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Abstract 

AA6082 aluminum alloy is used as constructional 
material for highly loaded automotive parts thus increasing of 
yield stress and ductility is of a great importance. Database of 
mechanical properties, processing parameters and chemical 
compositions for hot extruded profiles of the alloy was 
obtained. A CAE neural networks individual and spatial 
analyses was performed to determine the influences of 
processing parameters and alloying elements, e.g. Mg, Si, Mn, 
Fe, and Cu, on mechanical properties. The results of the 
analyses revealed a new understanding of their influences, and 
the possibility of increasing the mechanical properties if 
processing parameters and correlations between chemical 
elements were closer to the optimum values. Optimization was 
carried out in order to increase yield stress and elongation 
simultaneously. In practice, the obtained values for 
mechanical properties have confirmed the optimized values of 
influential parameters as correct. 

Introduction 

Mechanical properties of extruded aluminum alloys are 
closely related to content of alloying elements and applied 
processing parameters, i.e. casting, homogenization, heating, 
extrusion, heat treatments, etc. The processing parameters and 
chemical composition influence final mechanical properties in 
a complex way. For each individual application many 
properties are important and the alloy development must be 
focused on maximizing one or a combination of multiple 
properties at the same time, while fulfilling minimum 
requirements for other properties. Thus increasing of one 
group of properties usually leads to a decrease of others. 

The majority of investigations on the influence of 
chemical composition and process parameters on mechanical 
properties of various aluminum grades carried so far were 
manly based on laboratory tests and were limited to studying 
the influence of an individual alloying element or process 
parameter [1-3]. Studies involving influences of several 
alloying elements are rare [4]. Since the quantity of mentioned 
laboratory data base is usually small, the obtained results are 
usually not accurate enough at revealing the complex 
relationship between a large number of influential parameters 
on mechanical properties. This led us to carry out 
investigations in industrial environment where large enough 
data base can be collected. From industrial practice it is well 
known that small variations of the Al alloy's chemical 
composition and processing parameters in allowed tolerance 
has considerable influence on the variability of obtained final 
mechanical properties. With the development of artificial 
intelligence (e.g. neural networks) it became possible to find 
complex spatial influences referring to mechanical, chemical 
and physical problems of metal alloys. 

AA6082 is mainly used for highly loaded constructional 
automotive parts. In order to fulfill constant demand of world 
market on increasing the mechanical properties, the real 
industrial data base was employed. To increase different 
mechanical properties (individually and/or simultaneously) 
spatial analyze of relationships between all the relevant 
parameters was carried out In this paper the CAE NN 
(Conditional Average Estimator Neural Network) analysis of 
influence of the chemical composition and process parameters 
on the yield strength and elongation of hot extruded AA6082 
aluminum alloy is presented. In order to increase yield stress 
on one hand and to keep elongation on highest level as 
possible, optimization of relevant processing parameters and 
chemical composition was carried out. 

Experimental 

Hot extrusion of AA6082 was carried out on an 
industrial press in Impol, Ltd., at various ram speeds, 
extrusion ratios and in different mult-strand configurations and 
at constant variation of chemical composition, simultaneously. 
All other parameters were constant since, based on 
experiences, these were previously recognized to be 
appropriate for achieving good final mechanical properties of 
extruded profiles. Thus casting was carried out at 720 °C, 
homogenization at 560 °C, and the billets were preheated to 
500 °C before the extrusion. 

The database of extruded AA6082 alloy that was formed 
consisted of chemical compositions, processing parameters 
(ram speed, extrusion ratio, casting speed, temperature, etc.) 
and obtained mechanical properties (yield stress, tensile 
strength and elongation). After several months of industrial 
observations in, 3968 samples or model vectors that describe 
the hot extrusion phenomenon were obtained. Using this data 
it was possible to gather a large database of the mentioned 
parameters that adequately covers the entire problem space 
essential for revealing the complex relationships between 
influential parameters and mechanical properties. 

The average chemical composition and the range of 
allowable variation of studied AA6082 aluminum alloy is 
given in Table 1. From the table it is visible that Mg and Si as 
most influential alloying elements can vary in the range 
between 0.66 and 0.90 % and 0.80 - 1.24 %, respectively. 
Extrusion ratio of the extruded profiles was in the range of 2.5 
- 26.6, while ram speed was in the range of 5.3 - 23.7 mm/s. 
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Table 1: Ranges of allowable variation of chemical 
composition of AA6082 aluminum alloy. 

