MULTI-DIMENSIONAL IMAGING

MULTI-DIMENSIONAL IMAGING

Edited by

Bahram Javidi University of Connecticut, USA Enrique Tajahuerce

University Jaume I, Spain

Pedro Andrés University of Valencia, Spain

This edition first published 2014 © 2014 John Wiley and Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought

Library of Congress Cataloging-in-Publication Data applied for.

A catalogue record for this book is available from the British Library.

ISBN: 9781118449837

Typeset in 10/12pt TimesLTStd by Laserwords Private Limited, Chennai, India

1 2014

For Bethany, Ariana, Darius, and Vida In memory of our friend and colleague, Dr Fumio Okano

Contents

About the Editors	XV
List of Contributors	xvii
Preface	xxi
Acknowledgments	xxiii

Part I MULTI-DIMENSIONAL DIGITAL HOLOGRAPHIC TECHNIQUES

1	Parall	el Phase-Shifting Digital Holography	3
	Yasuhi	ro Awatsuji	
1.1	Chapte	er Overview	3
1.2	Introdu	action	3
1.3	Digital	Holography and Phase-Shifting Digital Holography	4
1.4	Paralle	l Phase-Shifting Digital Holography	6
1.5	Experi	mental Demonstration of Parallel Phase-Shifting Digital Holography	8
1.6	High-S	Speed Parallel Phase-Shifting Digital Holography System	12
1.7	Single	Shot Femtosecond-Pulsed Parallel Phase-Shifting Digital Holography	
	System	l	14
1.8	Portab	le Parallel Phase-Shifting Digital Holography System	17
1.9		onal Extension of Parallel Phase-Shifting Digital Holography	17
	1.9.1	Parallel Phase-Shifting Digital Holography Using Multiple	
		Wavelengths	18
	1.9.2	Parallel Phase-Shifting Digital Holography Using Multiple Polarized	
		Light	19
	1.9.3	Parallel Phase-Shifting Digital Holographic Microscope	20
1.10	Prospe	cts and Conclusion	20
	-	wledgments	20
	Refere	6	21

2	Hologi Massin Andrea	ng and Display of Human Size Scenes by Long Wavelength Digital raphy niliano Locatelli, Eugenio Pugliese, Melania Paturzo, Vittorio Bianco, a Finizio, Anna Pelagotti, Pasquale Poggi, Lisa Miccio, Riccardo Meucci tetro Ferraro	25
2.1 2.2	Introdu Digital 2.2.1 2.2.2	action Holography Principles Fresnel Method Advantages of Digital Holography	25 25 29 31
2.3 2.4		d Digital Holography Achievements in IRDH Super Resolution by Means of Synthetic Aperture Human Size Holograms	33 34 35 38 40 43
2.5	Conclu Referen	ision	46 47
3	0	Hologram Processing in On-Axis Holography e Fournier, Loïc Denis, Mozhdeh Seifi and Thierry Fournel	51
3.1	Introdu	iction	51
3.2	Model	of Hologram Image Formation	52
3.3		construction Based on Back Propagation	56
3.4		am Reconstruction Formulated as an Inverse Problem	57
	3.4.1	Reconstruction of Parametric Objects (FI)	59
	3.4.2	Reconstruction of 3-D Transmittance Distributions (FII)	62
3.5		tion of Accuracy	64
3.6		ocessing Algorithms	65
5.0	<i>3.6.1</i>	Multiscale Algorithm for Reconstruction of Parametric Objects	65
	3.6.2	Dictionary Size Reduction for Fast Global Detection	68
3.7	Conclu		69
5.1	Referen		70
4		dimensional Imaging by Compressive Digital Holography venson, Adrian Stern, Joseph Rosen, and Bahram Javidi	75
4.1	Introdu	iction	75
4.2	Compr 4.2.1	essive Sensing Preliminaries The Coherence Parameter	76 78
4.3	Condit Sensing	ions for Accurate Reconstruction of Compressive Digital Holographic g	79
	4.3.1	Compressive Sensing Reconstruction Performance for a Plane Wave Illuminated Object	79
	4.3.2	Compressive Sensing Reconstruction Performance for a Spherical Wave Illuminated Object	81
	4.3.3	Reconstruction Performance for Non-Canonical Sparsifying Operators	83

