
1343

C A S E 8 5

Evaluation of Programmer Ability in
Software Production

Abstract: This experiment was conducted to evaluate two types of ability:
software error finding and program production. As a first step, we asked each
testee to debug a program that included intentional errors. Then we evaluate
his or her ability on the basis of the number of errors corrected and those
not corrected. Because the results generated from a third party cannot be
used to confirm experimental results and it is difficult to set the levels of
human conditions, enough people need to be provided for a confirmatory
experiment.

1. Evaluation of Software
Error-Finding Ability

We asked testees to debug a program that had in-
tentional errors. The results were two types of out-
put data (Table 1). The types of error found can be
expressed by a 0/1 value. A mistake can occur when
no error is judged as an error. It is essential to judge
an error as an error and also to judge no error as
no error. Since Genichi Taguchi has proposed a
method using the standard SN ratio for this type of
case, we attempted to use this method.

We show the calculation process of the standard
SN ratio as below. We set the total number of lines
to n, the number of correct lines to n0, that of lines
including errors to n1, that of correct lines judged
as correct to n00, that of correct lines judged as in-
correct to n01, that of incorrect lines judged as cor-
rect to n10, and that of incorrect lines judged as
incorrect to n00. The input/output results are shown
in Table 2.

Now the fraction of mistakes is

n01p � (1)
n0

n10q � (2)
n1

Using these, we calculated the standard SN ratio, �0:

1
p � (3)0 1 � �[(1/p) � 1][(1/q) � 1]

1
� � �10 log � 1 dB (4)� �2(1 � 2p)0

Choosing an L12 orthogonal array, we picked the
11 factors shown in Table 3. As a programming lan-
guage, we used C and selected six scientific and en-
gineering students with no knowledge of C. The
number programs to be debugged was approxi-
mately 30. As a program type, a logical calculation
program was chosen.

Each factor is defined as follows:

❏ A: instruction time: time needed for training in
the C language

❏ B: instructional method: lecture by an instructor
or individual study via software

❏ C: number of reviewers: review by a single person
or by two people

❏ D: review time: time for reviewing

❏ E: checklist: whether or not to use a checklist

❏ F, G, I: individual ability: aptitude test (general
job aptitude test issued by the Labor Ministry)

Taguchi’s Quality Engineering Handbook. Genichi Taguchi, Subir Chowdhury and Yuin Wu
Copyright © 2005 Genichi Taguchi, Subir Chowdhury, Yuin Wu.

1344 Case 85

Table 1
Results of software error-finding experiment

Input

Output

Judged as
Correct

Judged as
Incorrect

Correct O �

Incorrect (bug) � O

Table 3
Factors and levels for experiments on error
finding

Factor

Level

1 2

A: instruction time
(hours)

4 2

B: instructional
method

Lectured Self-taught

C: number of
reviewers

1 2

D: review time (min) 20 30

E: checklist Yes No

F: ability in Japanese
language

High Normal

G: ability for office
work

High Normal

H: target Yes No

I: intellectual ability High Normal

J: work intermission Yes No

K: number of errors 3 6

Table 2
Input/output for two types of mistakes

Input

Output

0
(Correct)

1
(Incorrect) Total

0 (correct) n00 n01 n0

1 (incorrect) n10 n11 n1

Total r0 r1 n

examining testee’s ability in the Japanese lan-
guage, business ability, and intellectual ability,
and allocation of the results to an L12 orthog-
onal array

❏ H: target value: because of errors included in
a program intentionally, whether or not to in-
form testees of the number of errors to be
found

❏ J: work intermission: whether or not to give the
testee a 10-minute pause to do other work that
has no relation to the review work

❏ K: number of errors: number of errors included
intentionally in a program

Using the control factors above, we performed
the following experiment. First, we provided 4-hour-
long instruction in the C language to six testees to
conduct the experiments of six combinations as
numbers 1 to 7 of L12. Then we provided another
four hours of training to the same testees (in total,
eight hours of instruction) and conducted an ex-
periment based on combinations of numbers 7 to
12 in the L12 orthogonal array. However, because
each testee was dealing with three characteristics at
the same time, it was difficult to allocate them in-

dependently. So by using a sequential approxima-
tion method, we estimated and calibrated SN ratios.

