
13

SECURING DNS (PART II):
DNSSEC

When I sign a letter or check, I inherently demonstrate my approval and authorization by

virtue ofmy signature.*When I signmore important documents, such as amortgage note,

I need to have my signature validated, typically through a notary public. The notary

verifies my identity and also validates my signature generally by comparing it with a

driver’s license or passport signature. By stamping my mortgage note, the notary

confirms that it is I that signed the document and therefore my signature is trusted.

DNSSECworks in a loosely analogous fashion. A resolver, or recursive server resolving

on behalf of a stub resolver receives resolution data alongwith a signature on the data. As

long as I trust the signer, I can validate the data using the signature. The element of trust

requires some initial configuration of trust information from the signer in the form of

trusted keys, which are used to verify the trustworthiness of the signer of the data

received. If I don’t trust the signer directly, I need to seek signature validation by seeking

an entity that I trust that will “vouch for” the signer. Not that my mortgage company

doesn’t trust me, but they required validation of my signature!

DNS security extensions, DNSSEC, originally defined in RFC 2535 (140), was

modified and recast as DNSSECbis, defined in RFCs 4033–4035 (114, 141, 142). This

IP Address Management: Principles and Practice, by Timothy Rooney

Copyright � 2011 the Institute of Electrical and Electronics Engineers, Inc.

*This basic introduction is fromChapter 9 of Ref. 11 and the high level description therein is expanded inmore

detail in this chapter.

recasting was due to scalability issues with the original specification. While still being

tweaked to somedegree,DNSSECbis, hereafter referred to simply asDNSSEC,provides a

means to authenticate theorigin of resolution datawithinDNSand toverify the integrity of

that data. DNSSEC also provides a means to authenticate the nonexistence of DNS data,

allowing the signature of “not found” resolutions (e.g., NXDOMAIN) as well. Thus,

DNSSEC enables detection of packet interception, ID guessing, and cache poisoning

attacks on both resolution data and on “not found” resolutions. DNSSEC provides these

services through the use of asymmetric public key cryptography technology to perform

data origin authentication and end-to-end data integrity verification.

13.1 DIGITAL SIGNATURES

We introduced the concept and process for digital signature generation and verification in

Chapter 10 within the context of DKIM, but we’ll review it briefly here for convenience.

Digital signatures enable the originator of a given set of data to sign the data using a

private key such that those receiving the data and the signature, along with a correspond-

ing public key for deciphering the signature, can perform data origin and integrity

verification. DNSSEC uses an asymmetric key pair (private key/public key) model. In

such amodel, data signedwith a private key can bevalidated by deciphering the datawith

the corresponding public key. The private key and public key form a key pair.

Conceptually, the private/public key pairs provide a means for holders of the public

key to verify that data was signed using the corresponding private key. This provides

authentication that the data verified was indeed signed by the holder of the private key.

Digital signatures also enable verification that the data received matches the data

published and was not tampered with in transit.

Refer to Figure 13.1. The data originator, shown on the left of the figure, generates a

private key/public key pair and utilizes the private key to sign the data. The first step in

signing the data is to produce a hash of the data, sometimes also referred to as a digest.

Hashes are one-way functions{ that scramble data into a fixed length string for simpler

{Aone-way functionmeans that the original data is not uniquely derivable from the hash. That is, one can apply

an algorithm to create the hash, but there is no inverse algorithm to perform on the hash to arrive at the original

data.

Figure 13.1. Digital signature creation and verification process (11).

13.1 DIGITAL SIGNATURES 265

manipulation, and represent a “fingerprint” of the data. This means that it is very unlikely

that another data input could produce the same hash value. Thus, hashes are often used as

checksums but don’t provide any origin authentication (anyone knowing the hash

algorithm can simply hash arbitrary data). Common hash algorithms include HMAC-

MD5, RSA-SHA-1, and RSA-SHA-256. The hash is encrypted using the private key to

produce the signature. The encryption algorithm is fed the hash and the private key to

produce the signature.

Both the data and its associated signature are transmitted to the recipient. Note that

the data itself is not encrypted, merely signed. The recipient must have access to the

public key that corresponds with the private key used to sign the data. In some cases a

secure (trusted) public key distribution system such as a public key infrastructure (PKI) is

used to make public keys available. In the case of DNSSEC, public keys are published

within DNS, along with the resolution information and corresponding signature.

The recipient computes a hash of the received data, as did the data originator. The

recipient applies the encryption algorithm to the received signature using the originator’s

public key. This operation is the inverse of the signature production process and produces

the original data hash as its output. The output of this decryption, the original data hash, is

compared with the recipient’s computed hash of the data. If they match, the data has not

been modified and the private key holder signed the data. If the private key holder can be

trusted, the data can be considered validated.

13.2 DNSSEC OVERVIEW

DNSSECutilizes this asymmetric key pair cryptographic approach to provide data origin

authentication and end-to-end data integrity assurance. Any attempt to spoof or

otherwise modify data en route to the destination will be detected by the recipient, that

is, the resolver or more typically, its recursive/caching DNS server on its behalf. This

feature makes DNSSEC an effective mitigation strategy against man-in-the-middle and

cache poisoning attacks.

The original DNSSECbis specifications do not account for a secure key distribution

system, so one or more trusted keys have to be manually configured on the resolver or

recursive name server.{However, a subsequent specification, RFC 5011 (141), defines a

means to ease this process by authenticating new and revoked trusted keys based on a

manually configured initial key. This initial key serves as the “initial condition” in rolling

forward over time with new, revoked, and deleted keys. We’ll talk about this automated

trusted key update process a bit later. Whether configured manually or updated

automatically, each trusted key identifies the public key corresponding to a given trusted

zone as authorized by the zone administrator.

This is analogous to the bank notary being trusted by the bank to validatemy identity.

After all, any imposter may sign invalid zone data with a private key and publish the

{ Pragmatically, the term “resolver” in the context of DNSSEC refers to the resolver function of the recursive

server, which resolves the queried information and verifies signatures as well. Considering our deployment

example from Chapter 11, the Internet Caching servers would perform this signature validation function.

266 SECURING DNS (PART II) : DNSSEC

corresponding data, signatures, and public key. Thus, the recursive server must be

configured a priori with a key or set of keys that are trusted corresponding to trusted

signed zones. The current public key in use by the trusted zone administrator must

be conveyed to the resolver administrator out of band, or using a mechanism other than

DNS. With the automed key update process just mentioned, an initial key must be

configured for each trusted zone; however, ongoing key updates are performed using the

DNS protocol.

A given trusted zone can authenticate a child zone’s public key, extending the trust

model from just the trusted zone to the trusted zone and its authenticated child zones.

Likewise, these child zones can authenticate their children and so on, forming a chain of

trust from the trusted zone to all signed delegated zones.With the Internet root zone now

signed and major TLDs signed or soon to be signed, the chain of trust will emanate from

the root trust anchor to TLDs, to lower level signed zones down the domain tree.

Configuration of trusted keys requires creation of a trust relationship with a zone

administrator to obtain his/her public key. With a signed root and TLDs, this simplifies

the trust model, requiring trust of the root zone and configuration of the root zone trust

anchor. In lieu of (really as a predecessor to) using root zone keys, ISC has also created a

trusted key registry (dlv.isc.org) as a repository of trusted keys for registered domains to

enable “lookaside” validation in acting as a “parent zone proxy,” reducing the require-

ment impact of forming individual relationships with each domain administrator.

While not explicitly required by DNSSEC specifications, operational experience

has led to the recommendation that two keys be used per zone a zone signing key (ZSK)

and a key signing key (KSK).{ As we will see later, this streamlines the complex key

rollover process while trading off key length security and complexity against nimbly

changing zone signing keys as needed. At this point, suffice it to say that the ZSK is used

to sign the datawithin the zone and theKSK is a longer term key that signs the ZSK. Both

the ZSK and KSK are each comprised of a public and private key pair. The private keys

are used to sign zone information and must be secured, ideally on a secure server or host.

The corresponding public keys are publishedwithin the zone file in the form ofDNSKEY

resource records.

The public KSK of the trusted zone is the trusted key{ configured in each recursive

server, which shouldmatch the correspondingKSKDNSKEY resource record published

in the respective zone file. The resolved data’s signature is validated using the zone’s

ZSK, and the ZSK is signed by and its signature is thereby validated by the trusted KSK.

If thisKSK is not trusted, an attempt ismade to check if the parent zone is signed or if

lookasidevalidation is configured. If signed, this parent zone (or lookaside registry) signs

its delegation to the child by signing the child’s public KSK in the form of a delegation

signer (DS) record (or DNSSEC Lookaside Validation, DLV record) in the parent zone.

This delegation in turn is signed with the parent’s ZSK which itself is signed with the

{Themotivation for this recommendation and discussion of otherDNSSECoperational practices are discussed

in RFC 4641 (167).
{A trusted key is synonymous with a trust anchor, which is also known as a Secure Entry Point (SEP) into the

DNS domain tree.

13.2 DNSSEC OVERVIEW 267

parent’s KSK. Once again, if these signatures are valid and the KSK matches a trusted

key, the resolution is complete and secure. Otherwise, the process continues with the

parent’s parent zone and so on.

The validation process works up the chain of trust to amatching trusted key, which if

found, deems the resolution data validated. Otherwise, it will be considered insecure.

13.3 CONFIGURING DNSSEC

The process of implementing DNSSEC involves creating private/public key pairs,

adding the public key information to the zone file to be signed, signing the zone with

the corresponding private keys, and distributing the public KSK information to either

parent zone administrators or to resolver administrators who trust you and your zone

information. Figure 13.2 illustrates the basic process.

Let’s now illustrate this basic process looking at the mechanics for implementing

DNSSEC. We’ll illustrate the process using manual and automated* BINDmethods and

utilities (144), which support DNSSECbis today. Microsoft supports DNSSECbis in its

Windows Server 2008R2 release.We’ll demonstrate the implementation ofDNSSEC by

signing the ipamworldwide.com zone file after we review these steps in more detail.

13.3.1 Generate Keys

Our first step is to generate keys that will be used to sign our zone information. BIND

ships with the dnssec-keygen utility which provides a simple command line to

generate a private/public key pair. It even creates the DNSKEY record! To create a ZSK

key pair for our ipamworldwide.com zone, we use the dnssec-keygen command:

dnssec-keygen –a RSA-SHA-1–b 1024–n ZONE –c IN –e ipamworldwide.com

This utility is used not only to create DNSSEC keys, but can also be used to create

TSIG keys and KEY records. The arguments, all of which are optional unless otherwise

specified, within the dnssec-keygen utility include

. -a algorithm: (required) where algorithm for DNSSEC keys may be

TRSA-SHA-1

*BIND9.7.0 introduced several newkey and signaturemanagement features to automatemanyof these steps as

we will describe.

Figure 13.2. Basic DNSSEC implementation steps (11).

