
1360

C A S E 8 7

Streamlining of Debugging Software Using an
Orthogonal Array

Abstract: In the development process of software, debugging before shipping
a product is one of the most important and time-consuming processes. Where
bugs are found by users after shipment, not only the software per se but also
its company’s reputation will be damaged. On the other hand, thanks to the
widely spreading Internet technology, even if software contains bugs, it is
now easy to distribute bug-fix software to users in the market through the
Internet. Possibly because of this trend, the issue of whether there are soft-
ware bugs for a personal computer seems to have become of less interest
lately. However, it is still difficult to correct bugs after shipping in the case
of software installed in hardware. Thus, we need to establish a method of
removing as many bugs as possible within a limited period before shipment.
In this study, a debugging method using an orthogonal array is illustrated.

1. Introduction

No effective debugging method has been developed
to date. Since a debugging procedure or the range
depends completely on each debugging engineer, a
similar product might be of different quality in
some cases. In addition, because it is so labor inten-
sive, debugging is costly. Thus, a more efficient
method of finding bugs could lead to significant
cost reduction.

In the context addressed above, Genichi Taguchi
has proposed an effective debugging method in two
articles titled ‘‘Evaluation of objective function for
signal factor’’ [1, 2] and ‘‘Evaluation of signal factor
and functionality for software’’ [3]. In reference to
these, we detail the results of our experiment on
debugging using an orthogonal array.

Since this methodology is a technique for eval-
uating an objective function for multiple signals, it
is regarded as related not to quality engineering but
rather to the design of experiments, in a sense.

The method that we propose suggests that we
allocate items selected by users (signal factors) to an
L18 or L36 orthogonal array, run software in accord-
ance with a combination of signal factors in each
row of the orthogonal array, and judge, using 0 and
1, whether or not an output is normal [4]. Subse-
quently, using the output obtained, we calculated a
variance or interaction to identify which combina-
tion of factors was most likely to cause bugs.
Through these steps we can find almost all bugs
caused by each combination of factors, and we only
need to check for the remaining bugs based on sin-
gle factor changes.

2. Debugging Experiment Using
Orthogonal Array

Using the � version of our company’s software, we
performed an experiment grounded on an orthog-

Taguchi’s Quality Engineering Handbook. Genichi Taguchi, Subir Chowdhury and Yuin Wu
Copyright © 2005 Genichi Taguchi, Subir Chowdhury, Yuin Wu.

Streamlining of Debugging Software Using an Orthogonal Array 1361

Table 1
Signal factors and levels

1 2 3

A A1 A2 —

B B1 B2 B3

C C1 C2 C3

D D1 D2 D3

E E1 E2 E2�

F F1 F2 F1�

G G1 G2 G1�

H H1 H2 H3

Table 2
L18 orthogonal array and output

No. A B C D E F G H Ouput

1 1 1 1 1 1 1 1 1 0

2 1 1 2 2 2 2 2 2 0

3 1 1 3 3 2� 1� 1� 3 1

4 1 2 1 1 2 2 1� 3 1

5 1 2 2 2 2� 1� 1 1 0

6 1 2 3 3 1 1 2 2 0

7 1 3 1 2 1 1� 2 3 0

8 1 3 2 3 2 1 1� 1 0

9 1 3 3 1 2� 2 1 2 0

10 2 1 1 3 2� 2 2 1 0

11 2 1 2 1 1 1� 1� 2 0

12 2 1 3 2 2 1 1 3 1

13 2 2 1 2 2� 1 1� 2 0

14 2 2 2 3 1 2 1 3 1

15 2 2 3 1 2 1� 2 1 0

16 2 3 1 3 2 1� 1 2 0

17 2 3 2 1 2� 1 2 3 0

18 2 3 3 2 1 2 1� 1 0

onal array. This is because the � version contains
numerous bugs, whose existence has been recog-
nized. Therefore, the effectiveness of this experi-
ment can easily be confirmed. However, since bugs
detected cannot be corrected, we cannot check
whether or not the trend regarding the number of
bugs is decreasing.

