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Cover Illustration

Upper left: Production- and pilot-scale gas/
gas counter-flow heat exchanger comprising
microstructured channel arrays. The device
(including flanges about 36 kg heavy and
54 cm long), made of stainless steel, is
designed for gas throughput in the range of
m3/min at 100 mbar pressure drop for a
power of about 10 kW. The internals consist
of a stack of microstructured plates having
multi-channel arrays of a channel width of
2 mm, depth of 250 µm, and length of
240 mm. Totaling, 6685 micro channels are
operated in parallel in this device. The
flange-type connection allows installation in
large-scale industrial plants (IMM Mainz-
Hechtsheim, Germany).

Center: CFD simulation of streamlines of a
liquid flow in a caterpillar micro mixer. This
device utilizes the split-recombine principle
leading to distributive mixing. It is seen that
by multiple repetition of this principle the
entanglement of the streams increases
(IMM Mainz-Hechtsheim, Germany).

Lower right: Cross-flow catalyst screening
device with multiple short mini-fixed beds.
The fixed-bed catalyst section is fed by
bifurcation-channel flow architectures that
serve for flow equipartition. This device is a
typical example for the class of smart chip
reactors, widely employed for analytical-
chemistry, kinetic studies and process/cata-
lyst screening purposes on a lab-scale level,
and is fabricated using MEMS technology
based on silicon micromachining (Courtesy
K. S. Jensen, MIT Cambridge, USA).
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Preface

Carrying out chemical reactions in volumes as small as possible is a priori not a
completely new idea. In the beginnings of chemical experimentation, dating back
to the age of alchemy, chemical substances like sulphuric acid or ammonia were
much more valuable than gold, and very small reaction vessels were used to econo-
mize on the precious materials. When analytical chemistry was established as a
second, independent discipline, the desire to make do with ever less material was
very strong in order to avoid consuming large portions of the product for analysis.
Establishing increasingly sensitive analytical techniques has therefore been one of
the most significant driving forces in analytics research.

The beginning of the industrial age saw a substantial increase in demand for
basic materials and chemicals, and the chemical industry was established to satisfy
these demands for high production volumes. The tall and impressive silhouettes
of modern chemical plants dominate industrial estates, visible from afar as sym-
bols for the vast capabilities and capacities of today’s chemical industry. Without
this industry and its equipment of enormous proportions, our economic wealth
would be quite inconceivable.

Bearing all this in mind, what is the purpose of Chemical Micro Process Tech-
nology?

Conventionally, the development of chemical manufacturing processes takes place
subsequently via a sequence of different intermediate stages. Approaching the fi-
nal process design, the reaction volume is successively increased from laboratory
scale to reaction vessel dimensions suitable for production outputs of several kilo-
tons per annum. This procedure, known as “scale-up”, is expensive and time-con-
suming. During the scale-up, new and previously unencountered problems often
crop up and have to be solved. It may even occur that the complete development
process has to be re-initiated in order to cirumvent severe obstacles. Furthermore,
the developed industrial process is laid out for a specific, predefined throughput, a
fact which constrains the later flexibility of production significantly.

The solution of these problems is based on a simple idea: the developed labora-
tory-scale process is used for manufacturing of a chemical product by parallelization
of many small units. Although promising great advantages over scale-up, this pro-
cedure, denoted “numbering-up”, is not trivial by far. It cannot be carried out in a
simple way due to the tremendous technological effort necessary: a chemical plant
with hundreds or even thousands of small-scaled vessels, stirrers, heaters, pumps,
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VI Preface

etc. would be impractical. A new way of engineering and new technologies had to
be developed to combine the advantages of lab-scale processing with the necessi-
ties associated with production-scale throughput. First steps into this direction have
been taken, and despite some remaining throughput restrictions, first successes
have become visible. Also, economical and ecological reasons create increasing
demand for further steps in process intensification and sustainable development.

The present book is devoted to both the experimentally tested micro reactors and
micro reaction systems described in current scientific literature as well as the cor-
responding processes. It will become apparent that many micro reactors at first
sight “simply” consist of a multitude of parallel channels. However, a closer look
reveals that the details of fluid dynamics or heat and mass transfer often determine
their performance. For this reason, besides the description of the equipment and
processes referred to above, this book contains a separate chapter on modeling and
simulation of transport phenomena in micro reactors.

Using specific examples of gas-phase, gas/liquid and liquid-phase reactions, the
advantages of microstructured reactors are highlighted in comparison to conven-
tional equipment. At the same time, known problems are pointed out and some
processes are listed for which micro reactors so far failed to show superior perfor-
mance. Furthermore, the book is conceived as a compendium. Processes, micro-
structured reactors and chemical reactions are described in an integrated manner,
providing in each case the relevant original citations. Equipped with the data given
in this book, readers will be able to identify the most suitable reactor to success-
fully perform a given chemical reaction on the micro scale.