268 SECURING DNS (PART II) : DNSSEC

TRSA-SHA-256

TRSA-SHA-512

TNSEC3-RSA-SHA-1 (RSA-SHA-1 algorithm with a signal that the zone signed

with this key may use NSEC3)

TDSA (Digital Signature Algorithm)

TNSEC3DSA (DSA algorithm with a signal that the zone signed with this key

may use NSEC3)

TRSA-MD5

. -bkeysize: (required) specifies the number of bits in the key. Valid keysizes for

each algorithm are

TRSA-SHA keys 512–2048 bits

TDSA keys. 512–1024 bits, divisible by 64

. -n nametype: (required) identifies the type of key owner. Valid values include

ZONE (default, for DNSKEY), HOST, ENTITY, USER, or OTHER.

. -3: use an NSEC3-capable key generating algorithm (NSEC3-RSA-SHA-1 is

used if no –a argument is specified). RSA-SHA-256 and RSA-SHA-512 are also

NSEC3-capable.

. -A date/offset: sets the activation date of the key. The date/offset field is an

absolute date/time when expressed in either YYYYMMDD or YYYYMM-

DDHHMMSS format (or none to unset) or as an offset from the present time

when a “þ ” or “�” prefix is used with either of these date formats. When not set,

and –G is not set, the default is “now.”

. -C: option to generate the private key without any metadata relating to creation,

publication, and/or activation dates, which may be incompatible with older BIND

versions.

. -c class: class of the DNS resource record containing the key.

. -D date/offset: defines the date or offset from the present time when this

key is to be deleted from the zone. The date/offset field is an absolute date/

time when expressed in either YYYYMMDD or YYYYMMDDHHMMSS

format (or none to unset) or as an offset from the present time when a “þ ” or

“�” prefix is used with either of these date formats. At the specfied time, the

key will be removed from the zone, though it will remain in the key

repository.

. -e: command option to use a large exponent when using the RSA-MD5 or RSA-

SHA-1 algorithms.

. -E engine: command option to use crypto hardware (OpenSSL engine) for

random number generation as well as key generation when supported. The default

is pkcs11 when compiled with PKCS #11 support or none otherwise.

. -f flag: sets the Flags field in the DNSKEY (or KEY) resource record; currently,

flag¼KSK is used to create a KSK (sets the SEP bit in the DNSKEY record);

flag¼REVOKE sets the Revoke flag for this key.

13.3 CONFIGURING DNSSEC 269

. -g generator: specifies a key generator value for the DH algorithm.

. -G: generates a key which is not to be published or used for signing.

. -h: prints a help summary for this command.

. -I date/offset: sets the date/offset when the key is to be retired. The date/

offset field is an absolute date/time when expressed in either YYYYMMDD or

YYYYMMDDHHMMSS format (or none to unset) or as an offset from the

present time when a “þ ” or “�” prefix is used with either of these date

formats. When retired, the key remains in the zone but is no longer used to sign

the zone.

. -k: indicates that aKEY record is to be created, notDNSKEY; deprecated in favor

of the –T option.

. -K directory: defines the directory in which the key files will be placed.

. -p protocol: sets the Protocol field in the resource record. For DNSSEC, the

default value of 3 is used.

. -Pdate/offset: sets the date/offset when the key is to be published in the zone

file, though not used to sign the zone. The date/offset field is an absolute date/time

when expressed in either YYYYMMDD or YYYYMMDDHHMMSS format (or

none to unset) or as an offset from the present time when a “þ ” or “�” prefix is

used with either of these date formats.

. -q: quiet mode, which suppresses output, including indication of progress.

. -r randomsource: indicates a source or random data such as a file or character

device such as the keyboard.

. -Rdate/offset: defines the datewhen the key is to be revoked. The date/offset

field is an absolute date/time when expressed in either YYYYMMDD or

YYYYMMDDHHMMSS format (or none to unset) or as an offset from the

present time when a “þ ” or “�” prefix is used with either of these date formats.

When revoked, the “revoke” bit is set in the corresponding DNSKEY resource

record, though it will remain in the zone and be used to sign the zone.

. -s strength: specifies the strength value of the key, though not relevant to

DNSSEC.

. -t type: indicates the use of the key to authenticate data (AUTH) and/or to

encrypt data (CONF). AUTHCONF supports both functions, while NOAUTH,

NOCONF, and NOAUTHCONF negate respective functions.

. -T rrtype: specifies an RRType to use for public key creation in resource record

format. Valid values of rrtype include DNSKEY (default) or KEY.

. -v level: sets the debug level.

. keyname: (required) the name of the key, generally the zone name, which serves

as the owner field of the DNSKEY record.

The five date/offset based options are new in BIND 9.7.0 and provide timing meta data

for the key being generated and hence when it is to be used in the zone signing process.

Thus, keys can be staged and rolled through their entire lifecycle, consisting of

270 SECURING DNS (PART II) : DNSSEC

publication in the zone, use for signing zone information, revocation, retirement, and

deletion. To summarize these options and their use through a key’s lifecycle

. -P. Defines the time when the key being generated is to be published in the zone

file, though not used in signing.

. -A. Defines the activation time, when this key being generated is to be used to sign

zone data. If this is a KSK and the update-check-ksk option is set to yes, this key

will sign the DNSKEY RRSet only. Otherwise, it will be used to sign all zone

RRSets, allowing for cases where a single zone key is implemented.

. -R. Defines the timewhen this key is to be revoked. This defines the datewhen the

revoke flag will be set in the corresponding DNSKEY record. This key (with the

revoke bit set) will still be used to sign zone data but resolverswill be on notice that

this key is revoked.

. -I. Defines the retire time for the key, after which this key will not be used to sign

zone data, though the key will remain in the zone file.

. -D. Defines the time when the key will be deleted from the zone file.

These timing options enable you to define the entire key lifecycle at key generation

time!

An alternative key file generation utility first included with the BIND 9.6.0

distribution allows use of the PKCS#11* API to interface to a cryptographic token

generating hardware device. The dnssec-keyfromlabel utility gets keys from the

cryptographic hardware device and generates the public and private key files. This utility

accepts the following arguments in exactly the same format as dnssec-keygen plus a

new required parameter, indicating the key label.

. -a algorithm: (required) same values as dnssec-keygen

. -3: same meaning as dnssec-keygen

. -c class: same values as dnssec-keygen

. -C–: same meaning as dnssec-keygen

. -E engine: same values as dnssec-keygen

. -f flag: same values as dnssec-keygen

. -G: same meaning as dnssec-keygen

. -C–: same meaning as dnssec-keygen

. -h: same meaning as dnssec-keygen

. -k: same meaning as dnssec-keygen

. -K directory: same meaning as dnssec-keygen

. -l label: (required) label for keys on the PKCS#11 device

. -n nametype: same values as dnssec-keygen

* PKCS#11 is among the family of Public-Key Cryptography Standards published by RSA Laboratories.

13.3 CONFIGURING DNSSEC 271

. -p protocol: same values as dnssec-keygen

. -t type: same values as dnssec-keygen

. -v level: same values as dnssec-keygen

. -y: allows creation of DNSSEC key files even if the key ID collides with an

existing key

. keyname: (required)

The meta data timing options discussed above are also supported. Both dnssec-

keygen anddnssec-keyfromlabel return the key name. In our example, the result

was

Kipamworldwide.com.þ 005þ 14522

The format of the key name follows this convention

. K (for key)

. Keyname (ipamworldwide.com.)

. Key creation algorithm (005¼RSA-SHA-1 in this case)

. Key tag or identity of the key (14522)

The key tag provides a convenient way to refer to keys as we’ll see a bit later. Two files

were created by dnssec-keygen or dnssec-keyfromlabel using this name one

with extension.private indicating the private key and the other with extension.key,

containing the public key in the form of a DNSKEY record. In our example, the two key

files were named

Kipamworldwide.com.+005+14522.private

Kipamworldwide.com.+005+14522.key

The Kipamworldwide.com.þ005þ14522.private file contains the

private key details including the format, algorithm, modules, exponents, primes, and

coefficient values such as that shown below for the output of the dnssec-keygen

command (blank lines inserted for improved readability).

Private-key-format: v1.2

Algorithm: 5 (RSASHA1)

Modulus:

x6QAwJiz6hHa/eUI2pGz6rvwEYpJdi1TJH8Uj4lDPTmzseCOgFEqB3/dZB0Q

5LEs1ZetAJJEk4F+WccRKwqnIcGkvIKfTC8hn+gbiBAnadQRFLxNMBs6KB0e+

yqiNK60sbrn22F8AYRiG3n2rTQndVtkaZep9jbcCqfu/DagB10=

PublicExponent: AQAAAAE=

PrivateExponent:

CWheqbbkIx3kRIa7NyDbdwZYGA83uBtdfnBTu8QyV8/h419T3fyWrWfKo4wi

Vys9ql0Xmumwy/hSLmZJJrzxS6SVwaM/iEunsyyiHedeVKiMeYVlOlvJ3+

OweKy/59y3drJS+qAm+cbtrhWZheXtzgR78wp2IK+4kHAhZTCYGAE=

272 SECURING DNS (PART II) : DNSSEC

Prime1:

8YuU4sicmKmu5Cz4IUjvE2kQit5pJPV3yUK04nPz9P0MJFKyCIAdsw2A5HoRn3++

I5BtDjeQxkD0aFGA4S0fKXQ==

Prime2:

05ZzyiaiZK1JqQMCgT977NZkEuKgXI4seTUL1Wu7Z/FRs/7xHE4oSJrx7siwLOx

WJKcc4Fo+4erVRHioiOadhAQ==

Exponent1:

Hpy1z37UsfdONCV7Kd/8xu07PslhtbX7EFVGRno/dOrWNp5p64hVhF5tbnNBVz

ZHRQ+5IZzwMfQ3A3+GjY8QQQ==

Exponent2:

jfw+s9zt8uVMwubwowwxOsjX32GO3VrSPk68+CisiAVxYS8EdTOqvpYps6Vz+

rJNnnk45urnlqDbWCx2tugyAQ==

Coefficient:

uUC/aKgEvOQymCmMukC4ExTm/7ly2w31V/NMOF2GzC7fc1gYvDZEOX6YNnz5e8

PRD2bQXCTgsMorRs7PJYI2Cg==

TheKipamworldwide.com.þ005þ14522.keyfile is a bit easier to digest,

containing our DNSKEY resource record

ipamworldwide.com. IN DNSKEY 256 3 5

BQEAAAABx6QAwJiz6hHa/eUI2pGz6rvwEYpJdi1TJH8Uj4lDPTmzseCO

gFEqB3/dZB0Q5LEs1ZetAJJEk4F+WccRKwqnIcGkvIKfTC8hn+gbiBAn

adQRFLxNMBs6KB0e+yqiNK60sbrn22F8AYRiG3n2rTQndVtkaZep9jbc

Cqfu/DagB10=

The interpretation or format of the DNSKEY resource record is depicted below.

Owner TTL Class Type RData

Zone name TTL IN DNSKEY Flags Proto Alg Key

ipamworldwide.com. 86400 IN DNSKEY 256 3 5 BQEAAA. . .

The owner field defines the zone name. The RData consists of the following subfields

. Flags. Indicates that this key is a zone key (value¼ 256). Currently defined

values for the Flags field are as follows. Using the decimal values below, we can

see that a ZSKwill have a flags value of 256, while a KSKwill have an odd value,

likely 257.