As a result of comparing the result obtained
from this experiment and our prior experience, we
could see that the trends in almost all of the control
factors were understood satisfactorily. For instance,
longer instruction time gave better results, and a
review by two persons was more favorable than a
review by one person. Therefore, we believe that the
analysis method in our study contributed to evalu-
ating factors related to error-finding capability.

2. Reproducibility of Results for Software
Error-Finding Capability

As mentioned before, there are two types of errors:
inability to find errors intentionally included in a
program, and mistakenly considering a correct code
to be an error.

While quality engineering requires a confirma-
tory experiment for reproducibility in gain under

Evaluation of Programmer Ability in Software Production 1345

Figure 1
Response graphs for previous and confirmatory experiments

an optimal configuration, we decided that instead
of observing reproducibility under an optimal con-
figuration, the trends of response graphs should be
confirmed. Using new testees and a new program,
we performed an experiment similar to our previ-
ous one.

However, to improve experimental reliability, we
reiterated this new experiment based on a new pro-
gram and repeated it three times (R1, R2, and R3).
Because this was a confirmatory experiment of the
earlier one, we again selected six testees, an L12 or-
thogonal array, and 11 control factors (Table 3).

Following the conditions noted above, we ob-
tained each datum. Figure 1 superimposes the re-
sponse graphs of the first experiment on the
confirmatory experiment. While the factor effects of
ability in the Japanese language, business ability,
and instruction time are still questionable, for other
factors we see sufficient reproducibility. One of the
possible reasons of poor reproducibility for ability
in the Japanese language and business ability is that
the reliability of the commercial aptitude test used
to measure the two abilities is questionable. How-
ever, since we obtained fairly good reproducibility
by changing testees and program, the reproducibil-
ity in this experiment can be regarded as sufficient.

3. Evaluation of Programming Capability

The previous experiment was conducted as follows.
We handed specifications and a flowchart to a testee

and asked him or her to write a program. When the
testee had completed a program that was satisfac-
tory to him or her, he or she saved the program.
Next, compiling this with a compiler for the first
time, the testee debugged it by himself or herself.
After this program was checked by an examiner, a
program with almost no bugs was obtained as a final
output. Then, by comparing the two programs, we
recognized a difference in code between them as an
error.

In addition, we evaluated the data using an SN
ratio for each error type. First, we classified errors
into each type and allocated all of the types to a
new orthogonal array (outer factor). As level 1, ‘‘use
of error’’ was selected, whereas ‘‘no use of error’’
was level 2. By assigning these outer factors with the
control factors (inner factors), thereby obtaining a
direct product layout, we analyzed interactions be-
tween the control factors and noise types. Conse-
quently, we had a total of 144 (12 � 12) SN ratios.
The errors were classified as follows:

❏ A�: insufficient understanding of specs, or
eventual lack of functions

❏ B�: a change in a program caused through in-
troduction of a new idea

❏ C �: functions, but incomplete

❏ D�: inability of grasping variables and keeping
track of data changes

❏ E �: errors in a specific area despite correct
codes in other areas (with no program
framework)

1346 Case 85

Table 4
Factors and levels for experiment and programming

Factor

Level

1 2

A: type of program Business Mathematical

B: instructional method Lectured Self-taught

C: logical technique F.C. PAD

D: period before deadline (days) 3 2

E: coding guideline Yes No

F: ability in Japanese language High Normal

G: ability for office work High Normal

H: number of specs Small Large

I: intellectual ability High Normal

J: mathematical ability High Normal

Table 5
ANOVA for experiment on programming

Factor f S Factor f S

E 1 270.2 G � A� 1 45.4
H 1 972.0 H � A� 1 44.0
J 1 152.2 I � A� 1 45.7

A� 1 124.4 J � A� 1 44.8
B� 1 1461.1 E � B� 1 319.7

A � A�
B � A�
D � A�

1
1
1

58.6
51.8
67.9

I � B�
D � C �
E � C �

1
1
1

115.4
93.8
69.4

e 76 767.7 F � C �
G � C �
I � C �

1
1
1

59.2
62.0
73.9

Total 95 4899.2

Ve � 767.7 /76 � 10.1.

