Teacher Annotated Edition

Science Notebook

Glencoe Science

www.Biology.com

Consultant

Douglas Fisher, Ph.D.

About the Consultant

Douglas Fisher, Ph.D. is a Professor in the Department of Teacher Education at San Diego State University. He is the recipient of an International Reading Association Celebrate Literacy Award, as well as a Christa McAuliffe Award for Excellence in Teacher Education. He has published numerous articles on reading and literacy, differentiated instruction, and curriculum design as well as books, such as *Improving Adolescent Literacy: Strategies at Work* and *Responsive Curriculum Design in Secondary Schools: Meeting the Diverse Needs of Students.* He has taught a variety of courses in SDSU's teacher credentialing program as well as graduate-level courses on English language development and literacy. He also has taught classes in English, writing, and literacy development to secondary school students.

www.almanahj.com

The **McGraw·Hill** Companies

Copyright © by the McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

Send all inquiries to: Glencoe/McGraw-Hill 8787 Orion Place Columbus, OH 43240-4027

ISBN-13: 978-0-07-874604-8 ISBN-10: 0-07-874604-3

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 024 11 10 09 08 07 06

Table of Contents

To the Teachervi	Chapter 8
Note-Taking Tipsviii	Cellular Energy Preview77
	Section 8.1
Chapter 1	Section 8.2
The Study of Life Preview 1	Section 8.384
Section 1.1	Chapter 9
Section 1.2 5 Section 1.3 8	Cellular Reproduction Preview 87
	Section 9.1
Chapter 2	Section 9.2
Principles of Ecology Preview11	Section 9.3
Section 2.1	Chapter 10
Section 2.2	Sexual Reproduction and
Section 2.3 18	Genetics Preview97
Chapter 3	Section 10.1
Communities, Biomes, and	Section 10.2 101
Ecosystems Preview21	Section 10.3
Section 3.1	Chapter 11
Section 3.2	Complex Inheritance and
Section 3.328	Human Heredity Preview107
Chapter/4 W.almanah	Section 11.1
Population Ecology Preview31	Section 11.2
Section 4.1	Section 11.3114
Section 4.2	Chapter 12
Chapter 5	Molecular Genetics Preview117
Biodiversity and	Section 12.1118
Conservation Preview39	Section 12.2
Section 5.1	Section 12.3
Section 5.2	Section 12.4 127
Section 5.3	Chapter 13
Chapter 6	Genetics and
Chemistry in Biology Preview 49	Biotechnology Preview131
Section 6.1 50	Section 13.1
Section 6.2 53	Section 13.2
Section 6.3	Section 13.3 138
Section 6.4	Chapter 14
Chapter 7	The History of Life Preview141
Cellular Structure and	Section 14.1 142
Function Preview 63	Section 14.2
Section 7.1	Chapter 15
Section 7.2	Evolution Preview
Section 7.3	Section 15.1
Section 7.4	Section 15.2
	Section 15.3

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Table of Contents

Chapter 16	Chapter 24	
Primate Evolution Preview	Introduction to Animals Preview	245
Section 16.1	Section 24.1	
Section 16.2	Section 24.2	
Section 16.3166	Section 24.3	
Chapter 17	Chapter 25	
Organizing Life's	Worms and Mollusks Preview	. 255
Diversity Preview	Section 25.1	
Section 17.1	Section 25.2	. 259
Section 17.2	Section 25.3	. 262
Section 17.3 176	Section 25.4	265
Chapter 18	Chapter 26	
Bacteria and Viruses Preview 179	Arthropods Preview	. 269
Section 18.1	Section 26.1	
Section 18.2	Section 26.2	
	Section 26.3	276
Chapter 19	Chapter 27	
Protists Preview	Echinoderms and Invertebrate	
Section 19.1		270
Section 19.2	Chordates Preview Section 27.1	200
Section 19.4	Section 27.2	200
		203
Chapter 20	Chapter 28	
Fungi Preview201	Fishes and Amphibians Preview	
Section 20.1	Section 28.1	
Section 20.2	Section 28.2	
Section 20.3	Section 28.3	294
Chapter 21	Chapter 29	
Introduction to Plants Preview 211	Reptiles and Birds Preview	
Section 21.1	Section 29.1	
Section 21.2	Section 29.2	301
Section 21.3	Chapter 30	
Section 21.4221	Mammals Preview	305
Chapter 22	Section 30.1	
Plant Structure and	Section 30.2	
Function Preview		
Section 22.1	Chapter 31	
Section 22.2	Animal Behavior Preview	
Section 22.3	Section 31.1	
	Section 31.2	317
Chapter 23	Chapter 32	
Reproduction in Plants Preview 235	Integumentary, Skeletal, and	
Section 23.1	Muscular Systems Preview	321
Section 23.2	Section 32.1	
Section 23.3242	Section 32.2	
	Section 32.3	

