2008051

5133509

2008011

5133509

27783 ipamww.

com.

N78E. . .

The RData fields within the RRSIG record are defined as follows:

. Type Covered. The resource record type of the corresponding owner and class

signed by this signature. This field is the standard resource record type discussed

for resource records throughout this chapter. In the example above, theA (address)

resource record type indicates that A records with name¼ ftp1.ipamww.com

(Owner field) of class IN are signed with this RRSIG record.

. Algorithm. The algorithm used in generating the data hash for comparison with

the received signature. This field is encoded in the same manner as the Algorithm

field of the DNSKEY resource record type.

. Labels. Indicates the number labels. Recall that labels refer to the text repre-

sentation of domain names, with a label for each name “between the dots.” Thus,

www.ipamworldwide.com has three labels. This field is used to reconstruct the

10.4 SECURITY APPLICATIONS 209

original owner name used to create the signature in the casewhere the owner name

returned by the server has a wildcard label (�).
. Original TTL. The TTL of the signed RRSet as defined in the authoritative zone,

used to validate a signature. This field is needed because the TTL field returned in

the original response is normally decremented by a caching resolver and use of

that TTL value may lead to erroneous calculations.

. Signature Expiration. The date and time of the expiration of this signature

expressed as either the number of seconds since January 1, 1970 00:00:00 UTC or

in the form of YYYYMMDDHHmmSS where

T YYYY is the year

T MM is the month, 01–12

T DD is the day of the month, 01–31

T HH is the hour in 24 h notation, 00–23

T mm is the minute, 00–59

T SS is the second, 00–59

T Signatures are not valid after this date/time.

. Signature Inception. The date and time of the inception of this signature

formatted in the same manner as the Signature Expiration field. Signatures are

not valid before this date/time.

. Key Tag. Provides an association with the corresponding DNSKEY resource

record that can be used to validate the signature.

. Signer’s Name. Identifies the owner name of the DNSKEY resource record (i.e.,

the domain name) that is to be used to validate this signature.

. Signature. The cryptographic signature covering the resource record set defined

by this RRSIG owner, class, and covered type fields and this RRSIG RData fields

(excluding this Signature field).

10.4.2 Other Security-Oriented DNS Resource Record Types

TA—Trust Authority Record. While an RFC does not exist defining the TA

resource record, IANA has assigned it a value, so we’ll mention it here. The TA resource

record is identical in format to the DS record type including RData fields for key tag,

algorithm, digest type, and digest. Use of the TA record enables a resolver to have a

resource record signature validated by a known trust authority even if the root zone has

not been signed (it has now been signed!). This functionality is now provided using the

DLV record.

CERT—Certificate Record. RFC 4398 (116) defines the CERT record as ameans

to store certificates and certificate revocation lists (CRLs) in DNS. Certificates provide a

means to identify an organization, server, individual, or other entity and associate a

public key with that identity. The public key can be used to authenticate the sender’s

identity and to encrypt and decrypt communications and validate message integrity.

210 DNS APPLICATIONS AND RESOURCE RECORDS

Certificates are hierarchical and can be used to validate up to a known trusted entity

(Certificate Authority). CRLs are lists of certificates, which have been revoked due to

expiration or manual revocation.

CERT records containing certificates are stored in DNS to enable resolvers to obtain

certificates via DNS instead of from a destination certificate server. The CERT resource

record has the following format.

Owner TTL Class Type RData

Domain name TTL IN CERT Certificate

Type

Key

tag

Algorithm Certificate or CRL

ipamww.com. 86400 IN CERT PGP 436 3 A4df480DFC9lLa. . .

The owner field identifies the entity to which the certificate applies when a certificate is

included in the RData portion of the record. If a CRL is included in the RData section, the

owner name should contain the domain name related to the issuing authority. The RData

portion contains the following subfields

. Certificate Type such as X.509/PKIX, PGP, and others

. Key tag, which is used to streamline the identification of relevant certificates to

those of matching key tags

. Algorithm.The algorithmused in generating the key,which is encoded in the same

manner as the Algorithm field of the DNSKEY resource record type.

. The certificate or CRL

IPSECKEY—Public Key for IPSec Record. The IPSECKEY resource record

type, defined in RFC 4025 (117), provides a means to store a public key in DNS for use

with IPSEC. This resource record enables a client seeking to establish an IPSec tunnel to

a remote host to identify a means to authenticate the remote host and to determine

whether to connect directly to the host or connect via another node acting as a gateway.