TBit 7. ZSK (Decimal¼ 256)

TBit 8. Revoke Signature (Decimal¼ 128)

TBit 15. KSK or secure entry point (SEP) (Decimal¼ 1)

TOther bits. Unassigned

. Protocol. Must have a value of “3” indicating DNSSEC (this is the only value

currently defined).

13.3 CONFIGURING DNSSEC 273

. Algorithm. Defines the algorithm used in key generation. Algorithms currently

supported are encoded as follows

TValue¼ 1. RSA-MD5, which is not recommended according to RFC 4034.

TValue¼ 2. Diffie–Hellman

TValue¼ 3. DSA-SHA-1

TValue¼ 4. Reserved for Elliptic Curve

TValue¼ 5. RSA-SHA-1, which is mandatory according to RFC 4034.

TValue¼ 6. DSA-NSEC3-SHA1

TValue¼ 7. RSASHA1-NSEC3-SHA1

TValue¼ 8. RSA-SHA-256

TValue¼ 10. RSA-SHA-512

TValue¼ 12. GOST R 34.10-2001

TValue¼ 252. Indirect

TValues 253–254. Private

TValues¼ 0, 255. Reserved

TOther values. Unassigned

. Key. The public key (ZSK or KSK).

We can now repeat the dnssec-keygen command, this time using the –f KSK argument,

along with a longer key size, to create our KSK pair.

dnssec-keygen –a RSASHA1 –b 2048 –n ZONE –c IN –e –f KSK ipamworldwide.

com.

The command line response to this command is the key pair name, Kipamworld-

wide.com.þ005þ06082.

The resulting DNSKEY record was created

ipamworldwide.com. IN DNSKEY 257 3 5

AwEAAdSAwGoUBhtjpE8GLGN4ryt8yEq71DqdE+ij3boe9lmvpM02YZ1/

AQxoHbyA7NqRr+8dsTM8OrF2yFRbcP1y0/9q37T0PqxL5HjAZ8HrDoW9

R/pC3XyRe9pMzRNr4as+c/xEISfhxzvR84CndF5XvFeh3H0kVDeTb+7Q

RrG7hnph4P8w4SMg76tBvxHLFmj3OdP8vIUpRAnexEAdclamj1ZSPjLc

dICzpDvQB/LLsYxx8wx2h0vTvhxZklqmy1dPBtIZu2A551VIrU0xgCJx

DjJGCgBbrp1C01tYSdqlA1I2HCL8eV7io/CxnCuSThPlXaPLySojJpXU

gDomWgVYeo0=

Notice the Flags field value is 257 for the KSK versus 256 for the ZSK due to the

setting of the SEP flag. We’ll refer to the KSK by its keyid¼ 06082 (from the generated

key name) and the ZSK by its keyid¼ 14522.

274 SECURING DNS (PART II) : DNSSEC

13.3.2 Add Keys to the Zone File

Beforewe sign the zone,we need to include our twoDNSKEY resource recordswithin the

zone file. Since the key files contain our DNSKEY resource records, you can either cut

from the file and paste into the zone or simply use a $INCLUDE statement for each file

$INCLUDE Kipamworldwide.com.+005+14522.key

$INCLUDE Kipamworldwide.com.+005+06082.key

Don’t forget to increment your serial number too. It’s a good idea to run named-

checkzone first, before signing the zone with the dnssec-signzone utility.

13.3.3 Sign the Zone

The zone signature process utilizes another BIND utility, dnssec-signzone, which

performs a number of functions to sign the zone. First, it canonically orders the resource

records within the zone. This essentially alphabetizes the resource records within the

zone. This facilitates grouping of resource records with common owner name, class, and

type into resource record sets (RRSets) for signature application. The other reason for

canonically ordering resource records is to identify gaps betweenRRSetswithin the zone

file and population with Next SECure resource records, which provide authenticated

denial of existence of a given resource recordwithin a zone.AnNSEC3PARAMresource

record must be present in the zone file to generate NSEC3 records during the zone

signature process.

After canonical ordering and insertion of NSEC[3] records, dnssec-signzone

signs the RRSets within the zone file, including DNSKEY RRSets (previously

$INCLUDE’d in our example) and NSEC[3] RRSets. The signed zone file contains

the original RRSets, canonically ordered and signed with resource record signature

(RRSIG) records. The file also includes anNSEC[3] record and its correspondingRRSIG

record for each RRSet within the file. The only records not signed within the zone file are

NS records for child zones. The child zone is authoritative for this information, not the

parent; therefore, the parent does not authenticate their accuracy.

Fortunately the dnssec-signzone utility performs all of these steps automat-

ically canonical ordering, NSEC[3] insertion, and RRSIG creation and insertion to

render a signed zone. Here’s the dnssec-signzone command we’ll use to sign the

ipamworldwide.com. zone.

dnssec-signzone –k Kipamworldwide.com.+005+06082 –l dlv-registry.

net –g –o ipamworldwide.com. –t db.ipamworldwide.com Kipamworld-

wide.com.+005+14522.key

The arguments within the dnssec-signzone utility include

. -3 salt: generate an NSEC3 chain when signing this zone using the specified

salt value. The salt is specified in hex and a dash (-3 -) indicates that no salt

should be used when generating the NSEC3 chain.

. -a: verify all generated signatures.

13.3 CONFIGURING DNSSEC 275

. -A: set the OPTOUT flag on all NSEC3 records when generating an NSEC3

chain, and do not generate NSEC3 records for unsigned child zones (insecure

delegations).

. -c class: class of the DNS zone.

. -C: compatibility mode with older versions of dnssec-signzone; generates

–zonename keyset in addition to dsset-zonename upon signing the zone-

name zone.

. -d directory: look in the specified directory for the dsset or keyset files to sign

the zone.

. -eend_time: specifies the date and timewhen the generated resource record set

signature records expire. The end_time may be specified relative to the current

time using þN, where N is the number of seconds from the current time, or in

absolute time using the format YYYYMMDDHHMMSS in Coordinated Uni-

versal Time (UTC). When this argument is omitted, the default end_time is 30

days from the start_time by default (see –s).

. -E engine: command option to use crypto hardware (OpenSSL engine) for

zone signing using keys from a secure keystore when supported. The default

engine is pkcs11when compiled with PKCS #11 support or none otherwise.

. -f file: specifies the name of the file of the signed zone. If omitted, the default is

the current zone file name appended with signed.

. -g: indicates that delegation signer resource records, which authenticate signed

child zones, should be created; the resulting ds-set keyset can be provided to the

parent zone’s administrator for inclusion in the parent zone for signature.

. -h: prints help summary of this command.

. -H iterations: when generating an NSEC3 chain (when specifying the -3

option), use iterations iterations.

. -i interval: when resigning a zone (passing a previously signed zone in as

input), the interval specifies the time interval from the current time for which any

signature records expiring before the interval will be regenerated. Thus, if

signature (RRSIG) records are set of expire within five days and the zone is

resigned with an interval of six days, the signature records will be regenerated;

otherwise, the current signatures will be retained.

. -I input-format: defines the input-format of the zone file to sign, either

text (thedefault) orraw. Setting this option toraw facilitates signingof rawzone

data, which includes dynamic updates and thus adds little value for static zones.

. -j jitter: enables specification of a window used to randomize RRSIG

signature expiration times to reduce the impact of several simultaneous expira-

tions, each of which would require signature regeneration when the signed zone is

passed for resigning.

. -k key: the key specified is a KSK; multiple –k arguments may be provided.

. -K directory: defines the directory in which the key files are located.

. -l domain: generate a DLV keyset file; this keyset can be registered with the

DLV registry to validate “delegation” for this zone.

276 SECURING DNS (PART II) : DNSSEC

. -nthreads: specifies the number of CPU threads to use when performing this

operation.

. -N serial-format: specifies the format of the SOA record serial number of

the signed zone to either

Tkeep: do not modify the serial number of the zone file input.

Tincrement: increment the serial number in accordancewith RFC 1982 serial

number arithmetic.

Tunixtime: set the serial number to the number of seconds since epoch (since

midnight UTC January 1, 1970 not counting leap seconds).

. -o origin: specifies the zone origin for the zone being signed.

. -O output-format: specifies the output-format of the signed zone as

either text (the default) or raw.

. -p: use pseudorandom data when signing the zone, which is faster but less secure

than using real random data per the –r argument.

. -P: disables the default postsigning verification tests, which includeverifying that

a valid nonrevokedKSKexists for each algorithm in use, that all revokedKSKs are

self-signed and that all records in the zone are signed for each algorithm.

. -r randomsource: indicates a source of random data such as a file or character

device such as the keyboard.

. -s start_time: specifies the date and time when resource record set signature

records (RRSIG) become valid. The start_time may be specified relative to the

current time using þN, whereN is the number of seconds from the current time, or

in absolute time using the format YYYYMMDDHHMMSS in Coordinated

Universal Time (UTC). When this argument is omitted, the default start_time

is 1 h prior to the current time to allow for clock skew.

. -S: “smart signing” leveraging keymeta data, configured using the timing options

of dnssec-keygen; searches the key repository for keys matching the zone being

signed, includes themwithin the zone file in accordancewith respectivemeta data

and timing then signs the zone. Keyswhere the current date is past the activation or

revocation dates but prior to retirement or deletion (or if no meta data exists), are

used to sign the zone; keys where the current date is past the publish date but prior

to other dates are published but not used to sign the zone.

. -t: print statistics upon completion of the signature process.

. -T ttl: defines the TTL value to use with DNSKEY records imported into the

zone file from the key repository (if the TTL is not specified on any extant

DNSKEY records in the zone), as part of smart signing (see –S).

. -u: update the NSEC[3] chain within the zone; also enables switching from a

NSEC chained zone to an NSEC3 chained zone and vice versa depending on the

presence of the NSEC3PARAM record in the zone file.

. -v level: sets the debug level.

. -x: sign the zone’s DNSKEY RRSet with KSKs not additionally ZSKs.

13.3 CONFIGURING DNSSEC 277

. -z: ignore the KSK flag (SEP flag bit) when determining what to sign; that is, use

the KSK [and ZSK] to sign zone RRSets.

. zone_file: the name of the zone file to sign.

. key: the keys to use to sign the zone data.

The output of the dnssec-signzone utility is the signed zone which uses the same name

as the original unsigned zone, concatenated with a “.signed” suffix. Following our

example, you can see below that the db.ipamworldwide.com.signed file is much larger

than our original zone file. Consider our initial db.ipamworldwide.com file prior to

signing

$TTL86400

ipamworldwide.com. 1D IN SOA extdns1.ipamworldwide.com.

dnsadmin.ipamworldwide.com. (

204 ; serial

3H ; refresh

15 ; retry

1w ; expire

3h ; minimum

)

ipamworldwide.com. 86400 IN NS extdns1.ipamworldwide.com.

86400 IN NS extdns2.ipamworldwide.com.

86400 IN NS extdns3.ipamworldwide.com.

extdns1.ipamworldwide.com. 86400 IN A 192.0.2.34

86400 IN AAAA 2001:db8:4af0:2010::a

extdns2.ipamworldwide.com.86400 IN A 192.0.2.42

86400 IN AAAA 2001:db8:4af0:2011::11

extdns3.ipamworldwide.com.86400 IN A 192.0.2.50

86400 IN AAAA 2001:db8:4af0:2006::9

eng.ipamworldwide.com. 1w IN NS ns1.eng.ipamworldwide.com.

