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Abstract 

In this study, a novel crystal plasticity model for pure magnesium 
involving the deformation twinning is presented. The deformation 
twinning is an important deformation mechanism of magnesium 
and other HCP metals. The deformation twinning has two 
important issues: first, the large rotation of crystal lattice caused 
by twinning occurs. Second, in the crystalline scale, the twinned 
and untwinned regions may simultaneously exist in a grain. 
Therefore, a crystal plasticity analysis of magnesium should 
introduce both of them, and the present framework takes these 
two key features into account. To represent the second issue, the 
volume fraction of deformation twinning is considered. This paper 
provides a framework of crystal plasticity model involving the 
effect of tensile twinning, and a numerical example is conducted 
to evaluate the evolution of volume fraction of twinned region. It 
is shown that the present scheme can describe the mixed state of 
twinned and untwinned regions. The obtained results suggest that 
the twinned and untwinned regions simultaneously exist even 
under the large deformation and the volume fraction of twinned 
region should be considered. 

Introduction 

Magnesium has drawn much attention as a structural material, 
especially in the transportation industry. Magnesium, with a 
density of 1.74xl03 kg/m3, is the lightest of the practical metals, 
and has excellent specific rigidity and specific strength in 
comparison with other industrial materials. Therefore, it is 
expected to be used as the next-generation lightweight material to 
reduce the weight of products [1]. On the other hand, it has poor 
formability because of two principal reasons: (1) strong 
anisotropy in the crystalline scale induced by a hexagonal close-
packed (HCP) structure, and (2) direction-dependent c-axis 
deformation twinning [2]. Understanding the deformation 
mechanism in the crystalline scale and its effect on the 
macroscopic scale are important in improving the formability of 
magnesium. 

The mechanical properties of polycrystalline metals are strongly 
affected by their microstructure such as crystalline aggregates. 
Most industrial metals have a face-centered cubic (FCC), body-
centered cubic (BCC), or HCP structure as the crystal lattice, and 
pure magnesium exists in HCP form at room temperature. In HCP 
metals, basal slip (0001) < 1120 > is generally die most easily 
activated slip system, because the critical resolved stress is much 
lower than those of other slip systems. Other slip systems that 
might be active in plastic deformation of magnesium have been 
reported: the prismatic slip system {1010} < 1120 > and 
pyramidal slip systems {lOll} <1120> and {1122} < 1123 > . 
Another important deformation mechanism of magnesium is 

twinning due to c-axis tension ({1012} < 1011 > twinning) [2]. In 
contrast with FCC metals, whose slip systems have identical 
mechanical properties, each slip system in HCP metals shows 
significantly different behaviors, causing strong anisotropy in 
most HCP metals. 

Recently, multiscale simulations of crystalline scale structures 
have been actively studied; one model that can describe the 
microscale behaviors of metals is the crystal plasticity model. 
Studies of HCP materials using die crystal plasticity approach 
were actively reported in the last decade. Dawson and Marin 
showed the framework of polycrystalline plasticity of HCP metals 
[3], and many reports on investigation of HCP with the 
polycrystal plasticity approach followed [4-14]. These studies 
provided many fruitful results and productive discussions to 
clarify the essential deformation mechanism of HCP metals. 

This study focuses on polycrystalline pure magnesium. The 
deformation twinning is an important deformation mechanism of 
magnesium. The deformation twinning has two important issues: 
first, the large rotation of crystal lattice caused by twinning occurs. 
Second, in the crystalline scale, twinned and untwinned regions 
may simultaneously exist in a grain. Therefore, a crystal plasticity 
analysis of magnesium should introduce both of them. To 
represent the second issue, the volume fraction of deformation 
twinning is considered, and the material behavior of a grain is 
described as mixed state of twinned and untwinned regions. This 
paper provides a framework of crystal plasticity modeling, and a 
numerical example is conducted to evaluate the evolution of 
volume fraction of twinned region. 

Formulation 

Crystal Plasticity Formulation 

This study adopts the crystal plasticity model formulated by 
Peirce et al. [15] and Asaro and Needleman [16]. The velocity 
gradient L is assumed to be decomposed into nonplastic and 
plastic parts: 

L = L' + LP (1) 

The plastic part of velocity gradient Lf is defined by die sum of 
die slip deformation of all slip systems as 

L» = £/<"> (s*"»® m w ) ( 2 ) 

Here m(a' and s'"' are the slip plane normal and slip direction 
vectors, respectively, f>a' is the slip rate, and TV is the number of 

279 



slip systems. The superscript (a) denotes a specific slip system. 
The plastic deformation rate tensor Dp and plastic spin tensor 
W are given by the symmetric and skew-symmetric parts of V 
as 

Dp=(Lp + Lpr)/2 

= I > W [(»W ® mw + mw ® sw)/2] = f>wp' 

Wp=(Lp-Lp r ) /2 

M 

= irw[(sw 
, ® s W ) / 2 ] " ^ ? > W w ( o ) 

(3) 

(4) 

The nonplastic deformation rate tensor D* and plastic spin tensor 
W* are given by 

D'=(L' + L'r)/2 

W' = (L'-L' r ) /2 

The elastic constitutive law is 

« j -Wo + cW =C:D 

(5) 

(6) 

(7) 

ß 

iW (12) 

Here the matrix haß is the interaction between slip systems, given 
as 

K Mr.) (a = ß) 
q*ßh{r.) (a*ß) 

y.=Y.\'\y(a)\dT 

(13) 

(14) 

qa/J and ft(r«) we m e matrices describing the latent hardening 
and the characteristic hardening function, respectively, and their 
concrete forms are described in the following section. In addition, 
the rate tangent modulus method [15] is used for numerical 
integration of the constitutive equation. 