4.4	Applic	ations of Compressive Digital Holographic Sensing	84
	4.4.1	Compressive Fresnel Holography by Undersampling the Hologram	
		Plane	85
	4.4.2	Compressive Digital Holography for Reconstruction of an Object Set	
		Behind an Opaque Medium	89
	4.4.3	Reconstruction of 3D Tomograms from a 2D Hologram	90
4.5	Conclu		96
		wledgments	97
	Refere	nces	97
5	-	rsion Compensation in Holograms Reconstructed by Femtosecond	
	Light		101
		Mendoza-Yero, Jorge Pérez-Vizcaíno, Lluís Martínez-León,	
	Gladys	s Mínguez-Vega, Vicent Climent, Jesús Lancis and Pedro Andrés	
5.1	Introdu	action	101
5.2	Funda	mental Features of the DCM	102
	5.2.1	Theory of Propagation of Diffracted Femtosecond Pulses	103
	5.2.2	Second Order Analysis	104
	5.2.3	Conventional Refractive Lens System	105
	5.2.4	The Dispersion Compensation Module	107
	5.2.5	Comparative Numerical Simulations	108
	5.2.6	Experimental Results	109
5.3	Hologi	raphic Applications of the DCM with Ultrafast Light Pulses	115
	5.3.1	Single Shot Second Harmonic Signals	115
	5.3.2	Wide-Field Fluorescence Signals in Two-Photon Microscopy	116
	5.3.3	High Speed Parallel Micromachining	119
5.4	Conclu	ision	122
	Ackno	wledgments	122
	Refere	nces	122

Part II BIOMEDICAL APPLICATIONS AND MICROSCOPY

6	Frank I	ced Digital Holographic Microscopy for Life Science Applications Dubois, Ahmed El Mallahi, Christophe Minetti and ine Yourassowsky	129
6.1	Introdu	ction	129
6.2	DHM Configurations		130
	6.2.1	Phase Stepper DHM	130
	6.2.2	Fast Off-Axis DHM	130
	6.2.3	Color DHM	132
6.3	Autom	ated 3D Holographic Analysis	135
	6.3.1	Extraction of the Full Interferometric Information	135
	6.3.2	Automated 3D Detection of Organisms	135

6.4	Applica	ations	139
	6.4.1	Holographic Classification of Micro-Organisms	141
	6.4.2	Dynamics of Red Blood Cells (RBCs)	145
6.5	Conclu	sion	148
		wledgments	149
	Referen	nces	149
7		ammable Microscopy	153
	Tobias	Haist, Malte Hasler, Wolfang Osten and Michal Baranek	
7.1	Introdu	iction	153
7.2	Optical	Design Considerations and Some Typical Setups	154
7.3	Liquid	Crystal Spatial Light Modulator	158
7.4	Aberra	tion Correction	160
	7.4.1	Isoplanatic Case	160
	7.4.2	Field-Dependent Aberrations	162
	7.4.3	Defocusing	163
7.5		Contrast Imaging	163
	7.5.1	Dark Field	164
	7.5.2		164
	7.5.3	5	165
	7.5.4	Combining Different Phase Contrast Images	167
7.6		Microscopy	168
7.7	Conclu		169
	Referen	nces	170
8		raphic Three-Dimensional Measurement of an Optically Trapped	
	Nanop		175
	Yoshio	Hayasaki	
8.1	Introdu		175
8.2	Experi	mental Setup	177
	8.2.1	Optical Tweezers System	177
	8.2.2	In-Line Digital Holographic Microscope	177
8.3	-	mental Results of 3D Position Measurement of Nanoparticles	182
	8.3.1	A 200 nm Polystyrene Particle Fixed on a Glass Substrate	182
	8.3.2	Axial Step in 3D Sub-Pixel Estimation	183
	8.3.3	Brownian Motion of a 200 nm Polystyrene Particle Held in Optical Tweezers	184
	8.3.4	Brownian Motion of a 60 nm Gold Nanoparticle Held in Optical	186
0.4	71 11 1	Tweezers	
8.4	U	the Field Technique for Holographic Position Detection of Nanoparticles	188
	8.4.1	Twilight Field Optical Microscope	188
	8.4.2	Low-Coherence, In-Line Digital Holographic Microscope with the	100
	040	LFAF	189
	8.4.3	Improvement of Interference Fringes of a 100 nm Polystyrene Nanoparticle	190