IPSECKEY resource records are associatedwith the intended remote host’s IP address or

host domain name. IP addresses are stored in the .arpa. reverse domain space. The format

of the IPSECKEY resource record is as follows.

Owner TTL Class Type RData

IP address in

.arpa. domain

or host

domain name

TTL IN IPSECKEY Prece-

dence

Gateway

Type

Algorithm Gateway Public

key

1.0.12.10.

in-addr.arpa.

86400 IN IPSECKEY 10 1 2 10.100.1.2 Adf4C9lL. . .

10.4 SECURITY APPLICATIONS 211

The RData field contains the following fields:

. Precedence. Used to prioritize multiple records within a common RRSet, using

the lowest precedence first.

. Gateway Type. Indicates the format of the Gateway field.

T 0¼ no gateway is present

T 1¼ IPv4 address

T 2¼ IPv6 address

T 3¼ FQDN

. Algorithm. The format of the Public Key field.

T 0¼ no key is present

T 1¼DSA formatted key

T 2¼RSA formatted key

. Gateway. Identifies a gateway to which an IPSec tunnel can be established to

reach the remote host (identified by the owner field). The interpretation of this field

is governed by the Gateway Type field.

. Public Key. The key generated using the algorithm specified in the Algorithm

field.

KEY—Key Record. The KEY record was defined with the initial incarnation of

DNSSEC, but was superseded by the DNSKEY resource record. However, prior to the

release of DNSSECbis, the KEY record was also utilized to store public keys associated

with the SIG(0) record. The KEY record has the same format as the DNSKEY record.

Owner TTL Class Type RData

Key name TTL IN KEY Flags Protocol Algorithm Key

K3941.ipamww.com. 86400 IN KEY 256 3 1 12S9X-weE8F(le. . .

KX—Key Exchanger Record. The KX record enables specification of an inter-

mediary that can supply a key on behalf of another host. In other words, if intending to

perform key negotiation with x.ipamworldwide.com, the KX record could point to the y.

ipamworldwide.com host domain name with whom key exchange negotiation should

ensue. A preference field enables specification of multiple alternate domains of varying

preference for key negotiation.

Owner TTL Class Type RData

Host domain name TTL IN KX Preference Key exchanger host domain name

x.ipamworldwide.com. 86400 IN KX 10 y.ipamworldwide.com.

x.ipamworldwide.com. 86400 IN KX 20 z.ipamworldwide.com.

212 DNS APPLICATIONS AND RESOURCE RECORDS

SIG—Signature Record. The SIG resource record has been superseded by the

RRSIG record within the scope of DNSSEC, though the SIG record is still in use for

digitally signing DNS updates and zone transfers outside the scope of DNSSEC. That is,

you don’t need to deploy DNSSEC to enable transaction signatures of updates and zone

transfers. Such transactions can be signed using shared secret keys via TSIG (Transaction

Signature) records or by using private/public key pairs via SIG(0), where corresponding

public keys are stored as KEY records. The notation SIG(0) refers to the use of the SIG

resource record with an empty (0) Type Covered field. In such cases, RFC 2931 (118)

recommends setting the owner field to root, the TTL to 0, and class to ANYas shown in

the example below.

The SIG record is formatted identically to the RRSIG record, with the exception of

the formatting of the Expiration Date and Inception Date fields; for the SIG record, these

fields are not formatted by date per the RRSIG record and are instead formatted as an

incremental integer, enumerated as the number of seconds since January 1, 1970

00:00:00 UTC. This counter will rollover to 0 and continue counting after the counter

exceeds 4.29 billion seconds (a little over 136 years).

Owner TTL Class Type RData

RRSet

Domain

TTL IN SIG Type

Cov.

Alg. Labels Orig.

TTL

Expire Inception Key

tag

Signer Signature

. 0 ANY SIG 0 3 3 86400 2008051

5133509

2008011

5133509

26421 ipamw

w.com.

Zx9v. . .

SSHFP—Secure Shell Fingerprint Record. The Secure Shell (SSH) Protocol

enables secure login from a client to a server and other secure network services over an

insecure IP network. The security of the connection relies upon the user authenticating

him- or herself to the server as well as the server authenticating itself to the client via

Diffie–Hellman key exchange. If the public key is not already known by the client, a

fingerprint of the key is provided by the server for verification by the user. Storage of this

keyfingerprint inDNS provides ameans for the client to lookup and verify the fingerprint

out of band via a “third party.” The lookup requires use of DNSSEC to secure the lookup

process and assure message integrity. The SSHFP resource record is the record type used

to store these SSH fingerprints.

