SECURING DNS (PART II):
DNSSEC

When I sign a letter or check, I inherently demonstrate my approval and authorization by
virtue of my signature.” When I sign more important documents, such as a mortgage note,
I need to have my signature validated, typically through a notary public. The notary
verifies my identity and also validates my signature generally by comparing it with a
driver’s license or passport signature. By stamping my mortgage note, the notary
confirms that it is I that signed the document and therefore my signature is trusted.
DNSSEC works in a loosely analogous fashion. A resolver, or recursive server resolving
on behalf of a stub resolver receives resolution data along with a signature on the data. As
long as I trust the signer, I can validate the data using the signature. The element of trust
requires some initial configuration of trust information from the signer in the form of
trusted keys, which are used to verify the trustworthiness of the signer of the data
received. If I don’t trust the signer directly, I need to seek signature validation by seeking
an entity that I trust that will “vouch for” the signer. Not that my mortgage company
doesn’t trust me, but they required validation of my signature!

DNS security extensions, DNSSEC, originally defined in RFC 2535 (140), was
modified and recast as DNSSEChis, defined in RFCs 4033-4035 (114, 141, 142). This

" This basic introduction is from Chapter 9 of Ref. 11 and the high level description therein is expanded in more
detail in this chapter.

IP Address Management: Principles and Practice, by Timothy Rooney
Copyright © 2011 the Institute of Electrical and Electronics Engineers, Inc.

13.1 DIGITAL SIGNATURES 265

recasting was due to scalability issues with the original specification. While still being
tweaked to some degree, DNSSEChis, hereafter referred to simply as DNSSEC, provides a
means to authenticate the origin of resolution data within DNS and to verify the integrity of
that data. DNSSEC also provides a means to authenticate the nonexistence of DNS data,
allowing the signature of “not found” resolutions (e.g., NXDOMAIN) as well. Thus,
DNSSEC enables detection of packet interception, ID guessing, and cache poisoning
attacks on both resolution data and on “not found” resolutions. DNSSEC provides these
services through the use of asymmetric public key cryptography technology to perform
data origin authentication and end-to-end data integrity verification.

13.1 DIGITAL SIGNATURES

We introduced the concept and process for digital signature generation and verification in
Chapter 10 within the context of DKIM, but we’ll review it briefly here for convenience.
Digital signatures enable the originator of a given set of data to sign the data using a
private key such that those receiving the data and the signature, along with a correspond-
ing public key for deciphering the signature, can perform data origin and integrity
verification. DNSSEC uses an asymmetric key pair (private key/public key) model. In
such a model, data signed with a private key can be validated by deciphering the data with
the corresponding public key. The private key and public key form a key pair.
Conceptually, the private/public key pairs provide a means for holders of the public
key to verify that data was signed using the corresponding private key. This provides
authentication that the data verified was indeed signed by the holder of the private key.
Digital signatures also enable verification that the data received matches the data
published and was not tampered with in transit.

Refer to Figure 13.1. The data originator, shown on the left of the figure, generates a
private key/public key pair and utilizes the private key to sign the data. The first step in
signing the data is to produce a hash of the data, sometimes also referred to as a digest.
Hashes are one-way functions' that scramble data into a fixed length string for simpler

Sign Transmit Verify
7H(Data) \ .

|Signature |
T CE(SIiQ) | . H(Data)

Private Key E(Hash) 3 i
Data hash Data hash

Figure 13.1. Digital signature creation and verification process (11).

A one-way function means that the original data is not uniquely derivable from the hash. That is, one can apply
an algorithm to create the hash, but there is no inverse algorithm to perform on the hash to arrive at the original
data.

266 SECURING DNS (PART Il): DNSSEC

manipulation, and represent a “fingerprint” of the data. This means that it is very unlikely
that another data input could produce the same hash value. Thus, hashes are often used as
checksums but don’t provide any origin authentication (anyone knowing the hash
algorithm can simply hash arbitrary data). Common hash algorithms include HMAC-
MD5, RSA-SHA-1, and RSA-SHA-256. The hash is encrypted using the private key to
produce the signature. The encryption algorithm is fed the hash and the private key to
produce the signature.

Both the data and its associated signature are transmitted to the recipient. Note that
the data itself is not encrypted, merely signed. The recipient must have access to the
public key that corresponds with the private key used to sign the data. In some cases a
secure (trusted) public key distribution system such as a public key infrastructure (PKI) is
used to make public keys available. In the case of DNSSEC, public keys are published
within DNS, along with the resolution information and corresponding signature.

The recipient computes a hash of the received data, as did the data originator. The
recipient applies the encryption algorithm to the received signature using the originator’s
public key. This operation is the inverse of the signature production process and produces
the original data hash as its output. The output of this decryption, the original data hash, is
compared with the recipient’s computed hash of the data. If they match, the data has not
been modified and the private key holder signed the data. If the private key holder can be
trusted, the data can be considered validated.

13.2 DNSSEC OVERVIEW

DNSSEC utilizes this asymmetric key pair cryptographic approach to provide data origin
authentication and end-to-end data integrity assurance. Any attempt to spoof or
otherwise modify data en route to the destination will be detected by the recipient, that
is, the resolver or more typically, its recursive/caching DNS server on its behalf. This
feature makes DNSSEC an effective mitigation strategy against man-in-the-middle and
cache poisoning attacks.

The original DNSSECbis specifications do not account for a secure key distribution
system, so one or more trusted keys have to be manually configured on the resolver or
recursive name server.’ However, a subsequent specification, RFC 5011 (141), defines a
means to ease this process by authenticating new and revoked trusted keys based on a
manually configured initial key. This initial key serves as the “initial condition” in rolling
forward over time with new, revoked, and deleted keys. We’ll talk about this automated
trusted key update process a bit later. Whether configured manually or updated
automatically, each trusted key identifies the public key corresponding to a given trusted
zone as authorized by the zone administrator.

This is analogous to the bank notary being trusted by the bank to validate my identity.
After all, any imposter may sign invalid zone data with a private key and publish the

i Pragmatically, the term “resolver” in the context of DNSSEC refers to the resolver function of the recursive
server, which resolves the queried information and verifies signatures as well. Considering our deployment
example from Chapter 11, the Internet Caching servers would perform this signature validation function.

13.2 DNSSEC OVERVIEW 267

corresponding data, signatures, and public key. Thus, the recursive server must be
configured a priori with a key or set of keys that are trusted corresponding to trusted
signed zones. The current public key in use by the trusted zone administrator must
be conveyed to the resolver administrator out of band, or using a mechanism other than
DNS. With the automed key update process just mentioned, an initial key must be
configured for each trusted zone; however, ongoing key updates are performed using the
DNS protocol.

A given trusted zone can authenticate a child zone’s public key, extending the trust
model from just the trusted zone to the trusted zone and its authenticated child zones.
Likewise, these child zones can authenticate their children and so on, forming a chain of
trust from the trusted zone to all signed delegated zones. With the Internet root zone now
signed and major TLDs signed or soon to be signed, the chain of trust will emanate from
the root trust anchor to TLDs, to lower level signed zones down the domain tree.

Configuration of trusted keys requires creation of a trust relationship with a zone
administrator to obtain his/her public key. With a signed root and TLDs, this simplifies
the trust model, requiring trust of the root zone and configuration of the root zone trust
anchor. In lieu of (really as a predecessor to) using root zone keys, ISC has also created a
trusted key registry (dlv.isc.org) as a repository of trusted keys for registered domains to
enable “lookaside” validation in acting as a “parent zone proxy,” reducing the require-
ment impact of forming individual relationships with each domain administrator.

While not explicitly required by DNSSEC specifications, operational experience
has led to the recommendation that two keys be used per zone a zone signing key (ZSK)
and a key signing key (KSK)." As we will see later, this streamlines the complex key
rollover process while trading off key length security and complexity against nimbly
changing zone signing keys as needed. At this point, suffice it to say that the ZSK is used
to sign the data within the zone and the KSK is a longer term key that signs the ZSK. Both
the ZSK and KSK are each comprised of a public and private key pair. The private keys
are used to sign zone information and must be secured, ideally on a secure server or host.
The corresponding public keys are published within the zone file in the form of DNSKEY
resource records.

The public KSK of the trusted zone is the trusted keyi'r configured in each recursive
server, which should match the corresponding KSK DNSKEY resource record published
in the respective zone file. The resolved data’s signature is validated using the zone’s
ZSK, and the ZSK is signed by and its signature is thereby validated by the trusted KSK.

If this KSK is not trusted, an attempt is made to check if the parent zone is signed or if
lookaside validation is configured. If signed, this parent zone (or lookaside registry) signs
its delegation to the child by signing the child’s public KSK in the form of a delegation
signer (DS) record (or DNSSEC Lookaside Validation, DLV record) in the parent zone.
This delegation in turn is signed with the parent’s ZSK which itself is signed with the

¥ The motivation for this recommendation and discussion of other DNSSEC operational practices are discussed
in RFC 4641 (167).

¥ A trusted key is synonymous with a trust anchor, which is also known as a Secure Entry Point (SEP) into the
DNS domain tree.

268 SECURING DNS (PART Il): DNSSEC

Generate keys Il Ty .- Distribute public KSK
KSK = Key signing key +—9» 4 file —- Sign the zone > to parent zone or
ZSK = Zone signing key resolvers

Figure 13.2. Basic DNSSEC implementation steps (11).

parent’s KSK. Once again, if these signatures are valid and the KSK matches a trusted
key, the resolution is complete and secure. Otherwise, the process continues with the
parent’s parent zone and so on.

The validation process works up the chain of trust to a matching trusted key, which if
found, deems the resolution data validated. Otherwise, it will be considered insecure.

13.3 CONFIGURING DNSSEC

The process of implementing DNSSEC involves creating private/public key pairs,
adding the public key information to the zone file to be signed, signing the zone with
the corresponding private keys, and distributing the public KSK information to either
parent zone administrators or to resolver administrators who trust you and your zone
information. Figure 13.2 illustrates the basic process.

Let’s now illustrate this basic process looking at the mechanics for implementing
DNSSEC. We'll illustrate the process using manual and automated” BIND methods and
utilities (144), which support DNSSECbis today. Microsoft supports DNSSECbis in its
Windows Server 2008 R2 release. We’ll demonstrate the implementation of DNSSEC by
signing the ipamworldwide.com zone file after we review these steps in more detail.

13.3.1 Generate Keys

Our first step is to generate keys that will be used to sign our zone information. BIND
ships with the dnssec-keygen utility which provides a simple command line to
generate a private/public key pair. It even creates the DNSKEY record! To create a ZSK
key pair for our ipamworldwide.com zone, we use the dnssec-keygen command:

dnssec-keygen —a RSA-SHA-1-b 1024-n ZONE —c IN -e ipamworldwide.com
This utility is used not only to create DNSSEC keys, but can also be used to create
TSIG keys and KEY records. The arguments, all of which are optional unless otherwise

specified, within the dnssec-keygen utility include

e -a algorithm: (required) where algorithm for DNSSEC keys may be
o RSA-SHA-1

* BIND 9.7.0 introduced several new key and signature management features to automate many of these steps as
we will describe.