8.5	Conclu Refere		191 192
	Kelele	lices	192
9	Quant	Holographic Microscopy: A New Imaging Technique to itatively Explore Cell Dynamics with Nanometer Sensitivity Marquet and Christian Depeursinge	197
9.1	Chapte	r Overview	197
9.2	Introdu	iction	198
9.3	Hologi	aphic Techniques	200
	9.3.1	Classical Holography	200
	9.3.2	From Classical to Digital Holography	200
	9.3.3	Digital Holography Methods	201
	9.3.4	Digital Holographic Microscopy	202
9.4		naging with Digital Holographic Quantitative Phase Microscopy	206
	9.4.1	Cell Counting, Recognition, Classification, and Analysis	206
	9.4.2	Dry Mass, Cell Growth, and Cell Cycle	207
	9.4.3	Cell Membrane Fluctuations and Biomechanical Properties	208
	9.4.4	Absolute Cell Volume and Transmembrane Water Movements	208
	9.4.5	Exploration of Neuronal Cell Dynamics	210
9.5	Future		213
		wledgments	214
	Refere	nces	214
10	Super	Resolved Holographic Configurations	225
		i Meiri, Eran Gur, Javier Garcia, Vicente Micó, Bahram Javidi ev Zalevsky	
10.1	Introdu	iction	225
10.2	Digital	Holography	226
10.3	Metal	Nanoparticles	227
10.4	Resolu	tion Enhancement in Digital Holography	229
10.5	Field o	f View Enhancement in Digital Holography	231
10.6	Elimin	ating the DC Term and the Twin Images	233
10.7	Additio	onal Applications	235
	Refere	nces	238
Part 1	п м	JLTI-DIMENSIONAL IMAGING AND DISPLAY	

11	Three-Dimensional Integral Imaging and Display	243
	Manuel Martínez-Corral, Adrián Dorado, Anabel LLavador, Genaro Saavedra and Bahram Javidi	
	απα Βαπταπι Juviai	
11.1	Introduction	243
11.2	Basic Theory	245
11.3	The Plenoptic Function	246

11.4	Methods for the Capture of the Plenoptic Field	249
	11.4.1 Integral Photography	249
	11.4.2 The Plenoptic Camera	251
11.5	Walking in Plenoptic Space	255
11.6	Reconstruction of Intensity Distribution in Different Depth Planes	257
11.7	Implementation of the Integral Imaging Display Device	261
11.8	Conclusion	262
	Acknowledgments	262
	References	262
12	Image Formats of Various 3-D Displays	267
	Jung-Young Son, Chun-Hea Lee, Wook-Ho Son, Min-Chul Park and Bahram Javidi	
12.1	Chapter Overview	267
12.2	Introduction	268
12.3	Multiplexing Schemes	269
12.4	Image Formats for 3-D Imaging	271
	12.4.1 Image Formats for Multiview 3-D Imaging	272
	12.4.2 Image Formats for Volumetric Imaging	289
	12.4.3 Image Formats for Holographic Imaging	291
	References	299
13	Ray-based and Wavefront-based 3D Representations for Holographic	
	Displays	303
	Masahiro Yamaguchi and Koki Wakunami	
13.1	Introduction	303
13.2	Ray-based and Wavefront-based 3D Displays	303
13.3	Conversion between Ray-based and Wavefront 3D Representations	307
13.4	Hologram Printer Based on a Full-Parallax Holographic Stereogram	308
	13.4.1 Holographic 3D Printer	308
	13.4.2 Full-Parallax Holographic Stereogram	308
13.5	Computational Holography Using a Ray-Sampling Plane	310
	13.5.1 Computational Techniques for Electro-Holographic 3D Displays	310
	13.5.2 Algorithm for CGH Calculation Using a Ray-Sampling Plane	311
	13.5.3 Comparison with Ray-based Techniques	312
	13.5.4 Optical Reconstruction	312
13.6	Occlusion Culling for Computational Holography Using the Ray-Sampling	
	Plane	313
	13.6.1 Algorithm for Occlusion Culling Using the Ray-Sampling Plane	313
	13.6.2 Experiment on Occlusion Culling Using the Ray-Sampling Plane	315
13.7	Scanning Vertical Camera Array for Computational Holography	315
	13.7.1 Acquisition of a High-Density Light Field	315
	13.7.2 Scanning Vertical Camera Array	316
	15.7.2 Scanning vertical Camera Array	510