Modeling of Slip Deformation 

This study focused on pure magnesium at room temperature, 
whose crystal lattice is an HCP structure. The slip systems 
considered in this study are illustrated in Figure 1 and Table I. 
The pyramidal slip system {1011} < 1120 > is also an active 

Here C is the fourth-order elastic stiffness tensor, and A denotes 
the Jaumann derivative of A. From Eqs. (5) and (7), and the 
additive decompositions of the deformation velocity and the spin, 
D = D' + Dp and W = W' + W respectively, the following 
relationship is obtained: 

è = C : D - £ f(a) [ c : p w + w w o - oww 
(8) 

The changes in the direction of nr ' and s("' caused by the 
rotation of the crystal lattice are calculated by the following 
equations: 

m w = W , - m w 

M. W -s1 W 
(9) 

(10) 

The evolution equation of the slip rate /'"' is assumed as the rate 
dependent form 

y w = ̂ 0sgn (^) 
rW 

» (H) 

Here r ' is the resolved shear stress obtained by v°' = s • am . 
sgn(jc) = l if ;c>0 and sgn(*) = - l if *<0 ; m and f0 are 
the slip rate sensitivity parameter and the reference strain rate, 
respectively, and g'"' is the reference slip resistance, which 
generally depends on both the slip system and the loading history; 
the evolution equation of g-"' is given as 

Figure 1. Slip and twining systems in the present analysis. 

Table I. Slip and twin systems of HCP crystal. 

Basal 

Prismatic 

Pyramidal 

Tensile Twin 

Number of 
Slip Systems 

3 

3 

6 

6 

Slip 
Plane 

(0001) 

{1010} 

{1122} 

{1012} 

Slip 
Direction 

< 1120 > 

< 1120 > 

<1123> 

<10Ï1> 

280 



system in pure magnesium. However, it is neglected in the present 
study because it can be represented by a superposition of the basal 
(0001) <1120 > system and prismatic system {lOlO} < 1120 > 
[7], Therefore, 12 slip systems and 6 twinning systems are 
considered here. 

On the basis of the experimental results of Kelly and Hosford 
[17,18], Graff et al. established the following strain hardening 
laws for pure magnesium [7]: 
Linear hardening for a basal system 

--(\-f)apma + fatt (21) 

i>(r.) = th (15) 

Voce hardening for prismatic and pyramidal systems 

h(ya) = J\-^-\xp(-^L.) (16) 

In this framework, the deformation twinning is taken into account 
as a slip-like deformation, which can occur only in the tension 
direction, while general slip can occur in both directions of slip 
orientation. No reorientation after the saturation of twinning is 
considered. Therefore, this study takes the lattice rotation caused 
by the deformation twinning into account as the following manner. 

Modeling of Deformation Twinning 

If the deformation twinning occurs on a specified twinning plane, 
the crystal lattice in the twinned region takes the mirrored 
configuration of the original crystal lattice. The geometrical 
relation between twinned and untwined regions is expressed with 
an orthogonal tensor Ttw'n. 

| & ( « ) = T t w i n . m < « ) ( 1 7 ) 

ä < « ) = T t w ü . . s ( « ) ( l g ) 

T,"m=I-2m,v"n®m,w", (19) 

Here m'™m is the vector normal to the twinning plane. m(0) and 
s<a> are the normal to the slip plane and the slip direction vectors 
in the untwinned region, and m(a) and s<of) are those in the 
twinned region. The norm of each vector is unit. I denotes the 
second order unit tensor. 

In this study, it is assumed that twinned and untwinned regions 
simultaneously exist in a material point, and/denotes the volume 
fraction of the twinned region. After the classical Taylor 
assumption, die twinned and untwinned region in a material point 
considered to be subjected a same strain. 

■ parent ■ Iw (20) 

The superscripts parent and twin indicate the untwinned and 
twined regions, respectively, and L° is the macroscopic velocity 
gradient tensor. In this framework, the twinned and untwinned 
regions have different stress; therefore the macroscopic stress is 
defined as the volume average with the volume fraction / 

In the same way, the macroscopic constitutive tensor C is give as 

C = (l-/)Cpare", + /C n , m (22) 

The proposed model presents the continuous transition of material 
properties widi respect to deformation twinning. 