❏ F �: errors in a specific area despite correct
codes in other areas (executable but incorrect
program)

❏ G �: correct idea but no knowledge of syntax

❏ H�: inability to write codes

❏ I �: addition of { }’s in accordance with an in-
crease in program codes

The data are collected as follows:

Line number in program: 1 2 3 ��� n

Representation of Correct Data: y y y ��� y1 2 3 n

where y � 1 for a correct line and y � 0 for incor-
rect line.

Evaluation of Programmer Ability in Software Production 1347

Table 6
Factors and levels for confirmatory experiment

Level

1 2

A: type of program With objective With objective

B: instructional method Lectured Self-taught

C: specs With flowchart With no flowchart

D: period before deadline (days) 4 2

E: test pattern Yes No

F: ability in Japanese language High Normal

G: ability for office work High Normal

H: number of specs Small Large

I: intellectual ability High Normal

J: mathematical ability High Normal

Table 7
Classification of errors in confirmatory
experiment

Factor

Level

1 2

Logical error
A�: mistake Use No use
B�: unknown Use No use

Syntax error
C �: mistake Use No use
D�: unknown Use No use

We used the following calculation process. The
fraction of the number of correct codes to that of
lines, p, is computed as follows:

y � y � ��� � y1 2 np � (5)
n

An SN ratio for 0/1 data is expressed by a ratio
of signal factor variation and error variation. To in-
clude additivity of measurement in the analysis, we
expressed the SN ratio as a decibel value:

S 1p
� � 10 log � �10 log � 1 dB (6)� �S pe

An L12 orthogonal array was used for this exper-
iment. As control factors, 10 types of factors were
selected (Table 4). As an ability test, a commercial
aptitude test was prepared. The C language is used
and the program consisted of about 100 steps. As
testees, six engineering students who had taken 10
hours of training in the C language were chosen.
We tested them according to the levels allocated in
the L12 orthogonal array.

The following is an explanation of the factors
selected:

❏ A: type of program: type of program created by
a testee

❏ B: instructional method: lecture on the C lan-
guage from a teacher, or the use of instruc-
tional software

❏ C: logical technique: schematic of a program’s
flow

❏ D: period before deadline: requirement that pro-
gram be handed in within two or three days
after specifications are given

❏ E: coding guideline: material that states ways of
thinking in programming

❏ H: number of specs: as long as the difficulty level
of each program is not changed, minimal and

1348 Case 85

Figure 2
Comparison of response graphs between previous and confirmatory experiments

Table 8
ANOVA for experiment on programming

Factor f S Factor f S

A 1 425.5 A � A� 1 655.6
B 1 266.2 G � A� 1 327.1
D 1 474.5 A � B� 1 820.0
F 1 369.4 G � B� 1 398.5
G 1 2063.1 A � C � 1 409.5
K 1 319.4 A � D � 1 211.7

A�
D �

1
1

1952.3
911.2

C � D �
D � D �

1
1

229.0
382.9

e 77 3061.8 H � D � 1 417.0
K � D � 1 215.7

Total 95 13,910.3

Ve � 3061.8 /77 � 39.8.

redundant specifications on which a testee was
to write a program

❏ F, G, I, and J: individual ability: similar to abil-
ities measured in the experiment on evalua-
tion of error finding, plus mathematical ability

Since this experiment also tested six testees, us-
ing the same testees, we performed a separate ex-

periment for the upper and lower halves of the or-
thogonal array. The results reveal that main effects
are brought about by human abilities and number
of specs. In addition, in terms of interactions be-
tween factors and errors, A�, B�, or the error of C �
demonstrated a relatively large effect. That is, it was
assumed that these errors were affected by individ-
ual differences (Tables 4 and 5).