	13.7.4	Synthesis of Ray Images	318
	13.7.5	Experiment on Full-Parallax Image Generation	320
13.8	Conclu	sion and Future Issues	323
	Acknow	vledgments	323
	Referer	-	323
14	Rigoro	us Diffraction Theory for 360° Computer-Generated Holograms	327
	Toyohik	xo Yatagai, Yusuke Sando and Boaz Jessie Jackin	
14.1	Introdu	ction	327
14.2	Three-I	Dimensional Object and Its Diffracted Wavefront	328
	14.2.1	Diffracted Waves with Full View Angles	332
14.3	Point-S	pread Function Approach for Spherical Holography	333
	14.3.1	Spherical Object and Spherical Hologram	333
	14.3.2	Approximation Error	335
	14.3.3	Computer Simulation for Spherical Holography	335
14.4	Rigorou	as Point-Spread Function Approach	336
	14.4.1	Numerical Computation	340
	14.4.2	Simulation Results on Rigorous Theory	342
	14.4.3	Verification through Comparison	342
	14.4.4	Hologram Generation	344
14.5	Conclu	sion	346
	Referer	ices	346

Part IV SPECTRAL AND POLARIMETRIC IMAGING

15	0 1	peed 3D Spectral Imaging with Stimulated Raman Scattering ii Ozeki and Kazuyoshi Itoh	351
15.1	Introduc	ction	351
15.2	Principl	es and Advantages of SRS Microscopy	352
	15.2.1	Operation Principles	352
	15.2.2	Comparison with Previous Raman Microscopy Techniques	353
	15.2.3	Artifacts in SRS Microscopy	356
	15.2.4	Physical Background	356
15.3	Spectral	I Imaging with SRS	358
15.4	High-Sp	peed Spectral Imaging	360
	15.4.1	High-Speed Wavelength-Tunable Laser	360
	15.4.2	Experimental Setup	362
	15.4.3	Observation of Polymer Beads	363
	15.4.4	Spectral Analysis	363
	15.4.5	Tissue Imaging	364
15.5	Summa	ry	367
	Acknow	vledgments	368
	Referen	ces	368

