
1324

C A S E 8 3

Robust Optimization of a Real-Time Operating
System Using Parameter Design

Abstract: In this study, a series of L8 parameter design experiments provide
the strategy for selecting the real-time operating system (RTOS) features that
will provide optimal performance. Since these parameters were selected spe-
cifically for the radio controller architecture and used a realistic test bed, the
final product will behave in a predictable and optimal fashion that would not
be possible without using Taguchi techniques. This application of Taguchi
techniques is not unique to a radio controller but rather can be used with
any RTOS and architecture combination. These experiments can form the
template for any software engineer to enhance RTOS performance for other
applications.

1. Introduction

ITT Industries A/CD is a world leader in the design
and manufacture of tactical wireless communica-
tions systems. ITT was awarded a major design con-
tract for a very high frequency (VHF) radio. This
radio requires a complex controller. As a result of a
trade study, the CMX real-time operating system
(RTOS) was selected as the scheduler for the radio
controller. The CMX RTOS provides many real-time
control structure options. Selecting these structures
based on objective criteria early in the design phase
is critical to the success of this real-time embedded
application.

2. Background

Although the RTOS is a commercial off-the-shelf
(COTS) product, there are still many features and
options to select to achieve an optimal result. The
features and options selected are highly dependent
on the system architecture. For this reason, a param-

eter design was undertaken to optimize the selec-
tion of these factors.

The VHF radio combines a collection of inde-
pendent concurrent processes that run using pre-
emptive priority scheduling. In a real-time system,
events enter the system through the hardware inter-
rupt. When a hardware interrupt occurs, the soft-
ware is interrupted automatically. The software
services this interrupt through the use of an inter-
rupt service routine (ISR). Once the interrupt is
serviced, program control is returned to the proc-
essing point prior to the interrupt. The software ar-
chitecture will rely on the communication between
various tasks and ISRs to control the radio.

RTOS vendors typically provide a set of generic
communications structures. These structures are
then combined to form systems and architectures.
Vendors strive to provide a varied set of functions
to increase market dominance. Three common
communications requirements are (1) ISR to task,
(2) task to task, and (3) task to hardware. The sys-
tem architecture requires these three mechanisms.
In each case, there are two operating system con-
structs for achieving acceptable interprocessor com-
munication. Each is implemented differently and

Taguchi’s Quality Engineering Handbook. Genichi Taguchi, Subir Chowdhury and Yuin Wu
Copyright © 2005 Genichi Taguchi, Subir Chowdhury, Yuin Wu.

Robust Optimization of a Real-Time Operating System Using Parameter Design 1325

ISR
(Interrupt Service

Routine)

Send Event to
Radio Control

Radio Control

Lock Mechanism

Prevent access to hardware by
multiple operations

Traffic

Background

Immediate

Post Traffic

Low-Level
Assembly
Language

Interrupt Register

*Commands
*Traffic

Events

Kill
Create task
 rendevous

Traff ic Active?
Check status
of traffic task

A: Speed 30 MHz
 12 MHz

B: Messaging Mai lbox
Queue

D: Resource Lock Resource
Semaphore

C: Signaling Event
Mai lbox

Queue

Hardware Output Registers

Figure 1
Event processing in the controller architecture

will therefore affect the system performance differ-
ently. To choose the correct constructs, a parameter
design is required. Another major concern is the
speed at which the processor operates. The faster
the processor runs, the more power it draws. It is
also critical that the RTOS behave predictably over
all processor speeds. Therefore, it is important to
choose an experiment that combines the different
interprocess communications structures and proc-
essor speed.

Figure 1 shows how events are processed in the
software architecture. The VHF radio accepts com-
mands and traffic events. Each type of event enters
the system via an ISR. This ISR is a low-level assem-
bly language routine that is invoked when a hard-
ware interrupt register state changes. The event,
having been registered, must be passed to the tasks
that will process the message. There are four differ-

ent types of message handlers: traffic, background
commands, immediate commands, and posttraffic
commands; each interacts and behaves differently.
Background commands are handled when traffic is
not communicating actively with the hardware. As
the name implies, posttraffic commands wait until
traffic is complete before running. Immediate com-
mands are special tasks that terminate the current
traffic and then execute.

