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Abstract 

Design tools to simulate the manufacturing processes 
applied to aluminum components require compu-
tationally efficient finite element methods. While 
static processes such as casting employ implicit tech-
niques, dynamic processes such as forging may only 
be modeled with explicitly. A commonplace prac-
tice to expedite explicit simulations is to employ 
time or mass scaling, which can lead to unexpected 
thermal-mechanical behaviour in coupled analyses. 
In both cases, the development of fully coupled 
thermo-mechanical simulations necessitates the use 
of a constitutive model that is capable of defining 
the flow stress as a function of temperature, strain, 
and strain rate. In this work, a material model for as-
cast A356 is presented and applied in a range of fully 
coupled deformation models. Implicit and unsealed 
explicit models will be compared to explicit models 
with large amounts of scaling. Strategies for apply-
ing a material model to minimize error and maximize 
computational effort are discussed. 

Introduction 

Implicit finite element methods are well suited to 
modeling quasi-static thermomechanical processes 
such as casting because of the long durations and 
gradual changes in boundary conditions. However, 
dynamic processes with discontinuities in contact and 
large plastic deformation are better modeled employ-
ing an explicit approach. Explicit approaches rely 
on a direct calculation of dependent variables over a 
given time increment, whereas the implicit approach 
solves for dependent variables expressed in terms of 
coupled equations. Both involve numerical time inte-
gration to solve for the unknown workpiece displace-
ments and temperatures, which is the basis for the 
resulting strains and stresses. A detailed compari-
son between the two solution techniques in terms of 
a thermomechanical framework has been outlined by 
Koric et al. [1]. 

The principal difference between implicit and ex-

plicit methods is that the implicit technique requires 
a matrix inversion to solve the system of equations 
that result from the problem, and the explicit solu-
tion does not. Furthermore, highly dynamic implicit 
models may experience convergence difficulties which 
may then lead to more iterations per increment and 
reduced increment size [2]. This results in explicit 
approaches being less computationally expensive and 
more robust in describing problems with contact as 
opposed to implicit models. This is in spite of ex-
plicit models requiring an order of magnitude more 
time steps to describe equivalent processes. 

However, explicitly modelling dynamic processes 
with fine meshes occurring over long periods of time 
result in prohibitively long computation times. As 
a result, either the time of the process or the mass 
of the material is scaled to reduce the computation 
effort. To accommodate, the boundary conditions 
and material model must be modified. The penalty 
for scaling in this manner is inaccuracies in the iner-
tial effects that evolve during deformation. The goal 
of the present work is to explore both strategies by 
comparing an experimental hot compression test con-
ducted on as-cast A356. Simulations are constructed 
employing an experimentally derived material model, 
which is validated via isothermal implicit and explicit 
simulations in ABAQUS1. Explicit simulations with 
equal amounts of time and mass scaling are compared 
to an unsealed explicit model with thermal conditions 
applied. The computational gains as well as relative 
error in terms of simulated flow stress for each scaling 
factor are discussed. 

Explicit coupled thermomechanical method 

The present work has employed the commercial 
ABAQUS code, owed to the flexibility and capac-
ity of the program to be customized. Addition-
ally, ABAQUS provides both an implicit and explicit 
solver, allowing equivalent models to be simulated 
with either approach. The following describes the 

1 ABAQUS is a trademark of Dassault Systèmes, Surenes 
Cedex, Prance. 
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coupled explicit approach employed by this package 
to simulate a process with a time duration of tp. The 
partial differential equation governing heat transfer 
is first integrated with a forward difference rule [3]: 

r&A.)= if+AW«) (cry1 (p? - pt) (i) 

where TN are nodal temperatures, C^ is the ca-
pacitance matrix, Pf* is a nodal thermal load vec-
tor and Ft is the internal flux vector. Here, the 
subscript t refers to the time at the current incre-
ment with each increment being At long. The term 
(C^) (Pf* — Ft) is computed at the beginning of 
the increment at time t. 

Next, the equations of motion are integrated using 
a central difference rule according to: 

üt={Mt)-\Pt-It) 

Û(t+At/2) =Û(t_At/2) + 
At(t+At) + Att.. 

ut 

U(t+At) =ut + At(t+At/2)Ù(t+At/2) 

(2) 

(3) 

(4) 

Here, nodal displacements u are determined by inte-
grating the accelerations at t via the mass matrix M 
and the difference between internal (/) and applied 
external (P) element forces. Eq. 3 shows how the 
velocity ii is dependent on the time interval At, and 
therefore decides the stability of the overall solution. 

