
12

SECURING DNS (PART I)

12.1 DNS VULNERABILITIES

As we’ve seen, DNS is fundamental to the usability of nearly every IP network

application, from web browsing, email, to multimedia applications and more. An attack

that renders the DNS service unavailable or which manipulates the integrity of the data

contained within DNS can effectively render an application or network unreachable.

Clearly protection of DNS data and DNS communications throughout the resolution

process is critical. This chapter will focus on potential security vulnerabilities within

DNS in general. Specific DNS server implementations may contain additional vulner-

abilities, so as with any network service or application, monitoring of operating system,

and associated software vulnerabilities is a fundamental operational process.

It’s instructive in discussing DNS security vulnerabilities to consider the data

sources and data flowwithin theDNS, depicted in Figure 12.1. Starting in the upper right-

hand corner of the figure, DNS servers are initially configured with configuration and

zone file information. This configuration step may be performed using a text editor or an

IPAM system. ForMicrosoft implementations, the “IPAM system”may be theMicrosoft

Management Console (MMC). Configuration of server parameters and associated zones

is required.

IP Address Management: Principles and Practice, by Timothy Rooney

Copyright � 2011 the Institute of Electrical and Electronics Engineers, Inc.



For BIND implementations, this configuration consists of a named.conf file and

associated zone files on the master server. While a server may be master for some zones

and slave for others, we’ll use the master server terminology in assessing the vulner-

ability of a particular zone’s information. Configuration of slave servers requires creation

of the configuration file only, which defines the server’s configuration parameters and its

authority for particular zones. Slaves transfer zone information from corresponding

masters.

Zone information may be updated by external sources as well, particularly DHCP

servers. Dynamic updates can be accepted for clients obtaining dynamic IP addresses

requiring DNS updating of address-to-name mappings. These updates will typically

originate from the DHCP server assigning the address and will be directed to the server

acting as master for the given zone. The master will add the update to its journal file and

may then notify its slaves of the update, whomay request an incremental zone transfer to

capture the updated zone information.

Thus, authoritative zone information can be configured on a name server via zone

file editing directly or by an IPAM system, and via zone transfers and dynamic updates,

yielding several potential data sources and data update communications paths.

Beyond the configuration information and zone files, the third information respo-

sitory within a DNS server is its cache. Cache information is accumulated through the

query resolution process. As query answers are sought and received, corresponding

answers are cached by the server. The cached informationmay be obtained not only from

the Answer section of the DNS protocol message, but also from the Authority and

Additional sections. These sections supply authoritative server information and infor-

mation purportedly supplemental to the Answer. This information may include the

authoritative servers for the relevant zone and other information related to the query (e.g.,

the A/AAAA “glue” record for an NS query).

The query resolution flow, beginning on the left of Figure 12.1, beginswith the client

resolver initiating a recursive query to its recursive server. Recall that the target server to

Figure 12.1. DNS data stores and update sources (11).

12.1 DNS VULNERABILITIES 255



query is defined in the client’s resolver configuration, managedmanually or via DHCP.

The recursive server will issue iterative queries as necessary through the domain tree to

resolve the query, generally ending with a name server that is authoritative for the zone

corresponding to the query. The master or any of the slaves are authoritative with the

zone information. The authoritative server responds with the answer and potentially

related information, for example, in the Additional section of the response. The

recursive server will generally cache this information, as will the resolver. This cache

will be relied upon for similar future queries to improve resolution performance. So it’s

important to assure data integrity of information returned to both the resolver and

recursive server (i.e., both resolvers, the stub resolver in the client and the resolver

within the recursive server).

Now let’s look at the vulnerability of this information and communications model.

RFC 3833 (139) thoroughly discusses various vulnerabilities to the DNS protocol and

information integrity. We’ll summarize those and some other vulnerabilities here, and

then address mitigation strategies.

12.1.1 Resolution Attacks

. Packet Interception or Spoofing. Like other client/server applications, DNS is

susceptible to “man-in-the-middle” attacks where an attacker responds to a DNS

query with false or misleading additional information. The attacker spoofs the

DNS server response, leading the client to resolve and cache this information. This

can result in hijacking resolvers and hence applications to incorrect destinations,

for example, web sites.

. ID Guessing or Query Prediction. Another form of malicious resolution is ID

guessing. The IDfield of theDNS packet header is 16 bits in length, as is theUDP

packet header ID. If an attacker can provide a response with the correct ID field

and UDP port number, the resolver will accept the response. This enables the

attacker to provide falsified results, assuming the query type, class, and name are

known or guessed by the attacker. This attack can potentially redirect the host to

an illicit site. Guessing a 232 number is relatively easy even with brute force

methods.