Comparing the radio controller architectural
requirements to RTOS features results in the
following:

Communication
Requirement

RTOS Capability Meeting
Requirement

ISR to task Mailbox versus queue
Task to task Mailbox versus events
Task to hardware Semaphore versus resource

1326 Case 83

As part of the design phase, functional flows were
constructed for every radio control and traffic op-
eration. These functional flows focused on how the
architecture processed commands. The ultimate test
of the architecture is to handle each functional flow
efficiently. Figure 2 shows an example of the volume
functional flow.

There is a direct correlation between the func-
tional flow and the architecture. The ISR can be
seen as the input mechanism that starts a thread.
The queue is represented by the queue column on
the functional flow. It queues up requests going to
radio control. The signaling mechanism in the ar-
chitecture is shown in the queue request. Volume is
a benign event that is performed as a background
process by radio control. The resource lock is shown
in the radio control column of the thread. It indi-
cates where the hardware must be locked to prevent
hardware contention. If contention were allowed to
occur, the radio would lock up, thus failing cata-
strophically. Each of the primary communications
mechanisms is identified clearly in the flow: messag-
ing, signaling, and resource lock. The architecture
shown in Figure 1 implements these mechanisms.

Since events are constantly being passed to radio
control at a variable rate, they must be queued so
that they are not lost. The RTOS provides two mech-
anisms for passing these events to radio control:
mailboxes and queues. The various processing tasks
must communicate between themselves to send ter-
minate messages or wait for traffic to be complete.
Interprocess communication can be achieved using
mailboxes or events. Since each of the processing
tasks must have exclusive access to hardware output
registers, a lock must be implemented so that there
is never simultaneous access to the output registers
by more than one task. This can be accomplished
by using semaphores or by defining a resource.

3. Objectives

The objective of this experiment was to determine
the correct parameters, which will give maximum
RTOS performance for the embedded application.
The parameter diagram is given in Figure 3. The
noise factors are as follows:

❏ Interrupt mix: The mixture of different types of
interrupts entering the system

❏ Interrupt rate: The rate at which interrupts are
entering the system

The control factors are as follows:

❏ Processor speed. This is the speed at which the
processor is set. The radio design is trading
off the performance at two speeds, 12.8 and
25.6 MHz (12- and 30-MHz oscillators are
available and will be used for the parameter
design)

❏ Messaging. The system architecture is based on
the passing of messages between tasks. Re-
quests enter the system via interrupts which
are transformed into message requests, which
are acted upon by the system. The two types
of messaging schemes being investigated are
mailboxes and queues. Mailboxes allow a task
to wait for a message returning a pointer to
the message passed. Any task can fill a mailbox
through the use of a mailbox ID. Mailboxes
are implemented as a first in, first out. Mail-
boxes can have multiple ownership. Queues
are circular first in, first out and last in, first
out with up to 32k slots. Slot sizes remain con-
stant and are fixed at compile time. There are
many manipulation functions for queues.

❏ Signaling. There are several signals, which
must be implemented in the radio controller.
An example is for an event to send a termi-
nate signal to the current-running traffic
thread. The two methods for efficiently send-
ing messages to tasks are events and mail-
boxes. Events use a 16-bit mask to be used to
interrupt a task or allow a task to wait for a
specified event or condition to be present. It
should be noted that this limits the design to
16 signals per task. Mailboxes can be used to
allow a task to wait for and then check the
message when it is received. This allows more
information to be passed.