Table of Contents

Chapter 33	
Nervous System Preview	. 331
Section 33.1	
Section 33.2	. 335
Section 33.3	
Section 33.4	. 341
Chapter 34	
Circulatory, Respiratory, and	
Excretory Systems Preview	. 345
Section 34.1	
Section 34.2	. 349
Section 34.3	. 352
Chapter 35	
Digestive and	
Endocrine Systems Preview	355
Section 35.1	
Section 35.2	
Section 35.3	
Chapter 36	1 •
Human Reproduction and	ant.com
Development Preview	
Section 36.1	
Section 36.2	
Section 36.3	
Chapter 37	
-	275
Immune System Preview Section 37.1	
Section 37.1	
Section 37.3	

To the Teacher

Dear Science Teacher,

As you begin a new school year, one of the biggest challenges you will probably encounter is getting students to read their textbooks. Informational text can overwhelm students, leaving them less likely to read and more likely to become apathetic about learning. I believe that this Science Notebook will help students use their textbooks more effectively as they learn about Biology.

Note-Taking and Student Success

There is considerable research evidence that addresses how students understand difficult concepts and content in school. Glencoe/McGraw-Hill has developed the *Science Notebook* for science students based upon that research. Evidence indicates that students need to know how to take notes, use graphic organizers, learn vocabulary, and develop their thinking skills by writing, in order to achieve academic success.

The ability to take and organize notes predicts how well students will do in school. Peverly, Brobst, Graham, and Shaw (2003) showed that when students use background knowledge and take notes, they are likely to perform well on tests. Pauk (1974) observed that note-taking was a critical skill for college success. Notes serve as an external storage function (meaning on the paper) that builds comprehension and content understanding (Ganske, 1981). This *Science Notebook* is a tool that students can use to achieve this goal. I would like to share some of the features of this *Science Notebook* with you before you begin teaching.

The Cornell Note-Taking System

First, you will notice that the pages in the *Science Notebook* are arranged in two columns, which will help students organize their thinking. This two-column design is based on the **Cornell Note-Taking System**, developed at Cornell Uni-

versity. Faber, Morris, and Lieberman (2000) found that the Cornell Note-Taking System improves comprehension and increases test scores.

The column on the left side of the page highlights the main ideas and vocabulary of the lesson. This column will help students find information and locate the references in their textbooks quickly. Students can also use this column to sketch drawings that help them visually remember the lesson's information. In the column on the right side of the page, students will write detailed notes about the main ideas and vocabulary. The notes they take in this column will help them focus on the important information in the lesson. As students become more comfortable using the Cornell Note-Taking System, they will see that it is an important tool that helps them organize information.

The Importance of Graphic Organizers

Second, there are many graphic organizers in this *Science Notebook*. Graphic organizers allow students to see the lesson's important information in a visual format. In addition, graphic organizers help students summarize information and remember the content. I hope that you will encourage students to use the graphic organizers because they will help them understand what they are reading.