Min 

Max 

Mean 
Mean 
-StDev 
Mean 

+StDev 

Min 

Max 

Mean 

mean-
StDev 
mean+ 
StDev 

Fe 
0.220 

0.440 

0.315 

0.272 

0.357 

11! 

2.50 

26.60 

9.10 

4.06 

14.14 

Si 
.800 
1.24 

0 
.891 

.835 

.947 

Ra 
m 

spee 
d 

5.30 
23.7 

0 
15.4 

7 

9.27 

21.6 
8 

Mn 
.400 

.590 

.469 

.441 

.497 

Mg 
.660 

.900 

.746 

.702 

.791 

Elongation 

7.20 

17.39 

11.97 

10.43 

13.50 

Cu 
.020 

.100 

.058 

.041 

.075 

Cr 
.010 

.170 

.037 

.014 

.060 

CAE NN was applied to identify the spatial influences 
of influential parameters. By using this method it is possible to 
reveal unknown relationships between them. Such an 
approach also has important industrial advantage since the 
obtained results can be relatively simply transfered to the 
production process. 

The basics of modeling the hot extrusion 
phenomenon using a CAE neural network 

A prerequisite for the effective spatial analysis of the 
influential parameters on mechanical properties of AA6082 
aluminum alloy is choosing the right method. In the present 
case the CAE NN was used [5], which makes modeling of the 
mutual interactions of particular chemical elements and 
processing parameters possible relatively simple. 

The hot extrusion (expressed in terms of the yield stress 
<J , tensile strength CT and elongation S ) of AA6082 

aluminum alloy is determined by observing N samples during 
the process. The mathematical description of the observation 
of one sample during the hot extrusion test is called a model 
vector. As a result, the whole phenomenon can be described 
by a finite set of model vectors. Further it is assumed that each 
observation of one particular sample can be described by a 
number of variables, which are treated as components of a 
model vector X which can be further composed of two 
truncated vectors B (input parameters, e.g. chemical 
composition, extrusion ratio, etc.) and C ( <T , (JT and S ). 

Vector B is complementary to vector C and therefore their 
concatenation yields the complete data model, vector X. The 

A 

problem now is how an unknown complementary vector C 
can be estimated from a given truncated vector B and the 

model vectors {Xl9 ..., Xn, ..., XN}, i.e., how the elongation 
Ö can be estimated from known input parameters and the 
available data in the database. By using the conditional 
probability density function [6], the optimal estimator for the 
given problem can be expressed as 

A = a» and 

2> 
1=1 

a=-
(2*)J % D 1 W 

exp _f _(*/-*„)2 

2w2 (1) 

where Sk is the estimate of the £-th output variable (i.e. 

elongation), S„k is the same output variable corresponding to 
the n-th model vector in the database, N is the number of 
model vectors in the database, bnl is the /-th input variable of 
the «-th model vector in the database (e.g., bnh bn2, bn3, ..., 
bni), and b\ is the /-th input variable corresponding to the 
prediction vector. D is the number of input variables, and 
defines the dimension of the sample space. Note that Equation 
(1) requires the input parameters to be normalized, generally 
in the range from 0 to 1, if we want to use the same width w of 
the Gaussian function for all of the input variables. 

The Gaussian function is used for a smooth interpolation 
between the points of the model vectors. In this context the 
width w is called the "smoothing" parameter. The selection of 
a proper value of w is discussed elsewhere [7]. 

An intermediate result in the computational process is 
the estimated probability density function, f>, of the known 
input variables 

1 N 

iy n=\ 
(2) 

The CAE approach requires an appropriate database and 
a numerical analysis for each estimate. There are no fixed 
functional relations between the input and output parameters. 
Any number of input parameters (which are contained in the 
database) can be used, and different databases or different 
subsets of a database can be employed. It should be noted that 
when traditional BP (back-propagation) neural networks are 
compared with the CAE neural network, the so-called 
"learning" is replaced by determining the appropriate values 
of the smoothing parameter in Equation (1). They are 
determined by a "trial-and-error" procedure with the "leave-
one-out cross-validation method". The average prediction 
error can be defined as a kind of RMSE error [8] in a similar 
way as in traditional BP NN learning procedures. 