❏ Resource locking. A key problem with previous
controllers was the inability to block compet-
ing operations from seizing a resource. This is
a particular problem between the controller
and the digital signal processors (DSPs). If a
second command is sent to the DSPs before
the current one is acted upon, the system can,
and often will, lock up. By using a resource
locking mechanism, this detrimental behavior

1327

H
C

I
D

AT
A

B
A

S
E

D
IS

P
LA

Y
Q

U
E

U
E

R
A

D
IO

 C
O

N
T

R
O

L
P

P

V
O

L
-g

et
 V

ol
 le

ve
l,

W
H

S
P

 S
ta

tu
s

&
tim

e
ou

t
fr

om
 d

at
ab

as
e

-u
pd

at
e

di
sp

la
y

-N
O

R
M

/U
P

/D
O

W
N

/W
H

S
P

-c
he

ck
 n

ew
 v

al
ue

 8

-c
re

at
e

Vo
l/

W
H

S
P

 R
eq

ue
st

 F
or

m
-S

en
d

to
 Q

ue
ue

S
ta

rt
 T

im
er

 =
 T

B
D

re
tu

rn
 V

ol
 l

ev
el

,
W

H
S

P
 S

ta
tu

s,
 a

nd
di

sp
la

y
tim

eo
ut

 t
im

e

Fr
ee

 T
ex

t
1

&
 2

an
d

M
en

u
Li

ne

B
lin

k
di

sp
la

y,
Fr

ee
 T

ex
t

1
&

 2
an

d
M

en
u

Li
ne

-R
C

V
 R

eq
ue

st
-P

ri
or

iti
ze

 R
eq

ue
st

(B
en

ig
n)

-Q
ue

ue
 R

eq
ue

st
-g

et
 n

ex
t

Q
ue

ue
-p

ro
ce

ss
 v

ia
 ju

m
p

ta
bl

e

V
ol

um
e/

W
H

S
P

 f
un

ct
io

n
L

O
C

K
O

U
T

-S
ta

rt
 T

im
er

 =
 T

B
D

-C
M

D
 V

ol
um

e/
W

H
S

P
ch

an
ge

 t
o

P
P

 a
nd

 W
P

-W
ai

t
fo

r
A

ck
 T

im
eo

ut
=

T
B

D
,

N
A

C
K

 o
r

A
C

K
U

N
L

O
C

K

-R
an

ge
 c

he
ck

 v
ol

um
e

se
tt

in
g

(1
 t

o
9)

-I
f

da
ta

 is
 in

va
lid

 t
he

n
se

nd
N

A
C

K
-I

f
da

ta
 is

 v
al

id
 t

he
n

w
ri

te
 n

ew
vo

lu
m

e
le

ve
l o

ut
 t

o
th

e
G

ai
n

D
at

a
P

or
t

Im
ag

e
an

d
se

nd
 A

C
K

-C
re

at
e

R
es

po
ns

e
-s

en
d

R
es

. t
o

H
C

I

E
X

T
E

R
N

A
L

E
V

E
N

T
S

W
P

Vo
lu

m
e

S
el

ec
ti

on
 C

on
tr

ol
 T

hr
ea

d

1.
 T

hi
s

Fu
nc

tio
n

C
od

e
is

 u
se

d
to

 c
ha

ng
e

th
e

Vo
lu

m
e

le
ve

l.

2.
 W

he
n

ra
di

o
is

 p
ut

 in
to

 C
ov

er
t,

 t
he

 r
ad

io
 is

au
to

m
at

ic
al

ly
 p

ut
 in

to
 W

H
S

P.
 T

he
 u

se
r

ca
nn

ot
ta

ke
 t

he
 r

ad
io

 o
ut

 o
f W

H
S

P
 w

hi
le

 in
 C

ov
er

t.
W

he
n

th
e

us
er

 e
xi

ts
 C

ov
er

t,
 t

he
 W

H
S

P
 is

au
to

m
at

ic
al

ly
 t

ur
ne

d
of

f
re

gu
ar

dl
es

s
of

 s
et

tin
g

pr
io

r
to

 b
ei

ng
 in

 C
ov

er
t.

3.
 T

he
 W

H
S

P
 in

di
ca

to
r

is
 s

ha
re

d
w

ith
 t

he
 C

ov
er

t
in

di
ca

to
r.