Numerical results 

Analysis Condition 

The material parameters for the hardening laws and the 
components of the latent hardening matrix qaß in Eq. (13) are 
shown in Tables II and III. Graff et al. determined these 
parameters by fitting simulation results to the channel-die 
compression tests of single crystal and polycrystal magnesium 
specimens [7]. In this study, most of parameters are identical as 
Graffs one; however, r0 for the basal slip system is modified to 
represent the material behaviors after deformation twinning more 
precisely. Young's modulus, Poisson's ratio, and m and y0 in Eq. 
(11) are set to 45 [GPa], 0.3 [-], 0.02 [-], and 0.001 [s], 
respectively. 

Table II. Material parameters for strain hardening law. 

r0 /MPa 

z-^/MPa 

/!o/MPa 

Basal 

1 

— 
100 

Prismatic 

20 

150 

7500 

Pyramidal 

40 

260 

7500 

Table III. Components of the latent hardening matrix. 

Basal 
Prismatic 
Pyramidal 

Twin 

ß 
Basal 
0.2 
0.2 
1.0 
1.0 

Prismatic 
0.5 
0.2 
1.0 
1.0 

Pyramidal 
0.5 
0.2 
0.2 
0.2 

Twin 
0.5 
0.5 
0.25 
0.25 

RD u ND 

Figure 2. Initial configuration. 
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The analysis is conducted under the plane strain condition, i.e., 
Ln = L2i = Ln = I31 = Z.,3 = 0 , and the evolution of the volume 
fraction of twinned region is evaluated. The analysis model of 
polycrystal is shown in Figure 2. This model is divided by 
triangular finite elements and the number of finite elements is 
about 70,000. Note that the three dimensional configuration of 
crystal lattice is taken into account although the analysis condition 
is the plane strain. The top and bottom edges are the shear free 
condition and a compression of 10% nominal strain along RD 
direction is subjected. Each crystal grain has different initial 
orientation. A texture similar as the rolled material (rolled texture) 
and a texture with randomly distributed orientation (random 
texture) are considered as the initial crystal orientation. 

Evolution of Twinned Region 

Figure 3 shows the distribution of twinned region at 5% and 10% 
nominal strain. In case of the rolled texture, each crystal grain has 
the orientation whose Schmidt factor of a twinning system takes 
the highest value; therefore, the deformation twinning occurs in 
several grains even in the case of 5% nominal strain. Almost all 
material points in some grains are twinned, while only a part of 
material points are twinned in some grains. When the nominal 
strain is 10%, the twinned region expands; however, some grains 
remain to be not twinned. In case of the random textures, a 
number of twinned grains is fewer than the rolled texture because 
several grains have orientation hard to occur the deformation 
twinning. If a specimen is a single crystal, it is expected that all 
material points are twinned at the same time. However, the 
present results show that twinned and untwinned regions may 
exist in the same grain. This tendency is caused by the 

inhomogeneous deformation due to the constraint between grains 
in the polycrystalline specimen. Note that the obtained results 
qualitatively agree with the experimental observations of 
polycrystalline magnesium [19,20]. 

The evolution of volume fraction of twinned region is indicated in 
Figure 4. In case of the rolled texture, the deformation twinning 
occurs at about 2% nominal strain. In more than half of grains, the 
volume fraction reaches 100%, i.e., all material points are twinned. 
On the other hand, the volume fraction converges less than 100% 
value in some grains. In case of the random texture, the onset of 

1.0 ■ 

0.6 

0.4 

0.2 

0.0 

0.00 0.02 0.04 0.06 0.08 0.10 
Compressive nominal strain [-] 

(a) Rolled texture. 

Fii 

0.00 0.02 0.04 0.06 0.08 0.10 
Compressive nominal strain [-] 
(b) Random texture. 

jure 4. Evolution of volume fraction of twinned region. 

Figure 3. Distributions of twinned region. 
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Figure 5. Evolution of volume fraction of twinned region 
with respect to whole volume of specimen. 
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deformation twinning delayed than the rolled texture, and the 
number of twinned grains is fewer; however, the qualitative 
tendency is similar as the rolled texture. Finally, the volume 
fraction of twinned region with respect to the whole volume of 
specimen is shown in Figure 5. The onset of twinning arises at 
about 2% nominal strain in both cases. At 10% nominal strain, the 
volume fraction reaches 60% in case of the rolled texture while 
the fraction is about 15% in case of the random texture. The 
present results suggest that the twinned and untwinned regions 
simultaneously exist even under the large deformation, and the 
volume fraction of twinned region should be considered to 
develop a constitutive model of polycrystalline pure magnesium. 

Concluding Remarks 

In this study, a novel crystal plasticity model for pure magnesium 
involving the deformation twinning is presented. The volume 
fraction of deformation twinning is considered, and a material 
behavior of a grain is described as mixed state of twinned and 
untwinned regions. A numerical example is conducted to evaluate 
the evolution of volume fraction of twinned region. The obtained 
results suggest that the twinned and untwinned regions 
simultaneously exist even under the large deformation, and the 
volume fraction of twinned region should be considered. 
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