
1406

C A S E 9 4

Applications of Linear and Nonlinear Regression
Equations for Engineering

Abstract: Experiments are normally conducted following the layout of design
of experiments. But in many cases, data have existed without following an
experimental layout. These data are not orthogonal between factors. For such
cases, experimental regression analysis can be used as a powrful tool to
establish an equation that will explain the relationship between result and
factors.

This study concerns linear and nonlinear cases using experimental regres-
sion analysis. The former includes an example of chemical reaction and the
case using partial data from an orthogonal array, which were not used in the
previous analysis to establish an equation. The latter includes the estimation
of the volume of trees and the starting temperature of room heaters.

1. L16 Experiment with Supplemental
Characteristics

To improve the yield of a chemical product, an ex-
periment was planned including factors A and B
with four levels and factors C, D, E, F, G, H with two
levels, assigned to an L16 orthogonal array. Beside
those factors, an uncontrollable factor, x, which
probably affects yield, the objective characteristic,
was observed. Therefore, the magnitude of x was
observed beside yield, y, for each experiment. The
layout and results of this experiment are shown in
Table 1.

Estimation of Factorial Effects Using Experimental
Regression Analysis
Data with supplementary characteristics are gener-
ally analyzed using the analysis of covariance. But
similar to regression analysis, it often occurs with
some problems. In addition, calculation is tedious
when there are many supplementary characteristics.
In an experimental regression analysis, the follow-
ing equation is used:

y � m � z x � a x � a x � b x � b x � b x2 1 3 2 4 3 2 4 3 5 4 6

� c x � d x � e x � e x � f x2 7 2 8 2 8 2 9 2 10

� g x � h x � ax2 11 2 12 (1)

After estimating parameters, the factorial effects can
be calculated. The variables are set as follows and
shown in Table 2:

x1: If level 2 is selected for A, x is set to 1, others
are set to 0.

x2: If level 3 is selected for A, x is set to 1, others
are set to 0.

x3: If level 4 is selected for A, x is set to 1, others
are set to 0.

x4: If level 2 is selected for B, x is set to 1, others
are set to 0.

x5: If level 3 is selected for B, x is set to 1, others
are set to 0.

x6: If level 4 is selected for B, x is set to 1, others
are set to 0.
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Table 1
Layout and results of experiment

Row

Column

A
123

B
48–12

C
5

D
6

e
7

e
9

E
10

F
11

G
13

H
14

e
15 x y

1 1 1 1 1 1 1 1 1 1 1 1 138 54

2 1 2 1 1 1 2 2 2 2 2 2 120 55

3 1 3 2 2 2 1 1 1 2 2 2 95 24

4 1 4 2 2 2 2 2 2 1 1 1 95 41

5 2 1 1 2 2 1 2 2 1 2 2 105 66

6 2 2 1 2 2 2 1 1 2 1 1 90 49

7 2 3 2 1 1 1 2 2 2 1 1 129 58

8 2 4 2 1 1 2 1 1 1 2 2 130 96

9 3 1 2 1 2 2 2 2 2 1 2 130 63

10 3 2 2 1 2 1 2 1 1 2 1 124 73

11 3 3 1 2 1 2 1 2 1 2 1 102 31

12 3 4 1 2 1 1 2 1 2 1 2 95 34

13 4 1 2 2 1 2 2 1 2 2 1 104 91

14 4 2 2 2 1 1 1 2 1 1 2 123 54

15 4 3 1 1 2 2 2 1 1 1 2 119 50

16 4 4 1 1 2 1 1 2 2 2 1 95 61

x7: If level 2 is selected for C, x is set to 1, others
are set to 0.

x8: If level 2 is selected for D, x is set to 1, others
are set to 0.

x9: If level 2 is selected for E, x is set to 1, others
are set to 0.

x10: If level 2 is selected for F, x is set to 1, others
are set to 0.

x11: If level 2 is selected for G, x is set to 1, oth-
ers are set to 0.

x12: If level 2 is selected for H, x is set to 1,
others are set to 0.

x: Supplementary characteristic.