Research-Based Vocabulary Development

Third, you will notice that vocabulary is introduced and practiced throughout the Science Notebook. When students know the meaning of the words used to discuss information, they are able to understand that information better. Also, students are more likely to be successful in school when they have vocabulary knowledge. When researchers study successful students, they find that as students acquire vocabulary knowledge, their ability to learn improves (Martino and Hoffman, 2002). The Science Notebook focuses on learning words that are very specific to understanding the content of the textbook. The Science Notebook also highlights general academic words that students need to know so that they can understand any textbook. These vocabulary words are based on the Academic Word List (AWL) developed by Averil Coxhead. The AWL includes the most common 570 words found in academic texts, excluding the 2,000 general English words such as the, in, and that. Research indicates that students who master the words on Coxhead's list score significantly higher on standardized tests.

Writing Prompts and Note-Taking

Finally, there are a number of writing exercises included in this *Science Notebook*. Writing is a useful tool that helps students understand the information that is being presented. Writing helps them to assess what they have learned. You will see that many of the writing exercises require students to practice the skills of good readers. Good readers *make connections* between their lives and the text and *predict* what will happen next in the reading. They *question* the information and the author of the text, *clarify* information and ideas, and *visualize* what the text is saying. Good readers also *summarize* the information that is presented and *make inferences* or *draw conclusions* about the facts and ideas.

I wish you well as you begin another school year. This *Science Notebook* is designed to help students understand the information in your Biology class. The guide will be a valuable tool that will also provide students with skills that they can use throughout their lives.

I hope you have a successful school year.

Sincerely, Douglas Fisher

References

Faber, J. E., Morris, J. D., and Lieberman, M. G. (2000). The effect of note taking on ninth grade students' comprehension. *Reading Psychology*, 21, 257–270.

Ganske, L. (1981). Note-taking: A significant and integral part of learning environments. *Educational Communication and Technology:* A Journal of Theory, Research, and Development, 29, 155–175.

Martino, N. L., and Hoffman, P. R. (2002). An investigation of reading and language abilities of college freshmen. *Journal of Research in Reading*, 25, 310–318.

Pauk, W. (1974). How to Study in College. Boston: Houghton Mifflin.

Peverly, S. T., Brobst, K. E., Graham, M., Shaw, R. (2003). College adults are not good at self-regulation: A study on the relationship of self-regulation, note taking, and test taking. *Journal of Educational Psychology*, 95, 335–346.

Van Leeuwe, J., and Aarnoutse, C. (1998). Relation between reading comprehension, vocabulary, reading pleasure, and reading frequency. *Educational Research and Evaluation*, 4, 143–166.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Note-Taking Tips

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in science. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	and	+
such as	i.e.	approximately	~
with	w/	therefore	<i>:</i> .
without	w/o	versus	vs

- Use a symbol such as a star (★) or an asterisk (*) to emphasis important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes because they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

Name	Date

The Study of Life

Before You Read

Use the "What I Know" column to list the things you know about biology. Then list the questions you have about biology in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned
W1146 2 2216 W	What I want to I ma Out	Witte I Zominou

www.almanahj.com

Science Journal

Animals, plants, and even bacteria and viruses are considered living things. But what do we mean when we say that an organism is a living thing? In the space below, describe two characteristics that are common to all living things.

Accept all reasonable responses.				

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

The Study of Life

Section 1.1 Introduction to Biology

←Main Idea

Details

Skim Section 1 of the chapter. Write three questions that come to mind from reading the headings and illustration captions.

- 1. Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define environment.

environment

living and nonliving things that surround an organism and with

which the organism interacts

New Vocabulary

Use your book or dictionary to help you write the correct vocabulary term in each blank.

adaptation

biology

development

growth

homeostasis

organism

organization

reproduction

response

species

stimulus

Biology is the science of life. A(n) organism is anything that has all the characteristics of life. All living things are arranged in an orderly way. In other words, living things have organization. Most living things begin as one cell. The addition of mass is called growth. Over an organism's life, natural changes, called development, take place. The production of offspring, or reproduction, must occur to enable the group of breeding organisms, or species, to continue to exist. A living thing also has the ability to react to a(n) stimulus from its internal or external environment. The reaction is called a response. An organism must be able to maintain its internal conditions. If anything upsets its normal state, processes to restore homeostasis begin. Any inherited characteristic, or adaptation, developed in a species over time can enhance the species' ability to survive and produce offspring in its environment.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Section 1.1 Introduction to Biology (continued)

Main Idea

The Science of Life

I found this information on page ______.