. Name Chaining or Cache Poisoning. This packet interception style attack

features an attacker providing supplemental resolution information usuallywithin

the Additional or even Authority section of the DNS response packet, thereby

poisoning the cache with malicious query information. This may for example

attempt to falsify information for a popular web site such as cnn.com, google.com

or the like, sowhen such a query is requested, the resolver will rely on this falsified

cached information. When the resolver is asked to resolve such a query, it will

access its cache and utilize the malicious information to essentially redirect the

client to the attacker’s intended destination. An alternative approach to forcing the

resolver to access the poisoned cache data is to provide an email link, which when

followed, will resolve to the intended poisoned hostname. The so-called

Kaminsky DNS vulnerability is a cache poisoning type of attack.

256 SECURING DNS (PART I)



. Resolver Configuration Attack. The resolver on the client must be configured

with at least one DNS server IP address to which DNS queries can be issued. This

configuration may be performed manually by hard-coding the DNS server IP

address in the TCP/IP stack, or automatically viaDHCPor PPP. This type of attack

may alternatively originate from an attacker launching it via a web plug-in, for

example. This type of attack seeks to redirect the resolver to an attacker’s DNS

server to resolve to malicious data.

12.1.2 Configuration and Server Attacks

. Dynamic Updates. An attacker may attempt to inject or modify data in a DNS

zone by attempting a dynamic update to the server. This type of attack attempts to

redirect resolutions from clients for the intended destination to an attacker-

specified destination.

. Zone Transfers. Impersonating a slave and attempting to perform a zone transfer

from amaster is a form of attack that attempts tomap or footprint the zone. That is,

by identifying host to IP address mappings, as well as other resource records, the

attacker attempts to identify targets for direct attacks. Attacking a particular host

using its hostname as a clue (“payroll,” for example) provides an easy target to

attempt access or denial of service (DOS).

. Server Configuration. An attacker may attempt to gain access to the physical

server running the DNS service. Requiring a login and password to access the

server locally or remotely is highly recommended to defend against direct

server access. Use of secure shell (SSH) is also recommended for remote

access. When using an IPAM system, verify that IPAM-to-DNS server

communications are secure. Beyond being able to manipulate named and

zone information, an attack of this type certainly enables the use of the server

as a stepping stone to other targets, especially if this server happens to be

trusted internally.

. Control Channel Attack. Access to ndc or rndc channels provides powerful

remote control capabilities, such as stopping/halting named, reloading a zone, and

more. Accessing the control channel and stopping the service thereby denies the

service to querying servers and resolvers.

. Buffer Overflows and Operating System Attacks. An attacker may attempt to

gain access to the server by overflowing the code execution stack or buffer.

Without going into details, such an attack calls a subroutine that returns to the

main program at a point defined by the attacker. This is one example of several

similar types of OS level attacks, exploiting OS vulnerabilities on which the DNS

service is running.

. Configuration Errors. While typically not malicious (though most attacks are

initiated from internal sources), misconfiguring the DNS service and/or zone

information may lead to improper resolution or server behavior.

12.1 DNS VULNERABILITIES 257



12.1.3 Denial of Service Attacks

. Denial of Service. DNS, like other network services, is vulnerable to denial of

service attacks, which features an attacker sending thousands of packets to a server

in hopes of overloading the server, causing it to crash or become otherwise

unavailable to other queriers. The service is rendered unavailable and thus denied

to others.

. DistributedDenial of Service. Avariant of this type of attack is the use ofmultiple

distributed attack points and is referred to as a distributed denial of service

(DDOS) attack. The intent is the same, though the scale is larger, potentially

impacting several servers.

. Reflector Attack. This form of attack attempts to use DNS servers to launch

massive amounts of data at a particular target, thereby denying service for the

target machine. The attacker issues numerous queries to one or more DNS servers

using the target machine’s IP address as the source IP address in each DNS query.

Querying for records with large quantities of data such as NAPTR, EDNS0, and

DNSSEC queries magnifies this attack. Each responding server responds with the

data to the “requestor” at the spoofed IP address to inundate this target with a large

data flow.

12.2 MITIGATION APPROACHES

Strategies for addressing these vulnerabilities are summarized in the following table. In

general, you should keep tabs on vulnerability reports from vendors and perform fixes

and upgradeswhen they become available. Deployment strategies for hiddenmasters and

generally deploying role-based DNS servers are also effective in mitigating attacks as

discussed in Chapter 11. We’ll discuss DNSSEC in detail in the next chapter.