16	Spectropolarimetric Imaging Techniques with Compressive Sensing Fernando Soldevila, Esther Irles, Vicente Durán, Pere Clemente, Mercedes Fernández-Alonso, Enrique Tajahuerce and Jesús Lancis	371
16.1	Chapter Overview	371
16.2	Single-Pixel Imaging and Compressive Sensing	372
16.3	Single-Pixel Polarimetric Imaging	373
16.4	Single-Pixel Multispectral Imaging	377
16.5	Single-Pixel Spectropolarimetric Imaging	382
10.0	16.5.1 Multispectral Linear Polarimetric Camera	383
	16.5.2 Multispectral Full-Stokes Imaging Polarimeter	384
16.6	Conclusion	388
10.0	Acknowledgments	388
	References	388
17	Passive Polarimetric Imaging	391
	Daniel A. LeMaster and Michael T. Eismann	
17.1	Introduction	391
17.2	Representations of Polarized Light	392
	17.2.1 Optical Electro-Magnetic Fields	392
	17.2.2 Stokes Parameters and Mueller Matrices	393
	17.2.3 The Poincaré Sphere	396
17.3	Polarized Reflection and Emission	397
	17.3.1 Reflection	397
	17.3.2 Emission	401
17.4	Atmospheric Contributions to Polarimetric Signatures	
	17.4.1 Reflective Bands	406
	17.4.2 Emissive Bands	410
17.5	Data Reduction Matrix Analysis of Modulated Polarimeters	411
	17.5.1 Important Equations	411
	17.5.2 Example Stokes Polarimeters	412
17.6	Fourier Domain Analysis of Modulated Polarimeters	417
	17.6.1 Rotating Analyzer	417
	17.6.2 Microgrid Polarimeters	418
	17.6.3 Band-Limited Stokes Reconstruction	420
17.7	Radiometric and Polarimetric Calibration	421
	17.7.1 Radiometric Non-Uniformity Correction	422
	17.7.2 Polarimetric Calibration	423
17.8	Polarimetric Target Detection	424
	References	426
Index		429

Index

About the Editors

Bahram Javidi is the Board of Trustees Distinguished Professor at University of Connecticut.

He has been recognized by nine best paper awards, and major awards from professional societies, including fellowships of IEEE, OSA, EOS, and SPIE. In 2008, he received the Fellow Award from the John Simon Guggenheim Foundation. He has written over 870 publications, which have been cited 11 000 times according to the ISI Web of Knowledge (*h index* = 55). He has received the 2008 IEEE Donald G. Fink Prize Paper Award, the 2010 George Washington University's Distinguished Alumni Scholar Award, the 2008 SPIE Technology Achievement Award, and the 2005 SPIE Dennis Gabor Award in Diffractive Wave Technologies. In 2007, the Alexander von Humboldt Foundation awarded him the Humboldt Prize for Outstanding Scientists. He

was the recipient of the (IEEE) Photonics Distinguished Lecturer Award in 2003–2005. He was awarded the Best Journal Paper Award from the *IEEE Transactions on Vehicular Technology* in 2002 and 2005. In 2003 he was selected, as one of the nation's top 160 engineers between the ages of 30–45 by the National Academy of Engineering (NAE), to be an invited speaker at The Frontiers of Engineering Conference. He is an alumnus of the Frontiers of Engineering of The NAE since 2003. He was a National Science Foundation Presidential Young Investigator and received The Engineering Foundation and the IEEE Faculty Initiation Awards. He is on the Editorial Board of the *Proceedings of the IEEE* journal (ranked number one in electrical engineering), and is on the Advisory Board of the *IEEE Photonics* journal. He was on the founding editorial board of the *IEEE Journal of Display*. In 2008, he was elected by the members to be on The Board of Directors of the SPIE. He received his BSc from George Washington University, and his PhD from the Pennsylvania State University.

Enrique Tajahuerce was born in Soria, Spain, in 1964. He received his PhD in Physics from

the University of Valencia (UV), Spain, in 1998. Dr Tajahuerce was a researcher at the Technological Institute of Optics, Colour and Imaging (AIDO) in Paterna, Spain, from 1989–1992. Since 1992 he has been member of the Physics Department in the Universitat Jaume I (UJI), in Castelló, Spain, where he is an Associate Professor. He is currently Secretary of the Physics Department and Deputy Director of the Institute of New Imaging Technologies (INIT).

Dr Tajahuerce's research interests lie in the areas of diffractive optics, digital holography, ultrafast optics, computational imaging, and microscopy. He has co-authored more than 90 scientific publications, and over 140 communications in conference meetings (35 of them by invitation). He is member of the SPIE, OSA, EOS, and the Spanish Optical Society (SEDO). In 2008, Dr Tajahuerce received the IEEE Donald G. Fink Prize Paper Award.