Critical time increment Since acceleration is con-
stant through At and a forward integration method is 
employed to solve for heat transfer, a coupled explicit 
scheme is conditionally stable; At must be smaller 
than the critical time step size dependent on the ma-
terial and mesh according to: 

At < min (J— f^m -1), -r?-) (5) 

where ujmax is the highest frequency of the mechanical 
response and £ is a fraction of critical damping in the 
highest mode and Amax is the largest eigenvalue in the 
thermal solution response. On a per element basis, 
At can be estimated from a thermal and mechanical 
standpoint: 

At — - ,L m in I 
-1/2 

(6) 

where Lm[n is shortest distance across an element, a 
is the thermal diffusivity of the material, E is the 
modulus of elasticity and p the density of the mate-
rial. Usually At is not limited thermally, but rather 

by the dilatational wave speed, which is approxi-
mated by y/E/p. In actuality, the dilatational wave 
speed is a function of Poisson's ratio, elasticity, mass 
and the element dimensions. A more detailed sta-
bility analysis of explicit finite element methods has 
been conducted by Ling and Cherukuri [5]. However, 
for the present work, Eq. 5 and 6 demonstrate the 
principal deciding time factors for explicit analysis. 
Specifically, simulations with a duration of tp with a 
fine mesh or extreme mesh distortion may require a 
large number of increments owing to a small At. 

Abaqus/Explicit employs an adaptive method for 
determining time steps. Initially, time steps are cal-
culated on a per-element basis, which is usually far 
less than the true stability limit for the entire do-
main. This time step is then updated based on a 
global estimation of the maximum frequency as the 
simulation proceeds and boundary conditions begin 
to take effect. 

To decrease calculation times with an explicit 
method, it is necessary to either decrease the total 
simulated time or increase the time increment length. 
This is either accomplished through time or mass 
scaling, respectively, and the success of either method 
is dependant on the critical time step. 

Time versus mass scaling While both strategies are 
equivalent in terms of reducing computational effort, 
time and mass scaling are quite different in their im-
plementations. Mass scaling seeks to increase the 
length of time increments by scaling the material den-
sity by a factor fm and thereby increasing At by de-
creasing the dilatational wave speed. Time scaling 
reduces computation time by applying loads faster 
than in actuality, decreasing the total simulated time. 
Both methods are proportional, where the time scal-
ing factor ft = \f7m- In a coupled framework, mass 
scaling requires the density of the material and de-
pendent boundary conditions to be scaled. Time scal-
ing requires that material rate sensitivities and ther-
mal boundary conditions be amended. Depending on 
how the material model is implemented, time scaling 
is usually more difficult to implement for rate sensi-
tive materials. 

ABAQUS/Explicit allows for various implementa-
tions of mass scaling such that it is only applied to 
the mechanical solution and does not affect the ther-
mal characteristics of the model. Although selective 
[6] and variable mass scaling techniques are possi-
ble, uniform mass scaling was employed. Here, At 
was specified directly and the solver increased p in 
all elements by the same amount to decrease the di-
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latational wave speed. 
Implementing a time scaling strategy is more com-

plicated as it requires the rate dependency of the ma-
terial, conductivity and thermal boundary conditions 
to be modified. The rate dependency is accommo-
dated by directly scaling the strain rate in the con-
stitutive behaviour. When applying time scaling to 
the thermal component, the Fourier and Biot (Fo and 
Bi) numbers must remain the same according to: 

Fo: (Kft)(tp/ft) 
pCpL* 

Bi: 
(hft)L 

kit (?) 

where the process time tp is scaled by ft, accommo-
dated by factoring the conductivity k and boundary 
heat transfer coefficients h to retain the same Biot 
number. 

Model implementation and structure 

As part of a concurrent study of the constitutive 
behaviour of as-cast A356, extensive compression 
testing at various elevated temperatures was con-
ducted. This material characterization method has 
been modeled both to verify the implementation of 
a constitutive expression, in addition to providing a 
framework to investigate the effects of time and mass 
scaling. In the present work, this model is first em-
ployed to simulate a single experimental compression 
test, where baseline isothermal implicit and explicit 
solutions are used to validate the constitutive expres-
sion. The isothermal conditions were then replaced 
with transient thermal conditions had various degrees 
of time and mass scaling applied. This latter model 
formulation was used to establish the effects of time 
and mass scaling on a fully coupled explicit simula-
tion. 