Following are definitions for m, a2, ... , h2, and a:

m: estimate when all variables are at the first
level

a2: estimate of A � A2 1

a3: estimate of A � A3 1

a4: estimate of A � A4 1

b2: estimate of B � B2 1

b3: estimate of B � B3 1

b4: estimate of B � B4 1

c2: estimate of C � C2 1

d2: estimate of D � D2 1

e2: estimate of E � E2 1

f2: estimate of F � F2 1
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Table 2
Integer variables

Row

Column

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x y

1 0 0 0 0 0 0 0 0 0 0 0 0 138 54

2 0 0 0 1 0 0 0 0 1 1 1 1 120 55

3 0 0 0 0 0 0 1 1 0 0 1 1 95 24

4 0 0 0 0 0 1 1 1 1 1 0 0 95 41

5 1 0 0 0 0 0 0 1 1 1 0 1 105 66

6 1 0 0 1 0 0 0 1 0 0 1 0 90 49

7 1 0 0 0 0 0 1 0 1 1 1 0 129 58

8 1 0 0 0 0 1 1 0 0 0 0 1 130 96

9 0 1 0 0 0 0 1 0 0 1 1 0 130 63

10 0 1 0 1 0 0 1 0 1 0 0 1 124 73

11 0 1 0 0 0 0 0 1 0 1 0 1 102 31

12 0 1 0 0 0 1 0 1 1 0 1 0 95 34

13 0 0 1 0 0 0 1 1 1 0 1 1 104 91

14 0 0 1 1 0 0 1 1 0 1 0 0 123 54

15 0 0 1 0 0 0 0 0 1 0 0 0 119 50

16 0 0 1 0 0 1 0 0 0 1 1 1 95 61

g2: estimate of G � G2 1

h2: estimate of H � H2 1

a: change of yield, y, by unit change of x

Table 3 shows the initial and converged values at
the fifth iteration. The initial level intervals were set
wide. These can be narrower if engineering knowl-
edge is utilized. Using the second levels of the fifth
iteration yields

m � y � (a x � a x � ��� � h x � ax) � �262 1 3 2 2 12

(2)

Comparison was made as shown in Table 4. For
verification it was desirable to use the data that were
not used for the estimation of parameters. But in
this case, all 16 data points are used for verification.
The average of differences squared was calculated
as 1412.60. This corresponds to error variance.

2. Partial Data from an Experiment Using
an Orthogonal Array

In an experiment using an L18 array, two-level factor
A was assigned to the first column and three-level
factors B, C, D, E, and F to columns 2 to 6, respec-
tively. The smaller-the-better characteristic was used,
calculated from the noise factors assigned to the
outer array. Factors A, D, and F are significant. Using
these factors to estimate the SN ratio under the op-
timum configuration, the SN ratio was �36.97 dB,
and that under current conditions was �38.61.
There is an improvement of about 1.6 dB.

The estimate under current conditions was close
to the result of number 1, where all factors are at
their first level (Table 5). The SN ratios of number
6 or 8 are better than the one under the optimum,
suggesting that the SN ratio under the optimum
might be better. Although the SN ratio analysis of
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Table 3
Initial values and values after convergence

Parameter

Initial Level

1 2 3

Level after Fifth
Iteration

1 2 3

a2 0.0 16.0 32.0 16.0 24.0 32.0

a3 0.0 16.0 32.0 0.0 8.0 16.0

a4 0.0 16.0 32.0 16.0 24.0 32.0

b2 �32.0 �16.0 0.0 �16.0 �8.0 0.0

b3 �32.0 �16.0 0.0 �32.0 �16.0 0.0

b4 �8.0 0.0 8.0 �8.0 0.0 8.0

c2 8.0 0.0 8.0 �8.0 0.0 8.0

d2 �8.0 0.0 8.0 �8.0 0.0 8.0

e2 �8.0 0.0 8.0 �8.0 0.0 8.0

f2 �8.0 0.0 8.0 �8.0 0.0 8.0

g2 �8.0 0.0 8.0 �8.0 0.0 8.0

h2 �8.0 0.0 8.0 4.0 6.0 8.0

a 0.0 0.8 1.6 0.4 0.6 0.8

L18 is not shown here, the confidence interval was
quite wide from the analysis of variance. In such a
case it is natural that the researcher wants to have
a better estimate.

It was noted from observations that there is a big
difference between the SN ratios from numbers 1
to 9 and those from numbers 10 to 18. In addition,
the SN ratios under A2 are close to each other. In
other words, the effects of B, C, D, E, F, and G under
A2 are insignificant. But it is not clear whether there
are problems in the level setting for those factors or
whether they are truly insignificant. Since the effects
of factors B to G are different at different levels of
A, which indicates the existence of interactions, the
error calculated may become unsatisfactorily large.