SE, p. 4 RE, p. 1

Details

Identify four kinds of information you will learn about living things when you study biology.

the origins and history of life and once-living things	the structures of living things		
The Study of Biology			
how living things interact with each other	how living things function		

What Do Biologists Do?

I found this information on page ______.

SE, pp. 5–6 RE, p. 1 Model one specific question that a biologist might seek to answer for each of the following areas of study. Accept all reasonable responses.

Area of Study	Question
Diversity of life	How do chimpanzees in the wild gather food?
Diseases	Why does the flu virus change every year?
New technologies	Can a computer-controlled brace enable paralysis victims to walk?
Agriculture	Can crop rotation increase the output of wheat in Nigeria?
Environment	Can environmental education in the Amazon slow the loss of rain forest?

Analyze the specific type of work in biology that you might like to do, and explain why. Accept all reasonable responses.

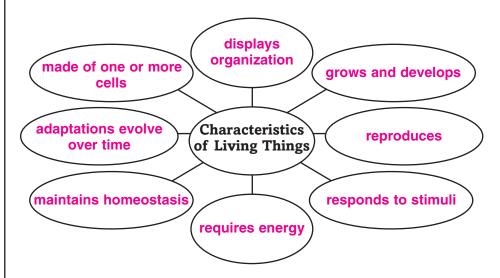
Type of work: Observe the behavior of birds in the wild

Reason: I am fascinated by the beauty of birds and the ability of

these fragile-looking creatures to fly.

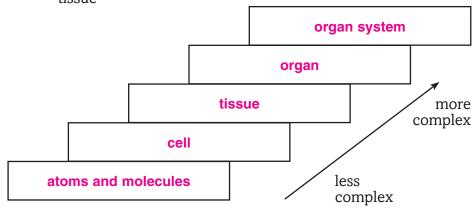
Section 1.1 Introduction to Biology (continued)

Main Idea


The Characteristics of Life

I found this information on page ______.

SE, pp. 6–10 RE, pp. 2–3


Details

Identify the eight characteristics that something must have to be alive.

Sequence the levels of organization listed below in the correct order from least complex to most complex.

- organ
- · atoms and molecules
- cell
- · organ system
- tissue

CONNECT

A friend argues that a car is alive because its parts form organized systems and it requires energy (gasoline and battery power). How would you respond to your friend?

Accept all reasonable responses. Students should recognize that, to be alive, something must

possess all the characteristics of a living thing, not just a few.

The Study of Life

Section 1.2 The Nature of Science

⊂Main Idea⁻

Details

Scan the titles, boldfaced words, pictures, figures, and captions in Section 2. Write two facts you discovered about the nature of science as you scanned the section.

1 Accept all reasonable responses.

Review **Vocabulary**

Use your book or dictionary to define investigation.

investigation

careful search or examination to uncover facts

New-Vocabulary

Use your book or dictionary to define each term.

ethics

set of moral principles or values

forensics

field that applies to science fields such as archaeology and botany,

as well as to matters of legal interest

metric system

units of measurement with divisions that are powers of ten

peer review

process by which scientists in the same field or who conducted similar research evaluate an experiment's procedures and results

science

body of knowledge based on the study of nature and its physical setting

SI

International System of Units, which are the unit standards of the

metric system

theory

explanation of a natural phenomenon supported by many observations

and experiments over time

Academic Vocabulary

Define unbiased to show its scientific meaning.

unbiased

to be objective, impartial, or fair

Section 1.2 The Nature of Science (continued)

←Main Idea

What is science?

I found this information on page ______.

SE, pp. 11–14 RE, pp. 4–6

Details

Classify each statement as a characteristic of a science, a pseudoscience, or both.