Owner TTL Class Type RData

Host domain name TTL IN SSHFP Algorithm Fingerprint

type

Fingerprint

srv21.ipamww.com. 86400 IN SSHFP 2 1 8Fd7q90Dþ fd. . .

The RData portion of the SSHFP record includes the following fields:

. Algorithm. Currently defined values are

T 0¼Reserved

10.4 SECURITY APPLICATIONS 213

T 1¼RSA

T 2¼DSA

. Fingerprint Type. Currently defined values are

T 0¼Reserved

T 1¼ SHA-1

. Key Fingerprint

10.4.3 Geographical Location Lookup

GPOS—Geographical Position Record. The GPOS resource record type,

originally defined in RFC 1712 (119), has been superseded by the LOC resource record

type. GPOS encoded the longitude, latitude, and altitude of a host as shown below.

Owner TTL Class Type RData

Host domain name TTL IN GPOS Longitude Latitude Altitude

srv1.ipamww.com. 86400 IN GPOS 39.582 -75.801 128.2

LOC—Location Resource Record. This type of resource record enables encod-

ing of latitude, longitude, and altitude information about the respective host. RFC 1876

(120) defines the LOC record, which obsoletes the GPOS resource record type. The

RData field for the LOC record presents each coordinate in the three dimensions

. Latitude. Degrees [minutes [seconds]] “N” or “S”

. Longitude. Degrees [minutes [seconds]] “E” or “W”

. Altitude. Altitude in meters

. Precision of each measure as diameter of “sphere of error” in meters

Owner TTL Class Type RData

Host domain name TTL IN LOC Latitude Longitude Altitude Precision

srv-97.ipamww.com. 86400 IN LOC 39 58 N 75 38 W 128 50m

In the example above, the hostnamed srv-97.ipamww.com is located at 39�580 N latitude,

75�380 W longitude, is 128m above sea level, all within a sphere of error with diameter

50m.

10.4.4 Non-IP Host-Address Lookups

ISDN—Integrated Services Digital Network Record (Experimental). The

ISDN type enables association of an ISDN address to a host. The ISDN address is

214 DNS APPLICATIONS AND RESOURCE RECORDS

the form of a telephone number, as defined by the International Telecommunications

Union standard E.164. The subaddress field is optional.

Owner TTL Class Type RData

Host domain name TTL IN ISDN ISDN Address Subaddress

isdnhost.ipamww.com. 86400 IN ISDN 16105551298 318

NSAP—Network Service Access Point Record. The NSAP resource record

enables translation of a hostname or FQDN to a Network Service Access Point (NSAP)

address. NSAP is the notation for a network device that supports the ISO Connection-

less Network Protocol (CLNP). Without getting into the details of NSAP addresses,

which never really caught on, the NSAP resource record functions equivalently to an A

record for IPv4 and AAAA for IPv6. It provides a destination address for a queried

hostname.

Owner TTL Class Type RData

Host domain name TTL IN NSAP NSAP Address

nsap-host.ipamww.com. 86400 IN NSAP 47.0005.09.d78d01.1010.0ffe.0011. . .00

NSAP-PTR—Network Service Access Point Reverse Record. The NSAP-

PTR record type performs the equivalent pointer record functionality for NSAP

addresses, linking an NSAP address suffix to a host domain name. The nsap.int domain

serves as the corresponding reverse TLD. As with IP address based pointer records, the

NSAP address must be reversed, and dots inserted between each digit. Finally, the nsap.

int. suffix is added.

Owner TTL Class Type RData

NSAP Address Reversed TTL IN NSAP-PTR Host domain name

0.0. . .1.1.0.0.e.f.f.0.0.1.0.1.1.0.d.8.
7.d.9.0.5.0.0.0.7.4.nsap.int.

86400 IN NSAP-PTR nsap-host.ipamww.com.

PX—Pointer forX.400. ThePX resource record is defined inRFC2163 (121) and

is intended to provide a mapping between DNS domain names and an X.400 address for

email address mapping. X.400 is an OSI standard for messaging or email, though today

most systems use the Simple Mail Transfer Protocol. This resource record type is useful

for networks containing SMTP-to-x.400 email gateways, referred to as MIXER (MIME

Internet X.400 Enhanced Relay) gateways. The X.400 address is formatted using the

Originator/Recipient (O/R) convention.