13.3 CONFIGURING DNSSEC 269

o RSA-SHA-256
o RSA-SHA-512

o NSEC3-RSA-SHA-1 (RSA-SHA-1 algorithm with a signal that the zone signed
with this key may use NSEC3)

o DSA (Digital Signature Algorithm)

o NSEC3DSA (DSA algorithm with a signal that the zone signed with this key
may use NSEC3)

o RSA-MD5

e -b keysize: (required) specifies the number of bits in the key. Valid keysizes for
each algorithm are

o RSA-SHA keys 512-2048 bits
o DSA keys. 512-1024 bits, divisible by 64

e -n nametype: (required) identifies the type of key owner. Valid values include
ZONE (default, for DNSKEY), HOST, ENTITY, USER, or OTHER.

e -3: use an NSEC3-capable key generating algorithm (NSEC3-RSA-SHA-1 is
used if no —a argument is specified). RSA-SHA-256 and RSA-SHA-512 are also
NSEC3-capable.

e -A date/offset: sets the activation date of the key. The date/offset field is an
absolute date/time when expressed in either YYYYMMDD or YYYYMM-
DDHHMMSS format (or none to unset) or as an offset from the present time
when a “+” or “—” prefix is used with either of these date formats. When not set,
and —G is not set, the default is “now.”

e -C: option to generate the private key without any metadata relating to creation,
publication, and/or activation dates, which may be incompatible with older BIND
versions.

e -c class: class of the DNS resource record containing the key.

e -D date/offset: defines the date or offset from the present time when this
key is to be deleted from the zone. The date/offset field is an absolute date/
time when expressed in either YYYYMMDD or YYYYMMDDHHMMSS
format (or none to unset) or as an offset from the present time when a “+ " or
“—” prefix is used with either of these date formats. At the specfied time, the
key will be removed from the zone, though it will remain in the key
repository.

e -e: command option to use a large exponent when using the RSA-MDS5 or RSA-
SHA-1 algorithms.

e -E engine: command option to use crypto hardware (OpenSSL engine) for
random number generation as well as key generation when supported. The default
is pkcs11 when compiled with PKCS #11 support or none otherwise.

e -f flag: sets the Flags field in the DNSKEY (or KEY) resource record; currently,
flag=KSK is used to create a KSK (sets the SEP bit in the DNSKEY record);
flag=REVOKE sets the Revoke flag for this key.

270

SECURING DNS (PART Il): DNSSEC

-g generator: specifies a key generator value for the DH algorithm.
-G: generates a key which is not to be published or used for signing.
-h: prints a help summary for this command.

-I date/offset: sets the date/offset when the key is to be retired. The date/
offset field is an absolute date/time when expressed in either YYYYMMDD or
YYYYMMDDHHMMSS format (or none to unset) or as an offset from the
present time when a “+” or “—” prefix is used with either of these date
formats. When retired, the key remains in the zone but is no longer used to sign
the zone.

-k : indicates that a KEY record is to be created, not DNSKEY; deprecated in favor
of the —T option.

-K directory: defines the directory in which the key files will be placed.

-p protocol: sets the Protocol field in the resource record. For DNSSEC, the
default value of 3 is used.

-P date/offset: sets the date/offset when the key is to be published in the zone
file, though not used to sign the zone. The date/offset field is an absolute date/time
when expressed in either YYYYMMDD or YYYYMMDDHHMMSS format (or
none to unset) or as an offset from the present time when a “+ " or “—" prefix is
used with either of these date formats.

-g: quiet mode, which suppresses output, including indication of progress.

-r randomsource: indicates a source or random data such as a file or character
device such as the keyboard.

-Rdate/offset:defines the date when the key is to be revoked. The date/offset
field is an absolute date/time when expressed in either YYYYMMDD or
YYYYMMDDHHMMSS format (or none to unset) or as an offset from the
present time when a “+ " or “—” prefix is used with either of these date formats.
When revoked, the “revoke” bit is set in the corresponding DNSKEY resource
record, though it will remain in the zone and be used to sign the zone.

-s strength: specifies the strength value of the key, though not relevant to
DNSSEC.

-t type: indicates the use of the key to authenticate data (AUTH) and/or to
encrypt data (CONF). AUTHCONF supports both functions, while NOAUTH,
NOCONF, and NOAUTHCONF negate respective functions.

-T rrtype: specifies an RRType to use for public key creation in resource record
format. Valid values of rrtype include DNSKEY (default) or KEY.

-v level: sets the debug level.

keyname: (required) the name of the key, generally the zone name, which serves
as the owner field of the DNSKEY record.

The five date/offset based options are new in BIND 9.7.0 and provide timing meta data
for the key being generated and hence when it is to be used in the zone signing process.
Thus, keys can be staged and rolled through their entire lifecycle, consisting of

13.3 CONFIGURING DNSSEC 271

publication in the zone, use for signing zone information, revocation, retirement, and
deletion. To summarize these options and their use through a key’s lifecycle

-P. Defines the time when the key being generated is to be published in the zone
file, though not used in signing.

-A. Defines the activation time, when this key being generated is to be used to sign
zone data. If this is a KSK and the update-check-ksk option is set to yes, this key
will sign the DNSKEY RRSet only. Otherwise, it will be used to sign all zone
RRSets, allowing for cases where a single zone key is implemented.

-R. Defines the time when this key is to be revoked. This defines the date when the
revoke flag will be set in the corresponding DNSKEY record. This key (with the
revoke bit set) will still be used to sign zone data but resolvers will be on notice that
this key is revoked.

-1. Defines the retire time for the key, after which this key will not be used to sign
zone data, though the key will remain in the zone file.

-D. Defines the time when the key will be deleted from the zone file.

These timing options enable you to define the entire key lifecycle at key generation

time!

An alternative key file generation utility first included with the BIND 9.6.0
distribution allows use of the PKCS#11" API to interface to a cryptographic token
generating hardware device. The dnssec-keyfromlabel utility gets keys from the
cryptographic hardware device and generates the public and private key files. This utility
accepts the following arguments in exactly the same format as dnssec-keygen plus a
new required parameter, indicating the key label.

-a algorithm: (required) same values as dnssec-keygen
-3: same meaning as dnssec-keygen

-c class: same values as dnssec-keygen

-C—: same meaning as dnssec-keygen

-E engine: same values as dnssec-keygen

-f flag: same values as dnssec-keygen

-G: same meaning as dnssec-keygen

-C—: same meaning as dnssec-keygen

-h: same meaning as dnssec-keygen

-k : same meaning as dnssec-keygen

-K directory: same meaning as dnssec-keygen

-1 label: (required) label for keys on the PKCS#11 device
-n nametype: same values as dnssec-keygen

“PKCS#11 is among the family of Public-Key Cryptography Standards published by RSA Laboratories.

272 SECURING DNS (PART Il): DNSSEC

e -p protocol: same values as dnssec-keygen

e -t type: same values as dnssec-keygen

e -v level: same values as dnssec-keygen

e -y: allows creation of DNSSEC key files even if the key ID collides with an
existing key

e keyname: (required)

The meta data timing options discussed above are also supported. Both dnssec-
keygenand dnssec-keyfromlabel return the key name. In our example, the result
was

Kipamworldwide.com. 4 005 + 14522

The format of the key name follows this convention

K (for key)

¢ Keyname (ipamworldwide.com.)

¢ Key creation algorithm (005 = RSA-SHA-1 in this case)
o Key tag or identity of the key (14522)

The key tag provides a convenient way to refer to keys as we’ll see a bit later. Two files
were created by dnssec-keygen or dnssec-keyfromlabel using this name one
with extension . private indicating the private key and the other with extension . key,
containing the public key in the form of a DNSKEY record. In our example, the two key
files were named

Kipamworldwide.com.+005+14522.private
Kipamworldwide.com.+005+14522.key

The Kipamworldwide.com. 4+ 005+ 14522 .private file contains the
private key details including the format, algorithm, modules, exponents, primes, and
coefficient values such as that shown below for the output of the dnssec-keygen
command (blank lines inserted for improved readability).

Private-key-format: v1.2
Algorithm: 5 (RSASHAL)

Modulus:

x6QAwJiz6hHa/eUI2pGz6rvwEYpJdilTJH8Uj41DPTmzseCOgFEqB3/dZB0Q
5LEsl1ZetAJJEk4F+WccRKwanIcGkvIKETC8hn+tgbiBAnadQRFLxNMBs6KB0e+
ygqiNK60sbrn22F8AYRiG3n2rTOndVtkaZep9jbcCgfu/DagBl0=

PublicExponent: AQAAAAE=

PrivateExponent:

CWhegbbkIx3kRIa7NyDbdwZYGA83uBtdfnBTu8QyV8/h419T3fyWrWfKodwi
Vys9glOXmumwy/hSImZJJrzxS6SVwaM/iEunsyyiHedeVKiMeYV101vJ3+
OweKy/59y3drJS+gAm+cbtrhiWzheXtzgR78wp2IK+4kHAhZTCYGAE=

13.3 CONFIGURING DNSSEC 273

Primel:
8YuU4sicmKmub5Cz4IUJvE2kQit5pJPV3yUK04nPz9POMJIFKyCIAdsw2A5HORN3++
I5BtDjeQxkD0aFGA4SOfKXQ==

Prime2:
05ZzyiaiZzK1JgQMCgT97 7NZkEuKgXI4seTUL1Wu7Z/FRs/7xHE40SJrx7siwLOx
WJKcc4Fo+4erVRHioiOadhAQ==

Exponentl:
Hpylz37UsfdONCV7Kd/8xu07Ps1lhtbX7EFVGRNo/dOrWNpS5p64hVhF5tbnNBVz
ZHRQ+5IZzwMfQ3A3+GjY8QQQ==

Exponent2:
Jfw+s9zt8uVMwubwowwx0sjX32GO3VrSPk68+CisiAVXYS8EATOqvpYps6Vz+
rJNnnk45urnlgbDbWCx2 tugyAQ==

Coefficient:
uUC/aKgEvOQymCmMukC4ExTm/71y2w31V/NMOF2GzC7£clgYvDZEOX6YNnz5€e8
PRD2bQXCTgsMorRs7PJYI2Cg==

The Kipamworldwide.com. + 005414522 . keyfileisabiteasier to digest,
containing our DNSKEY resource record

ipamworldwide.com. IN DNSKEY 256 3 5
BQEAAAABx6QAWJiz6hHa/eUI2pGz6rvwEYpJdi1TJH8Uj41DPTmzseCO
gFEQB3/dZB0Q5LEs1ZetAJIEkAF+WccRKwanIcGkvIKETC8hn+gbiBAnN
adQRFLxNMBs6KB0e+ygiNK60sbrn22F8AYRiG3n2rTOndVtkaZep9jbc

Cagfu/DagBl0=

The interpretation or format of the DNSKEY resource record is depicted below.

Owner TTL Class Type RData
Zone name TTL IN DNSKEY Flags Proto Alg Key
ipamworldwide.com. 86400 IN DNSKEY 256 3 5 BQEAAA. ..

The owner field defines the zone name. The RData consists of the following subfields

e Flags. Indicates that this key is a zone key (value =256). Currently defined
values for the Flags field are as follows. Using the decimal values below, we can
see that a ZSK will have a flags value of 256, while a KSK will have an odd value,
likely 257.

o Bit 7. ZSK (Decimal = 256)

o Bit 8. Revoke Signature (Decimal = 128)

o Bit 15. KSK or secure entry point (SEP) (Decimal = 1)
o Other bits. Unassigned

» Protocol. Must have a value of “3” indicating DNSSEC (this is the only value
currently defined).