- makes unbiased observations
- often driven by cultural or commercial goals
- makes claims about the natural world
- physics
- astrology

- involves constant reevaluation of what is known
- research designed to justify existing knowledge
- discards observations that are not consistent with beliefs
- bases claims on a large amount of data
- · uses peer review

	Science	Both	Pseudoscience
	makes unbiased observations	makes claims about the natural world	often driven by cultural or commercial goals
V	vww.aln	nanahj.c	• astrology
	involves constant reevaluation of what is known		 research designed to justify existing knowledge
	bases claims on a large amount of data		discards observations that are not consistent with beliefs
	uses peer review		

Analyze what is required for a proposed explanation to become accepted as a theory.

The proposed explanation must be supported by enough evidence

from many observations and experiments over a period of time.

Identify what each SI unit listed below is used to measure.

gram: mass	meter: length
second: time	liter volume

Section 1.2 The Nature of Science (continued)

←Main Idea

Science in **Everyday Life**

I found this information on page _

> SE, p. 15 **RE**, p. 6

CDetails ■

Identify an environmental issue, and explain why you think it is an important topic for scientific study. Accept all reasonable responses.

Issue: global warming

Importance: Research of the causes is needed to guide policy for stopping it. If not stopped, global warming could cause catastrophic climate change that could threaten life on Earth.

Analyze an ethical issue. Choose one issue involving ethics mentioned in the text. Write a statement summarizing each side of the issue, both for and against. Accept all reasonable responses.

Issue: euthanasia

For: **People who are suffering** and have no chance of recovery should be allowed to die to relieve their suffering.

Against: Life is valuable. No one has the right to decide that someone should die.

Explain why it is important for you to become science literate. Accept all reasonable responses. Science literacy is needed to evaluate the vast amount of information available in the media, to participate in discussions of important issues, and to support policies that reflect your views.

SUMMARIZE

Identify clues you would look for to judge whether a claim is based on science or pseudoscience.

Accept all reasonable responses. Check the credibility of the source of the claim. Find out whether extensive supporting research has been conducted. Look for supporting evidence from other reliable sources. Analyze the motives behind the claim; if the claim promotes commercial goals, be suspicious.

The Study of Life

Section 1.3 Methods of Science

^Main Idea⁻

Details

Skim Section 3 of the chapter. Write two questions that come to mind from reading the headings and illustration captions.

1. Accept all reasonable responses.

2.

Review Vocabulary

Use your book or dictionary to define theory.

theory

an explanation of a natural phenomenon supported by many

observations and experiments over time

New Vocabulary

Write the correct vocabulary term in the left column for each definition below.

data

experimental group

observation

control group

scientific method

dependent variable

safety symbol

constant

independent variable

hypothesis

experiment

inference

serendipity

information gained from observations 1 CO111

group in an experiment that is exposed to the factor being tested

direct method of gathering information in an orderly way

group in an experiment that is not exposed to the factor being tested and is used for comparison

organized series of events in scientific inquiry

factor in an experiment that results from or depends on changes to the independent variable

logo that alerts you about a specific danger during lab activities

factor that remains fixed during an experiment while the independent and dependent variables change

tested factor in an experiment that might affect the outcome

testable explanation of a situation

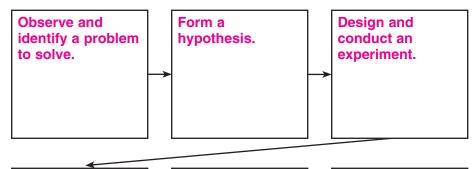
investigation done in a controlled setting that tests a hypothesis

logical conclusion based on gathered information

occurrence of accidental or unexpected, but fortunate, results

Section 1.3 Methods of Science (continued)

←Main Idea


Ask a Question

I found this information on page _____.

SE, p. 16 RE, p. 7

○Details

Sequence the basic steps in scientific methods by completing the flowchart.

Compare actual results to expected results.

Draw a conclusion about whether the hypothesis was supported.

Repeat the experiment or test an alternative hypothesis.