Since the results under A1 were better, it may be
that the effects of B to G can be estimated from the
results under A1. As seen in the upper half of L18,
the array of columns 2, 3, 6, and 7 are identical to
the L 9 array. Even for the case when there are other
factors assigned to other columns in the upper half
of L18, if their effects were small, analysis could be

made from the upper half, although it is not a gen-
eral practice.

If we want to estimate the effects from the upper
half of L18, it is necessary that the factors be orthog-
onal to each other. To analyze the data that are not
orthogonal, experimental regression analysis is
useful.

Preparation of Data for Regression Analysis
Table 5 shows the SN ratios of experiments 1 to 9.
To analyze the effects of B through G, those factors
were replaced with integer-type variables and the
following equation was used:

y � m � b x � b x � c x � c x � d x � d x2 1 3 2 2 3 3 4 2 5 3 6

� e x � e x � f x � f x2 7 3 8 2 9 3 10 (3)

Variables were set as follows (Table 6):

x1: If level 2 is selected for B, x1 is set to 1, oth-
ers are set to 0.
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Table 4
Comparison between estimation and
observation

No. Observation Estimation (Est.) � (Obs.)

1 54.0 52.6 �1.4

2 55.0 41.4 �13.6

3 24.0 39.4 15.4

4 41.0 34.4 �5.6

5 66.0 67.4 1.4

6 49.0 33.4 �15.6

7 58.0 73.0 15.0

8 96.0 93.4 �2.6

9 63.0 49.4 �13.6

10 73.0 75.0 2.0

11 31.0 42.2 11.2

12 34.0 34.4 1.4

13 91.0 75.0 �16.0

14 54.0 54.6 0.6

15 50.0 77.0 27.0

16 61.0 55.4 �5.6

Table 5
SN ratios

Row

Column

A
1

B
2

C
3

D
4

E
5

F
6

e
7

e
8 dB

1 1 1 1 1 1 1 1 1 �39.79

2 1 1 2 2 2 2 2 2 �42.74

3 1 1 3 3 3 3 3 3 �46.52

4 1 2 1 1 2 2 3 3 �44.33

5 1 2 2 2 3 3 1 1 �46.65

6 1 2 3 3 1 1 2 2 �34.92

7 1 3 1 2 1 3 2 3 �43.75

8 1 3 2 3 2 1 3 1 �32.81

9 1 3 3 1 3 2 1 2 �40.98

x2: If level 3 is selected for B, x is set to 1, others
are set to 0.

x3: If level 2 is selected for C, x is set to 1, others
are set to 0.

x4: If level 3 is selected for C, x is set to 1, others
are set to 0.

x5: If level 2 is selected for D, x is set to 1, others
are set to 0.

x6: If level 3 is selected for D, x is set to 1, others
are set to 0.

x7: If level 2 is selected for E, x is set to 1, others
are set to 0.

x8: If level 3 is selected for E, x is set to 1, others
are set to 0.

x9: If level 2 is selected for F, x is set to 1, others
are set to 0.

x10: If level 3 is selected for F, x is set to 1, others
are set to 0.

The coefficients show the following contents:
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Table 6
Placement of factors in Table 5 as integer-type variables

B
2

C
3

D
4

E
5

F
6

x1

B2

x2

B3

x3

C2

x4

C3

x5

D2

x6

D3

x7

E2

x8

E3

x9

F2

x10

F3 y

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 �39.79

1 2 2 2 2 0 0 1 0 1 0 1 0 1 0 �42.74

1 3 3 3 3 0 0 0 1 0 1 0 1 0 1 �46.52

2 1 1 2 2 1 0 0 0 0 0 1 0 1 0 �44.33

2 2 2 3 3 1 0 1 0 1 0 0 1 0 1 �46.55

2 3 3 1 1 1 0 0 1 0 1 0 0 0 0 �34.92

3 1 2 1 3 0 1 0 0 1 0 0 0 0 1 �43.75

3 2 3 2 1 0 1 1 0 0 1 1 0 0 0 �32.81

3 3 1 3 2 0 1 0 1 0 0 0 1 1 0 �40.98

m: estimate of (A )B C D E F G1 1 1 1 1 1 1

b : estimate of B � B2 2 1

b : estimate of B � B3 3 1

c : estimate of C � C2 2 1

c : estimate of C � C3 3 1

d : estimate of D � D2 2 1

d : estimate of D � D3 3 1

e : estimate of E � E2 2 1

e : estimate of E � E3 3 1

f : estimate of F � F2 2 1

f : estimate of F � F3 3 1

Ranges of Initial Values
The initial values of b2, ... , f3 are determined based
on engineering knowledge (Table 7). Setting the re-
sults of level 2 of the eighth iteration,

m � y � (b x � b x ��� � h x ) � �38.71 (4)2 1 3 2 3 10

y is calculated as

y � �38.71 � x � 2.5x � x � 1.5x � x1 2 3 4 5

� x � x � x � 7x � 9x6 7 8 9 10 (5)