274 SECURING DNS (PART Il): DNSSEC

o Algorithm. Defines the algorithm used in key generation. Algorithms currently
supported are encoded as follows

o Value = 1. RSA-MD5, which is not recommended according to RFC 4034.
o Value =2. Diffie-Hellman
o Value = 3. DSA-SHA-1
o Value = 4. Reserved for Elliptic Curve
o Value =5. RSA-SHA-1, which is mandatory according to RFC 4034.
o Value = 6. DSA-NSEC3-SHA1
o Value =7. RSASHA1-NSEC3-SHA1
o Value = 8. RSA-SHA-256
o Value = 10. RSA-SHA-512
o Value = 12. GOST R 34.10-2001
o Value =252. Indirect
o Values 253-254. Private
o Values =0, 255. Reserved
o Other values. Unassigned
e Key. The public key (ZSK or KSK).

We can now repeat the dnssec-keygen command, this time using the —f KSK argument,
along with a longer key size, to create our KSK pair.

dnssec-keygen —a RSASHAL -b 2048 —n ZONE —c IN —e —f KSK ipamworldwide.
com.

The command line response to this command is the key pair name, Kipamworld-
wide.com. +005406082.
The resulting DNSKEY record was created

ipamworldwide.com. IN DNSKEY 257 3 5
AWEAAJSAWGOUBhtjpE8GLGN4ryt8yEq71DgdE+1ij3boe91lmvpM02YZ1/
AQxOHbyATNgRr+8dsTM80rF2yFRbcP1y0/9g37TOPgxL5HJAZ8HrDOWI
R/pC3XyRe9pMzRNrdas+c/xEISfhxzvR84CndF5XvFeh3H0kVDeTb+7Q
RrG7hnph4P8w4SMg76tBvxHLEFm])30dP8vIUpRAnexEAdclamj1lZSPjLc
dICzpDvQB/LLsYxx8wx2h0vTvhxZklgqmyldPBtIZu2A551VIrU0xgCJx
DjJGCgBbrplCO01ltYSdglAlI2HCL8eV7io/CxnCuSThP1XaPLySojJpXU
gDomWgVY¥eo0=

Notice the Flags field value is 257 for the KSK versus 256 for the ZSK due to the
setting of the SEP flag. We’ll refer to the KSK by its keyid = 06082 (from the generated
key name) and the ZSK by its keyid = 14522.

13.3 CONFIGURING DNSSEC 275

13.3.2 Add Keys to the Zone File

Before we sign the zone, we need to include our two DNSKEY resource records within the
zone file. Since the key files contain our DNSKEY resource records, you can either cut
from the file and paste into the zone or simply use a SINCLUDE statement for each file

SINCLUDE Kipamworldwide.com.+005+14522.key
SINCLUDE Kipamworldwide.com.+005+06082.key

Don’t forget to increment your serial number too. It’s a good idea to run named-
checkzone first, before signing the zone with the dnssec-signzone utility.

13.3.3 Sign the Zone

The zone signature process utilizes another BIND utility, dnssec-signzone, which
performs a number of functions to sign the zone. First, it canonically orders the resource
records within the zone. This essentially alphabetizes the resource records within the
zone. This facilitates grouping of resource records with common owner name, class, and
type into resource record sets (RRSets) for signature application. The other reason for
canonically ordering resource records is to identify gaps between RRSets within the zone
file and population with Next SECure resource records, which provide authenticated
denial of existence of a given resource record within a zone. An NSEC3PARAM resource
record must be present in the zone file to generate NSEC3 records during the zone
signature process.

After canonical ordering and insertion of NSEC[3] records, dnssec-signzone
signs the RRSets within the zone file, including DNSKEY RRSets (previously
$INCLUDE’d in our example) and NSEC[3] RRSets. The signed zone file contains
the original RRSets, canonically ordered and signed with resource record signature
(RRSIG) records. The file also includes an NSEC[3] record and its corresponding RRSIG
record for each RRSet within the file. The only records not signed within the zone file are
NS records for child zones. The child zone is authoritative for this information, not the
parent; therefore, the parent does not authenticate their accuracy.

Fortunately the dnssec-signzone utility performs all of these steps automat-
ically canonical ordering, NSEC[3] insertion, and RRSIG creation and insertion to
render a signed zone. Here’s the dnssec-signzone command we’ll use to sign the
ipamworldwide.com. zone.

dnssec-signzone -k Kipamworldwide.com.+005+06082 -1 dlv-registry.
net -g -o ipamworldwide.com. -t db.ipamworldwide.com Kipamworld-
wide.com.+005+14522 . .key

The arguments within the dnssec-signzone utility include

e -3 salt: generate an NSEC3 chain when signing this zone using the specified
salt value. The salt is specified in hex and a dash (-3 -) indicates that no salt
should be used when generating the NSEC3 chain.

e -a: verify all generated signatures.

276

SECURING DNS (PART Il): DNSSEC

-A: set the OPTOUT flag on all NSEC3 records when generating an NSEC3
chain, and do not generate NSEC3 records for unsigned child zones (insecure
delegations).

-c class: class of the DNS zone.

-C: compatibility mode with older versions of dnssec-signzone; generates
—zonename keyset in addition to dsset-zonename upon signing the zone-
name zone.

-d directory:look in the specified directory for the dsset or keyset files to sign
the zone.

-e end_t ime: specifies the date and time when the generated resource record set
signature records expire. The end_time may be specified relative to the current
time using + N, where N is the number of seconds from the current time, or in
absolute time using the format YYYYMMDDHHMMSS in Coordinated Uni-
versal Time (UTC). When this argument is omitted, the default end_time is 30
days from the start_time by default (see —s).

-E engine: command option to use crypto hardware (OpenSSL engine) for
zone signing using keys from a secure keystore when supported. The default
engineis pkcsll when compiled with PKCS #11 support or none otherwise.
-f file: specifies the name of the file of the signed zone. If omitted, the default is
the current zone file name appended with signed.

-g: indicates that delegation signer resource records, which authenticate signed
child zones, should be created; the resulting ds-set keyset can be provided to the
parent zone’s administrator for inclusion in the parent zone for signature.

-h: prints help summary of this command.

-H iterations: when generating an NSEC3 chain (when specifying the -3
option), use iterations iterations.

-1 interval: when resigning a zone (passing a previously signed zone in as
input), the interval specifies the time interval from the current time for which any
signature records expiring before the interval will be regenerated. Thus, if
signature (RRSIG) records are set of expire within five days and the zone is
resigned with an interval of six days, the signature records will be regenerated;
otherwise, the current signatures will be retained.

-I input-format: defines the input-format of the zone file to sign, either
text (the default) or raw. Setting this option to r aw facilitates signing of raw zone
data, which includes dynamic updates and thus adds little value for static zones.
-J jitter: enables specification of a window used to randomize RRSIG
signature expiration times to reduce the impact of several simultaneous expira-
tions, each of which would require signature regeneration when the signed zone is
passed for resigning.

-k key: the key specified is a KSK; multiple -k arguments may be provided.
-K directory: defines the directory in which the key files are located.

-1 domain: generate a DLV keyset file; this keyset can be registered with the
DLV registry to validate “delegation” for this zone.

13.3 CONFIGURING DNSSEC 277

e -nthreads: specifies the number of CPU threads to use when performing this
operation.

e -N serial-format: specifies the format of the SOA record serial number of
the signed zone to either

o keep: do not modify the serial number of the zone file input.

o increment : increment the serial number in accordance with RFC 1982 serial
number arithmetic.

o unixtime: setthe serial number to the number of seconds since epoch (since
midnight UTC January 1, 1970 not counting leap seconds).

e -0 origin: specifies the zone origin for the zone being signed.

e -0 output-format: specifies the output-format of the signed zone as
either text (the default) or raw.

e -p: use pseudorandom data when signing the zone, which is faster but less secure
than using real random data per the —r argument.

e -P: disables the default postsigning verification tests, which include verifying that
avalid nonrevoked KSK exists for each algorithm in use, that all revoked KSKs are
self-signed and that all records in the zone are signed for each algorithm.

e -r randomsource: indicates a source of random data such as a file or character
device such as the keyboard.

e -s start_time: specifies the date and time when resource record set signature
records (RRSIG) become valid. The start_time may be specified relative to the
current time using + N, where N is the number of seconds from the current time, or
in absolute time using the format YYYYMMDDHHMMSS in Coordinated
Universal Time (UTC). When this argument is omitted, the default start_time
is 1 h prior to the current time to allow for clock skew.

e -S: “smartsigning” leveraging key meta data, configured using the timing options
of dnssec-keygen; searches the key repository for keys matching the zone being
signed, includes them within the zone file in accordance with respective meta data
and timing then signs the zone. Keys where the current date is past the activation or
revocation dates but prior to retirement or deletion (or if no meta data exists), are
used to sign the zone; keys where the current date is past the publish date but prior
to other dates are published but not used to sign the zone.

e -t : print statistics upon completion of the signature process.

e -T tt1: defines the TTL value to use with DNSKEY records imported into the
zone file from the key repository (if the TTL is not specified on any extant
DNSKEY records in the zone), as part of smart signing (see —S).

e -u: update the NSEC[3] chain within the zone; also enables switching from a
NSEC chained zone to an NSEC3 chained zone and vice versa depending on the
presence of the NSEC3PARAM record in the zone file.

e -v level: sets the debug level.

e -x: sign the zone’s DNSKEY RRSet with KSKs not additionally ZSKs.

278

SECURING DNS (PART Il): DNSSEC

e -z : ignore the KSK flag (SEP flag bit) when determining what to sign; that is, use

the KSK [and ZSK] to sign zone RRSets.

e zone_file: the name of the zone file to sign.

e key: the keys to use to sign the zone data.

The output of the dnssec-signzone utility is the signed zone which uses the same name
as the original unsigned zone, concatenated with a “.signed” suffix. Following our
example, you can see below that the db.ipamworldwide.com.signed file is much larger
than our original zone file. Consider our initial db.ipamworldwide.com file prior to

signing
$TTL86400

ipamworldwide.com.

dnsadmin.ipamworldwide.com. (

204 ; serial

3H ; refresh

15 ; retry

lw ; expire

3h ; minimum

ipamworldwide.com.

1D IN SOA extdnsl.ipamworldwide.com.

86400 IN NS extdnsl.ipamworldwide.com.

86400 IN NS extdns2.ipamworldwide.com.

86400 IN NS extdns3.ipamworldwide.com.

extdnsl.ipamworldwide.com

86400

extdns2.ipamworldwide.com.

86400

extdns3.ipamworldwide.com.

86400

eng.ipamworldwide.com. 1w

1w

nsl.eng.ipamworldwide.com.

nsl.eng.ipamworldwide.com.

SORIGIN ipamworldwide.com.
1D IN MX 10
1D IN MX 20

. 86400 IN A 192.0.2.34

IN AAAA 2001:db8:4af0:2010::

86400 IN A 192.0.2.42

IN AAAA 2001:db8:4af0:2011:

86400 IN A 192.0.2.50

IN AAAA 2001:db8:4af0:2006::

IN NS nsl.eng.ipamworldwide.com.
IN NS ns2.eng.ipamworldwide.com.
lw IN AAAA 2001:db8:4af0:2007::
lw IN AAAA 2001:db8:4af0:2009::

smtpl.ipamworldwide.com.

smtp2.ipamworldwide.com.