Form a Hypothesis

I found this information on page ______.

SE, p. 18 RE, p. 8

Collect the Data

I found this information on page ______.

SE, pp. 18–19 RE, pp. 8–9 Analyze the relationship between a hypothesis and a theory.

Accept all reasonable responses. A theory is a hypothesis that is

supported by enough evidence from many investigations to be

considered valid by the scientific community.

Identify the parts of the experiment described in the table below.

Experiment: A biologist gives a new kind of food to a group of dogs and compares the weight gain of these dogs over time to a group of similar dogs that do not receive the new food.

Experimental group: the dogs that receive the new food

Control group: the dogs that do not receive the new food

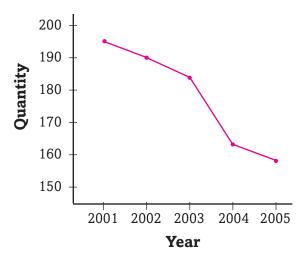
Independent variable: the new kind of food

Dependent variable: weight gain

Section 1.3 Methods of Science (continued)

∕Main Idea⁻

Analyze the Data


I found this information on page ______.

SE, p. 20 RE, pp. 9–10

Details

Model a line graph from the data in the table below. Plot the points, and draw a line connecting the points.

Grizzly Bears in Park X	
Year	Quantity
2001	195
2002	190
2003	184
2004	164
2005	158

Report Conclusions

I found this information on page ______.

SE, p. 20 RE, p. 10 **Summarize** what the above graph shows about grizzly bears in Park X.

Accept all reasonable responses. The number of bears declined each VVVV and a line of the second control of th

Analyze why it is important for biologists to report their results in scientific journals.

Accept all reasonable responses. The results will be available for review by the public and for use by other scientists.

Student Scientific Inquiry

I found this information on page ______.

SE, p. 21 RE, p. 10 State what you will do when you see a safety symbol in a lab activity.

Accept all reasonable responses. I will refer to the safety symbols

chart at the front of the book before beginning the activity and will
take appropriate safety precautions.

CONNECT

Analyze an experiment in which one group of plants receives extra fertilizer and another group receives extra water. Is the experiment controlled or uncontrolled? Support your answer.

Uncontrolled; there are two test factors (independent variables) that change. Both groups are exposed to a test factor, so there is no control group for comparison.

Name	Date

Principles of Ecology

Before You Read

Use the "What I Know" column to list the things you know about ecology. Then list the questions you have about ecology in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

www.almanahj.com

Science Journal

Organisms such as birds get what they need to survive from their environment. Hypothesize why is it important for birds to be able to fly long distances.

Some birds have adaptations that enable them to fly long distances. By flying a long range			
or distance, the bird is more likely to find the food on which it survives.			

Principles of Ecology

Section 2.1 Organisms and Their Relationships

⊂Main Idea⁻

Details

Skim Section 1 of the chapter. Write two questions that come to mind from the headings and illustration captions.

Accept all reasonable responses.

New——— Vocabulary

Use the vocabulary words in the left margin to complete the graphic organizer below. List the biological levels from largest to smallest.

abiotic factor

biological community

biome

biosphere

biotic factor

commensalism

ecology

ecosystem

habitat

mutualism

niche

parasitism

population

predation

symbiosis

Levels of Organization

biosphere

biome
ecosystem
biological community
population

Compare the terms in the tables by defining them side by side.

habitat area where the organism lives out its life	niche the role or position that an organism has in its environment; how it meets its needs for food, shelter, and reproduction
abiotic factor nonliving part of an organism's environment, such as soil, wind, moisture, light, temperature, and available nutrients	biotic factor living organisms that inhabit an environment

symbiosis permanent, close association between two or more organisms of different species

commensalism		
one species benefits		
and the other species		
is neither harmed nor		
does it benefit		

mutualism both species benefit

parasitism one species benefits and one is harmed

predation the act of one organism consuming another for food

Section 2.1 Organisms and Their Relationship (continued)

∕Main Idea⁻

Details

Ecology

I found this information on page _

> SE, pp. 32-33 RE, p. 11

Create a journal entry. Imagine that you are an ecologist. Choose one plant or animal in nature and write three relationships of that organism in its environment.