1w IN NS ns2.eng.ipamworldwide.com.

ns1.eng.ipamworldwide.com. 1w IN AAAA 2001:db8:4af0:2007::7

ns1.eng.ipamworldwide.com. 1w IN AAAA 2001:db8:4af0:2009::12

$ORIGIN ipamworldwide.com.

1D IN MX 10 smtp1.ipamworldwide.com.

1D IN MX 20 smtp2.ipamworldwide.com.

278 SECURING DNS (PART II) : DNSSEC

www 1D IN A 192.0.2.37

1D IN AAAA 2001:db8:4af0:2010::25

1D IN A 192.0.2.53

1D IN AAAA 2001:db8:4af0:2006::5

w3 1D IN CNAME www.ipamworldwide.com.

smtp1 1D IN A 192.0.2.36

1D IN AAAA 2001:db8:4af0:2010::1b

smtp2 1D IN A 192.0.2.45

1D IN AAAA 2001:db8:4af0:2011::2b

ftp-support 1D IN A 192.0.2.44

1D IN AAAA 2001:db8:4af0:2011::2c

$INCLUDE Kipamworldwide.com.+005+14522.key

$INCLUDE Kipamworldwide.com.+005+06082.key

Contrast this with the signed version:

ipamworldwide.com. 86400 IN SOA extdns1.ipamworldwide.com.

dnsadmin.ipamworldwide.com. (

204 ; serial

10800 ; refresh (3 hours)

15 ; retry (15 seconds)

604800 ; expire (1 week)

10800 ; minimum (3 hours)

)

86400 RRSIG SOA 5 2 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

OQS+AaE57+ffRfz+SaMHOJI6b4l2bNnsSDIK

mIIMdmXOw8cylCMieaUBz8ek64FyMWLGh2c5

HogVxtt7s9cHICosxqhqZNXYT7GP+YpRRVO4

uCGgq6uoqCpgj1L39tqnSQ1da8pT5a6DRCIJ

fqsS5ubrmA/20cc02c15XFTlAik=)

86400 NS extdns1.ipamworldwide.com.

86400 NS extdns2.ipamworldwide.com.

86400 NS extdns3.ipamworldwide.com.

86400 RRSIG NS 5 2 86400 20100305135354 (

13.3 CONFIGURING DNSSEC 279

20100203135354 14522 ipamworldwide.com.

qVdOx6s9IAL4YWz2hPB1Q5aVNPcPbIsREenD

PP/7GyXbQKxAdDDugaWPHoKEvPA9f1SBWomZ

h4pGOKJaA5Pk9okF3FkHLHclTFVGfhTEdrVj

Dk6a8eRNoU+CMHWwmfJtNFpYpVVd6Ch1LWdw

ZJ27Z80HZrHtwZ8XmubPzu8MZlE=)

86400 MX 10 smtp1.ipamworldwide.com.

86400 MX 20 smtp2.ipamworldwide.com.

86400 RRSIG MX 5 2 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

dR4kJtp5DyvCHTF7+uCNloKCRNVx5jM/XOd9

H5F7OhnDUIgPWKYnuCbL3PBhx1iK9OnrrL1g

ZvEuTAvifzzax4n8CSPCB0CbrMWWUXQ44vKG

I0W0LwzQKJXlPGHzGiG+6dktfqOnBgppXekA

QWBJA6nOAeGKtqQMtKUa75uqs2Y=)

10800 NSEC eng.ipamworldwide.com. NS SOA MX RRSIG

NSEC DNSKEY

10800 RRSIG NSEC 5 2 10800 20100305135354 (

20100203135354 14522 ipamworldwide.com.

WyZl4AduBUWdED01Ckc+I0nSArek5n3r6rKX

m26H5Sjow/RSpgmPJfGOH/9gjyEwnGoqrKbh

5s7kxtnvF3xVYFE1If7zv5bHxSvBqMDqdNXq

ChY9BJ9kOemQ0L7NlpreadXfyVXBthl5jaPC

vKLSwAjmNAzbtV4f6S+CIDK288w=)

86400 DNSKEY 256 3 5 (

BQEAAAABx6QAwJiz6hHa/eUI2pGz6rvwEYpJ

di1TJH8Uj4lDPTmzseCOgFEqB3/dZB0Q5LEs

1ZetAJJEk4F+WccRKwqnIcGkvIKfTC8hn+gb

iBAnadQRFLxNMBs6KB0e+yqiNK60sbrn22F8

AYRiG3n2rTQndVtkaZep9jbcCqfu/DagB10=

) ; key id = 14522

86400 DNSKEY 257 3 5 (

AwEAAdSAwGoUBhtjpE8GLGN4ryt8yEq71Dqd

E+ij3boe9lmvpM02YZ1/AQxoHbyA7NqRr+8d

sTM8OrF2yFRbcP1y0/9q37T0PqxL5HjAZ8Hr

DoW9R/pC3XyRe9pMzRNr4as+c/xEISfhxzvR

280 SECURING DNS (PART II) : DNSSEC

84CndF5XvFeh3H0kVDeTb+7QRrG7hnph4P8w

4SMg76tBvxHLFmj3OdP8vIUpRAnexEAdclam

j1ZSPjLcdICzpDvQB/LLsYxx8wx2h0vTvhxZ

klqmy1dPBtIZu2A551VIrU0xgCJxDjJGCgBb

rp1C01tYSdqlA1I2HCL8eV7io/CxnCuSThPl

XaPLySojJpXUgDomWgVYeo0=

) ; key id = 6082

86400 RRSIG DNSKEY 5 2 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

V0bEwZmY56OrGQb02B/Pf17RAcFyPZAvPT/W

Rm/+nluSOYMVqdzRaKM/ae47KslioXm3tNcy

GF3uBvBql7xPzIOuIy3COoorXmbsshbuANo7

YfQsyXWuX2BIjjLAVRRLQolVcdDyyleoA0E7

BebPM+fQQtvN2C2IjrcacJyeUlc=)

86400 RRSIG DNSKEY 5 2 86400 20100305135354 (

20100203135354 6082 ipamworldwide.com.

e8jCEVY6C1lSImGqjgzVWAgp7cC4AWuntFvc

oCCO+2BwGxe7+zxP2r02CCSOCIrTqtgwpNRd

5aH4xBrYmZh0IFQ7OxTFSGBvQ4DxC8ZDdQVS

uTYCBSzN7kXRJZopZv3chhf7/9uyz3gqtQnl

5RyUVATMOG5eu+ewBFqGIsXJv5XMNG7ZTO15

rtRd8zF/7MIY7TlSbHULGP7OJxcNFtyt8wnc

/dObfcxril4tOwLPVF4QnLnLxAHvdWt+QPVQ

z23WIc0U+rg6U6FsSjoi0U2QAxVFebenTJED

U2juAdqEE8I1Y9oOvNQVtYFFjXFgi1vDLGCG

zM8i4fI9uGZUHvzKng==)

ns1.eng.ipamworldwide.com. 604800 IN AAAA 2001:db8:4af0:2007::7

ns2.eng.ipamworldwide.com. 604800 IN AAAA 2001:db8:4af0:2009::12

eng.ipamworldwide.com. 604800IN NS ns1.eng.ipamworldwide.com.

604800 IN NS ns2.eng.ipamworldwide.com.

10800 NSEC extdns1.ipamworldwide.com. NS RRSIG NSEC

10800 RRSIG NSEC 5 3 10800 20100305135354 (

20100203135354 14522 ipamworldwide.com.

dWwY0rZRfW5aYgBsbRuCxot6CGGG8hfgHId7

84IZIYi9HHgr02saBdlzmzqJCGre0pGSDBvf

13.3 CONFIGURING DNSSEC 281

ZpJP1BVUS1NuMycEBFBUIS8IUASDTxcLGjrT

169vIqiyXjICzrsu2fzKL1QNwUOFMGiedglh

1jkUJ1jKKs9yr4XFZBwP/y8OpoQ=)

extdns1.ipamworldwide.com. 86400 IN A192.0.2.34

86400 RRSIG A 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

IwNfRz7m6Rneh6hpacdIpTHGRftsU8e931OP

bjC0Dfw92DXn51uHghiCoE+rrO4zK1wYFP5L

CoKF43whVX1EXOt7UFGuAebr4587DnDqhKol

9XivKc35HvPz1ErniZHuUIsZCjvuziwvGIXS

72PkoHzNw/lxv+nDriemFn7tWxE=)

86400 AAAA 2001:db8:4af0:2010::a

86400 RRSIG AAAA 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

aNzJgdLi4DTttIUj+Y+9FLI2eAu5iRX9yewN

jvFG3aJ4moO4fWwhKFynltcfJFpKjHyq4eCD

PamIS/9fDOn8OdX1g8CkfKNQIszUoAkhSQXH

6avko1jwgP0lqHwjRNhdcW2UuE+pjyvgNlTW

ZOgb65nR+UjSJQXRQnHpyhyD+nk=)

10800 NSEC extdns2.ipamworldwide.com. A AAAA RRSIG

NSEC

10800 RRSIG NSEC 5 3 10800 20100305135354 (

20100203135354 14522 ipamworldwide.com.

ipB8eo8GLPvbCCzUF6ETXBiXsRXZiWu8y21z

uEoxJn+3T9dYXFEFFpdyj5Qnhl/gnvwpc1mP

sFyg0+P5mNziXO/Aj3LQF2HJMnQxT34dQdJb

Ze/6KBJZO6KZXwXrQXxVGrbFHY9xY5Q0gfs4

J2MUAZB074KWOVZKUzLUczgrwhI=)

extdns2.ipamworldwide.com. 86400 IN A192.0.2.42

86400 RRSIG A 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

ax6Umlog3DSn+KxIQSvbQjES9CwuaYZ+G0yT

NHOIwVOrV4cjP7LA2Pc2p7bQjwoTMkXK5uoU

Or8Mnd7/boJyQUrBF62pbhOqJ9mKbvrYD1ud

SivEiDnxAv0FTwagCe22Vvd3DNTjXUhizBt7

DlIbA92lSCiNHqeFT/OljqcW+Z0=)

282 SECURING DNS (PART II) : DNSSEC

86400 AAAA 2001:db8:4af0:2011::11

86400 RRSIG AAAA 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

aQO0ipvwjtAS0DZiXJoTot9iPAToI5rqrkMD

lXRNimxuT/ED0+S94OUg5rA5a/XS80aDFSyD

uqLIVIiZC4Zd5jHazPxEjJR7YyJ0sx8kIy5Q

85LBJQhVsiADcoKz7NZ8TRFzSEGQNKMLVYIx

kVx8JpJcGWLeXBekk5J46OeacfE=)

10800 NSEC extdns3.ipamworldwide.com. A AAAA RRSIG

NSEC

10800 RRSIG NSEC 5 3 10800 20100305135354 (

20100203135354 14522 ipamworldwide.com.