As signal factors we selected eight items that can
frequently be set up by users, allocating them to an
L18 orthogonal array. When a signal factor has four
or more levels—for example, continuous values
ranging from 0 to 100—we selected 0, 50, and 100.
When dealing with a factor that can be selected,
such as patterns 1 to 5, three of the levels that are
most commonly used by users were selected. Once
we assigned these factors to an orthogonal array, we
noticed that there were quite a few two-level factors.
In this case we allocated a dummy level to level 3.
(Because of our company’s confidentiality rule, we
have left out the details about signal factors and
levels.)

For the output, we used a rule of normal � 0
and abnormal � 1, based on whether the result was
what we wanted. In some cases, ‘‘no output’’ is the
right output. Therefore, normal or abnormal is de-
termined by referring to the specifications. Signal
factors and levels are shown in Table 1.

3. Analysis of Bugs

From the results of Table 2, we created approximate
two-way tables for all combinations. The upper left
part of Table 3 shows the number of each combi-
nation of A and B: A1B1, A1B2, A1B3, A2B1, A2B2, and
A2B3. Similarly, we created a whole table for all com-
binations. A part where many bugs occur on one
side of this table was regarded as a location with
bugs.

Looking at the overall result, we can see that
bugs occur at H3. After investigation it was found
that bugs do not occur in the on-factor test of H,
but occur by its combination with G1 (� , theG�1
same level because of the dummy treatment used)
and B1 or B2. Since B3 is a factor level whose selec-
tion blocks us from choosing (or annuls) factor lev-
els of H and has interactions among signal factors,

1362 Case 87

Table 3
Binary table created from L18 orthogonal array

B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3 G1 G2 G3 H1 H2 H3

A1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 2 0 0 2

A2 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 2 0 0 0 0 2

B1 0 0 2 0 1 1 0 1 1 1 0 1 1 0 1 0 0 2

B2 1 1 0 1 0 1 1 1 0 0 2 0 1 0 1 0 0 2

B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1

C2 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1

C3 0 1 1 0 1 1 1 0 1 1 0 1 0 0 2

D1 0 1 0 0 1 0 0 0 1 0 0 1

D2 0 1 0 1 0 0 1 0 0 0 0 1

D3 1 0 1 0 1 1 1 0 1 0 0 2

E1 0 1 0 1 0 0 0 0 1

E2 1 1 0 1 0 1 0 0 2

E�2 0 0 1 0 0 1 0 0 1

F1 1 0 0 0 0 1

F2 1 0 1 0 0 2

F�1 0 0 1 0 0 1

G1 0 0 2

G2 0 0 0

G�1 0 0 2

it was considered as the reason that this result was
obtained.

Now the calculated variance and interaction
were as follows.

Variation between A and B combinations:

2 2 2 2 2 2 21 � 1 � 0 � 1 � 1 � 0 4
S � �AB 3 18

� 0.44 (f � 5) (1)

Variation of A:

2 2 22 � 2 4
S � � � 0.00 (f � 1) (2)A 9 18

Variation of B:

2 2 2 22 � 2 � 0 4
S � � � 0.44 (f � 2) (3)B 6 18

A summary of all the main effects is shown in Ta-
ble 4.

Variation of A, B interaction:

S � S � S � SA�B AB A B

� 0.44 � 0.00 � 0.44

� 0.00 (f � 2) (4)

Streamlining of Debugging Software Using an Orthogonal Array 1363

Table 4
Main effect

Factor Main Effect a

A 0.0

B 0.44

C 0.11

D 0.11

E 0.03

F 0.03

G 0.44

H 1.77

aBoldface numbers indicate significant factorial effect.

As the next step, we divided the combinational
effect, SAB, and interaction effect, SA�B, by each cor-
responding degree of freedom:

SABcombinational effect � � 0.09 (5)
5

SA�Binteraction effect � � 0.00 (6)
2

Now, since these results are computed from our
approximate two-way tables, if the occurrence of
bugs is infrequent, as in this example, we should
consider such results as a clue for debugging. When
there are more bugs or a large-scale orthogonal ar-
ray is used, we need to use these values for finding
bug locations.