Journal Entry

population

Date

Organism ___

- 1. Encourage students to demonstrate thoughtfulness and list the organism's relationship with food sources, with predators and prey, and with nonliving parts of the environment.

The Biosphere

I found this information on page __

> SE, pp. 34-35 RE, p. 12

Sequence the abiotic and biotic factors. Write abiotic or biotic in each square.

1. lack of rainfall abiotic		2. dry soil abiotic		→	3. certain plants die biotic
4. rivers dry up abiotic	- - - - - - - - - -	5. animals do not reproduce biotic	→	(the population of a species diminishes piotic

Levels of Organization

I found this information on page _____

> SE, p. 36 RE, p. 13

Identify each level of organization that is described.

population	a group of organisms of all the same species
communities	interacting populations
organism	an individual living thing made of cells
ecosystem	all the different populations in a community
biome	a large group of organisms that share the same
	climate and have similar types of communities

Section 2.1 Organisms and Their Relationships (continued)

⊂Main Idea⊃

⊘Details

Ecosystem Interactions

I found this information on page ______.

SE, p. 38 RE, p. 14 **Model** a community with several organisms. Show two organisms occupying the same niche. Below your sketch, explain why those two organisms cannot usually occupy the same niche for long.

Two organisms cannot occupy the same niche for long because they

compete for the same resources. Eventually, one species will out-

compete the other.

Community Interactions

I found this information on page ______.

SE, pp. 38-40 RE, pp. 14-15

WWW.almananj.com

Rephrase mutualism, commensalism, and parasitism in your own words. Provide an example of each term.

- mutualism: Certain types of bacteria in our intestines help digest our food.
- 2. commensalism: Lichen grows on tree branches.
- 3. parasitism: A lamprey eel feeds on the blood of another fish.

SUMMARIZE

Bacteria live inside our bodies. Analyze helpful, neutral, and harmful things that bacteria do while living in our bodies. Incorporate the terms parasitism, mutualism, habitat, and niche in your discussion.

Accept all reasonable responses. While helpful bacteria use our body as their habitat, they occupy

the niche and keep harmful bacteria out. The helpful bacteria can benefit us by keeping invaders

at bay or by eating harmful substances, which is a mutualistic relationship. Harmful bacteria can

act as parasites by eating food we need, causing infections, or harming our bodily structures.

Principles of Ecology

Section 2.2 Flow of Energy in an Ecosystem

⊂Main Idea ੋ

Details

Scan Section 2 of the chapter. Make a list of the ways in which organisms obtain energy.

Accept all reasonable responses, such as using light energy, eating

food, and breaking down dead organisms.

Review Vocabulary

Use your book or dictionary to define energy. Then name the ultimate source of energy for Earth.

energy

the ability to cause change; the Sun

New-**Vocabulary**

Use your book or dictionary to fill in vocabulary terms in this paragraph about food chains.

In a food chain, matter and energy move from autotrophs to

steps; each organism in the food chain represents a step called

a **trophic level**. An **herbivore** is a heterotroph that eats only

plants, whereas a <u>carnivore</u> preys on other heterotrophs. An

omnivore eats both plants and animals. Nutrients are returned

to the soil, air, and water by <u>detritivores</u>. A model that shows all

food web. If you were a scientist and you wanted to determine the

the possible feeding relationships at each trophic level is called a

weight of living matter at a certain trophic level, you would

heterotrophs to decomposers. A food chain is made of many

autotroph

biomass

carnivore

decomposer

detritivore

food chain

food web

herbivore

heterotroph

omnivore

trophic level

Define foundation to show its scientific meaning.

Academic Vocabulary

a basis on which something stands or is supported foundation

measure the **biomass**.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Section 2.2 Flow of Energy in an Ecosystem (continued)

Details

Energy in an Ecosystem

I found this information on page _

> SE, pp. 41–42 RE, pp. 16-17

Summarize three ways that organisms get energy, by completing the table.