Results and discussion 

As it is presented in Figure 1 there is a high correlation 
between tensile strength and yield stress on one side and no 
correlation between tensile strength and elongation. Thus as 
output parameters yield stress and elongation were selected. 
Value of 0.15 for smoothness parameter w was obtained as 
optimal and was applied in all analyses. 
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Figure 1 : The correlation between output parameters, yield stress and tensile strength (left), elongation and yield stress (right). 

735c 

Casting speed Casting speed 
Figure 2: The influence of furnace temperature and casting speed on elongation (left) and 

yield stress (right). 

Influence of process parameters on mechanical 
properties 

In the first steep of the analyze the influence of most 
important process parameters like casting speed, casting 
temperature, ram speed, extrusion ratio and the number of 
extruding strands has been carried out. In all figures the 
dependence of two parameters on selected mechanical 
property is presented. Thin isolines present the density of data 
in this area (Eq. 2). Higher densities of isolines mean higher 
density of data. The thicker lines represent the values of 
individual output parameter, i.e. yield stress and elongation. 

In Figure 2 the influence of furnace temperature and 
casting speed on selected mechanical properties are presented. 

Highest values for elongation and yield stress were obtained at 
casting speed in the range of 7.3 - 7.5 mm/s and at furnace 
temperature over 725 °C. Analysis of influence of casting 
temperature, temperature in the runner bar and casting speed 
reveals that the highest values for mentioned mechanical 
properties can be obtained at casting speed above 7.4 mm/s, 
furnace temperature of about 730 °C and temperature in the 
runner bar of 720 °C. 

In Figure 3 the influence of ram speed and extrusion 
ratio on elongation and yield stress are presented, respectively. 
With increasing extrusion ratio and decreasing ram speed 
higher values for elongation can be obtained while the highest 
value for yield strength can be obtained at the extrusion ratio 
of 15 and the ram speed of 15 mm/s. 
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Figure 3: The influence of ram speed and extrusion ratio on elongation (left) and yield stress (right). 

The influence of chemical composition on 
mechanical properties 

In this part of analysis the influence of chemical composition 
on the mechanical properties of the alloy was studied. First the 
influence of each major chemical element and then the most 
important pairs of chemical elements were analyzed. In all 

12.6 i r 25 

graphs the thin (red) line represents the data density (higher 
density means more input vectors in this section), while thick 
(black) line represents the mechanical properties. Only 
selected results are shown in Figure 4. In general, higher Si 
and Mn values increase, while higher Cu values decrease the 
elongation. Influence of Mg is minor. Please note that 
influences are reliable only for higher p values. 
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Figure 4: The influence of selected chemical elements on elongation. 
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Figure 5: The simultaneous influence of Fe and Si (left), and Mn and Si (right) on elongation 

In Figure 5 the simultaneous influence of Fe and Si and 
Mn and Si on the elongation are shown. It turns out that the 
highest elongation appears at higher values of Si and 0.3 % of 
Fe (note that at higher values of Fe grater values of elongation 
can be observed, however, due to the small p values such 
results are unreliable). In the study of the simultaneous 
influence of Mn and Si the highest elongation can be obtained 
at 0.5% of Mn. 

Optimization 

Standard optimization was not being carried out because 
of unreliability of all technological parameters and uncertainty 
of ensuring the predetermined chemical composition. 
Moreover, producer's demand within the first phase of the 
development was the optimization of chemical composition 
only. Therefore, based on the expert knowledge, six most 
influential chemical elements were identified, namely Fe, Si, 
Mn, Mg, Cu and Cr. On the base of the influence of individual 
as well as pairs of elements (Figures 4 and 5), fixed zones of a 
few chemical elements with highest mechanical properties 
were determined. 

Analyses of simultaneous influence of all six chemical 
elements on yield stress and elongation were then carried out 
for fixed values of Fe which amounts 0.35 % and 0.42 %, of 
Cu at 0.05 %, of Cr at 0.03 % and of Si at 0.8, 0.9 and 1.0 %. 
Results of analyses reveal that the highest values of yield 
stress can be obtained at 0.42 % of Fe, at higher contents of Si 
(between 0.9 % and 1.0 %), Mn content between 0.44 % and 
0.53 %, and Mg content between 0.65 % and 0.74 %. Similar 
conclusions may be obtained for elongation, only the relations 
between Mn and Mg are slightly changed; the highest values 
of elongation can be obtained at 0.42 % of Fe, at higher 
contents of Si (between 0.9% and 1.0%), Mn content 
between 0.52 % and 0.57 %, and Mg content between 0.65 % 
and 0.74 % (Figure 8). 