J8j82DSNwUc0M2dd2vPzkTlOnjxrrTeKIWH2

h13hjbH3xr18WLQdJQiqJpXapXSKGX/57+C8

EO+OBbsqNMpwf+bNhxdnJazB7elYdk7KI8Xp

TmpyV9zRTJjr3U3l6pw2GjaCMkBDw8JD1+6w

LJjib4JgHg3pDswvo6ShXxpnezk=)

extdns3.ipamworldwide.com. 86400 IN A192.0.2.50

86400 RRSIG A 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

a6IVQOXfc0UgsIfCJA/yGDvPdXUrXH2HJzS9

h/DGEIdu3ZBNcEwtKVvd4ph/rHXknX2Ito2m

4/1OLtvFdriZjhbpIERCatl45ySxhvugbZlb

EAjEWa1kixmPoOtXZ+pAS+7cLCxkodr5Np2t

f9Ppdv5bx4/a9BfM8abrUwrT988=)

86400 AAAA 2001:db8:4af0:2006::9

86400 RRSIG AAAA 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

AMeurMSeauKG/w0KSgo9tKWToMDXEOtArCmu

l3VKDUDN22Y7yfIUX+nwcUJuLRU4tLfeiLBT

E8IIjsJ3Qu9SQmCBB/4VCHjNax98c4+/RBym

M9sKuprQK9MEzV5kqqYyHdVuPFzSWCp0QXCO

AWrWGWfkO3oXS6oj+gqK3hHnAsQ=)

10800 NSEC ftp-support.ipamworldwide.com. A AAAA

RRSIG NSEC

10800 RRSIG NSEC 5 3 10800 20100305135354 (

13.3 CONFIGURING DNSSEC 283

20100203135354 14522 ipamworldwide.com.

nfQMcp6s2IyVItiCmb89DiSKYmdurlBo0Nx3

0IQYcoMvZVVXMa4ynCoq3lKdebjhGrW8e6NG

c5SyPYrBzjw1NVEPIr1mNoVN2EEBqquPYluC

z9f0M5N534yThP01yCsjee7FpIXGKYObhb5+

i5wLH10NrIpLJEAw3oWsXNPxkhQ=)

ftp-support.ipamworldwide.com. 86400 INA 192.0.2.44

86400 RRSIG A 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

umyIYTUI2YaFXcRp9xATrAK7YnOz/PCbzOSF

xJLL9CLNzmtdPEvFW7iO9oeC8C+R3WfYafhV

aWiT/BYPbwqvxHaxRWFJ7hIO87n5PHfAHxyE

dIr1lLZO5f0IKK8oIgawIyHbE/XeqYHVeZpY

zJSGGMBiyTI/VGKluud17+/EDh4=)

86400 AAAA 2001:db8:4af0:2011::2c

86400 RRSIG AAAA 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

A43jiBaDMIhL9KtqP2uE2iG+sn5SZBVhqK9Q

ChRR0512pZJ5WGPip0KjgcJxaVnMbbBuyM7v

lzW6G1PerBwtbaX/zi2YnW+O0XyBYGlXjXPC

bHjM3I7Z07WgHD/I4jrHZVQczUDSmZCJQBIK

zEYlTt+su4K6EIfxw3uBlrheAAc=)

10800 NSEC smtp1.ipamworldwide.com. A AAAA RRSIG

NSEC

10800 RRSIG NSEC 5 3 10800 20100305135354 (

20100203135354 14522 ipamworldwide.com.

v/LRbW7drv03r+F5XasqZ2bjdGXQ7VP6kvOa

gt3s/gT5W/c8aLfTeA3lmwwEk3DrNEB9U+MV

XE9YdI1iLySu8J07hF9qJfSiCSIkZgmf5UDZ

BUUKifIXZVRHUy8uD2pXP3btZOrhR9CXU5oE

EfrvaGv7++yC+IhRJN7pbg+WEU0=)

smtp1.ipamworldwide.com. 86400 IN A 192.0.2.36

86400 RRSIG A 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

lSISPwoCpLdSfWFFjhfuASY72DoA06dMPAic

5vhRJWQfoUbisWrGt29z7r7S7XYIwgRARURO

284 SECURING DNS (PART II) : DNSSEC

JDUSe93z7TzbjxO4UPDbuheFDYI7r+vDXLj2

cQgKT4gPJ6UCi2kawWaVbAzPz+ZzV2gfxJfc

fsjARB5rbNDk1BOO6IDI3pfPYh0=)

86400 AAAA 2001:db8:4af0:2010::1b

86400 RRSIG AAAA 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

Jap9zaU4gWcxHzXmtkK8NtCKGUCE/AdPf+/d

yWJC5PG7ClildQsxCIhbvgLHdQ0YfFMN5nvd

abt3fybBoTtbNATZeBqFDalMnF3IBzyhChA+

0DC1R27LGk7iyOZ5zsq055ZgROpkBbML3o9k

M7Y+Lx+nM3j44zj6YoUDsAUvP1s=)

10800 NSEC smtp2.ipamworldwide.com. A AAAA RRSIG

NSEC

10800 RRSIG NSEC 5 3 10800 20100305135354 (

20100203135354 14522 ipamworldwide.com.

x1YlFJQBUhSOTB/T7nrntcaB7x96AK+AAJZT

787XIryUwg5boDkA5MOGNxAoL6nurtbi3+6f

GLDoG4HYLsEmJlamw9+IANm1u2yLsg5q2viL

1ymroI0AlpeXNptDevgZ5+CiRiRKkNw0+BZ1

YCrdNJTBUo8pYfZDxdBpihi87EU=)

smtp2.ipamworldwide.com. 86400 IN A 192.0.2.45

86400 RRSIG A 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

a+qfAnPTIcI7nBNRhg6BDZrFuQvBbiLZUPXA

kSXeLNkwtK5bodr+j0nZQqUFsCvHw/Gj2FH7

7L2ROcDto0QHE9WwKy3AjNtvRGg/GK54uO2v

A4NEx8C0sgIyWPkIC9Nbndp4bE2zV1r3O4Wr

UkAGYtD/ZMv79vhB8AsLKyfS+yM=)

86400 AAAA 2001:db8:4af0:2011::2b

86400 RRSIG AAAA 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

jQrvFnE/4JqFSfl6b/GR8j2hv/B+4XmuslCM

4P2D6YRYGNhZCeOw4DY3U9fGsg+B8gZii7U+

Rc9Qe8RyzV+wu8gy+65uvbSl9sb6zfGOrOp2

P+ZsAy7R0ZtPjzEdMLAIJdea4LdAgUO9IqNo

Q5ro79H9GAHptAw2epa+1XAp+wc=)

13.3 CONFIGURING DNSSEC 285

10800 NSEC w3.ipamworldwide.com. A AAAA RRSIG NSEC

10800 RRSIG NSEC 5 3 10800 20100305135354 (

20100203135354 14522 ipamworldwide.com.

gKXAbEocdwlnPIo9YtwLwOatBlamwpQTEM+e

rKjgibrjYP1ymBiRwOs8lnrfXxCbv6v3ix6Q

IQcQrzKPugVEaIxUl6kqqH0LsXYwgbixppQX

Lcn1z9Wfmdv23Z6njQrdR+DmF6aQZPlUaiTn

SPtE26w59U1rtcyhm2p0vqic5l8=)

w3.ipamworldwide.com. 86400 IN CNAME www.ipamworldwide.com.

86400 RRSIG CNAME 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

PTRpKmkZhBw18c1ZscxIlCL7P23fYgZBsEX9

DKrawjkyMZ5B+EqQaGNdsfgvmvirrcxCzv/K

MaMaeWBGI4Bb9gykm72thXneud5gHi5zLjsK

4uK/r3EdWcurQ89R44Q7pTUOy4yzCdpH/KDE

Qjd6P/JrWLnO/WW0gxurwHPFiBE=)

10800 NSEC www.ipamworldwide.com. CNAME RRSIG NSEC

10800 RRSIG NSEC 5 3 10800 20100305135354 (

20100203135354 14522 ipamworldwide.com.

W0jcsvdSJfLuJ6l7fAUdfnat9fd45OE6toO7

GHwkjRPWm1Q9C83W0Bgc161gZ4r/q1ZKoE6b

FvFOIIxz4NhPiJVb2bUbSL6A1K0vwD4KUGL4

ExKfuPMl6/gLOE/Tqczcp/2ETXm5yksOkoPJ

ynOMoLpBIyNlHeJwtPBaHlbE+B0=)

www.ipamworldwide.com. 86400 IN A 192.0.2.37

86400 IN A 192.0.2.53

86400 RRSIG A 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

xjwhHWIy25aOvLP2E1y9aaN6GRcGUxoN4o+P

eZ0Wc05zjlDu6o1ZOCXivrbIOP4LVS7pqMX3

bg4SQDmzmRDQ0H/+Q8Fzxbf1UFQNcVB2uhtV

6R8DfNwRwIugoL+33qE2MOrrxWz16JutI2qo

vkYogNqDj1MNiiKkoGgmJQmiHYc=)

86400 AAAA 2001:db8:4af0:2010::25

86400 AAAA 2001:db8:4af0:2006::5

86400 RRSIG AAAA 5 3 86400 20100305135354 (

20100203135354 14522 ipamworldwide.com.

286 SECURING DNS (PART II) : DNSSEC

lRoCDp+0y/HM/xyEdciqO5cDWcRzxmQCwPbs

GKrCe+OoYHfTFnSBCAEReY4tneb/HMwYbqxV

SRp5oW2FPDi5GZunL7tLp7gF0tF7M9XlJVmi

9PDg9wiNzDxw/CgbsN/wbtsRpgbPxQwkACiP

eRsNDL3Y5EAxLi24yFw+Qay6uEc=)

10800 NSEC ipamworldwide.com. A AAAA RRSIG NSEC

10800 RRSIG NSEC 5 3 10800 20100305135354 (

20100203135354 14522 ipamworldwide.com.

auNzMg6x34+oradbjFKoQquKmB8sAmKg44FF

8FCuh7FI/mrKNHVuv1YmVNXNK/ZHA1JpVYzH

fpe4KxPGh8IcDftEfqd52Z0LsetYeRvxNzxQ

sAS+OzClCIiTiEpUNte6siExj7YvhBlPN4e4

pnkzTKPULWat489Juzo2U77XysA=)

Needless to say, signing a zone increases its size tremendously! It also increases

resolution packet sizes, given the extra RRSIG and NSEC information with each RRSet,

not to mention the potential for additional message traffic to validate the chain of trust

back to a trust anchor.

Referring back to our discussion of the digital signature process, the original

resolution data is of course the “data” from Figure 13.1 to be signed. The data actually

consists of the entire RRSet which is hashed then signed using the private key of the key

pair. The resulting signature comprises the signature field of eachRRSIG record. Thus, at

the beginning of our signed file, we have our original SOA record, followed by its

corresponding signature (RRSIG). Then our three NS records are listed. This RRSet

comprised of these three records is signed per the following RRSIG record. Likewise,the

MX RRSet is listed and signed. Notice the RRSIG records indicate signature using the

ZSK, per the key tag field value of 14522. The DNSKEY RRSet is itself signed by both

theKSK and ZSK as evidenced by the twoRRSIG records with respectiveKSK and ZSK

key tags. Usually the KSK only signs the DNSKEY RRSet with the ZSK signs all zone

RRSets. Notice also that the ns1 and ns2.eng.ipamworldwide.com glue records are not

signed as these records are authoritative in the eng.ipamworldwide.com zone, not the

ipamworldwide.com zone.