Mechanical considerations 

As shown schematically in Fig. 1, a 2-D axisym-
metric model of a compression test specimen, nom-
inally measuring 10 mm in diameter by 15 mm in 
length, was developed. The mesh consisted of 1200 
square, four-noded, bi-linear, reduced integration ele-
ments (CAX4RT) with hourglass control and an ini-
tial element length L of 250 (xm in each direction. 
The mechanical boundary conditions imposed for all 
models consisted of the following: 

• Symmetry about the z axis representative of a 
cylindrical specimen geometry. 

Figure 1 : Schematic representation of the finite ele-
ment model employed. 

• Displacement of uz — 0 at the base of the speci-
men corresponding to z = 0mm. 

• A displacement of u corresponding to the experi-
mental strain record at z = 15mm, implemented 
on a tabular basis. 

Material properties 

In order to capture the phenomenological simulta-
neous evolution of both strain hardening and strain 
rate effects with temperature for as-cast A356, a se-
ries of 55 compression tests spanning a large range of 
temperatures (30-500°C) and strain rates (~0.1-10 
s - 1 ) were conducted. These compression tests were 
performed on specimens extracted from a wedge cast-
ing with a Gleeble2 3500 thermomechanical simula-
tor fitted with isothermal anvils. During each test, 
the temperature and diametral deformation was mea-
sured at the center of the specimens. The yield point 
for each test was found with a 0.2% offset method 
employing temperature-corrected shear modulus [7], 
H, to estimate the Young's modulus, E, according to: 

= 2.54 x 10' 
/ 3 0 0 - r \ 
V 2Tmeit / 

E = 2/i (1 + i/) MPa 

MPa (8) 

(9) 

based on pure aluminum, with T in Kelvin, Tmeit = 
885.7 K and v — 0.33. The expression for elasticity 
in Eq. 9 was implemented in the model on a tabular 
basis. The flow stress measured with these experi-
ments was fit with an extended Ludwik-Hollomon [8] 
expression: 

K(T)e N(T) ( ) W 
(10) 

2Gleeble is a trademark of Dynamic Systems, Inc., 
Poestenkill, NY. 
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where a is the flow stress in MPa, e is the equivalent 
strain, and s is the equivalent strain rate. The nor-
malization strain rate, £/, is equal to 1 s - 1 for mass-
scaled simulations and equal to the time scaling fac-
tor ft s _ 1 for time scaled simulations. The functions 
of temperature K(T), N(T) and M(T) correspond to 
fitting constants for strength, strain hardening and 
strain-rate sensitivity, respectively. These functions 
were found through a Nedler-Mead technique from 
the experimental data such that: 

K(T) = 8.12 x 1(T4T2 - 1.16T + 408 (11) 
A r m _ / "5.82 x l O " 4 T +0.2 T < 3 4 6 
NV)-\ -5.27 x l O " 3 T > 3 4 6 ( 1 2 ) 

(13) 
i.27 x 10"3 T > 346 

M(T) = 4.65 x i o - n T 3 - 5 2 + 0.237 

with temperature T in °C. This constitutive be-
haviour was implemented in the model via the user 
subroutine UHARD for the implicit solution and 
VUHARD for explicit cases. 

Density was taken to be p = 2670 kg/m3, and 
the coefficient of thermal expansion, specific heat and 
conductivity, a, Cp and K, respectively, were imple-
mented in a tabular fashion according to Hétu et al. 
[9]: 

a(T) =2.26 x 107 + 2.39 x 10~8T ° C _ 1 (14) 
CP(T) =0.427T + 898.72 J/kg°C (15) 

/c(T)=4.15T + 7146 W/m°C (16) 

All material properties and constitutive behaviour 
were assumed to be isotropic. 

Validation simulations 

In order to validate the implementation of the ma-
terial model and the mechanical boundary condi-
tions, implicit and unsealed explicit simulations were 
conducted without considering heat transfer (i.e. 
isothermal). This was compared against flow stress 
from a compression test with an average temperature 
of 202.8°C and è = 8.25s"1. 