4. Bug Identification

Finally, we succeeded in finding bugs by taking ad-
vantage of each combination of factors (Table 5).
As below, using the method as described, the bugs
can be found from an observation of specific com-
binations. Following are the differences between
our current debugging process and the method us-
ing an orthogonal array:

1. Efficiency of finding bugs

a. Current process. What can be found through
numerous tests are mainly independent

bugs. To find bugs caused by a combina-
tion of factors, we need to perform many
repeated tests.

b. Orthogonal array. Through a small number
of experiments, we can find independent
bugs and bugs generated by a combination
of factors. However, for a multiple-level fac-
tor, we need to conduct one-factor tests
later.

2. Combination of signal factors

a. Current process. We tend to check only
where the bug may exist and unconsciously
neglect the combinations that users prob-
ably do not use.

b. Orthogonal array. This method is regarded
as systematic. Through nonsubjective com-
binations that do not include debug engi-
neers’ presuppositions, well-balanced and
broadband checkup can be performed.

3. Labor required

a. Current process. After preparing a several-
dozen-page check sheet, we have to inves-
tigate all of its checkpoints.

b. Orthogonal array. The only task that we
need to do is to determine signal factors
and levels. Each combination is generated
automatically. The number of checkups re-
quired is much smaller, considering the
number of signal factors.

4. Location of bugs

a. Current process. Since we need to change
only a single parameter for each test, we
can easily notice whether or not changed
items or parameters involve bugs.

b. Orthogonal array. Locations of bugs are
identified by looking at the numbers after
the analysis.

5. Judgment of bugs or normal outputs

a. Current process. We can easily judge whether
a certain output is normal or abnormal
only by looking at one factor changed for
the test.

b. Orthogonal array. Since we need to check
the validity for all signal factors for each

1364 Case 87

Table 5
Combinational and interaction effects

Factor Combination Interaction

AB 0.09 0.00

AC 0.09 0.17

AD 0.09 0.17

AE 0.09 0.25

AF 0.04 0.00

AG 0.15 0.00

AH 0.36 0.00

BC 0.26 0.39

BD 0.14 0.14

BE 0.17 0.19

BF 0.42 0.78

BG 0.22 0.11

BH 0.39 0.22

CD 0.14 0.22

CE 0.17 0.36

CF 0.22 0.44

CG 0.12 0.03

CH 0.26 0.06

DE 0.07 0.11

DF 0.12 0.19

DG 0.12 0.03

DH 0.26 0.11

EF 0.12 0.22

EG 0.16 0.01

EH 0.23 0.01

FG 0.20 0.06

FH 0.42 0.11

GH 0.62 0.44

output, it is considered cumbersome in
some cases.

6. When there are combinational interactions
among signal factors

a. Current process. Nothing in particular.

b. Orthogonal array. We cannot perform an
experiment

following combinations determined in an orthogo-
nal array.

Although several problems remain before we can
conduct actual tests, we believe that through use of
our method, the debugging process can be stream-
lined. In addition, since this method can be em-
ployed relatively easily by users, they can assess
newly developed software in terms of bugs. In fact,
as a result of applying this method to software de-
veloped by outside companies, we have found a cer-
tain number of bugs. From now on, we will attempt
to incorporate this method into our software devel-
opment process.

References

1. Genichi Taguchi, 1999. Evaluation of objective func-
tion for signal factor (1). Standardization and Quality
Control, Vol. 52, No. 3, pp. 62–68.

2. Genichi Taguchi, 1999. Evaluation of objective func-
tion for signal factor (2). Standardization and Quality
Control, Vol. 52, No. 4, pp. 97–103.

3. Genichi Taguchi, 1999. Evaluation of signal factor
and functionality for software. Standardization and
Quality Control, Vol. 52, No. 6, pp. 68–74.

4. Kei Takada, Masaru Uchikawa, Kazuhiro Kajimoto,
and Jun-ichi Deguchi, 2000. Efficient debugging of
a software using an orthogonal array. Quality Engi-
neering, Vol. 8, No. 1, pp. 60–69.

This case study is contributed by Kei Takada, Masaru
Uchikawa, Kazuhiro Kajimoto, and Jun-ichi Deguchi.