10.4 SECURITY APPLICATIONS 215

Owner TTL Class Type RData

Domain name TTL IN PX Preference DNS domain X.400 mapping

ipamww.com. 86400 IN PX 10 ipamww.com. O¼ company.PRMD-

netx.ADMD.C¼ tv.

X25—X.25 PSDN Address Record (Experimental). This is an experimental

resource record and is not widely used, as X.25 packet switched data networks (PSDNs)

are not widely in-use today. It has a number of possible applications

. document the addresses to use in static configurations of IP-to-X.25 and SMTP-to-

X.25;

. automatically associate an IP address to PSDN address; and

. configure names to X.25 PSDN addresses.

It also provides a function similar to ARP for wide area nonbroadcast networks.

Owner TTL Class Type RData

Host domain name TTL IN X25 PSDN Address

x25-host.ipamww.com. 86400 IN X25 31161700956

RT—Route Through. The Route Through resource record was defined in RFC

1183 (108) and is used to denote a proxy or alternative destination towhich to route traffic

for hosts without a direct network link. Multiple route through hosts can be identified,

each with associated preference values, much like the MX resource record.

Owner TTL Class Type RData

Host domain name TTL IN RT Preference Proxy Hostname

host.ipamww.com. 86400 IN RT 10 proxy.ipamww.com.

10.4.5 The Null Record Type

NULL. TheNULL resource record type is experimental and enables specification of

up to 65,535 bytes of “anything.” It is usually ignored and not widely used.

Owner TTL Class Type RData

Host domain name TTL IN NULL Up to 65,535 bytes of “anything”

host.ipamww.com. 86400 IN NULL “Ignore this NULL resource record!”

216 DNS APPLICATIONS AND RESOURCE RECORDS

10.5 EXPERIMENTAL NAME–ADDRESS LOOKUP RECORDS

10.5.1 IPv6 Address Chaining—The A6 Record (Experimental)

Given the sheer length of IPv6 addresses, the IETF had considered an iterative

approach to resolving hostnames to IPv6 addresses. The A6 record, defined in RFC

2874 (122), intended to map a host domain name to a portion (or all) of an IPv6

address, with pointers for the resolver to iteratively resolve the remainder of the IPv6

address to its full 128 bits. This enabled resolution of the host domain name by starting

most commonly with the interface ID, then adding in the appropriate subnet ID, and

global routing prefix, essentially resolving the hostname address moving from right to

left. The intent was to simplify renumbering of IPv6 networks that may be necessary

due to network maintenance, changing of ISPs, or other reasons. Changing the subnet

ID for a number of hosts was as simple as changing one record, instead of each host’s

record.

However, due to the complexity in accurately configuring DNSwith the appropriate

linkages (and preventing open linkages), this resource record type was changed to

experimental status. To illustrate this, the example below illustrates the A6 resource

record and how three successive querieswould be used to fully resolve. Note thatmore or

fewer linkages could be defined based on individual preference.

Owner TTL Class Type RData

Host domain name TTL IN A6 Prefix

Length

Address Suffix Prefix Name

ftp-sf.ipamww.com. 86400 IN A6 64 ::A05F:0:0:2001 sf-net.ipamww.com.

sf-net.ipamww.com. 86400 IN A6 48 0:0:0:8400:: na-west.ipamwwe.com.

na-west.ipamww.com. 86400 IN A6 0 2001:DB8:4AF0::

Note that the RData portion of theA6 resource record contains three subfields. The prefix

length indicates the number of offset bits from the start of the address to begin inserting

the address suffix bits. Thus, the first listed A6 record with owner field “ftp-sf.ipamww.

com.” indicates a prefix length of 64 bits, specifying the interface identifier of

::A05F:0:0:2001.

The prefix name field provides a linkage to a second lookup to continue building the

entire 128-bit address. In this case, we are linked to the “sf-net.ipamww.com.” prefix

name, which points to an A6 record with owner field, “sf-net.ipamww.com.” The

corresponding A6 record indicates a 48-bit prefix length with IPv6 address,

0:0:0:8400::. Note that the full IPv6 address notation is used, including the restriction

of a single double colon. This record then points to the na-west.ipamww.com. A6 record,

which completes our formulation of the IPv6 address for resolution with its zero offset.