Pedro Andrés was born in Valencia, Spain, in 1954. He earned a PhD in physics/optics

from the University of Valencia (UV) in 1983. His thesis received the 1984 Special Distinction awarded by the UV. Dr Andrés has been full a Professor of Optics since 1994 at the UV. He acted as the UV's Head of the Department of Optics from 1998–2006. He was also the Director of both the PhD and the Masters Program in the Faculty of Physics (UV) from 2008–2010.

His current research interests include static and dynamic diffractive optical elements, advanced imaging systems, microstructured fibers, temporal imaging, and ultrafast optics. He has co-authored more than 130 peer-reviewed papers. Two of these articles have received more than 200 citations each. He also supervised 13 PhD works (four of them received a Special Distinction awarded by the University of Valencia).

Currently, Professor Andrés is an expert on the Board (Branch Science) for the Evaluation of Faculty Members of Spanish Universities, President of the Iberian-American Network for Optics, Fellow of the OSA, elected member of the Board of Directors of the European Optical Society (EOS), Past-President of the Imaging Committee of the Spanish Optical Society (SEDOPTICA), and Academic Mentor of the EOS Comunidad Valenciana Student Club.

List of Contributors

Pedro Andrés, Department d'Òptica, Universitat de València, Spain

Yasuhiro Awatsuji, Division of Electronics, Kyoto Institute of Technology, Japan

Michal Baranek, Department of Optics, Palacky University Olomouc, Czech Republic

Vittorio Bianco, CNR, Istituto Nazionale di Ottica, Sezione di Napoli, Italy

Pere Clemente, GROC·UJI, Departament de Física, and Servei Central d'Instrumentació Científica, Universitat Jaume I, Spain

Vicent Climent, GROC·UJI, Departament de Física and Institut de Noves Tecnologies de la Imatge (INIT), Universitat Jaume I, Spain

Loïc Denis, Laboratoire Hubert Curien, Saint Etienne University, France

Christian Depeursinge, Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Switzerland

Adrián Dorado, Department of Optics, University of Valencia, Spain

Frank Dubois, Microgravity Research Centre, Université Libre de Bruxelles, Belgium

Vicente Durán, GROC·UJI, Departament de Física and Institut de Noves Tecnologies de la Imatge (INIT), Universitat Jaume I, Spain

Michael T. Eismann, Air Force Research Laboratory, USA

Mercedes Fernández-Alonso, GROC·UJI, Departament de Física and Institut de Noves Tecnologies de la Imatge (INIT), Universitat Jaume I, Spain

Pietro Ferraro, CNR, Istituto Nazionale di Ottica, Sezione di Napoli, Italy

Andrea Finizio, CNR, Istituto Nazionale di Ottica, Sezione di Napoli, Italy

Thierry Fournel, Laboratoire Hubert Curien, Saint Etienne University, France

Corinne Fournier, Laboratoire Hubert Curien, Saint Etienne University, France

Javier Garcia, Departamento de Óptica, Universitat Valencia, Spain

Eran Gur, Department of Electrical Engineering and Electronics, Azrieli – College of Engineering, Israel

Tobias Haist, Institute für Technische Optik, University of Stuttgart, Germany

Malte Hasler, Institute für Technische Optik, University of Stuttgart, Germany

Yoshio Hayasaki, Center for Optical Research and Education (CORE), Utsunomiya University, Japan

Esther Irles, GROC·UJI, Departament de Física, Universitat Jaume I, Spain

Kazuyoshi Itoh, Graduate School of Engineering, Department of Material & Life Science, Osaka University, Japan and Science Technology Entrepreneurship Laboratory (e-square), Osaka University, Japan

Bahram Javidi, Department of Electrical and Computer Engineering, University of Connecticut, USA

Boaz Jessie Jackin, Center for Optical Research and Education, Utsunomiya University, Japan

Jesús Lancis, GROC·UJI, Departament de Física and Institut de Noves Tecnologias de la Imatge (INIT), Universitat Jaume I, Spain