4.
 T

hi
s

F
un

ct
io

n
C

od
e

is
 u

se
d

to
 c

ha
ng

e
W

H
S

P
to

 O
N

 o
r

O
F

F.

5.
 W

he
n

tim
e

ex
pi

re
s,

 r
et

ur
n

to
 p

re
vi

ou
s

ke
y

se
qu

en
ce

. I
f

pr
ev

io
us

 w
as

 d
ef

au
lt

th
en

 r
et

ur
n

to
de

fa
ul

t
di

sp
la

y.

6.
 V

ol
um

e
sh

ou
ld

 b
e

st
or

ed
 in

 M
C

I
on

 W
P

 t
o

in
su

re
 t

ha
t

ra
di

o
re

st
ar

ts
 a

s
la

st
 u

se
d

by
 u

se
r.

T
he

 C
on

tr
ol

le
r

ge
ts

 v
ol

um
e

se
tt

in
g

fr
om

 W
P

du
ri

ng
 P

ow
er

 u
p

se
qu

en
ce

.

7.
 V

ol
um

e
is

 a
 lo

ca
l r

ad
io

 o
nl

y
fu

nc
tio

n.

8.
 I

f
vo

lu
m

e
is

 in
cr

ea
se

d
w

he
n

at
 M

ax
. o

r
de

cr
ea

se
d

w
he

n
at

 M
in

.,
 t

he
n

ig
no

re
 c

om
m

an
d

an
d

ru
n

G
en

er
al

 A
la

rm
 C

on
tr

ol
 T

hr
ea

d

9.
 V

ol
um

e
le

ve
l i

s
st

or
ed

 in
 v

ol
at

ile
 m

em
or

y
in

da
ta

ba
se

.

10
. T

he
 o

ri
gi

na
l V

ol
um

e
se

tt
in

g
is

 o
bt

ai
ne

d
du

ri
ng

 P
ow

er
 U

p
fr

om
 t

he
 M

C
I

in
 t

he
 W

P.

11
. T

he
re

 is
 a

 W
H

S
P

 b
it

on
 t

he
 P

P
 A

S
IC

.

F
un

ct
io

n
C

od
e

D
9

1

D
at

a
B

yt
e

01
-0

9
or F

un
ct

io
n

C
od

e
94

 4

D
at

a
B

yt
e

00
-0

1

-C
re

at
e

Vo
l/

W
H

S
P

R
eq

ue
st

 F
or

m
-S

en
d

to
 Q

ue
ue

A

A
C

K

-u
pd

at
e

di
sp

la
y

-G
en

er
al

 A
la

rm
C

on
tr

ol
 T

hr
ea

d
-G

en
er

al
 R

ec
ov

er
y

T
hr

ea
d

T
B

D
 F

re
e

Te
xt

 1
 &

 2

A
C

K

-D
D

,
M

es
sa

ge
R

ej
ec

t

W
ai

t
Fo

r
R

es
po

ns
e

or
T

B
D

 S
ec

.

N
o

N
o

-p
ut

 V
ol

/W
H

S
P

-u
pd

at
e

di
sp

la
y

-r
et

ur
n

F
un

ct
io

n
C

od
e

84
-G

o
to

 A

up
da

te
 V

ol
/W

H
S

P
ch

ec
k

ra
ng

e
re

tu
rn

st
at

us
 =

 O
K

-p
ut

 V
ol

/W
H

S
P

-u
pd

at
e

di
sp

la
y

-F
un

ct
io

n
C

od
e

84
,

R
et

ur
n

A
C

K

Ye
s

Ye
s Fi
gu

re
2

Vo
lu

m
e

fu
nc

tio
na

lfl
ow

1328 Case 83

RTOS

Provide f lex ible mul t i task ing
cont ro l o f rea l - t ime embedded
sof tware

Noise Factors
Interrupt Rate
Interrupt Mix

Output
 Task Control
 Inter Task Messaging

Control Factors
Processor Speed
Messaging
Signal ing
Resource Locking

Input
 Events
 (data arr ival)

Figure 3
RTOS parameters

can be avoided. The two types of resource
locking being investigated are resources and
semaphores. Resources are RTOS commands
that allow a resource to be locked, preventing
simultaneous use by competing tasks. This is
a binary-state mechanism that can provide a
lock and unlock state. The highest-priority
task requesting a resource is granted the re-
source. The locked procedure then inherits
the priority of the requester. Semaphores are
implemented as counting semaphores, which
can be used as binary semaphores. Although
more flexible because they are counting in na-
ture, our design needs to prevent all second-
ary access.