Figure 10.6 illustrates this process.

10.5 EXPERIMENTAL NAME–ADDRESS LOOKUP RECORDS 217

10.5.2 APL—Address Prefix List Record (Experimental)

While A and AAAA records are used to resolve host IP addresses, the APL record seeks

to resolve address prefixes or subnet addresses. The following example illustrates a

scenario of advertising a set of address ranges associated with a domain or host. The

RData portion of the APL record consists of an optional negation character (!), the

address family as defined by IANA* followed by a colon, then the address in CIDR

notation (network/prefix length).

Owner TTL Class Type RData

Host domain name TTL IN APL Address Family:Address/Prefix

sf-ftp.ipamww.com. 86400 IN APL 1:10.0.128/18, !10.16.128.0/18

2:2001:DB8:4AF0:8400::/56

In the above example, address prefixes associated with sf-ftp.ipamww.com.com are

10.0.128.0/18 for IPv4, not 10.16.128.0/18 for IPv4 and the prefix 2001:

DB8:4AF0:8400::/56 for IPv6.

10.6 RESOURCE RECORD SUMMARY

Table 10.1 summarizes the currently defined set of resource records in alphabetical order

by resource record type (RRType—also corresponds to validQTypewhen a querier seeks

this type of information from DNS, that is, within the Question section of a DNS

message). While not all resource records are IETF standards or even defined within the

IETF, most of those that have been assigned an RRType ID number by IANA are listed

here. Current IETF status is provided along with the defining document, which can be

accessed for more details.

Figure 10.6. Iterative derivation of an IPv6 address using A6 records.

*Address family values are maintained by IANA, see http://www.iana.org/assignments/address-family-

numbers. Relevant to our example, IANA has assigned family number 1 to IPv4 and 2 to IPv6.

218 DNS APPLICATIONS AND RESOURCE RECORDS

T A B L E 10.1. Resource Record and Query Type Summary

RRType

(or QType)

RR Purpose (i.e., RData

Contents) RR Type ID IETF Status

Defining

Document

A IPv4 address for a given

hostname

1 Standard RFC 1035 (99)

AAAA IPv6 address for a given

hostname

28 Draft Standard RFC 3596 (123)

A6 IPv6 address or portion

thereof for iterative IPv6

address resolution for a

given hostname

38 Experimental RFC 2874 (122)

AFSDB Server hostname for a

given AFS and DCE

domain

18 Experimental RFC 1183 (108)

APL Address prefix lists for a

given domain

42 Experimental RFC 3123 (124)

ATMA Asynchronous Transfer

Mode (ATM) address for

a host

34 Not Submitted ATM Name

System Speci-

fication by the

ATM Forum

(125)

CERT Certificate or Certificate

Revocation List

37 Standards Track RFC 4398 (116)

CNAME Alias hostname for a host 5 Standard RFC 1035 (96)

DHCID Associates a DHCP cli-

ent’s identity with a DNS

name

49 Standards Track RFC 4701 (126)

DLV Authoritative zone signa-

ture for a trust anchor

32769 Informational

(DNSSEC)

RFC 4431 (115)

DNAME Alias domain name 39 Proposed

Standard

RFC 2672 (107)

DNSKEY Authoritative zone signa-

turewithin a chain of trust

48 Standards Track

(DNSSEC)

RFC 4034 (114)

DS Signature for delegated

child zone

43 Standards Track

(DNSSEC)

RFC 4034 (114)

GID Group ID 102 RESERVED IANA-Reserved

GPOS Lat./long./altitude for a

given host - superseded

by LOC

27 Experimental RFC 1712 (119)

HINFO CPU and OS information

for a host

13 Standard RFC 1035 (99)

HIP Host Identity Protocol 55 Experimental RFC 5205 (127)

IPSECKEY Public key for a givenDNS

name for use with IPSec

45 Proposed

Standard

RFC 4025 (117)

(continued)

10.6 RESOURCE RECORD SUMMARY 219

T A B L E 10.1. Resource Record and Query Type Summary (Continued)

RRType

(or QType)

RR Purpose (i.e., RData

Contents) RR Type ID IETF Status

Defining

Document

ISDN Integrated Services Digital

Network (ISDN) address

and subaddress for a

given host

20 Experimental RFC 1183 (108)

KEY Superseded by DNSKEY

within DNSSEC but still

used by SIG(0) and

TKEY

25 Proposed

Standard

RFC 2536 (128)