:11

13.3 CONFIGURING DNSSEC 279

WWW 1D IN A 192.0.2.37
1D IN AAAA 2001:db8:4af0:2010::25
1D IN A 192.0.2.53
1D IN AAAA 2001:db8:4af0:2006::5
w3 1D IN CNAME www.ipamworldwide.com.

smtpl 1D IN A 192.0.2.36

1D IN AAAA 2001:db8:4af0:2010::1b
smtp2 1D IN A 192.0.2.45

1D IN AAAA 2001:db8:4af0:2011::2b
ftp-support 1D IN A 192.0.2.44

1D IN AAAA 2001:db8:4af0:2011::2c

SINCLUDE Kipamworldwide.com.+005+14522.key
SINCLUDE Kipamworldwide.com.+005+06082.key

Contrast this with the signed version:

ipamworldwide.com. 86400 IN SOA extdnsl.ipamworldwide.com.
dnsadmin.ipamworldwide.com. (

204 ; serial
10800 ; refresh (3 hours)
15 ; retry (15 seconds)

604800 ; expire (1 week)
10800 ; minimum (3 hours)
)

86400 RRSIG SOA528640020100305135354 (
20100203135354 14522 ipamworldwide.com.
0QS+AaES57+ffRfz+SaMHOJI6b412bNnsSDIK
mIIMdmXOw8cylCMieaUBz8ek64FyMWLGh2c5
HogVxtt7s9cHICosxghgZNXYT7GP+YpRRVO4
uCGggbuogCpgjlL39tanSQlda8pT5a6DRCIJ
fgsSS5ubrmA/20cc02c15XFT1Aik=)

86400 NS extdnsl.ipamworldwide.com.
86400 NS extdns2.ipamworldwide.com.
86400 NS extdns3.ipamworldwide.com.

86400 RRSIG NS 5286400 20100305135354 (

280 SECURING DNS (PART Il): DNSSEC

20100203135354 14522 ipamworldwide.com.
gqVdOx6s9IAL4YWz2hPB1Q5aVNPcPbIsREenD
PP/7GyXbQKxAdDDugaWPHOKEVPAOf1SBWomZ
h4pGOKJaA5Pk90kF3FkHLHCITFVGEhTEdArV]
Dk6a8eRNoU+CMHWwmf JtNFpYpVVd6ChlLWdw
Z2J27Z80HZrHtwZ8XmubPzu8MZ1E=)

86400 MX 10 smtpl.ipamworldwide.com.

86400 MX 20 smtp2.ipamworldwide.com.

86400 RRSIG MX 52 86400 20100305135354 (
20100203135354 14522 ipamworldwide.com.
dR4kJtp5DyvCHTE7+uCN1oKCRNVx5jM/X0d9
HS5F70hnDUIgPWKYnuCbL3PBhx1iK90nrrLlg
ZVvEuUTAvifzzax4n8CSPCBOChbrMWWUXQ44vKG
TOWOLwzQKJIX1PGHzGiG+6dktfgOnBgppXekA
QWBJA6NOAeGKtgQOMtKUa75ugs2yY=)

10800 NSEC eng.ipamworldwide.com. NS SOA MX RRSIG
NSEC DNSKEY

10800 RRSIG NSEC521080020100305135354 (
20100203135354 14522 ipamworldwide.com.
WyZ14AduBUWAEDO1Ckc+I0OnSArek5n3r6rKX
m26H5Sjow/RSpgmPJIfGOH/ 9gj yEwnGogrKbh
557kxtnvF3xVYFE1I£7zv5bHxSvBgMDgdNXg
ChY9BJ9k0emQO0L7NlpreadXfyVXBthl5jaPC
VKLSWAJmNAzbtV4f6S+CIDK288w=)

86400 DNSKEY 256 3 5 (
BQEAAAABx6QAwWJiz6hHa/eUI2pGz6rvwEYpd
di1TJH8Uj41DPTmzseCOgFEQB3/dZB0Q5LEs
1ZetAJJEk4F+WccRKwanIcGkvIKETC8hn+gb
1BAnadQRFLxXNMBs6KB0e+yqiNK60sbrn22F8
AYRiG3n2rTQndVtkaZep9jbcCgfu/DagBl0=
) 5 key id =14522

86400 DNSKEY 257 35 (
AwWEAAJSAWGOUBhtjpE8GLGN4ryt8yEqg71Dgd
E+1j3boe91lmvpM02YZ1/AQx0HbyATNgRr+8d
sTM80OrF2yFRbcP1y0/9937TO0PgxL5H]AZ8Hr
DOWIOR/pC3XyRe9pMzRNrdas+c/xEISfhxzvR

13.3 CONFIGURING DNSSEC 281

84CndF5XvEFeh3H0kVDeTb+7QRrG7hnph4P8w
45Mg76tBvxHLEFm])30dP8vIUpRAnexEAdclam
7J1ZSPjLcdICzpDVvQOB/LLsYxx8wx2h0vTvhxZ
klgmyldPBtIZu2A551VIrU0xgCJIxDjJIGCgBb
rplCO01tYSdglAlI2HCLB8eV7io/CxnCuSThP1
XaPLySojJpXUgDomWgVYeoO=

) 7 key id =6082

86400 RRSIG DNSKEY 52 86400 20100305135354 (
20100203135354 14522 ipamworldwide.com.
VObEWZmY560rGQb02B/Pf17RACFyPZAVPT/W
Rm/+nluSOYMVgdzRaKM/ae47KslioXm3tNcy
GF3uBvBqgl7xPzIOuly3COoorXmbsshbuANo7
Y£QsyXWuX2BIjjLAVRRLQo1VcdDyyleoAOET
BebPM+fQQtvN2C2IjrcacdyeUlc=)

86400 RRSIG DNSKEY 52 86400 20100305135354 (
20100203135354 6082 ipamworldwide.com.
e8jCEVY6C1l1SImGg]jgzVWAgp7cC4AWuntEve
oCCO+2BwGxe7+zxP2r02CCSOCIrTgtgwpNRA
5aH4xBrYmZhOIFQ70xTFSGBvQ4DxC8ZDdQVS
uTYCBSzN7kXRJZopZv3chhf7/9uyz3gqtQnl
S5RyUVATMOG5eu+ewBFgGIsXJv5XMNG7Z2TO15
rtRd8zF/7MIY7T1SbHULGP70JxcNFtyt8wnc
/dObfcxril4dtOwLPVF4QnLnLxAHvAWt+QPVQ
z23WIcO0U+rgbU6FsSjoi0U20Q0AxVFebenTJED
U29juAdqEES8I1Y900vVNQVtYFFjXFgilvDLGCG
zM81i4£fI9uGZUHvzKng==

nsl.eng.ipamworldwide.com. 604800 IN AAAA 2001:db8:4af0:2007::7
ns2.eng.ipamworldwide.com. 604800 IN AAAA 2001:db8:4af0:2009::12
eng.ipamworldwide.com. 604800 INNS nsl.eng.ipamworldwide.com.

604800 INNS ns2.eng.ipamworldwide.com.

10800 NSEC extdnsl.ipamworldwide.com. NS RRSIG NSEC

10800 RRSIG NSEC5 310800 20100305135354 (
20100203135354 14522 ipamworldwide.com.
dWwYOrZRfW5aYgBsbRuCxot6CGGG8hfgHId7
84IZIYi9HHgr02saBdlzmzqJCGreOpGSDBvE

282

extdnsl.ipamworldwide.com.

86400 RRSIG

86400 AAAA
86400 RRSIG

10800 NSEC

10800 RRSIG

extdns2.ipamworldwide.com.

86400 RRSIG

SECURING DNS (PART Il): DNSSEC

ZpJP1BVUS1INuMycEBFBUIS8IUASDTxcLGjxrT
169vIgiyXjICzrsu2fzKL1ONwUOFMGiedglh
17kUJ1JKKs9yrdXFZBwP/y80poQ=)

86400 INA192.0.2.34

A 538640020100305135354 (
20100203135354 14522 ipamworldwide.com.
IwNfRz7m6Rneh6hpacdIpTHGRftsU8e9310P
bjCODEfwI2DXn51uHghiCoE+rrO4zK1wYFP5L
CoKF43whVX1EXOt7UFGuAebr4587DnDghKol
9XivKc35HvPz1lErniZHuUIsZCijvuziwvGIXS
72PkoHzNw/lxv+nDriemFn7tWxE=)
2001:db8:4af0:2010::a

AAAA 5 3 86400 20100305135354 (
20100203135354 14522 ipamworldwide.com.
aNzJgdLi4DTttIUj+Y+9FLI2eAu5iRX9yewN
JjvFG3aJd4moO4 fWwhKFynltcfJFpKjHyg4eCD
PamIS/9fDON80dX1g8CkfKNQIszUoAkhSQXH
6avkoljwgP0lgHwjRNhdcW2UuE+pjyvgN1TW
Z0gb65nR+UjSIQOXROnHpyhyD+nk=)

extdns2.ipamworldwide.com. A AAAA RRSIG
NSEC

NSEC 5310800 20100305135354 (
20100203135354 14522 ipamworldwide.com.
1pB8e08GLPVbCCzUF6ETXBiXsRXZiWu8y2lz
uEoxJIn+3T9dYXFEFFpdyj50nhl/gnvwpclmP
sFyg0+P5mNziX0/Aj3LOF2HIMnQOxT34dQdJb
Ze/6KBJIZO6KZXwXrQXxVGrbFHY9xY5Q0gfs4
J2MUAZBO74KWOVZKUzLUczgrwhI=)

86400 INA192.0.2.42

A5 386400 20100305135354 (
20100203135354 14522 ipamworldwide.com.
ax6Umlog3DSn+KxIQSvbQjESICwua¥YZ+GOyT
NHOIwVOrV4cjP7LA2Pc2p7bQjwoTMkXK5uoU
0r8Mnd7/boJyQUrBF62pbhOqJd9mKbvrYDlud
SivEiDnxAvO0FTwagCe22Vvd3DNTjXUhizBt7
D1TIbA921SCiNHgeFT/01jgcW+z0=)

13.3 CONFIGURING DNSSEC 283

86400 AAARA 2001:db8:4af0:2011::11

86400 RRSIG AAAA 5 386400 20100305135354 (
20100203135354 14522 ipamworldwide.com.
aQ00ipvwjtASODZiXJoTot91iPAToIS5rgrkMD
1XRNimxuT/ED0+S940Ug5rA5a/XS80aDFSyD
ugLIVIiZC4Zd5jHazPxEjJR7YyJ0sx8kIy5Q
85LBJQhVsiADcoKz7NZ8TRFzSEGONKMLVYIx
kVx8JpJcGWLeXBekk5J460eacfE=)

10800 NSEC extdns3.ipamworldwide.com. A AAAA RRSIG
NSEC

10800 RRSIG NSEC 53 1080020100305135354 (
20100203135354 14522 ipamworldwide.com.
J8382DSNwUcOM2dd2vPzkT1OnjxrrTeKIWH2
h13hjbH3xrl18WLQOdJQiqipXapXSKGX/57+C8
EO+OBbsgNMpwf+bNhxdnJazB7elYdk7KI8Xp
TmpyVI9zRTJIJr3U316pw2GjaCMkBDw8JD1+6w
LJjib4JgHg3pDswvobShXxpnezk=)

extdns3.ipamworldwide.com. 86400 INA192.0.2.50

86400 RRSIG A 538640020100305135354 (
20100203135354 14522 ipamworldwide.com.
a6IvVQOXfc0UgsIfCJIA/yGDvPAXUrXH2HJIZS9
h/DGEIdu3zZBNcEwtKVvd4iph/rHXknX2Ito2m
4/10LtvFdriZihbpIERCatl45ySxhvugbzlb
EAJEWalkixmPoOtXZ+pAS+7cLCxkodr5Np2t
f9Ppdv5bx4/a9BfM8abrUwrT988=)