The input signal is a series of events. Events enter
the system as interrupts, which are then parsed to
waiting tasks to execute particular traffic or control
threads. The input is tISR. The output was measured
as a series of times: (1) the time that the event is
queued, (2) the time that the event starts execution
and (3) the time that the event completes.

Ideally the system should process messages as fast
as possible. Therefore, the ideal system is one that
has no latency and completes work in the minimum
time. The smaller-the-better method was used for
the analysis.

All tests were run using CMX RTOS version 5.2.
The RTOS was run on a Pentium PC with a serial
Nohau Emulator Model 51XA-PC and a companion
trace card EMUL51XA-PC/IETR 128-25. The
80C51XA was run at 12 and 30 MHz. The HiTech
C compiler version 7.73 was used to compile and
link the code. The emulator was configured for a
16-bit bus and 1-Mg code/data. The default CPU
wait state of four or five instruction cycles was used.

4. Experimental Layout

Test conditions are as follows:

Average case: 7 times per sec

Worst case with margin: 30 times per second

Failure point: N times per second
(no idle time)

Control factor levels are shown in Table 1. Based on
the control factors identified, an L8 orthogonal ar-
ray was chosen for the test configuration for the
Taguchi experiments. The L8 24 array was chosen to
hold the four two-level factors (Table 2).

Robust Optimization of a Real-Time Operating System Using Parameter Design 1329

Table 1
Control factors and levels

Control Factor

Level

1 2

Speed (MHz) 12 30

Messaging Mailbox Queue

Signaling Event Mailbox

Resource lock Resource Semaphore

Table 2
L8 design experiment

No. Speed Messaging Signaling Resource lock

1 12 Mailbox Event Resource

2 12 Mailbox Semaphore Semaphore

3 12 Queue Event Semaphore

4 12 Queue Semaphore Resource

5 30 Mailbox Event Semaphore

6 30 Mailbox Semaphore Resource

7 30 Queue Event Resource

8 30 Queue Semaphore Semaphore

5. Experimental Results and Analysis

The data were analyzed using a smaller-the-better
method. The signal-to-noise (SN) ratio was com-
puted using

2(t � t)� end ISR
SN � �10 log

N

The SN ratio quantifies the composite latency of all
message types that the system is expected to handle.
The delta time includes from the time the event
enters the system until all processing is completed
and the thread ends. This includes the time that the
event is in the queue, waiting on other events to
obtain a resource lock, and the time required to
communicate with other tasks (i.e., terminate or
wait message times).

Timing measurements were made of individual
messages. The times captured were time entering
the system, tISR; time message queued, tqueue; time
processing starts, tstart; and time the processing
ended, tend.

The time delta that proved most useful was tend

� tISR, because it includes the time significant for
all factors. The time between entering the system
and being queued was in all cases insignificant,
proving that the RTOS was handling this efficiently.
The time between a message being queued and
starting processing focuses on factor B, the type of
queuing. Similarly, the time between starting and
ending processing focuses on factors C and D. These
times were used to validate the conclusions that
were made. Therefore, the overall time delta was
used since each factor is then represented by the
experiment.

These measurements were made using message
rates of 7 and 30 times per second. This proved to
be the most valuable data collected, since individual
threads as well as composite characteristics could be
examined. Table 3 lists the results of the SN ratio
calculations for 7 and 30 events per second.