TheNSEC record listed next provides a canonical ordering of records to identify and

authenticate a negative answer for a non-existent resource record. This particular record

indicates that the next owner is eng.ipamworldwide.com. This NSEC record also is

signed. Each of the remaining RRSets includes an NSEC record and RRSet signature

(RRSIG record).

13.3.4 Link the Chain of Trust

Now that the zone has been signed, you should determine its place in the chain of trust.

That is, determine if the parent zone is signed or not. If the parent zone is not signed and

13.3 CONFIGURING DNSSEC 287

the newly signed zone is the top-level domain, that is, signed (i.e., zone apex; e.g.,com is

not signed as of this writing.), recursive resolvers querying on behalf of stub resolvers

must be configuredwith the zone’s publicKSKas a trusted key. This informs the resolver

that zone information signedwith this key is to be trusted. For those resolvers, which trust

our ipamworldwide.com zone administrators’ data, the KSK 06082 public key can be

configuredwithin the respective trusted-keys statement in each recursive server’s named.

conf file as per the following

trusted-keys {

‘‘ipamworldwide.com.’’ 257 3 5

‘‘AwEAAdSAwGoUBhtjpE8GLGN4ryt8yEq71DqdE+ij3boe9lmvpM02YZ1/

AQxoHbyA7NqRr+8dsTM8OrF2yFRbcP1y0/9q37T0PqxL5HjAZ8HrDoW9

R/pC3XyRe9pMzRNr4as+c/xEISfhxzvR84CndF5XvFeh3H0kVDeTb+7Q

RrG7hnph4P8w4SMg76tBvxHLFmj3OdP8vIUpRAnexEAdclamj1ZSPjLc

dICzpDvQB/LLsYxx8wx2h0vTvhxZklqmy1dPBtIZu2A551VIrU0xgCJx

DjJGCgBbrp1C01tYSdqlA1I2HCL8eV7io/CxnCuSThPlXaPLySojJpXU

gDomWgVYeo0=’’;

};

Within the recursive server configuration, we have declared a trust anchor or SEP at

the ipamworldwide.com zone. Note that a trusted key entry with the corresponding KSK

public key is required for each trust anchor you wish to configure. As we’ll discuss later,

the more trust anchors you configure, the more keys you need to manage during each

zone’s key rollover process. With the signed root and TLD zones, only one trust anchor

need be maintained.

Automated trust anchor update capabilities reduce the manual management of trust

anchor rollovers. For such trust anchors, instead of using thetrusted-keys statement,

the managed-keys statement can be used. In the following example, we use the public

KSK fromour trust anchor as the initial key. This key serves as the trusted key initially, but

as the zone administrator for the ipamworldwide.com zone publishes, activates, revokes,

retires, and deletes keys in accordance with the timing capabilities and automation of

BIND 9.7 and above, this recursive server will remain in step and keep its own repository

of current trust anchor keys per trust anchor. Hence, when this initial key is revoked and

another key activated, signature of the DNSKEY RRSet by both the newly activated and

this now-revoked key validates the transition to the newly active key.

managed-keys {

‘‘ipamworldwide.com.’’ initial-key 257 3 5

‘‘AwEAAdSAwGoUBhtjpE8GLGN4ryt8yEq71DqdE+ij3boe9lmvpM02YZ1/

AQxoHbyA7NqRr+8dsTM8OrF2yFRbcP1y0/9q37T0PqxL5HjAZ8HrDoW9

R/pC3XyRe9pMzRNr4as+c/xEISfhxzvR84CndF5XvFeh3H0kVDeTb+7Q

288 SECURING DNS (PART II) : DNSSEC

RrG7hnph4P8w4SMg76tBvxHLFmj3OdP8vIUpRAnexEAdclamj1ZSPjLc

dICzpDvQB/LLsYxx8wx2h0vTvhxZklqmy1dPBtIZu2A551VIrU0xgCJx

DjJGCgBbrp1C01tYSdqlA1I2HCL8eV7io/CxnCuSThPlXaPLySojJpXU

gDomWgVYeo0=’’;

};

Now if the zone just signed is a child zone of a signed parent zone, the parent zone

administrator must include the delegation signer record in the parent zone file to link the

chain of trust. In this manner, the parent zone can vouch for this signed child zone. Thus,

trust anchors need not be configured in resolvers or recursive servers for this zone, just its

parent or an even higher level ancestor signed zone.

The –g option on the dnssec-signzone utility automatically created our DS records

for the zone in a dsset-ipamworldwide.com. file. The file contains twoDS records, one of

which may be chosen based on the preferred digest type. The integer shown before the

digest in the examples below indicates the digest type. Type 1 is SHA-1 and type 2 is

SHA-256. The digest followswhich is computed as a hash using the corresponding digest

type or algorithm of the signed zone’s KSKDNSKEY resource record owner and RData

fields (i.e., the KSK DNSKEY record, omitting the TTL, class and type).

ipamworldwide.com.

INDS6082515F696637B085D8F5CBFD0C8B9E031CB6CB07159B

ipamworldwide.com. IN DS 6082 5 2

7FFD9203E916B5D49F631D060FAFD05D26974BEFCED25AACB88122722E4A7AA9

In terms of authenticating records or their nonexistence in signed child (delegated)

zones, the delegation signer resource record type provides the link from a parent to a

delegated child zone’s key as a linkwithin the chain of trust.We’ll walk through how this

works within the resolution process next. The DS resource record has the following

format

Owner TTL Class Type RData

Delegated domain TTL IN DS Key tag Alg. Type Digest

ipamworldwide.com. 86400 IN DS 6082 5 1 5F695D8F5BFD0C. . .

The RData portion of the DS record identifies the key tag or id of the child zone’s public

KSK, while the Algorithm matches the Algorithm field in the referenced DNSKEY

record. The Digest Type indicates the type of hash or digest which is conveyed in the

Digest field. Valid Digest Type values are 1 (SHA-1) or 2 (SHA-256). The Digest field

contains the digest or hash of the corresponding child zone public KSK DNSKEY

resource record owner field concatenated with the same DNSKEY record’s RData field.

13.3 CONFIGURING DNSSEC 289

The parent zone administrator would add the DS RRSet to the parent zone and sign it to

authenticate its origin and integrity.

In BIND 9.6, a new utility, dnssec-dsfromkey, was introduced. This utility

enables generation of DS resource records without having to re-sign the zone using

dnssec-signzone. This utility is available with the following parameters

. -1: use SHA-1 as the digest algorithm

. -2: use SHA-256 as the digest algorithm

. -a algorithm: where algorithm may be

TSHA-1

TSHA-256

. -A: include ZSKs along with KSKs for generation of DS records; if omitted, only

DS records for KSKs are created.

. -c class: identifies the class (default is IN).

. -d directory: directory location of the keyset files.

. -f file: specifies a zone file name in lieu of specifying the keyfile name.

. -l domain: generate a DLV set instead of a DS set and append domain to each

record in the set.

. -K directory: defines the directory in which the key files are located.

. -s: command argument is a domain name not a keyfile name.

. -v level: specifies the debug level.

The dnssec-dsfromkey utility can generate DS or DLV records based on a keyfile or a

domain name; the –s argument defines the argument as a domain name

dnssec-dsfromkey -s [-v level] [-1] [-2] [-a algorithm] [-l domain]

keyfile

The omission of –s identifies the argument as a keyfile name.

dnssec-dsfromkey [-v level] [-1] [-2] [-a algorithm] [-l domain] [-K

directory] [-c class] [-f file] [-A] domainname

13.4 THE DNSSEC RESOLUTION PROCESS

Now let’s review how the resolution and verification process works. Configuring the

trusted ormanaged keys statement above into our recursive server configuration (named.

conf), we have declared ipamworldwide.com as a trusted zone. When I issue a query

for a host within the ipamworldwide.com zone, for example, ftp-support.

ipamworldwide.com, my resolver will set the DNSSECOK (DO) bit in the EDNS0

extended Rcode field. DNSSEC requires EDNS0 to support this extended Rcode field

290 SECURING DNS (PART II) : DNSSEC

and also for the generally large response packets likely exceeding the nominal 512-byte

UDP packet limit. The packet length increase is due to the response by the server

configuredwith the authoritative signed zonewith not only the resolution data requested,

the A record(s) for ftp-support.ipamworldwide.com, but the associated

signature record associated with the A record set.

13.4.1 Verify the Signature

The signature process signs resource record sets, which are groupings of resource records

with common owner name, class, and type. The signature is created using the private key

referenced by the key tag parameter and is placedwithin the signature field of the RRSIG

resource record.

The RRSIG resource record has the following format

Owner TTL Class Type RData

RRSet

Owner TTL IN RRSIG

Type

Cov. Alg. Labels

Orig.

TTL Expire Inception

Key

tag Signer

Signa-

ture

ftp-

support.

ipamworld

wide.com.

86400 IN RRSIG A 5 3 86400 2010030

5215354

2010020

3215354

14522 ipam

world

wide.

com.

umyI...

The RData fields within the RRSIG record are defined as follows.

. Type Covered. The type of the resource record set covered by this signature. In

our example, the A record type is covered by this signature which signs our two-

resource record RRSet with owner ftp-support.ipamworldwide.com.

. Algorithm. The algorithm used in generating the key, which is encoded in the

same manner as the Algorithm field of the DNSKEY resource record type (see

DNSKEY above).

. Number of Labels. Indicates the number labels within the owner field. For

example, ftp-support.ipamworldwide.com has three labels. This field is used to

reconstruct the original owner name used to create the signature in the case where

the owner name returned by the server has a wildcard label (�).
. Original TTL. The TTL of the signed RRSet as defined in the authoritative zone,

used to validate a signature. This field is needed because the TTL field returned in

the original response is normally decremented by a caching resolver and use of the

TTL field may lead to erroneous calculations.

. Signature Expiration. The date and time of the expiration of this signature

expressed as either the number of seconds since January 1, 1970 00:00:00 UTC or

in the form of YYYYMMDDHHmmSS where

13.4 THE DNSSEC RESOLUTION PROCESS 291

TYYYY is the year (within 68 years of the present date to prevent numerical

wrapping of this field)

TMM is the month, 01–12

TDD is the day of the month, 01–31

THH is the hour in 24 h notation, 00–23

Tmm is the minute, 00–59

T SS is the second, 00–59

T Signatures are not valid after this date/time.

. Signature Inception. The date and time of the inception of this signature

formatted in the same manner as the Signature Expiration field. Signatures are

not valid before this date/time.

. KeyTag. Provides an associationwith the corresponding key (DNSKEY resource

record(s)) by key id or tag.

. Signer’s Name. Identifies the owner name of the DNSKEY resource record that

was used to create this signature.

. Signature. The cryptographic signature covering the RRSIG RData (excluding

this Signature field itself) concatenated with the resource records comprising the

RRSet identified by the RRSIG owner, class, and covered type fields.