For these simulations, the experimental temper-
ature record was directly assigned to all nodes, in 
the same manner as u. In order to directly compare 
the simulation to experimental results, strain was ex-
tracted from the nodal displacement record at X in 
Fig. 1. The average von Mises stress in elements im-
mediately below center line at point X (z = 7.5 mm) 
was also extracted. These simulations showed that 
there is no difference between unsealed explicit and 
implicit solutions at X. Furthermore, there is good 

S. Mises 
(Avy: 75%) 

♦2.050e+08 
+2.029e+O8 
+2008e+08 
♦1.987e*08 
♦1.967*»08 
*1.946e+08 

use» 
- ♦1.883^08 
- ♦1.8«2«*08 
- ♦1.842e*08 

♦1.821e*08 
-•M.800e+08 

\U 
Figure 2: Simulated final von Mises stress state in Pa 
for baseline (i) implicit versus (ii) explicit models. 

agreement with the experimental flow stress, charac-
terized by a low (< 2%) mean square error. 

Thermal conditions for scaled models 

In order to assess both the mechanical and ther-
mal aspects of time and mass scaled models, thermal 
boundary conditions were imposed to approximate 
heat evolution in the experimental test. Heat due to 
inelastic deformation was generated corresponding to 
a constant inelastic heat fraction of ß — 0.9. This was 
countered with a flux q = /i(T —T^) applied at z = 0 
and z = 15 mm (Fig. 1), with h = 4 x 103 W/m2oC 
and a constant T^ = 180°C. This flux represents the 
heat transfer to the Gleeble isothermal anvils. 

Both this flux and inelastic heat generation were 
explicitly implemented without scaling and the flow 
stresses at point X (Fig. 1) were found to be identi-
cal to the implicit values as demonstrated in Fig. 2. 
Globally, the distribution of stress is nearly identical 
being within 2 MPa at all points. As a result, an 
unsealed explicit simulation has been used as a base-
line to evaluate the effects of time scaling and mass 
scaling. 

Effects of scaling 

The baseline explicit model described above was time 
scaled by ft equal to 10, 25, 50 and 100. These sim-
ulations were compared to models with equivalent 
amounts of mass scaling applied. As the flow stress 
is a direct function of temperature, this has been used 
as the principal metric to compare the ability of each 
simulation to track the evolution of stress, strain and 
temperature. Any variation in temperature or strain 
results in a significant variation in the flow stress. 
A comparison between predicted flow stresses is pro-
vided in Fig. 3. 

380 



— Unsealed 
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Figure 3: Predicted flow stresses for time and mass 
scaling. 

Both mass and time scaling strategies result in sig-
nificantly shortened computation times. This has 
been quantified with a speed up factor, C, which is 
defined as the ratio of unsealed simulation compu-
tation time to scaled simulation computation time. 
Table 1 provides C for each simulation type and 
clearly demonstrates the large improvements made. 
The ft = 10 simulation ran 7.1 times faster and the 
fm = 100 simulation ran 8.86 times faster than the 
baseline unsealed simulation. Beyond this scaling 
point, C did not increase as much for mass as com-
pared to time scaling owing to more time increments 
caused by solution instability. However, if the simu-
lation corresponding to ft = 10 is considered to be 
at the limit of numerically stability, then mass scal-
ing does provide a 20% improvement in computation 
time. 

Table 1: Simulation execution time speed up factor 
C for time and mass scaling 

ft C fm C 

10 7.10 100 8.86 
25 17.72 625 12.00 
50 44.29 2500 24.01 
100 95.15 10000 46.71 

Stability 

Both time and mass scaling provide a reasonably ac-
curate simulated flow stress at ft = 10 and fm = 100 
as compared to the unsealed process. However, when 
compared of the von Mises stress contours of the un-
sealed version (Fig. 2), the time scaled version is 
closer than that of the mass scaled (Fig. 4). Fur-

Figure 4: Simulated final von Mises stress state in 
Pa for the model time scaled by ft = 10 in (i) as 
compared to an equivalent mass scaling fm = 100 in 
(ü). 

thermore, a single element has locked, meaning it is 
exhibiting numerical instability. This locked element 
has in turn affected the stress distribution. This is 
likely because the domain is sensitive to instability at 
this location, as this is where the largest temperature 
and stress gradients occur. At greater scaling factors, 
significant deviations both globally and locally at the 
midplane X are apparent. At ft = 25 and fm = 625, 
both simulations show low flow stresses relative to 
the unsealed simulation with marginally more strain. 
This demonstrates that the simulation is unstable as 
there is evidence of non-uniform deformation. At 
ft = 50 and fm = 2500, there is a significant dif-
ference between the time and mass scaled versions: 
the time scaled flow stress matches the unsealed ver-
sion, while the mass scaled flow stress severely un-
derestimates the unsealed version. Globally, the von 
Mises stress for both scaling techniques do not match 
stress and deformation distribution seen in the un-
sealed version. 