Based on the results of the Taguchi experiments
and the data reduction, the following factor effects
plots were calculated for 7 and 30 events per sec-
ond. The components of the factor effects plots are
obtained by averaging the SN ratio values for each
factor as specified in Figure 4. Examining the fac-
tors relating to speed, A1 and A2 are the averages of
experiments 1 to 4 and 5 to 8, respectively.

1330 Case 83

Table 3
SN ratio for tend � tISR

No. SN 7 SN 30

1 �27.7 �27.7

2 �27.7 �27.7

3 �32.0 �32.3

4 �32.0 �32.6

5 �21.7 �21.8

6 �21.8 �21.8

7 �28.7 �28.4

8 �28.5 �28.3

–31.0
–30.0
–29.0
–28.0
–27.0
–26.0
–25.0
–24.0

A1 A2 B1 B2 C1 C2 D1 D2

–3

(b) SN 30 Factor Effects(a) SN 7 Factor Effects

1.0
–30.0
–29.0
–28.0
–27.0
–26.0
–25.0
–24.0

A1 A2 B1 B2 C1 C2 D1 D2

Figure 4
Factor effects for tend � tISR

Factor Effects Summary
The overall objective of this parameter design was
to optimize RTOS performance. Examining Figure
4 shows almost identical results for both 7 and 30
events per second. Choosing the correct parameters
for 30 events per second will yield a design that is
robust over the entire region of performance
expected.

The factor effects plot shows that processor
speed and messaging are the dominant factors and
very comparable in amplitude. Therefore, choosing
30 MHz and using mailboxes for messaging will pro-
vide the optimal design.

Further examination of the parameter design
shows that signaling and resource locking were in-

consequential. It appears the RTOS treats each of
these methods in a way that guarantees similar per-
formance. These factors can be chosen for ease of
design and maintenance.

It is surprising that factor B is more significant
than A. It was expected that clock speed was going
to show strong dominance over the other factors.
What this experiment showed is that the choice of
how messages are passed is even more significant to
performance than is speed. Choosing the wrong
messaging type would totally eliminate the perform-
ance gained by a faster processor. Without the ex-
periment, this parameter would have been chosen
out of convenience, and significant performance
might have been sacrificed.

6. Parameter Design Confirmation

Since parameters C and D are nondominant factors
that can be chosen for other design considerations
rather than for system optimization, the confirma-
tion can be performed with the data already col-
lected as part of the experiment. Choosing A2 (30
MHz) and B1 (mailboxes), one would expect to see
a little more than a 10-dB performance increase
over choosing A1 (12 MHz) and B2 (queues). Table
4 identifies the two scenarios.

As expected, the confirmation results were
extremely consistent with the results expected.
Since A and B are the dominant factors and C and
D show little effect, the internal confirmation
yielded positive confirmation that the factors cho-

Robust Optimization of a Real-Time Operating System Using Parameter Design 1331

Table 4
Design confirmation using factors A and B

Confirmation Check

7 Events
per

Second

30 Events
per

Second

A2 (30 MHz) and B1

(mailboxes)
�21.7 �21.8

A1 (12 MHz) and B2

(queues)
�32.0 �32.5

Delta 10.3 10.7

0.0

50.0

100.0

150.0

0 20 40 60 80 100 120 140 160

Tasks per Second

R
S

S
 o

f
E

ve
n

t T
im

e

12

30

MHz

MHz

Figure 5
Performance versus event rate

sen are the correct factors to optimize the system
properly.

7. Performance Analysis/System
Stress Test

Flexibility, modifications, and engineering changes
characterize the nature of software engineering sys-
tems. Software is commonly seen as easily changed
compared to hardware, which requires radical mod-
ification. As a result, software is seen as the answer
to increased product life, longevity, and product en-
hancement. The life cycle of software is often mea-
sured in months. Our parameter design focused on
the current expected needs of the VHF radio. Op-
timum RTOS parameters were chosen that provide
excellent performance within the expected range
and include design margin.