KX Intermediary domain to

obtain a key for a host in

given domain

36 Informational RFC 2230 (129)

LOC Lat./long./altitude and

precision for a given host

29 Uncommon RFC 1876 (120)

MB Mailbox name for a given

email ID

7 Experimental RFC 1035 (99)

MD Mail delivery host for a

given domain

3 Obsolete RFC 1035 (99)

MF Host that will accept mail

for forwarding to a given

domain

4 Obsolete RFC 1035 (99)

MG Mail group mailbox name

for a given email ID

8 Experimental RFC 1035 (99)

MINFO Mailbox names for send-

ing account requests or

error reports for a given

mailbox name

14 Experimental RFC 1035 (99)

MR Alias for a mailbox name 9 Experimental RFC 1035 (99)

MX Mail exchanger for email

host resolution

15 Standard RFC 1035 (99)

NAPTR Uniform resource identifier

for a generic string used

for DDDS, ENUM

applications

35 Standards Track RFC 3761 (111)

NS Name server for a given

domain name

2 Standard RFC 1035 (99)

NSAP Network Services Access

Point address for a host

22 Uncommon RFC 1706 (130)

NSAP-PTR Hostname for a given

NSAP address

23 Uncommon RFC 1706 (130)

NSEC Authenticated confirma-

tion or denial of existence

of a resource record set

for DNSSEC

47 Standards Track

(DNSSEC)

RFC 4034 (114)

220 DNS APPLICATIONS AND RESOURCE RECORDS

T A B L E 10.1. Resource Record and Query Type Summary (Continued)

RRType

(or QType)

RR Purpose (i.e., RData

Contents) RR Type ID IETF Status

Defining

Document

NSEC3 Authenticated denial of

existence of a resource

record set for DNSSEC

(without trivial zone

enumeration obtainable

with NSEC)

50 Standards Track

(DNSSEC)

RFC 5155 (131)

NSEC3

PARAM

NSEC3 parameters used to

calculate hashed owner

names

51 Standards Track

(DNSSEC)

RFC 5155 (131)

NULL Up to 65,535 bytes of

anything for a given host

10 Experimental RFC 1035 (99)

NXT Superseded by NSEC 30 Obsolete

(DNSSEC)

RFC 3755 (132)

PTR Hostname for a given IPv4

or IPv6 address

12 Standard RFC 1035 (99)

PX X.400 mapping for a given

domain name

26 Uncommon RFC 2163 (121)

RP Email address and TXT

record pointer for more

info for a host

17 Experimental RFC 1183 (108)

RRSIG Signature for a resource

record set of a given do-

main name, class and RR

Type

46 Standards Track

(DNSSEC)

RFC 4034 (114)

RT Proxy hostname for a given

host that is not always

connected

21 Experimental RFC 1183 (108)

SIG Superseded by RRSIG

within DNSSEC; used by

SIG(0) and TKEY

24 Proposed

Standard

RFC 2536 (128)

SOA Authority information for

a zone

6 Standard RFC 1035 (99)

SPF Sender Policy Framework

enables a domain owner

to identify hosts autho-

rized to send emails from

the domain

99 Experimental RFCs 4408

(112), 4409

(133)

SRV Host providing specified

services in a domain

33 Standards Track RFC 2782 (134)

SSHFP Secure Shell fingerprints

enables verification of

SSH host keys using

DNSSEC

44 Standards Track RFC 4255 (135)

(continued)

10.6 RESOURCE RECORD SUMMARY 221

T A B L E 10.1. Resource Record and Query Type Summary (Continued)

RRType

(or QType)

RR Purpose (i.e., RData

Contents) RR Type ID IETF Status

Defining

Document

TXT Arbitrary text associated

with a host

16 Standard RFC 1035 (99)

UID User ID 101 RESERVED IANA-Reserved

UINFO User Info 100 RESERVED IANA-Reserved

UNSPEC Unspecified 103 RESERVED IANA-Reserved

WKS Services available via a

given protocol at a spec-

ified IP address for a host

SRV RRmore commonly

used today

11 Standard RFC 1035 (99)

X25 X.25 PSDN 19 Experimental RFC 1183 (108)

222 DNS APPLICATIONS AND RESOURCE RECORDS