Thus, the response to our query includes the A records and the associated RRSIG

record as indicated by this response captured with the dig utility below. The server

will set the Authentic Data (AD) bit in the DNS header in the response only if it has

authenticated (cryptographically verified) all included resource records in the

Answer section and all included negative response resource records in the Authority

section. Note that if you query the server which is authoritative for the issued query,

the AD bit will not be set. This server simply returns the answer and leaves validation

rightly to the querier. If you query your recursive server which is not authoritative for

the queried information, it will perform the resolution and DNSSEC validation,

which if successful, will set the AD bit in the result. We’ll review the details of the

dig utility, which is very useful in verifying and troubleshooting zone configurations

in Chapter 14.

$ dig +dnssec A ftp-support.ipamworldwide.com. @127.0.0.1

; � � DiG 9.6.2 � � +dnssec A ftp-sf.ipamworldwide.com. @127.0.0.1

; (1 server found)

;; global options: printcmd

;; Got answer:

;; -�HEADER�- opcode: QUERY, status: NOERROR, id: 462

292 SECURING DNS (PART II) : DNSSEC

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 2, ADDITIONAL: 3

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096

;; QUESTION SECTION:

;ftp-sf.ipamworldwide.com. IN A

;; ANSWER SECTION:

ftp-sf.ipamworldwide.com. 86400 IN A 10.1.32.9

ftp-sf.ipamworldwide.com. 86400 IN A 10.1.32.5

ftp-sf.ipamworldwide.com. 86400 IN RRSIG A 5 3 86400 20100525173519

20100425173519 14522 ipamworldwide.com.owHoS6b1xTNKuzJjgJs3nL4Kwr-

LehnfixVjAF2T6 RHu4dVmq4w1p+FNC Oji2BkWKOhjY3+7jU4doFr/RNioe8vmsqyn

R5YeSSRzzFy/d63Riz3bQ5BANbGRqpTn6Q9HQlm+KYSpwY5CrjqOQnP+Ynme4nhT9

+z8h5ahdwtK9 EtI=

;; AUTHORITY SECTION:

ipamworldwide.com. 86400 IN NS ns.ipamworldwide.com.

ipamworldwide.com. 86400 IN RRSIG NS 5 2 86400 20100525173519

20100425173519 14522 ipamworldwide.com. OLonIvBmJZDEZoRRvOiq7GnlWnr-

8LTWHtKSR60CJNl3hd23Vvkbq/EkV 46wp6OK6Q0qNtJGE+YqFW9xml7d6kQRZO-

qIyCiDZqHQinV7LlAa0Da8z5+UGduD3gVLceES7lvGZpLlbyUm9kFGf5FhPZ/

JciPF4qKUdAvfEeitu/aY=

;; ADDITIONAL SECTION:

ns.ipamworldwide.com. 86400 IN A 10.1.32.4

ns.ipamworldwide.com. 86400 IN RRSIG A 5 3 86400 20100525173519

20100425173519 14522 ipamworldwide.com. IHtLJaWam57mVoYCgFqlEPC9N9p7n-

Wicy7MBvdQP6PgNfhnOTOg2vQHR rQRDdBWBmgaSRoiWSdF2IQTEfH4T16591-

OEjtBnPR/7zRAxU9abnkUDvGCZsAFfqKfWxBZFrxUTbxloekEhMC98FqCnvaRIsL-

NYbiP/0KhehWmBF nlA=

The recursive server or resolver, having received the RRSet (data) and the RRSIG

(signature) may then issue a DNSKEY query to obtain the DNSKEY RRSet if it is not

already cached or provided with the response in the Additional section. The signature in

the RRSIG record is processed with the key of tag 14522 and compared with a hash of

the RRSIG RData (less the signature) concatenated with the resource records within the

RRSet. If the comparison yields amatch, the signature is validated successfully. Next, the

RRSIG of the DNSKEY RRSet is used to validate the ZSK itself. Performing a similar

calculation as just described to validate the A RRSet, the resolver or recursive server

13.4 THE DNSSEC RESOLUTION PROCESS 293

validates the DNSKEY RRSet with respect to the public KSK signature. Given a

successful match as well as the fact that the public KSK matches a configured trusted-

key, we have therefore successfully validated the A RRSet data.

13.4.2 Authenticated Denial of Existence

What if I mistyped the hostname I intended to query? Without DNSSEC, I’d receive an

error (NXDOMAIN) indicating the record was not found. Just as an affirmative answer

may be spoofed, “not found” answers may be too. To address this potential vulnerability,

DNSSEC incorporates the Next SECure (NSEC) resource record to provide a means to

authenticate the nonexistence of a record matching the query. The NSEC record

essentially points from one RRSet to the next within the zone file, identifying gaps

between RRSets. The format of the NSEC record is as follows.

Owner TTL Class Type RData

RRSet Owner TTL IN NSEC Next RRSet Owner Type Bit Maps

ns1.ipamww.com. 86400 IN NSEC ns2.ipamww.com. A AAAA RRSIG NSEC

In this example, the NSEC record associated with owner ns1.ipamww.com indicates

that the next owner name in canonical order is ns2.ipamww.com, and this owner (ns1)

exists with resource records of type A, AAAA, RRSIG, and NSEC. This record

indicates that there aren’t any records canonically between ns1.ipamworldwide.com

and ns2.ipamworldwide.com, such as ns1a.ipamworldwide.com, for example. Each

NSEC RRSet is also signed with the private ZSK, which in turn is validated against a

trusted KSK.

NSEC3provides similar authenticated denial of existence indication for RRSets, but

it also obfuscates trivial enumeration of RRSets in the zone, which can be considered an

information security risk. Because the NSEC3 record uses hashed owner names along

with a salt value, which further complicates the hash dictionary creation function, it is

much more computationally expensive to enumerate the zone. As such it is also

computationally expensivewhen signing the zone andwhenvalidating query resolutions

indicating record nonexistence.

13.4.3 Parent Delegation in a Chain of Trust

Now let’s expand our example to illustrate the role of the DS record in generating an

inter-zone chain of trust to a trust anchor. Consider Figure 13.3, where we will work our

way up from the resolved data to the trust anchor. Let’s assume the public KSK of the

ipamworldwide.com. zone (key id¼ 06082) is configured as a trust anchor in my

recursive server. When I issue an A record query for host.child.ipamworldwide.com.,

name resolution follows the traditional domain tree traversal to obtain a cached or

authoritative answer. Assuming I had set the DO bit, the resolution RRSet along with the

294 SECURING DNS (PART II) : DNSSEC

corresponding RRSIG record will be returned. The recursive server can validate the

RRSIG with the child.ipamworldwide.com’s ZSK (key id¼ 98211), shown as the arrow

labeled “1” in Figure 13.3. In turn the ZSK can be validated against the zone’s KSK (key

id¼ 45443), per step 2. Given that I do not have this KSK configured as a trust anchor, I

cannot trust this data. However, the recursive server queries the parent zone, ipamworld-

wide.com., for a DS record to determine if the parent can authenticate this zone’s data.

This is shown as step 3 in the figure.

If the DS record digest matches the corresponding child.ipamworldwide.com

zone’s KSK DNSKEY data, I can conclude that the ipamworldwide.com. zone has

signed the delegation to child.ipamworldwide.com. The recursive server then validates

the signature on the DS record against ipamworldwide.com’s ZSK (key id¼ 14522)

and in turn its KSK (key id¼ 06082), which is configured as a trusted key. Therefore, I

have confirmed the original data resolved as trusted via the chain of trust back to a

configured trust anchor! This same process could be repeated for any number of

parent–child iterations up the domain tree to the signed root using the root zone trust

anchor. I ultimately must have a trusted key configured for the zone or one of its

ancestor zones within which my query applies. Considering the wide variety of zones

for which queries need to be authenticated, including reverse zones, this set of trust

anchors could quickly become very large!

Figure 13.3. DNSSEC chain of trust traversal.

13.4 THE DNSSEC RESOLUTION PROCESS 295

DNSSEC Lookaside Validation was defined to help keep the set of trust anchors to a

manageable level in the time before the root zone was signed. DLVutilizes a centralized

registry of signed zone public keys. By configuring the DLV registry as a trust anchor,

you thereby trust the DLV registry and all “child” zones to which it authenticates. These

zones are not actual child zones of the DLV, but are zones that the DLV authenticates.

Zone administratorsmay register their signed zone keyswith theDLV registry in a secure

manner to maintain this “lookaside” or “sideways” chain of trust, as opposed the domain

tree parent–child chain of trust we just discussed.

Figure 13.4 illustrates this concept.Without root andTLD zone signing, trusted keys

had to be configured for each trusted zone. In the figure, these are illustrated as the

ipamww.com, 192.in-addr.arpa and a .net zones. By using the DLV concept, the DLV

signs the DS-equivalent DLV record to authenticate the KSK of the each “child” zone.

The benefit of a DLV registry is to reduce the number of keys being managed in each

recursive server in your organization. If the DLV signs three zone keys as illustrated in

Figure 13.4, you need only be concernedwith the DLV’s key rollover, not the constituent

three keys’. TheDLV registrymust be trusted fully, as zones forwhich it authenticates are

not selectively accepted by registry users.

A trusted keys statement must be entered for the DLV registry and only one DLV

registry may be so referenced. The DLV is identified in the recursive name server by

configuring its public KSK in the trusted-keys statement block as we illustrated

earlier. When building a chain of trust during name resolution, the recursive server will

attempt to build the chain back to a configured trust anchor; should a valid chain not exist,

it will attempt to validate the chain of trust through the DLV. The DLV registry must be

able to authenticate its registered zones, much like the manner in which a parent zone

validates its children’s KSKs. The DLV resource record is used for this purpose, and its

format is identical to the DS resource record type. It performs an equivalent function,

though not in the traditional parent–child delegation chain.

Figure 13.4. DLV chain of trust.

296 SECURING DNS (PART II) : DNSSEC

Owner TTL Class Type RData

DLV domain TTL IN DLV Key tag Algorithm Type Digest

ipamww.com.dlv_reg.net. 86400 IN DLV 32284 5 1 90df80DF89lLe. . ..

When the recursive server issues its last resort attempt to validate data in a zone, it seeks

theDLV record corresponding to that zone in questionwithin the DLV registry. TheDLV

registry is identified in the recursive server via the dnssec-lookaside statement, config-

ured within the options block of named.conf. This statement identifies the branch of the

domain tree for which escalations to the DLV registry are valid, as well as a reference to

the trust anchor identified in the trusted-keys statement. For example, the statement

below indicates that resolutions within the gov. domain could be escalated to dlv.us. and

trusted as long as the dlv.us public KSK matches the configured dlv.us trusted key.

dnssec-lookaside ‘‘gov’’ trust-anchor ‘‘dlv.us’’;

13.5 KEY ROLLOVER

The most administratively intensive task with DNSSEC deals with the process of key

rollover, particularly KSK rollover. Like passwords, keys must be periodically changed.