It is the job of the software engineer to answer
additional questions that affect the quality and
products being designed. These questions aim at

the heart of the reason that products become ob-
solete and require major upgrades prematurely.
Margin is the ability of a system to accept change.
Far too often, margin is measured as a static number
early in the design phase of a project. Tolerances
are projected and the margin is set. This answer
does not take into account the long-term changes
that a system is likely to see toward the end of its
life or the enhanced performance required to pen-
etrate new markets.

Additional information needs to be gathered.
How will the system perform when stressed to its
limits? Where does the system fail? Figure 5 shows
how this system will perform past the expected limit
of 30 events per second. The system was set to use
mailboxes, events, and resources and run at 12 and
30 MHz. The message rate was increased steadily.
The real simple syndication (RSS) of the event time
was computed and plotted versus the message rate.
Clearly shown in the figure is the fact that 12 MHz
will lead to a much shorter product life since the
performance cannot be increased significantly, and
the steep failure curve. However, 30 MHz shows a
system that can almost triple its target event rate and
still maintain acceptable performance. The shallow
assent of the event processing time RSS indicates
that the system will behave more robustly. The 30-
MHz system will degrade gracefully rather than
catastrophically.

Initially, it was expected that the two graphs
would have an identical shape displaced by the 2.5
times speed increase. This is not the case because
the real-time interrupts controlling RTOS schedul-
ing operate at a constant rate of 1 millisecond. Since
the timer rate is constant, it has a larger effect on
the slower clock rate than on the faster clock. This

1332 Case 83

0

200

400

600

800

1000

0 20 40 60 80

Response Time

Q
L

F
 (

$)

Figure 6
Quality loss function

is because the percentage of the processor that is
required to process the timer for the 12 MHz is
greater than for the 30 MHz. Therefore, when the
speed is increased to 30 MHz, not only does the
processing power increase but the percentage of the
processor available to execute the threads also in-
creases. Ultimately, this provides for a more robust
system capable of performing more work to the user
at 30 MHz than at 12 MHz.

Using this information, the software design en-
gineer is equipped with one more piece of infor-
mation from which a cost–benefit analysis can be
performed. The cost of the additional part and
power must be compared objectively against the
benefit to the user in longevity of the radio and
performance. The RSS of the event time is signifi-
cant because, as it increases, the performance de-
grades to a point where the system is unacceptable.
The user will become aware of this when the event
time increases past 50 ms.

8. Quality Loss Function

The performance analysis solely looks at perform-
ance but fails to account for the cost. The quality
loss function provides the software engineer with a
way to evaluate objectively the cost to the user of
the various clock speeds (Figure 6). The user wants
a long-lasting radio that will meet the growing needs
of the armed forces. If the radio ceases to meet mil-
itary needs for expanding services, it will have to be

replaced. This could result in a negative customer
perception of ITT’s radios. Additionally, this might
result in customer inconvenience and damaged rep-
utation for the company, which opens the door to
increased competition, affecting market share. In
addition, there is the financial impact of upgrading
the processor to meet the requirements. All of these
factors affect quality loss. Taguchi summarized this
by saying: ‘‘The quality of a product is the (mini-
mum) loss imparted by the product to the society
from the time the product is shipped.’’

Consider the traditional way of viewing quality
costs. If the radio meets the specifications that were
provided, it has the desired quality. This view does
not take into account that a product specification is
merely a summary of the known requirements and
uses and cannot begin to capture the future military
needs. The quality loss function quantifies the qual-
ity loss in a formal manner.

The quality loss function is expressed as

A0 2 2loss � t � 0.18t2�0

where A0 is the cost of replacing the controller mod-
ule and �0 is the response time that 50% of users
would find unacceptable. In this case the quality loss
function represents the cost of the quality loss as the
response time grows. This occurs because the user
becomes dissatisfied with the product as the re-
sponse time increases. Table 5 shows the quality loss
for the current system. The message traffic and re-

Robust Optimization of a Real-Time Operating System Using Parameter Design 1333

Table 5
Current system

Events per Second

7
(50%)

10
(40%)

20
(10%)

Quality
Loss

12 MHz 24 24 24 $103.68

30 MHz 12 12 12 25.92

Table 6
Future system

Events per Second

20
(50%)