Chun-Hea Lee, Industrial Design Department, Joongbu University, Korea

Daniel A. LeMaster, Air Force Research Laboratory, USA

Anabel LLavador, Department of Optics, University of Valencia, Spain

Massimiliano Locatelli, CNR, Istituto Nazionale di Ottica, Largo E. Fermi, Italy

Ahmed El Mallahi, Microgravity Research Centre, Université Libre de Bruxelles, Belgium

Pierre Marquet, Centre de Neurosciences Psychiatriques, Centre Hospitalier Universitaire Vaudois, Département de Psychiatrie, Switzerland and Brain Mind Institute, Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Switzerland

Manuel Martínez-Corral, Department of Optics, University of Valencia, Spain

Lluís Martínez-León, GROC·UJI, Departament de Física and Institut de Noves Tecnologies de la Imatge (INIT), Universitat Jaume I, Spain

Amihai Meiri, Faculty of Engineering, Bar-Ilan University, Israel

Omel Mendoza-Yero, GROC·UJI, Departament de Física and Institut de Noves Tecnologies de la Imatge (INIT), Universitat Jaume I, Spain

Riccardo Meucci, CNR, Istituto Nazionale di Ottica, Largo E. Fermi, Italy

Lisa Miccio, CNR, Istituto Nazionale di Ottica, Sezione di Napoli, Italy

Christophe Minetti, Microgravity Research Centre, Université Libre de Bruxelles, Belgium

Gladys Mínguez-Vega, GROC·UJI, Departament de Física and Institut de Noves Tecnologies de la Imatge (INIT), Universitat Jaume I, Spain

Vicente Micó, Departamento de Óptica, University of Valencia, Spain

Wolfgang Osten, Institute für Technische Optik, University of Stuttgart, Germany

Yasuyuki Ozeki, Graduate School of Engineering, Department of Material & Life Science, Osaka University, Japan

Min-Chul Park, Sensor System Research Center, Korea Institute of Science and Technology, Korea

Melania Paturzo, CNR, Istituto Nazionale di Ottica, Sezione di Napoli, Italy

Anna Pelagotti, CNR, Istituto Nazionale di Ottica, Largo E. Fermi, Italy

Jorge Pérez-Vizcaíno, GROC·UJI, Departament de Física and Institut de Noves Tecnologies de la Imatge (INIT), Universitat Jaume I, Spain

Pasquale Poggi, CNR, Istituto Nazionale di Ottica, Largo E. Fermi, Italy

Eugenio Pugliese, CNR, Istituto Nazionale di Ottica, Largo E. Fermi, Italy

Yair Rivenson, Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Israel

Joseph Rosen, Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Israel

Genaro Saavedra, Department of Optics, University of Valencia, Spain

Yusuke Sando, Center for Optical Research and Education, Utsunomiya University, Japan

Mozhdeh Seifi, Laboratoire Hubert Curien, Saint Etienne University, France

Fernando Soldevila, GROC·UJI, Departament de Física, Universitat Jaume I, Spain

Jung-Young Son, Biomedical Medical Engineering Department, Konyang University, Korea

Wook-Ho Son, Content Platform Research Department, Electronics and Communication Technology Research Institute, Korea

Adrian Stern, Department of Electro-Optics Engineering, Ben-Gurion University of the Negev, Israel

Enrique Tajahuerce, GROC·UJI, Departament de Física and Institut de Noves Tecnologies de la Imatge (INIT), Universitat Jaume I, Spain

Koki Wakunami, Global Scientific Information and Computing Center, Tokyo Institute of Technology, Japan

Masahiro Yamaguchi, Global Scientific Information and Computing Center, Tokyo Institute of Technology, Japan

Toyohiko Yatagai, Center for Optical Research and Education, Utsunomiya University, Japan

Catherine Yourassowsky, Microgravity Research Centre, Université Libre de Bruxelles, Belgium

Zeev Zalevsky, Faculty of Engineering, Bar-Ilan University, Israel

Preface

Imaging sciences and engineering are rapidly evolving in many ways by encompassing more sensing modalities, display media, digital domains, and consumer products. This field of research and development is frenetically active in multiple scientific, innovative disciplines including those of materials, sensors, displays, algorithms, and applications. Today, the term "optical image" refers not only to the concept of image formation and its multiple analysis, reconstruction, and visualization techniques, but also to computer vision, terahertz frequencies and electromagnetic imaging, medical imaging, algorithms for processing of images, and three-dimensional image sensing, among many others.