It’s best to provide a moving target to would-be attackers! The use of separate key-

signing versus zone-signing keys helps the administration of this process. This is due to

the fact that any zone administrator can simply resign his/her zone using a ZSK without

affecting anyone else. Whatever ZSK is used, it is ultimately signed by the KSK, which

may be configured as a trust anchor or referenced by a DS or DLV resource record. Thus,

ZSKs can be changed atwill. However, becauseKSKs are configured as trust anchors and

are potentially referenced by other zones’ DS or DLV records, they do impact other

administrators and require a fairly tight integration process.

The two basic methods used for key rollover are preseeding the key, which is

effective for rolling over ZSKs and the dual-key signature approach, which can be used to

rollover KSKs. The key issue (no pun intended) with rollover relates to the updating of

cached resolution and signature information in recursive servers and resolvers. When a

resolver obtains authenticated resolution information, it will cache this information,

including the DNSKEY records containing ZSKs and KSKs, for the duration of the

original record TTL. After the TTL expires, the resolver must issue a new query for the

corresponding information. If a zone administrator performs a flash cut of a new key for

an old key, resolvers and recursive servers having performed querieswith the old key, still

valid per its TTL, will be unable to authenticate data resolved within the zone that was

signed with the new key. This time impact is illustrated in Figure 13.5. Therefore,

maintaining awindowduringwhich key updates can be propagated and two ormore keys

are valid comprise the basic rollover techniques.

Let’s discuss and compare the two common rollover strategies by first considering

Figure 13.6. Note that ZSK andKSK rollover should occur independently of one another

13.5 KEY ROLLOVER 297

if possible. We’ll assume the preseed strategy is applied to ZSK rollover, while the dual-

signature approach is applied to KSK rollover. Examining first ZSK rollover, our initial

condition features a zone signedwith ZSK [key tag] 14522 andKSK6082 as indicated by

the pen icon. At time t0, the preseed time, a second, “passive” ZSK, 28004, is created

using the dnssec-keygen utility or via BIND 9.7þ automation and its corresponding

DNSKEY resource record is included in the zone file along with the active ZSK 14522.

After ZSK28004 has been inserted or included in the zone file, the zonemust be resigned,

still using ZSK 14522. The passive ZSK is itself signed by the active keys and made

available for resolver and recursive server caching, but is not yet used to sign zone data.

Once published, both keys should remain in the zone file until all slave servers obtain

the zone file via zone transfers plus the key expiration time. The key expiration time

should be longer than the zone or resource record TTLs. When this time has passed at

time t1, the rollover time, the zone can be resigned, this time using the now formerly

passive ZSK 28004. The formerly active ZSK can be left in the zone for the equivalent

interval until time t2, then removed from the zone file. Depending on the frequency of

Figure 13.5. Zone information propagation.

Figure 13.6. DNSSEC preseed key rollover strategy (11).

298 SECURING DNS (PART II) : DNSSEC

ZSK rollover, the time t2 may correspond to t0 in the next key rollover cycle, where the

zone would always have two ZSKs, one active and one passive. Otherwise, at this point

only the active ZSK exists within the zone.

Now let’s examine the dual-signature rollover method, shown in Figure 13.7. This

process startswith the same initial conditions as in our prior example.At rollover time, t0,

a new KSK (70810) is created using the dnssec-keygen utility with the –k option. Now

sign the zone using the dnssec-signzone utility using both the current and new KSK and

the active ZSK. Recall that dnssec-signzone permits specification ofmultiple KSKs. The

public key of the newKSKmust then be communicated to all resolvers/recursive servers

that utilize this zone as a trust anchor. In addition, the parent zone that authenticates this

zone must be updated.

An output of the dnssec-signzone utility when using the –g option includes a dsset-

<zonename> file containing the corresponding DS resource record(s) that can be

included in the parent’s zone file. The –l option creates a dlvset-<zonename> file

containing the corresponding DLV resource records. The parent zone or DLV admin-

istratormust copy or include these DS or DLV records, respectively and resign the parent

zone. Given the manual configuration required to perform these tasks on the parent zone

and resolvers/recursive servers, this time frame is less deterministic than the preseed

method. Once this time has elapsed and the parent zone and trust anchor configurations

have been updated, the oldKSKmay be removed from the zone file and the zone resigned

using only the newly current KSK as shown at time t1.

Emergency rollover procedures should be devised in the event of compromise of a

private key corresponding to an activeKSKor ZSK. Should an attacker obtain the private

key, he/she could forge zone data and sign it with the private key. Resolvers and recursive

serverswould authenticate the falsified data based on the corresponding published public

key. As we’ve seen, the ZSK can be changed autocratically and should be changed

immediately. Changing the KSK however, does require broader involvement and

coordination. We recommend documenting a process for emergency rollovers that

includes the parent zone administrator and DLV registry contacts, as well as a means

to communicate to userswho have configured theKSKas a trust anchor. This could bevia

a registered email list and secure web site posting.

One other aspect of key updating is algorithm rollover. This involves the use of a new

key-generation algorithm, for example, as a result of an algorithm compromise or

Figure 13.7. DNSSEC dual-signature key rollover strategy (11).

13.5 KEY ROLLOVER 299

upgrade. As with changing the key itself, the dual signature process described above can

be used to generate keys using new algorithms and roll them into production.

13.5.1 Automated Trust Anchor Rollover

RFC 5011 (143) defines a means to automate trust anchor rollover to reduce the

administrative impact on updating trusted keys on all resolvers/recursive servers that

utilize this zone as a trust anchor. This automation requires an initial configuration of the

current publicKSK for the trust anchor zone. But unlikemanual configuration, it need not

be manually updated every time the trust anchor KSK is changed. Automated trust

anchor updates can be configured in a recursive BIND server using the managed-keys

statement in BIND 9.7 and above. The initial trusted key will be used to validate future

key transactions communicated using the DNS protocol. The resolver must periodically

query the trust anchor for its DNSKEYRRSet to check for updates. If a new key is added

correctly, it will be automatically considered a valid trust anchor key for the zone if

signed by the current trusted key. If the current trusted key is revoked and is signed by the

zone’s trusted key(s), the trusted key will automatically be removed from processing.

Hence the initial-key configured in the managed-keys statement is used as the trust

anchor initial condition only; this key may be revoked in the future, and the DNS server

automatically tracks the status of current trusted keys.

Figure 13.8 provides a state diagram of trusted keys from the resolver’s perspective

based on key states retrieved via validated (signed by current trusted key(s)) DNSKEY

queries. When a new SEP key (trust anchor) is retrieved by the server within the

DNSKEYRRSet, the key enters the Add Pending state. This state helps mitigate the case

where an attacker has compromised the trusted key and seeks to convince the resolver to

use the attacker’s new key. If the resolver does not see the pending key in the DNSKEY

Figure 13.8. Trust anchor (SEP) state diagram (143).

300 SECURING DNS (PART II) : DNSSEC

RRSet at any time during the duration of the add hold down timer, the key will be

considered invalid. It would be very challenging for an attacker to correctly respond to

everyDNSKEY query during this interval. Once the hold down timer expires, the trusted

key enters the Valid state and is considered a valid trusted key for the zone. In this state if

the key is missing from the DNSKEY RRSet, it will be considered Missing but will be

reinstated to Valid state upon reappearance with valid signatures.

When the zone administrator desires to revoke the key due to its age in its lifecycle or

because it was compromised, the keywill be published in the zonewith theRevoke bit set

in the DNSKEY Flags field. This key must be used to sign the DNSKEY RRSet in

addition to any other active or pending trusted keys. In this case, the key will be

considered Revoked. This state may be entered from either the Valid or Missing states.

The server begins a remove hold down timer, which upon expiration, stimulates removal

of the trusted key from the server configuration.

13.5.2 DNSSEC and Dynamic Updates

You may be wondering given that the zone signing process requires the canonical

ordering of a zone, then signature, how does one insert a new resource record into the

zone securely? Fortunately, zone signing does not require reprocessing of the entire zone.

Individual RRSets are signed, enabling a more modular process. However, the NSEC[3]

records must be adjusted to account for the update, effectively inserting the update by

adjusting the canonical ordering.

When dyamically updating a secure zone, the update itself must be secure. The

server should require signatures on update messages and should define which servers or

networks may perform updates. When an update has been received and authenticated, it

remains within the journal file. To fully sign the zone with the update, the server must

temporarily freeze dynamic updates, when using pre-BIND 9.6, via the rndc freeze

command. This shuts off acceptance of dynamic updates. Once frozen, the zone must be

resigned using the dnssec-signzone functionality. Then, dynamic updates may be

reenabled using the rndc thaw command.

This manual freeze-sign-thaw process has been obviated in BIND 9.6 and above

which has added an automated signing mechanism for dynamic updates, vastly

simplifying this process. Along with its normal integration of journal updates into the

zone file, BIND signs each update using the ZSK along with the corresponding “before”

and “after”NSEC[3] records to canoncially insert the record into the zone. BIND9.6 also

periodically examines the zone for signatures nearing expiration. It will then automa-

tically generate new signatures in such cases. To perform this automated signature

process, BIND must have access to the ZSK private key to sign or resign records.

13.5.3 DNSSEC Deployment Considerations

BIND provides several utilities for the creation of keys and for signing zones to simplify

the DNSSEC implementation process. However, consider the following carefully when

deciding to deploy DNSSEC

13.5 KEY ROLLOVER 301

. Decide which zones you want to sign. In general, the first and perhaps only zones

to consider signing are your public or external zones. These enables users

resolving your public name space to do so securely and reduces the probability

of an attacker “impersonating” your zone. Partner connections via the Internet

should likewise be considered. Otherwise, internal resolution of internal infor-

mation can usually be trusted within most organizations.

. As we’ve seen the size of a signed zone file is much larger than that of a

corresponding unsigned zone file. This may affect required server memory for

large zones as well as zone loading time.

. Signing your zones protects the integrity of your name space but not your DNS

caches. Consider configuringDNSSECvalidation on your Internet-queryingDNS

servers.

. The resolution response for a given query would also grow larger, given the

attachment of RRSIG records and potentially DNSKEY records corresponding to

the query. This could adversely affect query response time and performance.

. The resolution process performancemay also be further adversely impacted by the

trust anchor confirmation process, where keys and delegation signer records are

validated up to the trust anchor zone or DLV registry.

. DNSSEC introduces the requirement for time synchronization given the absolute

time references denoting valid and expiration times in RRSIG records

. Zone footprinting by hopping NSEC records is a potential information over-

exposure though the NSEC3 record makes this process more difficult. Consider

whether zone footprinting is really an issue for you (generally information

published in DNS is public information!) due to the computational complexity

and potentially time for generating NSEC3 records within a signed zone.

. Key update procedures for initialization and rollover must be devised to provide

authenticated access to updated KSKs via an out of band mechanism if your

trusting resolvers are not using the automated trust anchor update feature. The

KSK public key update must be communicated to all who trust your zone as well

as your parent zone orDLV, if any, in the form of aDS orDLV record, respectively.

. DNSSEC performs data origin authentication, data integrity verification, and

authenticated denial of existence. It does not protect against other vulnerability

types introduced in Chapter 12. Don’t forget to implement the mitigation tactics

discussed in that chapter to protect against other vulnerabilities.

302 SECURING DNS (PART II) : DNSSEC