86400 AAAA 2001:db8:4af0:2006::9

86400 RRSIG AAAA 5 386400 20100305135354 (
20100203135354 14522 ipamworldwide.com.
AMeurMSeauKG/w0KSgo9tKWToMDXEOtArCmu
13VKDUDN22Y7yfIUX+nwcUJuLRU4tLfeiLBT
E8IIjsJ3Qu9SQmCBB/4VCH]jNax98c4+/RBym
M9sKuprQKOMEzV5kgqYyHdVuPEFzSWCp0QXCO
AWrWGWfk030XS603+ggK3hHnAsQ=)

10800 NSEC ftp-support.ipamworldwide.com. A AAAA
RRSIG NSEC

10800 RRSIG NSEC 5 310800 20100305135354 (

284 SECURING DNS (PART Il): DNSSEC

20100203135354 14522 ipamworldwide.com.
nfQMcp6s2IyVItiCmb89DiSKYmdurlBoONx3
0IQYcoMvZVVXMadynCog31KdebjhGriW8e6NG
c5SyPYrBzjwlNVEPIrIlmNoVN2EEBgquPY1luC
z9fO0M5N534yThP01yCsjee7FpIXGKYObhb5+
15wLH1ONrIpLJEAW30oWsXNPxkhQ=)
ftp-support.ipamworldwide.com. 86400 INA 192.0.2.44

86400 RRSIG A 538640020100305135354 (
20100203135354 14522 ipamworldwide.com.
umyIYTUI2YaFXcRpIxXATrAK7YnOz/PCbzOSF
XJLLOCLNzmtdPEVEW71090eC8C+R3WEfYafhV
aWiT/BYPbwqvxHaxRWFJ7hIO87n5PHfAHXYE
dIrl1l1LZO5f0IKK80IgawlyHbE/XeqYHVeZpY
zJSGGMBiyTI/VGKluudl7+/EDh4=)

86400 AAAA 2001:db8:4af0:2011::2c

86400 RRSIG AAAA 5 3 86400 20100305135354 (
20100203135354 14522 ipamworldwide.com.
A437iBaDMIhLI9KtgP2uE2iG+sn5SZBVhgK9Q
ChRRO512pZJ5WGPip0KjgcIxaVnMbbBuyM7v
1zW6G1PerBwtbaX/z1i2YnW+0O0XyBYG1XjXPC
bHIM3I7Z207WgHD/I4jrHZVQczUDSMZCJIQBIK
zEY1Tt+sud4K6EIfxw3uBlrheAAc=)

10800 NSEC smtpl.ipamworldwide.com. A AAAA RRSIG
NSEC

10800 RRSIG NSEC 5 310800 20100305135354 (
20100203135354 14522 ipamworldwide.com.
v/LRbW7drv03r+F5Xasqz2bjdGXQ7VP6kvOa
gt3s/gT5W/c8aLfTeA31lmwwEk3DrNEBIU+MV
XE9YdI1iLySu8J07hF9qJfSiCSIkZgmf5UDZ
BUUK1ifIXZVRHUy8uD2pXP3btZOrhRICXUS0E
EfrvaGv7++yC+IhRIN7pbg+WEUO=)

smtpl.ipamworldwide.com. 86400 INA 192.0.2.36

86400 RRSIG A 5386400 20100305135354 (
20100203135354 14522 ipamworldwide.com.
1SISPwoCpLdSEfWFFJhfuASY72DoA06dMPALC
5vhRIWQfoUbisWrGt29z7r7S7XYIwgRARURO

13.3 CONFIGURING DNSSEC 285

JDUSe93z7Tzbjx04UPDbuheFDYI7r+vDXL]2
cQgKT4gPJ6UCi2kawWaVbAzPz+ZzV2gfxJfc
fsjARBS5rbNDk1BOO6IDI3pfPYhO=)

86400 AAAA 2001:db8:4af0:2010::1b

86400 RRSIG AAAA 5 386400 20100305135354 (
20100203135354 14522 ipamworldwide.com.
Jap9zaU4gWexHzXmtkK8NtCKGUCE /AdPE+/d
yWJIC5PG7C1i1dQsxCIhbvgLHdQOYfFMN5nvd
abt3fybBoTtbNATZeBgFDalMnF3IBzyhChA+
0DC1R27LGk71y0Z525q055ZgROpkBbML309%k
M7Y+Lx+nM3j44zj6YoUDsAUVPls=)

10800 NSEC smtp2.ipamworldwide.com. A AAAA RRSIG
NSEC

10800 RRSIG NSEC 5 31080020100305135354 (
20100203135354 14522 ipamworldwide.com.
x1Y1FJQBUhSOTB/T7nrntcaB7x96AK+AAJZT
787XIryUwgbboDkASMOGNxAoL6nurtbi3+6£
GLDOG4HYLsEmJlamw9+IANmlu2yLsg5g2viL
lymroIOAlpeXNptDevgZ5+CiRiIRKkNwO+BZ1
YCrdNJTBUo8pYfZDxdBpihi87EU=)

smtp2.ipamworldwide.com. 86400 INA 192.0.2.45

86400 RRSIG A5 38640020100305135354 (
20100203135354 14522 ipamworldwide.com.
a+gqfAnPTIcI7nBNRhg6BDZrFuQvBbiLZUPXA
kSXeLNkwtK5bodr+3j0nzQqUFsCvHw/Gj2FH7
7TL2ROcDto0QHE9WwKy3AjJNtvRGg/GK54u02v
A4NEx8C0sgIlyWPkICONbndp4bE2zV1r304Wr
UKAGYtD/ZMv79vhB8ASLKyfS+yM=)

86400 AAAA 2001:db8:4af0:2011::2b

86400 RRSIG AAAA 5 386400 20100305135354 (
20100203135354 14522 ipamworldwide.com.
jOrvFnE/4JqFSfléb/GR83j2hv/B+4Xmus1CM
4P2D6YRYGNhZCeOw4DY3U9fGsg+B8gZii7U+
Rc9Qe8RyzV+wu8gy+65uvbS19sb6zfGOrOp2
P+ZsAyTR0ZtPjzEdAMLATIJdead4LdAgUO9IgNo
Q5ro79H9GAHptAwW2epa+lXAptwe=)

286

10800 NSEC
10800 RRSIG

SECURING DNS (PART Il): DNSSEC

w3.ipamworldwide.com. A AAAA RRSIG NSEC
NSEC 5310800 20100305135354 (
20100203135354 14522 ipamworldwide.com.
gKXAbEocdwlnPIo9YtwLwOatBlamwpQTEM+e
rKjgibrjYPlymBiRwOs81lnrfXxCbv6v3ix6Q
IQcQrzKPugVEaIxUlokggHOLsXYwgbixppQX
LenlzOWEmdv23Z26njQrdR+DmF6aQZzP1UaiTn
SPtE26w59Ulrtcyhm2p0vgic518=)

w3.ipamworldwide.com. 86400 IN CNAME www.ipamworldwide.com.

86400 RRSIG

10800 NSEC
10800 RRSIG

CNAME 5 3 86400 20100305135354 (
20100203135354 14522 ipamworldwide.com.
PTRpKmkZhBwl8clZscxI1CL7P23fYgZBsEX9
DKrawjkyMZ5B+EqQaGNdsfgvmvirrcxCzv/K
MaMaeWBGI4Bb9gykm72thXneud5gHi5zLjsK
4uK/r3EdWcurQ89R44Q7pTUOy4yzCdpH/KDE
Qjd6P/JrWLNO/WWOgxurwHPFiBE=)
www.ipamworldwide.com. CNAME RRSIG NSEC
NSEC 5 310800 20100305135354 (
20100203135354 14522 ipamworldwide.com.
WO0jcsvdSJIfLuJd6l7fAUdEnat9fd450E6to07
GHwkjRPWm1Q9C83WOBgcl61lgZ4ir/gqlZKoE6Db
FvFOIIxz4NhPiJVb2bUbSL6A1KOvwD4KUGL4
ExKfuPM16/gLOE/Tgczcp/2ETXm5yksOkoPJ
ynOMoLpBIyNl1HeJwtPBaH1lbE+BO=)

www.ipamworldwide.com. 86400 INA 192.0.2.37

86400 INA
86400 RRSIG

86400 AAAA
86400 AAAA
86400 RRSIG

192.0.2.53

A538640020100305135354 (
20100203135354 14522 ipamworldwide.com.
xJwhHWIy25a0vLP2E1y9%9aaN6GRcGUxoN40+P
eZ0Wc05z731Du601Z0CXivrbIOP4LVST7TpgMX3
bg4SQDmzmRDQOH/+Q8Fzxbf1UFQNcVB2uhtV
6R8DENwWRwIugoL+33gE2MOrrxWzl6JutI2go
vkYogNgDj1MNiiKkoGgmJQmiHYc=)
2001:db8:4af0:2010::25
2001:db8:4af0:2006::5

AAAA 5 3 86400 20100305135354 (
20100203135354 14522 ipamworldwide.com.

13.3 CONFIGURING DNSSEC 287

1RoCDp+0y/HM/xyEdciqO5cDWcRzxmQCwPbs
GKrCe+0OoYHfTFnSBCAEReY4 tneb/HMwYbgxV
SRpS5oW2FPDi5GZunL7tLp7gF0tF7MOX1JVmi
9PDg9wiNzDxw/CgbsN/wbtsRpgbPxQwkACiP
eRsNDL3Y5EAxLi24yFw+QayouEc=)

10800 NSEC ipamworldwide.com. A AAAA RRSIG NSEC

10800 RRSIG NSEC 5310800 20100305135354 (
20100203135354 14522 ipamworldwide.com.
auNzMg6x34+oradbjFKoQqukKmB8sAmKg44FF
8FCuh7FI/mrKNHVuv1YmVNXNK/ZHA1JpVYzH
fpedKxPGh8IcDftEfgqd52Z0LsetYeRvxNzxQ
SsAS+0zClCIiTiEpUNte6siExj7YvhB1PN4e4
pnkzTKPULWat489Juzo2U77XysA=)

Needless to say, signing a zone increases its size tremendously! It also increases
resolution packet sizes, given the extra RRSIG and NSEC information with each RRSet,
not to mention the potential for additional message traffic to validate the chain of trust
back to a trust anchor.

Referring back to our discussion of the digital signature process, the original
resolution data is of course the “data” from Figure 13.1 to be signed. The data actually
consists of the entire RRSet which is hashed then signed using the private key of the key
pair. The resulting signature comprises the signature field of each RRSIG record. Thus, at
the beginning of our signed file, we have our original SOA record, followed by its
corresponding signature (RRSIG). Then our three NS records are listed. This RRSet
comprised of these three records is signed per the following RRSIG record. Likewise,the
MX RRSet is listed and signed. Notice the RRSIG records indicate signature using the
ZSK, per the key tag field value of 14522. The DNSKEY RRSet is itself signed by both
the KSK and ZSK as evidenced by the two RRSIG records with respective KSK and ZSK
key tags. Usually the KSK only signs the DNSKEY RRSet with the ZSK signs all zone
RRSets. Notice also that the ns1 and ns2.eng.ipamworldwide.com glue records are not
signed as these records are authoritative in the eng.ipamworldwide.com zone, not the
ipamworldwide.com zone.

The NSEC record listed next provides a canonical ordering of records to identify and
authenticate a negative answer for a non-existent resource record. This particular record
indicates that the next owner is eng.ipamworldwide.com. This NSEC record also is
signed. Each of the remaining RRSets includes an NSEC record and RRSet signature
(RRSIG record).