Table 8 shows the comparison by putting the values
in Table 7. The error variance was calculated as 0.64.
Figure 1 shows the response graphs where the effect
is the gain from level 1.

Estimation of the Optimal Configuration
Since the optimum configuration is B3C3D2(D3)E2F1,

y � �38.71 � x � 2.5x � x � 1.5x �x1 2 3 4 5

� x � x � x � 7x � 9x6 7 8 9 10 (6)

where x1 � 0, x2 � 1, x3 � 0, x4 � 1, x5 � 1, x6 �
0, x7 � 1, x8 � 0, x9 � 0, and x10 � 0.

3. Other Applications

In the section above, only the optimum configura-
tion was estimated. But it is possible to estimate any
combination. Sometimes there are incomplete
(missing) data in an orthogonal experiment, and
sequential analysis is conducted followed by analysis
of variance. Even in such a case, the estimation of
missing combination(s) can be made by calculating
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Table 7
Initial and converged values of parameters

Coefficient

Level

Initial Three levels

1 2 3

Conveyed Eighth Iteration

1 2 3

b2: B � B2 1 0 2 4 0 1 2

b3: B � B3 1 0 2 4 2 2.5 3

c2: C � C2 1 �2 0 2 0 1 2

c3: C � C3 1 �2 0 2 1 1.5 2

d2: D � D2 1 �2 0 2 0 1 2

d3: D � D3 1 �2 0 2 0 1 2

e2: E � E2 1 �2 0 2 0 1 2

e3: E � E3 1 �2 0 2 �2 �1 0

f2: F � F2 1 �8 �4 0 �8 �7 �6

f3: F � F3 1 �16 �8 0 �10 �9 �8

Table 8
Comparison between estimation and
observation

No. Observation Estimation (Est.) � (Obs.)

1 �39.79 �38.71 1.08

2 �42.74 �42.71 0.03

3 �46.52 �46.21 0.31

4 �44.33 �43.71 0.62

5 �46.55 �45.71 0.84

6 �34.92 �35.21 �0.29

7 �43.75 �44.21 �0.46

8 �32.81 �33.21 �0.40

9 �40.98 �42.71 �1.73

the coefficients using experimental regression anal-
ysis from the rest of the data.

In the experiments of manufacturing areas, data
are collected based on the layout of experimental
design. But in some cases, we want to utilize the
existing data from observation prior to experimen-
tation. In most cases, there is no orthogonality

between factors. For such cases, experimental
regression analysis can be used as a powerful tool.

4. Estimation of the Volume of Trees

The volume of a tree is estimated from chest-high
diameter, D, and height, H. The following equation
is generally used:

a2 a3y � a D H (7)1

If the coefficients a1, a2, and a3 are known, the vol-
ume of a tree is estimated from chest height and
tree height.

To determine a1, a2, and a3, 52 trees were cut
down and the values, D and H, and volume, y, were
measured (Table 9).

Although it is possible to conduct the logarith-
mic transformation, then estimate the coefficients
by linear regression analysis, nonlinear equation (7)
is used without transformation in this case.

Sequential Approximation
Since D and H are diameter and height, respectively,
it looks like D is close to the power of 2, and H is
around 1. In other words, a2 is around 2 and a3 is
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Figure 1
Response graphs of partial data

Table 10
Initial coefficients

1 2 3

a1 0.00005 0.00010 0.00015

a2 1.5 2.0 2.5

a3 0.5 1.0 1.5

Table 9
Observational results for trees

No. D (cm) H (m) y (m3)

1 36.3 22.50 1.161

2 24.5 18.83 0.461

3 26.3 17.35 0.535

4 29.5 19.22 0.701

� � � �

52 14.5 14.37 0.124

Table 11
Converged coefficients after ninth iteration

1 2 3

a1 0.0001094 0.0001096 0.0001098

a2 1.8379 1.8398 1.8418

a3 0.8387 0.8398 0.8418

around 1. Considering the units of D being in cen-
timeters, H being in meters, and y being in square
meters, the unit of a1 is probably around 0.0001.
The initial values are set as shown in Table 10.