Vulnerability Mitigation

Packet interception/

spoofing

DNSSEC provides effective mitigation of this vulnerability by

providing:

. Origin authentication: verification of the data source

. data integrity verification - data received is the same as

the data published in the zone file

. authenticated denial of existence - a sought resource

record does not exist

ID guessing/query

prediction

DNSSEC effectively mitigates this vulnerability; in addition,

BIND 9 randomizes DNS header message IDs to reduce the

chance of guessing its value in a fake response. Since mid July,

2008, BIND also randomizes UDP port numbers on outbound

queries to reduce the risk of this vulnerability.

(continued )

258 SECURING DNS (PART I)



Vulnerability Mitigation

Name chaining/cache

poisoning

DNSSEC provides origin authentication and data integrity

verification to resist these vulnerabilities; Additional BIND

directives for cache and additional section cache enabling and

cleaning intervals can also help; transaction ID and UDP port

randomization also help reduce the risk of this vulnerability

Resolver configuration

attack

Configure DNS servers via DHCP; monitor or periodically audit

clients for misconfigurations or anomalies

Illicit dynamic update Use ACLs on allow-update, allow-notify, notify-source. ACLs

may also be defined as requiring transaction signatures for

added origin authentication

Illicit zone transfer Use ACLs with TSIG on allow-transfer; and use transfer-source

IP address and port to use a nonstandard port for zone transfers

Server attack/hijack . Use hidden masters to inhibit detection of the zone master

. Disallow recursive queries on masters and on ALL external

DNS servers

. Keep server operating system up to date

. Limit port or console access

. Implement chroot

Control channel attack Use ACLs within the controls statement to restrict who can

perform rndc commands; require rndc key

Buffer overflows and

OS level attacks

Keep OS updated, limit cache, acache sizes and define cached

cleaning intervals

Named service

misconfiguration

Use checkzoneandcheckconf utilities, aswell as an IPAMsystem

with error checking; keep fresh backups for reload if needed

Denial of service . Limit communications using rate limiting and such para-

meters as recursive-clients, max-clients-per-query, transfers-

in, transfers-per-ns, cache and acache sizes;

. Consider anycast deployment

Reflector attacks . Use allow-query/allow-recursion ACLs

. Use views if appropriate

. Require TSIG on queries if possible

(Continued )

12.3 NON-DNSSEC SECURITY RECORDS

We’ll cover DNSSEC in the next chapter but we conclude our pre-DNSSEC security

chapter with a discussion of other security-oriented resource record types.

12.3.1 TSIG—Transaction Signature Record

Transaction signature (TSIG), defined in RFC 2845 (102), utilizes shared secret keys to

establish a trust relationship between two DNS entities, whether two servers or a client

12.3 NON-DNSSEC SECURITY RECORDS 259



and a server. TSIG provides endpoint authentication and data integrity checking and can

be used to sign dynamic updates and zone transfers. TSIG keys must be kept secure and

manually configured on each end of the communications.

TSIG keys are used to sign a transaction by including ameta-resource record of type

“TSIG” within the Additional section of a DNS message. A meta-resource record,

similar to the OPT resource record type used for EDNS0, is used to pass additional

information during a query/resolution transaction and is not included in a zone file per se.

As such, these resource records are not cached and are computed dynamically for

messages requiring signature.

The format of the TSIG meta-resource record is as follows:

Owner TTL Class Type RData

Key

Name

TTL ANY TSIG Alg.

Name

Time

Signed

Fudge MAC

Size

MAC Orig

ID

Error Other

Len.

Other

Data

k1-k2

ipamww.com.

0 ANY TSIG HMAC-

MD5.SIG-

ALG.REG.INT

232903

32

600 32 p19. . . 5076 0 0

The RData fields within the TSIG meta record are defined as follows:

. Algorithm Name. The name of the hashing algorithm in domain name format.

Currently defined algorithms are defined by IANA as follows:

T HMAC-MD5.SIG-ALG.REG.INT (HMAC-MD5)

T GSS-TSIG

T HMAC-SHA1

T HMAC-SHA224

T HMAC-SHA256

T HMAC-SHA384

T HMAC-SHA512

. Time Signed. The time of signature in seconds since January 1, 1970 UTC.

. Fudge. Number of seconds of drift permitted in the Time Signed field.

. MAC Size. Length of the MAC in octets.

. MAC. The Message Authentication Code that contains a hash of the message

being signed.

. Original ID. The ID number of the originalmessage. If an update if forwarded, the

message ID in the forwarded message could differ from the original. This enables

the recipient to utilize the original message ID in reconstructing the original

message for signature validation.

. Error. Encodes TSIG-related errors (see Table 9.1).

T BADSIG: invalid key

260 SECURING DNS (PART I)



T BADKEY: unknown key

T BADTIME: time signed outside of fudge range

. Other Length. Length in bytes of the Other Data section.