13.3.4 Link the Chain of Trust

Now that the zone has been signed, you should determine its place in the chain of trust.
That is, determine if the parent zone is signed or not. If the parent zone is not signed and

288 SECURING DNS (PART Il): DNSSEC

the newly signed zone is the top-level domain, that is, signed (i.e., zone apex; e.g., comis
not signed as of this writing.), recursive resolvers querying on behalf of stub resolvers
must be configured with the zone’s public KSK as a trusted key. This informs the resolver
that zone information signed with this key is to be trusted. For those resolvers, which trust
our ipamworldwide.com zone administrators’ data, the KSK 06082 public key can be
configured within the respective trusted-keys statement in each recursive server’s named.
conf file as per the following

trusted-keys {

“ipamworldwide.com.’’ 257 3 5
“AWEAAJSAWGOUBhtjpESGLGN4ryt8yEq71DqdE+1j3boe91lmvpM02YZ1/
AQxOHbyATNgRr+8dsTM80rF2yFRbcP1y0/9g37TOPgxL5H)AZ8HrDOWI
R/pC3XyRe9pMzRNrdas+c/xEISfhxzvR84CndF5XvFeh3H0kVDeTb+7Q
RrG7hnph4P8w4SMg76tBvxHLFmM}30dP8vIUpRAnexEAdclamjlZSPjLc
dICzpDvQOB/LLsYxx8wx2h0vIvhxZklgmyldPBtIZu2A551VIrU0xgCIx
DjJGCgBbrplCO01tYSdglAlI2HCL8eV7io/CxnCuSThP1XaPLySo]jJpXU

gDomWgVYeoO="";

bi

Within the recursive server configuration, we have declared a trust anchor or SEP at
the ipamworldwide.com zone. Note that a trusted key entry with the corresponding KSK
public key is required for each trust anchor you wish to configure. As we’ll discuss later,
the more trust anchors you configure, the more keys you need to manage during each
zone’s key rollover process. With the signed root and TLD zones, only one trust anchor
need be maintained.

Automated trust anchor update capabilities reduce the manual management of trust
anchor rollovers. For such trust anchors, instead of using the t rus ted-keys statement,
the managed-keys statement can be used. In the following example, we use the public
KSK from our trust anchor as the initial key. This key serves as the trusted key initially, but
as the zone administrator for the ipamworldwide.com zone publishes, activates, revokes,
retires, and deletes keys in accordance with the timing capabilities and automation of
BIND 9.7 and above, this recursive server will remain in step and keep its own repository
of current trust anchor keys per trust anchor. Hence, when this initial key is revoked and
another key activated, signature of the DNSKEY RRSet by both the newly activated and
this now-revoked key validates the transition to the newly active key.

managed-keys {

Wipamworldwide.com.’’ initial-key 257 35
WAWEAAdSAWGOUBhtjpE8GLGN4ryt8yEq71DgdE+1ij3boe91lmvpM02YZ1/
AQxOoHbyATNgRr+8dsTM80rF2yFRbcP1y0/9g37TOPgxL5H)AZ8HrDOoW9
R/pC3XyRe9IpMzRNrdas+c/xEISfhxzvR84CndF5XvFeh3H0kVDeTb+7Q

13.3 CONFIGURING DNSSEC 289

RrG7hnph4P8w4SMg76tBvxHLFm)30dP8vIUpRAnexEAdclamjlZSPjLc
dICzpDVvQOB/LLsYxx8wx2h0vIvhxzZklgmyldPBtIZu2A551VIrU0xgCIx
DjJGCgBbrplCO01tYSdglAlI2HCL8eV7io/CxnCuSThP1XaPLySojJpXU
gDomWgVY¥eo0="";

Now if the zone just signed is a child zone of a signed parent zone, the parent zone
administrator must include the delegation signer record in the parent zone file to link the
chain of trust. In this manner, the parent zone can vouch for this signed child zone. Thus,
trust anchors need not be configured in resolvers or recursive servers for this zone, just its
parent or an even higher level ancestor signed zone.

The —g option on the dnssec-signzone utility automatically created our DS records
for the zone in a dsset-ipamworldwide.com. file. The file contains two DS records, one of
which may be chosen based on the preferred digest type. The integer shown before the
digest in the examples below indicates the digest type. Type 1 is SHA-1 and type 2 is
SHA-256. The digest follows which is computed as a hash using the corresponding digest
type or algorithm of the signed zone’s KSK DNSKEY resource record owner and RData
fields (i.e., the KSK DNSKEY record, omitting the TTL, class and type).

ipamworldwide.com.
INDS6082515F696637B085D8F5CBFDOC8BIEO31CB6CBO7159B
ipamworldwide.com. IN DS 6082 5 2
TFFD9203E916B5D49F631D060FAFD05D26974BEFCED25AACB88122722E4A7TAA9

In terms of authenticating records or their nonexistence in signed child (delegated)
zones, the delegation signer resource record type provides the link from a parent to a
delegated child zone’s key as a link within the chain of trust. We’1l walk through how this
works within the resolution process next. The DS resource record has the following
format

Owner TTL Class Type RData

Delegated domain TTL IN DS Keytag Alg. Type Digest
ipamworldwide.com. 86400 IN DS 6082 5 1 SF695D8FSBFDOC. ..

The RData portion of the DS record identifies the key tag or id of the child zone’s public
KSK, while the Algorithm matches the Algorithm field in the referenced DNSKEY
record. The Digest Type indicates the type of hash or digest which is conveyed in the
Digest field. Valid Digest Type values are 1 (SHA-1) or 2 (SHA-256). The Digest field
contains the digest or hash of the corresponding child zone public KSK DNSKEY
resource record owner field concatenated with the same DNSKEY record’s RData field.

290 SECURING DNS (PART Il): DNSSEC

The parent zone administrator would add the DS RRSet to the parent zone and sign it to
authenticate its origin and integrity.

In BIND 9.6, a new utility, dnssec-dsfromkey, was introduced. This utility
enables generation of DS resource records without having to re-sign the zone using
dnssec-signzone. This utility is available with the following parameters

e -1: use SHA-1 as the digest algorithm

e -2: use SHA-256 as the digest algorithm

e -a algorithm: where algorithm may be
o SHA-1
o SHA-256

e -A: include ZSKs along with KSKs for generation of DS records; if omitted, only
DS records for KSKs are created.

e -c class: identifies the class (default is IN).

e -d directory: directory location of the keyset files.

o -f file: specifies a zone file name in lieu of specifying the keyfile name.

e -1 domain: generate a DLV set instead of a DS set and append domain to each
record in the set.

e -K directory: defines the directory in which the key files are located.
e -s: command argument is a domain name not a keyfile name.
e -v level: specifies the debug level.

The dnssec-dsfromkey utility can generate DS or DLV records based on a keyfile or a
domain name; the —s argument defines the argument as a domain name

dnssec-dsfromkey -s [-v level] [-1] [-2] [-a algorithm] [-1 domain]
keyfile

The omission of —s identifies the argument as a keyfile name.

dnssec-dsfromkey [-v level] [-1] [-2] [-a algorithm] [-1 domain] [-K
directory] [-c class] [-f file] [-A] domainname

13.4 THE DNSSEC RESOLUTION PROCESS

Now let’s review how the resolution and verification process works. Configuring the
trusted or managed keys statement above into our recursive server configuration (named.
conf), we have declared ipamworldwide.com as a trusted zone. When I issue a query
for a host within the ipamworldwide.com zone, for example, ftp-support.
ipamworldwide . com, my resolver will set the DNSSEC OK (DO) bit in the EDNSO
extended Rcode field. DNSSEC requires EDNSO to support this extended Rcode field

13.4 THE DNSSEC RESOLUTION PROCESS 291

and also for the generally large response packets likely exceeding the nominal 512-byte
UDP packet limit. The packet length increase is due to the response by the server
configured with the authoritative signed zone with not only the resolution data requested,
the A record(s) for ftp-support.ipamworldwide.com, but the associated
signature record associated with the A record set.

13.4.1 Verify the Signature

The signature process signs resource record sets, which are groupings of resource records
with common owner name, class, and type. The signature is created using the private key
referenced by the key tag parameter and is placed within the signature field of the RRSIG
resource record.

The RRSIG resource record has the following format

Owner TTL Class Type RData

RRSet Type Orig. Key Signa-
Owner TTL IN RRSIG Cov. Alg. Labels TTL Expire Inception tag Signer ture
ftp- 86400 IN RRSIG A 5 3 86400 2010030 2010020 14522 ipam umyl...
support. 5215354 3215354 world
ipamworld wide.
wide.com. com.

The RData fields within the RRSIG record are defined as follows.

e Type Covered. The type of the resource record set covered by this signature. In
our example, the A record type is covered by this signature which signs our two-
resource record RRSet with owner ftp-support.ipamworldwide.com.

e Algorithm. The algorithm used in generating the key, which is encoded in the
same manner as the Algorithm field of the DNSKEY resource record type (see
DNSKEY above).

o Number of Labels. Indicates the number labels within the owner field. For
example, ftp-support.ipamworldwide.com has three labels. This field is used to
reconstruct the original owner name used to create the signature in the case where
the owner name returned by the server has a wildcard label (*).

e Original TTL. The TTL of the signed RRSet as defined in the authoritative zone,
used to validate a signature. This field is needed because the TTL field returned in
the original response is normally decremented by a caching resolver and use of the
TTL field may lead to erroneous calculations.

e Signature Expiration. The date and time of the expiration of this signature
expressed as either the number of seconds since January 1, 1970 00:00:00 UTC or
in the form of YYYYMMDDHHmMmSS where

292 SECURING DNS (PART Il): DNSSEC

o YYYY is the year (within 68 years of the present date to prevent numerical
wrapping of this field)

o MM is the month, 01-12

o DD is the day of the month, 01-31

o HH is the hour in 24 h notation, 00-23

o mm is the minute, 00-59

o SS is the second, 00-59

o Signatures are not valid after this date/time.

e Signature Inception. The date and time of the inception of this signature
formatted in the same manner as the Signature Expiration field. Signatures are
not valid before this date/time.

e KeyTag. Provides an association with the corresponding key (DNSKEY resource
record(s)) by key id or tag.

o Signer’s Name. Identifies the owner name of the DNSKEY resource record that
was used to create this signature.

o Signature. The cryptographic signature covering the RRSIG RData (excluding
this Signature field itself) concatenated with the resource records comprising the
RRSet identified by the RRSIG owner, class, and covered type fields.

Thus, the response to our query includes the A records and the associated RRSIG
record as indicated by this response captured with the dig utility below. The server
will set the Authentic Data (AD) bit in the DNS header in the response only if it has
authenticated (cryptographically verified) all included resource records in the
Answer section and all included negative response resource records in the Authority
section. Note that if you query the server which is authoritative for the issued query,
the AD bit will not be set. This server simply returns the answer and leaves validation
rightly to the querier. If you query your recursive server which is not authoritative for
the queried information, it will perform the resolution and DNSSEC validation,
which if successful, will set the AD bit in the result. We’ll review the details of the
dig utility, which is very useful in verifying and troubleshooting zone configurations
in Chapter 14.