Converged Values and Their Evaluation
After conducting sequential approximation, it con-
verged after nine iterations to obtain the results
shown in Table 11. Volume, y, is given by the follow-
ing equation using the values of the second level:

1.839 0.8398y � 0.0001096D H (8)

The total of residuals squared, Se, is 0.02423, and
the standard deviation is 0.021.

Next, the average of residual error variation was
calculated from the data in Table 12, the observa-

tions of 10 trees that were not used in the estimation
of parameters. It was calculated from the average of
the differences between estimation and observation
squared.

1
V � 2 2 210[(�0.003) � 0.060 � ��� � 0.009 ]

� 0.00554 (9)

The standard deviation was 0.023, showing good re-
producibility of conclusions for the data that were
not used for the equation of estimation, shown in
Tables 11, 12, and 13.

Comparison with Logarithmic Transformation
As described above, equation (7) can be con-
verted into a linear equation by logarithmic
transformation:

log y � log a � a log D � a log H (10)1 2 3

If a2 and a3 are known, log a1 is calculated as a con-
stant. The following equation, which was obtained
from the least squares method, does not have any
technical contradictions and is considered as one of
the solutions.
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Table 12
Data for verification and estimated values

No. D (cm) H (m) y (m3) (m3)ŷ � yŷ

1 46.3 21.90 1.701 1.698 �0.003

2 25.8 20.65 0.491 0.551 0.060

3 27.7 17.60 0.566 0.549 �0.017

4 23.6 20.05 0.473 0.456 �0.017

5 21.2 14.50 0.272 0.285 0.013

6 20.2 17.90 0.337 0.312 �0.025

7 18.1 17.33 0.264 0.248 �0.016

8 14.8 13.51 0.128 0.139 0.011

9 14.4 13.83 0.126 0.135 0.011

10 11.8 12.11 0.075 0.083 0.008

Table 13
Data for verification and estimated values

No. D (cm) H (m) y (m3) (m3)ŷ � yŷ

1 46.3 21.90 1.701 1.753 0.052

2 24.8 20.65 0.491 0.555 0.064

3 27.7 17.60 0.566 0.549 �0.017

4 23.6 20.05 0.473 0.458 �0.015

5 21.2 14.50 0.272 0.279 0.007

6 20.2 17.90 0.337 0.309 �0.028

7 18.1 17.33 0.264 0.244 �0.020

8 14.8 13.51 0.128 0.134 0.006

9 14.4 13.83 0.126 0.130 0.006

10 11.8 12.11 0.075 0.079 0.004

log y � � 4.08817 � 1.87475 log D
� 0.902218 log H (11)

A verification was made similarly to Table 12 using
this equation, and the average squared error was
calculated as

1
V � 2 2 210(0.052 � 0.064 � ��� � 0.004 )

� 0.000864 (12)

This is slightly larger than the result from equation
(9).
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Comparing the far-right columns in Tables 12
and 13, it can be seen that there is a big difference
between the two tables on tree 1. The volume of
this tree is larger than the volume of others. Gen-
erally, the absolute error becomes larger after log-
arithmic transformation. In the case of estimating
the volume of the trees in forests, a 3% error of
larger trees with a volume of such as 1.5 m3 is more
important than a 10% error of smaller trees with a
volume of 0.2 m3. Therefore, using logarithmic
transformation to estimate a2 or a3, the weight of
larger trees must be taken into consideration.

When using equation (7), the absolute error is
not affected by volume, even when weight is not
considered. It is therefore recommended that log-
arithmic transformation not be used when the loss
caused by estimation error is affected by the abso-
lute error.

5. Starting Temperature of Room Heaters

Most office workers begin their day at 9 a.m., and
it is therefore desirable that the temperature at 9
a.m. be at the targeted room temperature in winter.
To make this possible, the heater (or air conditioner
in summer) must start 30 or 60 minutes earlier. Al-
though the same period of time is used for pre-
heating, overheating or underheating occur due to
the outside temperature, sunshine, the length of
time operated on the previous day, and so on, so
the temperature often does not hit the target at the
time that one wishes to start using the room.