In the last two decades, research into advanced imaging systems has made great progress. There are many new procedures in microscopy that overcome the classical resolution limit. The field has benefited from the astonishing results of computational imaging techniques. The advances in imaging through turbid and scattering media allow the achievement of images with good resolution, either from deep layers of tissue in living beings, or the cosmos through telescopes on Earth's surface. Optics in the life sciences incorporates new methods for non-invasive imaging of *in vivo* biological material and the tools to translate that knowledge and procedures for the study, diagnosis, and treatment of diseases. Sources of entangled photons in quantum imaging can provide high-quality images at a very low level of illumination. To all this, we must add many other rapidly evolving areas such as modern adaptive optics, imaging in nuclear medicine, optical tweezers that are opening new avenues for the study of single cells, the role of spatial light modulators in advanced imaging, and so on.

Recently, there have been rapid advances in imaging systems because of the introduction of various multi-dimensional imaging techniques, including digital holography, integral imaging, multiview, light field, multispectral imaging, polarimetric imaging, temporal multiplexing; development of new algorithms, such as those used for compressive sensing or computational imaging; and the application of new light sources, such as ultrashort lasers, laser diodes, super-continuum sources, and so on. In parallel to the development of new imaging techniques, there has been a great advance in image resolution by increasing the number of pixels of different detector arrays and reducing pixel size. It has been recognized that, in many situations, it is also very important to measure not only the spatial intensity distribution of the object, but also other useful dimensions of an image, such as spectral, polarization, optical phase, or three-dimensional structure, leading to the development of multi-dimensional imaging. As a result, there have been substantial multidisciplinary activities in the development of polarimetric cameras, multispectral sensors, holographic techniques, three-dimensional visualization devices, and so on, integrated with special purpose algorithms to produce multi-dimensional imaging systems for a variety of applications, including medical, defense and security, robotics, education, entertainment, environment, and manufacturing.

Given the great interest in multi-dimensional imaging research, development, and education, this book, entitled *Multi-dimensional Imaging* aims to present an overview of the recent advances in the field by some of the leading researchers and educators. The book intends to educate and provide the readers with an introduction to some of the important areas in this multi-disciplinary domain. This broad overview is useful for students, engineers, and scientists who are interested in learning about the latest advances in this important field.

This book addresses a selection of important subjects in multi-dimensional imaging describing fundamentals, approaches, techniques, new developments, applications, and a relevant bibliography. It consists of 17 chapters and is divided into four parts that deal with multi-dimensional digital holographic techniques, multi-dimensional biomedical imaging and microscopy, multi-dimensional imaging and display, and spectral and polarimetric imaging. The chapters are written by some of the most prominent researchers and educators in the field.

We wish to thank the authors for their outstanding contributions, and the Wiley editors and staff for their support and assistance.

This book is dedicated to the memory of our departed friend, Dr Fumio Okano.

Bahram Javidi, Storrs, Connecticut, USA Enrique Tajahuerce, Castelló, Spain Pedro Andrés, Valencia, Spain

Acknowledgments

We are grateful to the authors, whom we have known for many years as friends and colleagues, for their outstanding contributions to this book. Special thanks go to John Wiley & Sons Editor, Ms Alex King, for her support and encouragement of this book from the initial stages to the end. We thank John Wiley & Sons production team Tom Carter and Genna E. Manaog, as well as Lynette Woodward and Sangeetha Parthasarathy, for their assistance in finalizing this book.

Be with those who help your being. Rumi