$ dig +dnssec A ftp-support.ipamworldwide.com. @127.0.0.1

; K>DiG 9.6.2 K > +dnssec A ftp-sf.ipamworldwide.com. @127.0.0.1
; (1 server found)

;7 global options: printcmd

;; Got answer:

;; —>HEADER<K - opcode: QUERY, status: NOERROR, id: 462

13.4 THE DNSSEC RESOLUTION PROCESS 293

;7 flags: gr aa rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 2, ADDITIONAL: 3

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096
;7 QUESTION SECTION:
;ftp-sf.ipamworldwide.com. IN A

;; ANSWER SECTION:
ftp-sf.ipamworldwide.com. 86400 IN A 10.1.32.9
ftp-sf.ipamworldwide.com. 86400 IN A 10.1.32.5

ftp-sf.ipamworldwide.com. 86400 IN RRSIG A5 386400 20100525173519
20100425173519 14522 ipamworldwide.com.owHoS6blxTNKuzJjgJs3nL4Kwr—
LehnfixVjAF2T6 RHu4dVmgdwlp+FNC 0j12BkWKOhjY3+7jU4doFr/RNioe8vmsgyn
R5YeSSRzzFy/d63R1z30bQ5BANDGRapTN6QIHQIM+KY SpwY5CrjgOoQnP+Ynme4nhT9
+z8h5ahdwtK9 EtI=

;; AUTHORITY SECTION:
ipamworldwide.com. 86400 IN NS ns.ipamworldwide.com.

ipamworldwide.com. 86400 IN RRSIG NS 5 2 86400 20100525173519
20100425173519 14522 ipamworldwide.com. OLonIvBmJZDEZoRRvOig7GnlWnr-
8LTWHtKSR60CJIN13hd23Vvkbg/EXKV 46wp60K6Q0gNtIGE+YQFWIxml7d6kQRZ0-
gqIyCiDZgHQinV7L1Aa0Da8z5+UGduD3gVLceES71vGZpLlbyUm9kFGE5FhPZ/

JciPF4gKUdAvEEeitu/aY=

;; ADDITIONAL SECTION:
ns.ipamworldwide.com. 86400 IN A 10.1.32.4

ns.ipamworldwide.com. 86400 IN RRSIG A5 386400 20100525173519

20100425173519 14522 ipamworldwide.com. IHtLJaWam57mVoYCgFglEPCON9p7n—
Wicy7MBvdQP6PgNfhnOTOg2vQHR rQRDABWBmgaSRO1IWSAF2IQTEfHAT16591~
OEJjtBnPR/7zRAXU9%abnkUDvGCZSAFfgKfWxBZFrxUTbx1loekEhMCI8FgCnvaRIsSL-
NYbiP/0KhehWmBF nlA=

The recursive server or resolver, having received the RRSet (data) and the RRSIG
(signature) may then issue a DNSKEY query to obtain the DNSKEY RRSet if it is not
already cached or provided with the response in the Additional section. The signature in
the RRSIG record is processed with the key of tag 14522 and compared with a hash of
the RRSIG RData (less the signature) concatenated with the resource records within the
RRSet. If the comparison yields a match, the signature is validated successfully. Next, the
RRSIG of the DNSKEY RRSet is used to validate the ZSK itself. Performing a similar
calculation as just described to validate the A RRSet, the resolver or recursive server

294 SECURING DNS (PART Il): DNSSEC

validates the DNSKEY RRSet with respect to the public KSK signature. Given a
successful match as well as the fact that the public KSK matches a configured trusted-
key, we have therefore successfully validated the A RRSet data.

13.4.2 Authenticated Denial of Existence

What if I mistyped the hostname I intended to query? Without DNSSEC, I'd receive an
error (NXDOMALIN) indicating the record was not found. Just as an affirmative answer
may be spoofed, “not found” answers may be too. To address this potential vulnerability,
DNSSEC incorporates the Next SECure (NSEC) resource record to provide a means to
authenticate the nonexistence of a record matching the query. The NSEC record
essentially points from one RRSet to the next within the zone file, identifying gaps
between RRSets. The format of the NSEC record is as follows.

Owner TTL Class Type RData

RRSet Owner TTL IN NSEC Next RRSet Owner Type Bit Maps
nsl.ipamww.com. 86400 IN NSEC ns2.ipamww.com. A AAAA RRSIG NSEC

In this example, the NSEC record associated with owner nsl.ipamww.com indicates
that the next owner name in canonical order is ns2.ipamww.com, and this owner (ns1)
exists with resource records of type A, AAAA, RRSIG, and NSEC. This record
indicates that there aren’t any records canonically between nsl.ipamworldwide.com
and ns2.ipamworldwide.com, such as nsla.ipamworldwide.com, for example. Each
NSEC RRSet is also signed with the private ZSK, which in turn is validated against a
trusted KSK.

NSEC3 provides similar authenticated denial of existence indication for RRSets, but
it also obfuscates trivial enumeration of RRSets in the zone, which can be considered an
information security risk. Because the NSEC3 record uses hashed owner names along
with a salt value, which further complicates the hash dictionary creation function, it is
much more computationally expensive to enumerate the zone. As such it is also
computationally expensive when signing the zone and when validating query resolutions
indicating record nonexistence.

13.4.3 Parent Delegation in a Chain of Trust

Now let’s expand our example to illustrate the role of the DS record in generating an
inter-zone chain of trust to a trust anchor. Consider Figure 13.3, where we will work our
way up from the resolved data to the trust anchor. Let’s assume the public KSK of the
ipamworldwide.com. zone (key id =06082) is configured as a trust anchor in my
recursive server. When I issue an A record query for host.child.ipamworldwide.com.,
name resolution follows the traditional domain tree traversal to obtain a cached or
authoritative answer. Assuming I had set the DO bit, the resolution RRSet along with the

13.4 THE DNSSEC RESOLUTION PROCESS 295

ipamworldwide.com. zone

Qﬂ?ﬁ(ﬁ 06082;KSK @
NSKEY 14522;ZSK <ty
~® RRSIG (06082) 7

RRSIGDS (...)

child.ipamworldwide.con)f zone
Q@DNSKE (45449 KsK

DNSKEY (98211); ZSK
“®RRSIG DNSKEY (45443)
host A 10.10.10.1

host RRSIGA (9821

child.ipamworldwide.com

Figure 13.3. DNSSEC chain of trust traversal.

corresponding RRSIG record will be returned. The recursive server can validate the
RRSIG with the child.ipamworldwide.com’s ZSK (key id =98211), shown as the arrow
labeled “1” in Figure 13.3. In turn the ZSK can be validated against the zone’s KSK (key
id =45443), per step 2. Given that I do not have this KSK configured as a trust anchor, I
cannot trust this data. However, the recursive server queries the parent zone, ipamworld-
wide.com., for a DS record to determine if the parent can authenticate this zone’s data.
This is shown as step 3 in the figure.

If the DS record digest matches the corresponding child.ipamworldwide.com
zone’s KSK DNSKEY data, I can conclude that the ipamworldwide.com. zone has
signed the delegation to child.ipamworldwide.com. The recursive server then validates
the signature on the DS record against ipamworldwide.com’s ZSK (key id = 14522)
and in turn its KSK (key id = 06082), which is configured as a trusted key. Therefore, I
have confirmed the original data resolved as trusted via the chain of trust back to a
configured trust anchor! This same process could be repeated for any number of
parent—child iterations up the domain tree to the signed root using the root zone trust
anchor. I ultimately must have a trusted key configured for the zone or one of its
ancestor zones within which my query applies. Considering the wide variety of zones
for which queries need to be authenticated, including reverse zones, this set of trust
anchors could quickly become very large!

296 SECURING DNS (PART Il): DNSSEC

div zistry

N\

mww.com

Figure 13.4. DLV chain of trust.

DNSSEC Lookaside Validation was defined to help keep the set of trust anchors to a
manageable level in the time before the root zone was signed. DLV utilizes a centralized
registry of signed zone public keys. By configuring the DLV registry as a trust anchor,
you thereby trust the DLV registry and all “child” zones to which it authenticates. These
zones are not actual child zones of the DLV, but are zones that the DLV authenticates.
Zone administrators may register their signed zone keys with the DLV registry in a secure
manner to maintain this “lookaside” or “sideways” chain of trust, as opposed the domain
tree parent—child chain of trust we just discussed.

Figure 13.4 illustrates this concept. Without root and TLD zone signing, trusted keys
had to be configured for each trusted zone. In the figure, these are illustrated as the
ipamww.com, 192.in-addr.arpa and a .net zones. By using the DLV concept, the DLV
signs the DS-equivalent DLV record to authenticate the KSK of the each “child” zone.
The benefit of a DLV registry is to reduce the number of keys being managed in each
recursive server in your organization. If the DLV signs three zone keys as illustrated in
Figure 13.4, you need only be concerned with the DLV’s key rollover, not the constituent
three keys’. The DLV registry must be trusted fully, as zones for which it authenticates are
not selectively accepted by registry users.

A trusted keys statement must be entered for the DLV registry and only one DLV
registry may be so referenced. The DLV is identified in the recursive name server by
configuring its public KSK in the trusted-keys statement block as we illustrated
earlier. When building a chain of trust during name resolution, the recursive server will
attempt to build the chain back to a configured trust anchor; should a valid chain not exist,
it will attempt to validate the chain of trust through the DLV. The DLV registry must be
able to authenticate its registered zones, much like the manner in which a parent zone
validates its children’s KSKs. The DLV resource record is used for this purpose, and its
format is identical to the DS resource record type. It performs an equivalent function,
though not in the traditional parent—child delegation chain.

13.5 KEY ROLLOVER 297

Owner TTL Class Type RData
DLV domain TTL IN DLV Key tag Algorithm Type Digest
ipamww.com.dlv_reg.net. 86400 IN DLV 32284 5 1 90df80DF891Le. . ..

When the recursive server issues its last resort attempt to validate data in a zone, it seeks
the DLV record corresponding to that zone in question within the DLV registry. The DLV
registry is identified in the recursive server via the dnssec-lookaside statement, config-
ured within the options block of named.conf. This statement identifies the branch of the
domain tree for which escalations to the DLV registry are valid, as well as a reference to
the trust anchor identified in the trusted-keys statement. For example, the statement
below indicates that resolutions within the gov. domain could be escalated to dlv.us. and
trusted as long as the dlv.us public KSK matches the configured dlv.us trusted key.

dnssec-lookaside ‘“‘gov’’ trust-anchor “‘dlv.us’’;

13.5 KEY ROLLOVER

The most administratively intensive task with DNSSEC deals with the process of key
rollover, particularly KSK rollover. Like passwords, keys must be periodically changed.
It’s best to provide a moving target to would-be attackers! The use of separate key-
signing versus zone-signing keys helps the administration of this process. This is due to
the fact that any zone administrator can simply resign his/her zone using a ZSK without
affecting anyone else. Whatever ZSK is used, it is ultimately signed by the KSK, which
may be configured as a trust anchor or referenced by a DS or DLV resource record. Thus,
ZSKs can be changed at will. However, because KSKs are configured as trust anchors and
are potentially referenced by other zones’ DS or DLV records, they do impact other
administrators and require a fairly tight integration process.

The two basic methods used for key rollover are preseeding the key, which is
effective for rolling over ZSKs and the dual-key signature approach, which can be used to
rollover KSKs. The key issue (no pun intended) with rollover relates to the updating of
cached resolution and signature information in recursive servers and resolvers. When a
resolver obtains authenticated resolution information, it will cache this information,
including the DNSKEY records containing ZSKs and KSKs, for the duration of the
original record TTL. After the TTL expires, the resolver must issue a new query for the
corresponding information. If a zone administrator performs a flash cut of a new key for
an old key, resolvers and recursive servers having performed queries with the old key, still
valid per its TTL, will be unable to authenticate data resolved within the zone that was
signed with the new key. This time impact is illustrated in Figure 13.5. Therefore,
maintaining a window during which key updates can be propagated and two or more keys
are valid comprise the basic rollover techniques.