. Other Data. Blank unless Error ¼ BADTIME, where the server will include its

current time in this field.

The TSIG meta-resource record is constructed based on the message to be signed. A

digest is created by applying the specified hash algorithm to the message and using

this output as the Message Authentication Code field of the TSIG resource record.

The TSIG meta-resource record is added to the Additional section of the DNS

message.

12.3.2 SIG(0)—Signature Record with Empty Type Covered

Another form of transaction signature utilizes a special case of the SIG resource record,

which was devised as part of the initial incarnation of DNSSEC. It has since been

replaced by the RRSIG resource record in DNSSECbis. Nevertheless, a special case of

the SIG resource recordmay be used independently ofDNSSEC to sign updates and zone

transfers. The format of the SIG resource record is shown below.

The notation SIG(0) refers to the use of the SIG resource record with an empty (i.e.,

0) Type Covered field. In addition, RFC 2931 (118) recommends setting the owner field

to root, the TTL to 0, and class to ANY as shown in the example below.

Owner TTL Class Type RData

RRSet

Domain TTL ANY SIG

Type

Cov. Alg Labels

Orig.

TTL Expire Inception

Key

tag Signer Signature

0 ANY SIG 0 3 3 86400 20080515

133509

2008011

5133509

30038 ipamww.

com.

q8o1...

12.3.3 KEY—Key Record

The KEY record was defined with the initial definition of DNSSEC, but was superseded

by the DNSKEY resource record. However, in the meantime, the KEY record was also

utilizedwithin SIG(0) to identify public keys used to decode signatureswithin the SIG(0)

record. The KEY record has the same format as the DNSKEY record.

Owner TTL Class Type RData

Key name TTL IN KEY Flags Protocol Algorithm Key

K3941.ipamww.com. 86400 IN KEY 256 3 1 12S9X-weE8F(le. . .

12.3 NON-DNSSEC SECURITY RECORDS 261



12.3.4 TKEY—Transaction Key Record

While RFC 2845 (102) specifies the TSIG standard, which utilizes shared secret keys, it

does not provide for a key distribution or maintenance function. The Transaction Key

(TKEY) meta-resource record was developed in order to support this key maintenance

functionality. This process starts with a client or server sending a signed* TKEY query

including any corresponding KEY records. A successful response from a server will

include a TKEY resource record including an appropriate key. Depending on the mode

specified in the TKEY record, both parties may now determine the shared secret. For

example, if the Diffie–Hellman mode is specified, Diffie–Hellman keys are exchanged

and both parties derive the shared secret that is then used to sign messages with TSIG.

The format of the TKEY meta-resource record is as follows:

Owner TTL Class Type RData

Key

Name TTL ANY TKEY

Alg.

Name Inception Expiration Mode Err

Key

Size

Key

Data

Other

Len.

Other

Data

k1-k2.ipam

ww.com.

0 ANY TKEY HMAC-

MD5.SIG-

ALG.REG.INT

232903

32

23300

6564

2 0 2048 9k)2 . . . 0

The RData fields within the TKEY meta record are defined as follows:

. Algorithm Name. The name of the hashing algorithm in domain name format.

Currently defined algorithms are defined by IANA as follows:

T HMAC-MD5.SIG-ALG.REG.INT (HMAC-MD5)

T GSS-TSIG

T HMAC-SHA1

T HMAC-SHA224

T HMAC-SHA256

T HMAC-SHA384

T HMAC-SHA512

. Inception. The time of inception or beginning of validity of the key in seconds

since January 1, 1970 UTC.

. Expiration. The time of expiration or ending of validity of the key in seconds

since January 1, 1970 UTC.

. Mode. The form or scheme of key assignment, which may have the following

values:

T 0¼Reserved

T 1¼ Server assignment

*Yes, that’s signed as in TSIG or SIG(0), so the initial condition requires a key, thoughTKEYprovides ameans

to delete or update keys.

262 SECURING DNS (PART I)



T 2¼Diffie–Hellman exchange

T 3¼GSS-API negotiation

T 4¼Resolver assignment

T 5¼Key deletion

T 6–65,534¼Available

T 65,535¼Reserved

. Error. Encodes TKEY-related errors (see Table 9.1)

T BADSIG: invalid key

T BADKEY: unknown key

T BADTIME: time signed outside of inception/expiration range

T BADMODE: specified mode not supported

T BADNAME: invalid key name

T BADALG: specified algorithm not supported

. Key Size. Size of the key data field in octets.

. Key Data. The key.

. Other Length. Not used.

. Other Data. Not used.

12.3 NON-DNSSEC SECURITY RECORDS 263