Let the temperature to start heating be �n and
the temperature difference between outside tem-
perature and design temperature (0�C for Tokyo
and �1�C for Yokohama) to start heating be ��A.
The room temperature, T, hours later is given from
heat transfer theory by

��t� � � � (1 � e )k(1 � � �� ) (13)r n A

where � is the coefficient of transfer, k the constant
(usually set to 4.5 based of past experiments), and
� the calibration coefficient for outer temperature
(usually set to 0.031). The preheating time, T0, with
a target room temperature of �0 is given from equa-
tion (13) as

1
T � (14)0 � ln{1 � [� � � /k(1 � ��� )]}0 n A

The values of �, �, and k are different for different
building structures and other conditions. It is im-
portant to determine those values for the develop-
ment of energy-saving equipment.

Results of Observation and Estimation for
Coefficients of Function
An air-conditioning control equipment manufac-
turer collected the data from some buildings to es-
timate the coefficients mentioned in the preceding
section. During the 26-day period, observation was
made on the day of the week, climate, temperature
difference between outer and design target (��A),
room temperature when the heater started (�n), the
time from starting (T), and current room temper-
ature (�r). Measurements were done three times a
day. Some of the results are shown in Table 14.

To estimate �, � and k in equation (13), some of
the data in Table 14 were converted into integer-
type variables, to obtain 11 variables in total. Re-
garding the week of the day, there are holidays
beside Sunday; therefore, it is better to set the vari-
able as follows (Table 15):

x1: Second day from holiday is set to 1, others
are set to 0.

x2: Third day from holiday is set to 1, others are
set to 0.

x3: Fourth day from holiday is set to 1, others
are set to 0.

x4: Fifth day from holiday is set to 1, other are
set to 0.

x5: Sixth day from holiday is set to 1, others are
set to 0.

For example, x1 to x5 are equal to 0 for the day
right after a holiday. For climate,

x : Cloudy is set to 1, others are set to 0.6

x : Snow is set to 1, others are set to 0.7

Therefore, x6 and x7 are equal to zero for a fine day.
The variables of other items are
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Table 14
Results of observation

No. Daya Climate ��A �r T (hours) �n

1 Tuesdayb Cloudy 4.0 20.0 1.00 18.5

2 — — — 21.7 2.00 —

3 — — — 22.5 3.00 —

4 Wednesday Snow 0.0 21.0 1.00 19.5

5 — — — 22.5 2.00 —

6 — — — 23.0 3.00 —

7 Thursday Cloudy 0.0 20.5 0.17 20.0

8 — — — 22.0 0.33 —

9 — — — 23.0 0.50 —

� � � � � � �

76 Mondayb Clear 2.5 22.0 0.25 21.5

77 — — — 22.8 0.50 —

78 — — — 23.3 0.75 —

a—, observation same as above since made on the same day.
bDay next to a holiday when the heater was not operated.

Table 15
Variables, including integer types for room temperature

No. 1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 0 1 0 4.0 20.0 1.00 18.5

2 0 0 0 0 0 1 0 4.0 21.7 2.00 18.5

3 0 0 0 0 0 1 0 4.0 22.5 3.00 18.5

4 1 0 0 0 0 0 1 0.0 21.0 1.00 19.5

5 1 0 0 0 0 0 1 0.0 22.5 2.0 19.5

6 1 0 0 0 0 0 1 0.0 23.0 3.00 19.5

� �

76 0 0 0 0 1 0 0 2.5 22.0 0.25 21.5

77 0 0 0 0 1 0 0 2.5 22.8 0.50 21.5

78 0 0 0 0 1 0 0 2.5 23.3 0.78 21.5
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Table 16
Initial and convergent values of parameters for room temperature

Level

Initial Values

1 2 3

After 16th Iteration

1 2 3

a1 0 0.8 1.6 0.3 0.4 0.5

a2 0 0.8 1.6 0.7 0.75 0.8

a3 0 0.8 1.6 0.7 0.75 0.8

a4 0 0.8 1.6 0.4 0.5 0.6

a5 0 0.8 1.6 0.4 0.45 0.5

a6 �0.8 �0.4 0 �0.275 �0.2625 �0.25

a7 �0.8 �0.4 0 �0.4 �0.35 �0.3

a8 0.4 0.8 1.4 0.7 0.725 0.75

a9 4 8 12 5.0 5.25 5.5

a10 0 0.016 0.032 0.0 0.001 0.002

x : ��8 A

x : � (� y)9 r

x : T10

x : �11 n

�, the heat transfer coefficient, seemingly has a
small value if the heater was not operated the pre-
ceding day. � is the coefficient to calibrate the outer
temperature: a constant for a particular building. k
is a proportional constant for temperature rise dur-
ing time passage, it is affected by climate.