It should be emphasized, that we were looking for a 
compromise solution for optimization of chemical 
composition. Namely, we were searching for partial (i.e. 
smaller) improvement of both mechanical characteristics 
(yield stress and elongation) at the same time on the expense 
of larger individual improvement of any of the two mechanical 
characteristics (yield stress or elongation). Usually the 
important improvement of one characteristic is achieved on 
the expense of the aggravation of the second (e.g. increase of 
Cu content up to 0.6 % increases yield stress and decreases 
elongation). 

Based on the results from CAE parametric analyses, use 
of linear regression gives the equation that determines the 
largest yield stress and elongation, depending on the content 
of individual alloying element. Equations can be used within 
the ranges of individual chemical elements, as presented in 
Table 2. 
Rp02 [MPa] = 328.53 + 53.46 ■ %Fe + 

+ 12.18.%&' + 26.25 %Mn 

-77.12. %Mg +126.37-%Cw 
-11.64 -%Cr 

£[%] =12.37 + 1.21- %Fe- 5.45- %Si 

+ 6.15-%Mn + 3.6-%Mg 

-18.15 %Cw-0.62 %Cr 
(4) 

c o 
1 m c 
5 m 

250 400 300 350 
Yield stress [MPa] 

Figure 6: Optimization: average increase of yield stress for 
about 13 MPa (320 MPa to 333 MPa) and average increase of 

elongation for about 1.6 % (12 % to 13.6 %). 

Table 2: Allowable ranges of individual chemical elements for 
the use in Eqs. 3 and 4 (wt. %). 

Max% 
Min % 

Fe 
0.47 
0.37 

Si 
1.02 
0.88 

Mn 
0.50 
0.44 

Mg 
0.72 
0.62 

Cu 
0.07 
0.03 

Cr 
0.05 
0.01 

Conservative assessment for optimal expected values 
amounts to 333 MPa and 13.6% for yield stress and 
elongation, respectively. Expected standard error amounts to 
12 MPa for yield stress and 1.4 % for elongation (Figure 6). 
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Test alloy 

Based on optimization, job order with determined 
chemical composition for maximum yield stress was made. As 
expected, due to the nature of production process, it was 
impossible to assure that the determined and actual chemical 
composition would be the same. Actual and determined 
chemical compositions are presented in Table 3. 

Table 3: Determined and actual chemical composition 
alloy (wt. %). 

Determined 
Actual 

Fe 
0.37 
0.34 

Si 
1.02 
1.05 

Mn 
0.50 
0.51 

Mg 
0.62 
0.64 

Cu 
0.07 
0.06 

of test 

Cr 
0.03 
0.05 

With the use of equations 3 and 4 yield stress and 
elongation, that amount to 330 MPa and 11.6% were 
calculated, respectively. Actual average measured values were 
333.5 MPa for yield stress and 12.0% for elongation. In 
Figure 7 the predicted results and actual measurement are 
presented, together with the predicted cumulative distribution 
function. Differences between actual and predicted values 
(individual, mean, median, fractals) are small and within the 
expected accuracy. For example, the difference between mean 
values amount to 1 % and -3.4 % for yield stress and 
elongation, respectively. 

250 270 290 310 330 350 370 

Yield stress [MPa] 

Figure 7: Examples of the test alloys and their statistical 
distribution for yield stress. Calculated (actual) mean is 

slightly above the predicted mean yield stress (330 MPa). 

Conclusions 

The CAE neural network was proposed for modeling the 
influence of different chemical and technological parameters 
on the mechanical properties of the 6082 alloys during the hot 
extrusion. Analyses reveal the areas of influential parameters 
with positive influence on obtained mechanical properties as 
well as the areas that should be avoided. 

Analyses indicate that the highest (»peak«) values for 
elongation and yield stress do not coincide. The optimal 
values for elongation and yield stress therefore cannot be 
obtained at the same values of ram speed and extrusion ratio, 
and chemical composition. We were searching for partial (i.e. 
smaller) improvement of both mechanical characteristics 
(yield stress and elongation) at the same time on the expense 
of larger individual improvement of any of the two mechanical 
characteristics. Usually the important improvement of one 
characteristic is achieved on the expense of the aggravation of 
the second. 

Test alloy revealed that the optimization was successful. 
In general, expected increase in yield stress would amount to 
4% and in elongation to 13%. 
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