By now, Chemical Micro Process Technology has been established as an inde-
pendent discipline, bringing forth over 1500 publications in the last few years, and
an end is not foreseeable. The surge of scientific cognitions encouraged the au-
thors to write this book, which should provide a deeper insight into this new and
fascinating subject.

We are very grateful to those who helped this project become reality. In particu-
lar, we would like to mention K. Bouras, T. Hang, C. Mohrmann, and L. Widarto,
who prepared electronic versions of many of the figures appearing in this book.
We also wish to thank C. Mohrmann and L. Widarto for handling the copyright
transfer formalities and T. Hang for taking pictures of some of IMM’s micro de-
vices. A special thanks goes to B. Knabe and R. Schenk for helping us with litera-
ture retrieval. Last but not least, we are indebted to K. S. Drese and F. Schönfeld for
the thorough checking of parts of our manuscript.

Mainz, November 2003 The authors
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List of Symbols and Abbreviations

〈…〉 Ensemble average

A Cross sectional area
A Coefficient matrix
a Chemical species
A′ Coefficient matrix
aP, ai Numerical coefficients
ASE Advanced silicon etching
aspec Internal surface area
ATR Attenuated total reflection

iu
la Numerical coefficient

b/a Channel aspect ratio
bi,P Source term in Navier-Stokes equation
(bi)k Transformation vector

Bo Bodenstein number
Boc tert.-Butyloxycarbonyl

c Species concentration
Ca Capillary number
ca Concentration of species a
CAD Computer aided design
cb Concentration of species b
CCD Charge-coupled device
cf Fluid specific heat
CFD Computational fluid dynamics
CGC Constrained-geometry catalyst
ci Concentration at node i
ci Concentration of species i
Ci±1/2 Flux limiter
cp Specific heat
CSTR Continuous-stirred tank reactor
CVD Chemical vapor deposition
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c Concentration averaged over the cross section of a tube
e
i ( )c ω� Laplace transform of the effective concentration field

c� Smoothed volume-fraction function

d Bubble diameter
d Typical length scale
D Diffusion constant
D Channel diameter
D Distance
Da Damköhler number
DBU 1,8-Diazabicyclo[5.4.0]-undec-7-ene
DCC 1,3-Dicyclohexylcarbodiimide
DCM Dichloromethane
De Dispersion coefficient
Dh Hydraulic diameter
Di Species diffusion constant inside a pore
Dmab 4-[N-(1-(4,4-Dimethyl-2,6-dioxocyclohexylidene)-3-methylbutyl)-

3 amino]benzyl
DMAP 4-Dimethylamino pyridine
DMF N,N-Dimethyl formamide
DNDA N,N’-Dialkyl-N,N’-dinitro-urea
DRIE Deep reactive ion etching
DSMC Direct simulation Monte Carlo method

De
cur Dispersion coefficient in curved ducts

e Channel depth
E Activation energy
e Thermal energy density
E Magnitude of electric field strength
EDCI 3-Ethyl-1-(3-dimethylaminopropyl)-carbodiimide hydrochloride
EDDA Ethylenediamine diacetate
EDL Electric double layer
Ei Electric field strength
EMA Effective-medium approximation
EOF Electroosmotic flow

f Indicates the fluid phase
F Number of molecules per unit area and time hitting a surface
F Cost function
f
0

Maxwell distribution

FCT Flux-corrected transport
FDM Finite-difference method
FEM Finite-element method
FEP Fluorinated ethylene propylene
FFMR Falling film micro reactor
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Fmoc 9-Fluorenylmethoxycarbonyl
f Friction factor
FTIR Fourier transform infrared
FVM Finite-volume method

GC Gas chromatography
GHSV Gas hourly space velocity
g

i
Gravity vector

GPC Gel permeation chromatography

h Channel height
h Perturbation function

HPLC High performance liquid chromatography
i, j, k, l, m, n Summation indices

ID Inner diameter
IR Infrared

Ji Thermodynamic flux

K Dean number
k Thermal conductivity

k Reaction rate constant
k Heat transfer coefficient
K Permeability
k0 Pre-exponential factor of Arrhenius equation
k
B

Boltzmann constant

kL Specific interface in gas/liquid systems
klα Mass-transfer coefficient
kn Time-dependent dispersion coefficient
Kn Knudsen number

Kw Reaction rate constant

L Characteristic length scale of the flow domain

L Length of a tube
l Length of a plug
L Length of a channel
L Length of a channel segment
Lab-Chip Lab-on-a-chip
LBC Laboratory column
LC Liquid chromatography
LC-MS Liquid chromatography coupled wit mass spectrometry
Lhy Hydrodynamic entrance length
LIGA German acronym for lithography, electroforming, moulding

(Lithograpie, Galvanik, Abformung)
LPCVD Low pressure chemical vapour deposition
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L
s