The equations for � and k are set as

� � a (1 � a x � a x � a x8 1 1 2 2 3 3

� a x � a x ) (15)4 4 5 5

k � a (1 � a x � a x ) (16)9 6 6 7 7

Variable a10 represents �. Determinating �, �, and
k therefore involves determining 10 variables, a1 to
a10.

Letting a8 be the value of � the day after a
holiday:

� (2 days after a holiday) � a (1 � a )8 1

� (3 days after a holiday) � a (1 � a )8 2

�

� (6 days after a holiday) � a (1 � a )8 5

Letting a9 represent k for a fine day, then

k(cloudy) � a (1 � a )9 6

k(snow) � a (1 � a )9 7

Parameter Estimation by Experimental
Regression Analysis
Letting �r(x9) be the objective variable, y:

�x10y � x � (1 � e )k(1 � � x ) (17)11 10 8

where

� � a (1 � a x � a x � a x � a x � a x )8 1 1 2 2 3 3 4 4 5 5

(18)

k � a (1 � a x � a x ) (19)9 6 6 7 7
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Table 17
Deviations and total residuals squared after the sixth iteration

No. Deviation
Total Residuals

Squared Combination

1 0.296194191 33.0726635 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0.881743940E-01 28.4722355 2 2 2 2 2 2 2 2 2 2 2 2 1

3 �0.132098118 31.0850840 3 3 3 3 3 3 3 3 3 3 3 3 1

4 0.372788513E-01 29.2814816 1 1 1 1 2 2 2 2 3 3 3 3 1

� � �

35 �0.146478391E-01 27.7087209 2 1 2 3 1 3 1 2 3 3 1 2 3

36 0.149078921 29.7143803 3 2 3 1 2 1 2 3 1 1 2 3 3

Table 18
Values of �, �, and k

Parameter x
Relation to Unknown

Parameter a1 Value

� Day after holiday a8 0.725

2 days after holiday x1

3 days after holiday x2

4 days after holiday x3

5 days after holiday x4

6 days after holiday x5

a8(1 � a1)

a8(1 � a2)

a8(1 � a3)

a8(1 � a4)

a8(1 � a5)

0.725 (1 � 0.4) � 1.015

0.725 (1 � 0.75) � 1.26875

0.725 (1 � 0.75) � 1.26875

0.725 (1 � 0.5) � 1.0875

0.725 (1 � 0.45) � 1.05125

� a10 0.001

k Clear

Cloudy

Snow

a9

a9 (1 � a6)

a9 (1 � a7)

5.25

5.25 (1 � 0.2625) � 3.871875

5.25 (1 � 0.35) � 3.4125

The initial parameter values and the ones after con-
vergence are shown in Table 16.

For sequential approximation, the data of twenty-
three out of twenty-six days were used. Some of the
deviations and the total residuals squared are shown
in Table 17. Using the second level, the values of a,
b, and k are shown in Table 18.

The proportional coefficient of heat transfer (�)
for the day after a holiday is about 30% smaller than
on other days. The result that coefficients three and
four days after a holiday are larger than those five

and six days after a holiday does not make sense.
Probably, only a comparison between the day next
to a holiday and other days has actual meaning. The
calibration coefficient for outer temperature, �, is
0.001, showing that the effect of outer temperature
is small.

The constant for temperature rise due to time
passage, k, is affected by climate. The value is about
70% of that on a fine day. On a bad weather day,
the temperature becomes lower, with other condi-
tions unchanged.
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Estimation of Preheating Time
Preheating time (T0) can be estimated from the tar-
get temperature (�0) by putting the parameters
above into equation (14).

There might be a tendency to use equation (14)
as the regression equation since what we need is the
time to preheat, T0. However, what was measured in
this study was room temperature against the time

after heating started. In other words, time passage
is the cause and room temperature is the effect.
What can be used for adjustment is time, and the
result is room temperature. It must be noted as a
general rule that a regression equation is supposed
to express a result, y, by the cause, x.

This case study is contributed by Genichi Taguchi.