40
(40%)

50
(10%)

Quality
Loss

12 MHz 24 35 75 $241.29

30 MHz 12 12 12 25.92

sulting loss expected were computed. Table 6 pro-
vides the same information for a future system with
anticipated growth in processing functions. The
quality loss is computed by summing the quality loss
at each event rate times the percentage at that rate.
As an example, the quality loss of the future system
at 12 MHz is

2 2$241.29 � (0.5)[(0.18)(24)] � (0.4)[(0.18)(35)]
2� (0.1)[(0.18)(75)]

These data provide another view of the cost–benefit
trade-off:

Current system: $77.76

Future system: $215.37

from which we can evaluate the present and future
effectiveness of changing the processor speed.
Clearly, if we look only at the current system, $77.76
becomes the cost breakpoint for upgrading the
clock to 30 MHz. Upgrading becomes much more
attractive when looking at the cost benefit for the
future system. The future system provides a $215.27
cost breakpoint, which is a significant percentage of
the total controller subsystem cost. The quality loss

of the future system makes a compelling argument
for upgrading to a 30-MHz processor now. This will
return significant dividends in customer satisfaction
and long-term market share.

It is important to note that had queues been cho-
sen, there would have been a significant quality loss.
Although it costs nothing to change to mailboxes,
it results in a tremendous gain when amortized over
20,000 or 30,000 units.

9. Conclusions

In conclusion, applying robust design techniques
and Taguchi methods to the selection of RTOS fea-
tures for the controller architecture has yielded an
optimal selection of key communication structures.
These techniques allowed for an optimal design us-
ing objective methods for parameter selection. In
addition to gaining valuable insight into the RTOS
internal operation, several key observations were
made and problems discovered early in the design
cycle. This study demonstrates that robust design
techniques and Taguchi methods can be applied to
software engineering successfully to yield optimal
results and replace intuition and guesswork. This
technique can be applied to all types of operating
environments. Although this application used an
embedded RTOS, it was applied successfully to the
UNIX operating system.

Taguchi’s techniques have not only allowed for
selection of optimum performance parameters for
the VHF radio but have provided a tool for expand-
ing the functionality of this radio and future
product lines. The performance analysis and the ac-
cumulation analysis provided valuable insight into
the robustness of future enhancements. Looking at
the quality loss function, a designer can objectively
predict how this system will behave under increased
workloads. The accumulation analysis shows that the
parameter selected will behave optimally even at the
system failure point. This gives added confidence
that the correct parameters have been chosen not
only for this immediate project but also for future
projects.

Additionally, it was learned that the RTOS exhib-
its catastrophic failures in two ways when the queues
become full. One type of failure is when requests

1334 Case 83

continue to be queued without the system perform-
ing any work. This is observed by the idle time in-
creasing with tasks only being queued and not
executed. The other type of failure is when the
queue fills and wraps around, causing requests to
become corrupted. By performing these experi-
ments during the design phase, these failures can
be avoided long before code and integration.

Finally, it was observed that when events have
properties that couple them, as seen when one
event waits on the result of another event to com-
plete, the dominance of processor speed diminishes
at the slower event rates. This confirms that the sys-
tem would respond well to processor speed throt-
tling at low event rates.

Using these optimization techniques resulted in
a 10.7-dB improvement in system response time by

using the optimal parameter set. Using optimal pa-
rameters reduces the message latency from 40.6 ms
to 12.1 ms, a decrease of 28.5 ms. A performance
analysis and quality loss function showed that there
are significant cost and performance benefits in
choosing 30 MHz over 12 MHz for both the current
system and future systems. The quality loss for the
current and future systems is $78 and $215, respec-
tively, since the added cost of changing to a 30-MHz
processor is minor, as compared to the quality loss
it is a highly desirable modification. Finally, getting
the equivalent power of a 30-MHz processor, with
speed throttling during idle, will require only a 1%
power increase with the same board area.

This case study is contributed by Howard S.
Forstrom.