Slip length

Ls0 Reference slip length
Lth Thermal entrance length

m Molecular mass
MBC Micro bubble column
MCR Multi-component reaction
MD Molecular dynamics
MS Mass spectrometry
MSE Micro-strip electrodes
m� Mass flow rate

n Coordinate normal to a wall

N Number of molecules
na Molar amount of a
ni Unit vector normal to an interface
ni Outward normal vector
ni Number of moles of species i
NIR Near infrared
Nml Standard milliliter
NMR Nuclear magnetic resonance
NPT Normal pressure and temperature
Nu Nusselt number

OAOR Oxidation and outgassing reduction

P Grid node
p Pressure
p Partial pressure
P Poincaré map
P Channel perimeter
PDE Partial differential equations
PDMS Polydimethylsiloxane
Pe Peclet number
Pe* Modified Peclet number containing the Taylor-Aris dispersion
PLIC Piecewise-linear interface construction
PMMA Poly methylmethacrylate
Pr Prandtl number
PTFE Poly tetrafluorethylene
PVD Physical vapour deposition

Qf Orthogonal subspace
q� Heat source

vq� Heat source due to viscous dissipation
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R Tube radius
r Source term due to chemical reactions
r Distance between molecules
R Gas constant
R Mean radius of curvature of a channel
r Radial coordinate of a tubular geometry
Re Reynolds number
Rij Matrix defining how a specific reaction contributes to a change in

concentration of the chemical species involved
rj Rate of the jth reaction
Rs Radius of curvature along an interface
RTD Residence time distribution
r Mean radius of a pore

s Indicates the solid phase
sabs Adsorption probability at an active site of the surface
Sc Schmidt number
sdes Site-specific desorption probability
SDS Sodium dodecyl sulphate
SEM Scanning electron microscopy
si Unit vector
Sij Surface of a computational cell
Skat Surface area of a catalyst
SLIC Single-line interface construction
slpm Standard liter per minute
SOI Silicon-on-insulator
SPOS Solid-phase organic chemistry
STP Standard temperature and pressure
S
Φ

Source term
S� Entropy generation per unit time
(S

Φ
)P Value of a source term at node P

T Temperature
Tc Critical temperature
TEM Transmission electron microscopy
THF Tetrahydrofurane
ti Unit vector
TOF Turnover frequency
TOF-MS Time-of-flight mass spectrometry

u Magnitude of velocity
u Line velocity
u Typical velocity scale
U Mean flow velocity
ui Flow velocity vector
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umax Maximum velocity
up Velocity at the wall
UV Ultraviolet
ui

int Velocity of an interface
u Average velocity
ui

m Velocity field at time step m

V Volume flow
Vi Viscous number
Vij Volume of computational cell (i,j)
VIS Visible

Vkl Interaction potential between molecules k and l
VOF Volume-of-Fluid
w Channel width
W, P, E Computational nodes
Wc Micro channel width
wc Channel width
WGS Water-gas-shift reaction
Wij Transport coefficient

x
i

Spatial coordinate vector

X
i

Thermodynamic force

xi
(k) Spatial coordinate i of particle k

s j( )y� Expansion coefficient for chemical reaction kinetics

z Coordinate along the axis of a pore
Zeff 2 × 2 tensor related to the slip flow on a grooved surface

∆p Pressure drop
∆x Grid spacing
Φ Field quantity
Γ Diffusivity
Λe Effective thermal conductivity tensor
Λ

ij
Kinetic coefficients

Ψ Electric potential

α Heat transfer coefficient between a fluid and a solid
α Aspect ratio of a channel
β Dimensionless parameter representing a pseudo-homoge-neous

reaction
δ

ij
Kronecker symbol

ε Porosity
ε Dielectric constant
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ε Energy scale
γ Ratio of specific heats

γ Liquid/vapor surface tension
γSL Solid/liquid surface tension
γSV Solid/vapor surface tension

cγ� Critical shear rate
κ Local curvature of an interface
λ Thermal conductivity
λ Mean free path of a gas molecules

λa Eigenvalue
λe Effective thermal conductivity
λf Fluid thermal conductivity
λnc Correction factor accounting for the non-circularity of a channel
λs Solid thermal conductivity
λs,eff Effective thermal conductivity
µ Dynamic viscosity
µEDM Micro electro discharge machining
µTAS Micro-total-analysis system
ν Critical exponent
νi Stoichiometric coefficient of species i
θ Contact angle
θ Angle to the main flow direction
θ Surface coverage
θa Advancing contact angle
θd Dynamic contact angle
θr Receding contact angle
ρ Density
ρf Fluid density
ρn Residual
σ Correlation length for density fluctuations in a fluid
σ Interfacial tension
σ Liquid conductivity
σ Range of a potential
σ

T
Thermal accommodation coefficient

σ
ν

Tangential momentum accommodation coefficient

τ Intrinsic time scale
τij Stress tensor
ξi Computational space curvilinear coordinates
ζ Zeta potential
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