Both models show evidence of element locking, 
with the time scaled version showing only a few 
locked elements in the most sensitive portion of the 
domain. The extent of element locking in the mass 
scaled version is on a much larger scale, with only 
a few elements in the center of the model remaining 
unlocked. Both the time and mass scaled simulations 
have diverged and are unstable with scaling at this 
level. 

Inertial effects of scaling 

The main source of inaccuracy by scaling is due to 
the development of inertial effects. These are charac-
terized by the evolution of increased kinetic energy. 
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Sudden increases in kinetic energy are usually coun-
tered by the small amount of damping (Eq. 5) which 
was equivalent in all of the explicit simulations in the 
present work. A general guideline to avoid instabil-
ity a priori for bulk deformation models is to impose 
deformation rates limited to 1% of the dilatational 
wave speed [4]. Even with the highest time scaling 
factor (tf = 100), the deformation speed was kept an 
order of magnitude lower at 0.1% of the wave speed. 
An alternative approach is to ensure that the total 
kinetic energy is an order of magnitude lower or less 
than the internal energy (strain energy) during the 
course of a simulation. 

The largest input of kinetic energy to the model 
is the initial elastic loading. As the deformation 
wave plasticizes the material, the bulk of this ki-
netic energy is translated to strain energy. In the 
unsealed simulation, the average percentage of strain 
energy attributed to kinetic energy prior to yield, 
KJJ = 0.14%. Scaling factors increase this by many 
orders of magnitude, as well as increasing the dura-
tion prior to yield that kinetic energy is more than 5% 
of the strain energy. Furthermore, there is evidence 
of discontinuities as the scaling factor increases, and 
the simulations become more unstable. A measure of 
how the kinetic energy ratio is multiplied by scaling 
prior to yield is given by KR = \Ks/Ku\ in Table 2, 
where Kg is the kinetic energy ratio for scaled simu-
lations and K\j unsealed. K$ is significantly higher 
for time scaled simulations as opposed to the mass 
scaled versions, owing to larger peak kinetic energy 
at the start of the deformation, however declines at 
approximately the same rate as the equivalent mass 
scaled version. 

Table 2: Average increase in kinetic energy ratio 
prior to yield 

ft KR fm KR 

10 173.1 100 92.8 
25 468.4 625 350.5 
50 1243.1 2500 832.8 

Summary 

A constitutive material model has been implemented 
in ABAQUS and has been validated both implicitly 
and explicitly by specifying exact thermal conditions 
at all nodes. Prom this isothermal model, the explicit 
implementation was extended to include thermal con-
siderations encompassing unequal rates of heat gen-
eration due to inelastic deformation and conduction. 

This baseline model was then used as a metric to 
compare both time and mass scaling strategies. The 
simulation results were compared based on both flow 
stress locally as well as globally. 

Both time and mass scaling provide reasonable so-
lutions as compared to the baseline model up to fac-
tors of ft = 10 and fm = 100. At these scaling 
factors, time scaling provided a better match to un-
sealed simulations. With increasing scaling factors, 
the model provided increasingly unstable results, pre-
dominantly in the numerically sensitive areas of the 
domain. Mass scaling with equivalent time scaling 
factors was found to provide more unstable results 
with a higher computational penalty owing to non-
uniform mesh distortion as compared to time scaling. 
This is in spite of less kinetic energy being imparted 
to the model through scaling with mass as opposed 
to time. 

In comparing equivalent uniform scaling strategies, 
even though time scaling necessitates scaling both 
mechanical and thermal boundary conditions, it has 
been found to be the best overall strategy to reduce 
computational time. However, if the scaling factor 
at which model instability is known, mass scaling is 
computationally advantageous. 
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