4. Reproducibility of Results for
Programming Capability Evaluation

This experiment was also performed under almost
the same conditions. The only difference was addi-
tion of repetitions (R1 and R2) and a change in
some control factors. Because of the repetitions
added, considering the increased workload on the
testees, we prepared two 50-line programs in this
experiment instead of one 100-line program.

We describe the changed factors as follows (see
Table 6):

❏ A: type of program. Because of using a different
program, we could not follow the classification
in the previous experiment. Rather, we fo-
cused on whether or not the objective of a
program was clarified.

❏ C: specs. Since we did not have enough time
to instruct the testees in two types of flow-

Evaluation of Programmer Ability in Software Production 1349

Table 9
Gain obtained from experiments on error finding and programming

Experiment on Error
Finding

Previous Confirmatory

Experiment on
Programming

Previous Confirmatory

All factors
Optimal 22.6 17.6 13.3 31.0
Worst �19.1 �7.3 0.0 0.5
Gain 41.6 24.9 13.4 30.5

All factors except
Japanese language, office work, and time
Optimal 18.4 13.0 12.9 22.2
Worst �14.9 �2.7 0.4 9.4
Gain 12.6 19.0 12.6 12.8

charts, in this experiment we considered
whether a flowchart was included in the specs.

❏ D: period before deadline. Because there is little
difference between two and three days, we
changed the periods to two and four days so
that the difference would be greater.

❏ E: test pattern. The existence and nonexistence
of a test pattern were compared.

Since there were approximately 50 lines in one
program in the confirmatory experiment, we can-
not classify the errors due to the small number as
we have done in the preceding experiment. Addi-
tionally, because a small number of lines mitigates
differences among individuals, we proceeded with
the analysis following the categorization of errors
shown in Table 7.

Figure 2 illustrates the response graphs. For the
factors in the preceding experiment, we indicated
only the factors that were the same as, or similar
to, the corresponding ones in the confirmatory
experiment. As a result, we can see that many of the
factors have good reproducibility. On the other
hand, it is quite reasonable that ability in the Japa-
nese language, business ability, and period before
deadline (time) still have poor reproducibility be-
cause all of them show the same conclusions in the
experiment on error-finding capability. Table 8 lists
the ANOVA for the experiment, and Figure 2 com-
pares the response graphs.

5. Confirmation of Gains in Experiments
on Error Finding and Programming

Table 9 shows calculation of the gains. While the
upper half represents a normal calculation of gain,
the lower indicates a computation excluding ability
of Japanese language, business ability, and time, all
of which had poor reproducibility. Because of no
current configuration in our study, we defined a dif-
ference between SN ratios under the optimal and
worst configurations. When using all the control fac-
tors, the reproducibility was extremely poor, but we
obtained fairly good reproducibility when some fac-
tors were excluded.

According to the two experiments discussed thus
far, we can see that effects caused by interactions
need to be considered in an analysis because of sig-
nificant interactions among control factors (differ-
ences among individuals) in the case of dealing with
a 100-line program, whereas we can perform an
analysis with no consideration of interactions when
a 30- to-50-line program is used. On the other hand,
since the commercial aptitude test used for evalu-
ating human ability factors is problematic in terms
of reliability, we need to seek a substitute.

Yet since we obtained sufficient reproducibility in
an operational process including human factors, it
would be reasonable to say that our analysis method
was effective for the evaluation of programming
capability.

1350 Case 85

Reference

Kei Takada, Muneo Takahashi, Narushi Yamanouchi,
and Hiroshi Yano, 1998. The study of reappearance
of experiment in evaluation of programmer’s ability

of software. Quality Engineering, Vol. 6, No. 1, pp. 39–
47.

This case study is contributed by Kei Takada, Muneo
Takahashi, Narushi Yamanouchi, and Hiroshi Yano.