Let’s discuss and compare the two common rollover strategies by first considering
Figure 13.6. Note that ZSK and KSK rollover should occur independently of one another

298 SECURING DNS (PART Il): DNSSEC

Update Key,
New Signatures

-

Authoritative
Master

O

Zone Transfers '/

3

R

Authoritative
Slaves

O~

Query when *
TTL expires
Recursive
Server
Query when
TTL expires ’/ ¥
Stub
Resolvers

Figure 13.5. Zone information propagation.

if possible. We’ll assume the preseed strategy is applied to ZSK rollover, while the dual-
signature approach is applied to KSK rollover. Examining first ZSK rollover, our initial
condition features a zone signed with ZSK [key tag] 14522 and KSK 6082 as indicated by
the pen icon. At time ?,, the preseed time, a second, “passive” ZSK, 28004, is created
using the dnssec-keygen utility or via BIND 9.74 automation and its corresponding
DNSKEY resource record is included in the zone file along with the active ZSK 14522.
After ZSK 28004 has been inserted or included in the zone file, the zone must be resigned,
still using ZSK 14522. The passive ZSK is itself signed by the active keys and made
available for resolver and recursive server caching, but is not yet used to sign zone data.

Once published, both keys should remain in the zone file until all slave servers obtain
the zone file via zone transfers plus the key expiration time. The key expiration time
should be longer than the zone or resource record TTLs. When this time has passed at
time ¢;, the rollover time, the zone can be resigned, this time using the now formerly
passive ZSK 28004. The formerly active ZSK can be left in the zone for the equivalent
interval until time 7,, then removed from the zone file. Depending on the frequency of

ipamworldwide.com zone file
KSK 6082
Z8K 14522

ipamworldwide.com zone file

KSK 6082 KSK 6082
ZSK 14522

75K 28004 == 75K 28004 <=2

time I ! I >
4 1

fo

ipamworldwide.com zone file
KSK 6082

78K 14522 _ ==

ZSK 28004

ipamworldwide.com zone file

Figure 13.6. DNSSEC preseed key rollover strategy (11).

13.5 KEY ROLLOVER 299

ipamworldwide.com zone file
KSK 6082

ZSK 14522 _—=="

ipamworldwide.com zone file
KSK 6082

KSK 70810 —
ZSK 14522 _—=>

ipamworldwide.com zone file
KSK 70810

ZSK 14522 __==

, |
time

fo f

Figure 13.7. DNSSEC dual-signature key rollover strategy (11).

ZSK rollover, the time #, may correspond to £ in the next key rollover cycle, where the
zone would always have two ZSKs, one active and one passive. Otherwise, at this point
only the active ZSK exists within the zone.

Now let’s examine the dual-signature rollover method, shown in Figure 13.7. This
process starts with the same initial conditions as in our prior example. At rollover time, #(,
anew KSK (70810) is created using the dnssec-keygen utility with the —k option. Now
sign the zone using the dnssec-signzone utility using both the current and new KSK and
the active ZSK. Recall that dnssec-signzone permits specification of multiple KSKs. The
public key of the new KSK must then be communicated to all resolvers/recursive servers
that utilize this zone as a trust anchor. In addition, the parent zone that authenticates this
zone must be updated.

An output of the dnssec-signzone utility when using the —g option includes a dsset-
<zonename> file containing the corresponding DS resource record(s) that can be
included in the parent’s zone file. The —1 option creates a dlvset-<zonename> file
containing the corresponding DLV resource records. The parent zone or DLV admin-
istrator must copy or include these DS or DLV records, respectively and resign the parent
zone. Given the manual configuration required to perform these tasks on the parent zone
and resolvers/recursive servers, this time frame is less deterministic than the preseed
method. Once this time has elapsed and the parent zone and trust anchor configurations
have been updated, the old KSK may be removed from the zone file and the zone resigned
using only the newly current KSK as shown at time #;.

Emergency rollover procedures should be devised in the event of compromise of a
private key corresponding to an active KSK or ZSK. Should an attacker obtain the private
key, he/she could forge zone data and sign it with the private key. Resolvers and recursive
servers would authenticate the falsified data based on the corresponding published public
key. As we’ve seen, the ZSK can be changed autocratically and should be changed
immediately. Changing the KSK however, does require broader involvement and
coordination. We recommend documenting a process for emergency rollovers that
includes the parent zone administrator and DLV registry contacts, as well as a means
to communicate to users who have configured the KSK as a trust anchor. This could be via
a registered email list and secure web site posting.

One other aspect of key updating is algorithm rollover. This involves the use of a new
key-generation algorithm, for example, as a result of an algorithm compromise or

300 SECURING DNS (PART Il): DNSSEC

upgrade. As with changing the key itself, the dual signature process described above can
be used to generate keys using new algorithms and roll them into production.

13.5.1 Automated Trust Anchor Rollover

RFC 5011 (143) defines a means to automate trust anchor rollover to reduce the
administrative impact on updating trusted keys on all resolvers/recursive servers that
utilize this zone as a trust anchor. This automation requires an initial configuration of the
current public KSK for the trust anchor zone. But unlike manual configuration, it need not
be manually updated every time the trust anchor KSK is changed. Automated trust
anchor updates can be configured in a recursive BIND server using the managed-keys
statement in BIND 9.7 and above. The initial trusted key will be used to validate future
key transactions communicated using the DNS protocol. The resolver must periodically
query the trust anchor for its DNSKEY RRSet to check for updates. If a new key is added
correctly, it will be automatically considered a valid trust anchor key for the zone if
signed by the current trusted key. If the current trusted key is revoked and is signed by the
zone’s trusted key(s), the trusted key will automatically be removed from processing.
Hence the initial-key configured in the managed-keys statement is used as the trust
anchor initial condition only; this key may be revoked in the future, and the DNS server
automatically tracks the status of current trusted keys.

Figure 13.8 provides a state diagram of trusted keys from the resolver’s perspective
based on key states retrieved via validated (signed by current trusted key(s)) DNSKEY
queries. When a new SEP key (trust anchor) is retrieved by the server within the
DNSKEY RRSet, the key enters the Add Pending state. This state helps mitigate the case
where an attacker has compromised the trusted key and seeks to convince the resolver to
use the attacker’s new key. If the resolver does not see the pending key in the DNSKEY

@ Removed Remove hold down

timer expires
Valid DNSKEY RRSet Valid DNSKEY RRSet
with new SEP key without SEP key Start remove hold
before timer expires down timer
—
Revoked

Add Pending

Start add hold
down timer,
- /

Valid DNSKEY RRSet with

SEP key revoke bit set &
X signed by this key
Valid DNSKEY RRSet

with this SEP key untill Valid
timer expires alid DNSKEY RRSet

%
with SEP key
Valid DNSKEY RRSet
without SEP key Missing

Figure 13.8. Trust anchor (SEP) state diagram (143).

13.5 KEY ROLLOVER 301

RRSet at any time during the duration of the add hold down timer, the key will be
considered invalid. It would be very challenging for an attacker to correctly respond to
every DNSKEY query during this interval. Once the hold down timer expires, the trusted
key enters the Valid state and is considered a valid trusted key for the zone. In this state if
the key is missing from the DNSKEY RRSet, it will be considered Missing but will be
reinstated to Valid state upon reappearance with valid signatures.

When the zone administrator desires to revoke the key due to its age in its lifecycle or
because it was compromised, the key will be published in the zone with the Revoke bit set
in the DNSKEY Flags field. This key must be used to sign the DNSKEY RRSet in
addition to any other active or pending trusted keys. In this case, the key will be
considered Revoked. This state may be entered from either the Valid or Missing states.
The server begins a remove hold down timer, which upon expiration, stimulates removal
of the trusted key from the server configuration.

13.5.2 DNSSEC and Dynamic Updates

You may be wondering given that the zone signing process requires the canonical
ordering of a zone, then signature, how does one insert a new resource record into the
zone securely? Fortunately, zone signing does not require reprocessing of the entire zone.
Individual RRSets are signed, enabling a more modular process. However, the NSEC[3]
records must be adjusted to account for the update, effectively inserting the update by
adjusting the canonical ordering.

When dyamically updating a secure zone, the update itself must be secure. The
server should require signatures on update messages and should define which servers or
networks may perform updates. When an update has been received and authenticated, it
remains within the journal file. To fully sign the zone with the update, the server must
temporarily freeze dynamic updates, when using pre-BIND 9.6, via the rndc freeze
command. This shuts off acceptance of dynamic updates. Once frozen, the zone must be
resigned using the dnssec-signzone functionality. Then, dynamic updates may be
reenabled using the rndc thaw command.

This manual freeze-sign-thaw process has been obviated in BIND 9.6 and above
which has added an automated signing mechanism for dynamic updates, vastly
simplifying this process. Along with its normal integration of journal updates into the
zone file, BIND signs each update using the ZSK along with the corresponding “before”
and “after” NSEC[3] records to canoncially insert the record into the zone. BIND 9.6 also
periodically examines the zone for signatures nearing expiration. It will then automa-
tically generate new signatures in such cases. To perform this automated signature
process, BIND must have access to the ZSK private key to sign or resign records.

13.5.3 DNSSEC Deployment Considerations

BIND provides several utilities for the creation of keys and for signing zones to simplify
the DNSSEC implementation process. However, consider the following carefully when
deciding to deploy DNSSEC

302

SECURING DNS (PART Il): DNSSEC

Decide which zones you want to sign. In general, the first and perhaps only zones
to consider signing are your public or external zones. These enables users
resolving your public name space to do so securely and reduces the probability
of an attacker “impersonating” your zone. Partner connections via the Internet
should likewise be considered. Otherwise, internal resolution of internal infor-
mation can usually be trusted within most organizations.

As we’ve seen the size of a signed zone file is much larger than that of a
corresponding unsigned zone file. This may affect required server memory for
large zones as well as zone loading time.

Signing your zones protects the integrity of your name space but not your DNS
caches. Consider configuring DNSSEC validation on your Internet-querying DN'S
servers.

The resolution response for a given query would also grow larger, given the
attachment of RRSIG records and potentially DNSKEY records corresponding to
the query. This could adversely affect query response time and performance.
The resolution process performance may also be further adversely impacted by the
trust anchor confirmation process, where keys and delegation signer records are
validated up to the trust anchor zone or DLV registry.

DNSSEC introduces the requirement for time synchronization given the absolute
time references denoting valid and expiration times in RRSIG records

Zone footprinting by hopping NSEC records is a potential information over-
exposure though the NSEC3 record makes this process more difficult. Consider
whether zone footprinting is really an issue for you (generally information
published in DNS is public information!) due to the computational complexity
and potentially time for generating NSEC3 records within a signed zone.

Key update procedures for initialization and rollover must be devised to provide
authenticated access to updated KSKs via an out of band mechanism if your
trusting resolvers are not using the automated trust anchor update feature. The
KSK public key update must be communicated to all who trust your zone as well
as your parent zone or DLV, if any, in the form of a DS or DLV record, respectively.
DNSSEC performs data origin authentication, data integrity verification, and
authenticated denial of existence. It does not protect against other vulnerability
types introduced in Chapter 12. Don’t forget to implement the mitigation tactics
discussed in that chapter to protect against other vulnerabilities.