Type of Organism	Autotrophs	Heterotrophs	Decomposers
Other name(s) for this type	producers	consumers, herbivores, carnivores, scavengers, omnivores	no other name
Food comes from	soil and the Sun	 eating plants eating animals eating plants and animals 	dead organisms
Chemical reactions that occur	Light energy and carbon dioxide are stored in energy-rich compounds	The organisms that are eaten are turned into energy and molecules for the consumer's body.	
Examples	algae, plants	bears, lions, deer	fungi, bacteria

Design your own three-step example of the flow of energy. Accept all reasonable responses.

Classify each of the following organisms as an autotroph or a heterotroph. Put an A in front of those that are autotrophs and an H in front of those that are autotrophs.

- H 1. Alligator
- _____ **5.** Moss
- **_A 9.** Dandelion

- H 2. Squirrel
- **H 6.** Siberian tiger **H 10.** Rabbit

- __**A**_ **3.** Maple tree
- __**A**__ **7.** Daffodil
- **A 11.** Tomato

- **H 4.** Whale
- **H 8.** Rhinoceros **H 12.** Cockroach

ü
Companies
McGraw-Hill
of The
a division
convight @ Glencoe/McGraw-Hill a division of The McGraw-Hill Companies. Inc.
Glencoe,
convright ©

Name_	Date
-------	------

Section 2.2 Flow of Energy in an Ecosystem (continued)

Main Idea

Models of Energy

I found this information on page _

> SE, pp. 42-44 RE, pp. 17-18

←Details

Contrast a food chain with a food web.

Food chains show how matter and energy move through an ecosystem. Food webs show all feeding relationships at each trophic level in a community.

State three things that an ecological pyramid shows that food webs and food chains do not show.

An ecological pyramid shows that energy decreases as you go up the trophic levels. There are more organisms in the lower trophic levels. An ecological pyramid also shows biomass consumption.

Create a food web and name the organisms you include. Indicate each organism's trophic level.

reasonable drawings. See SE page 43 for an example.

SUMMARIZE

Analyze the place in the food chain in which you participate. Use the vocabulary terms from this section that apply to you.

Most students will indicate that they are the top level in their food webs. Strict vegetarians might indicate that they are heterotrophs and herbivores. Others will report that they are heterotrophs and omnivores.

17

Sopyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Principles of Ecology

Section 2.3 Cycling of Matter

←Main Idea

⊘Details⁻

Scan the titles, boldfaced words, pictures, figures, and captions in Section 3. Write two facts you discovered about animals as you scanned the section.

- 1. Accept all reasonable responses.
- 2.

Review—— Vocabulary

Use your book or dictionary to define cycle. Then give an example of a cycle.

cycle

a series of events that occur in a regular repeating pattern;

examples of cycles will vary

Use your book or dictionary to define each vocabulary term.

biogeochemical cycle

the exchange of matter through the biosphere, which involves living

organisms, geological processes, and chemical processes

denitrification

a process in which some soil bacteria convert fixed nitrogen

compounds back into nitrogen gas, which returns to the atmosphere

matter

anything that takes up space and has mass; provides the nutrients

needed for organisms to function

nitrogen fixation

the process of capture and conversion of nitrogen into a form that is usable by plants

nutrient

a chemical substance that an organism must obtain from its
environment to sustain life and to undergo life processes

Section 2.3 Cycling of Matter (continued)

\subset Details $\overline{}$

Cycles in the Biosphere

I found this information on page ______.

SE, pp. 45–49 RE, pp. 19–22 **Create** minimodels for each cycle of matter in nature. Use words or pictures to sketch a simple example for each type of cycle to show the movement of matter. Accept all reasonable models.

A. The Water Cycle

Models should show water falling from clouds as precipitation, moving through the earth and water table back into lakes and oceans, and evaporating again. Models may include tree transpiration.

B. The Carbon Cycle

Models should show plants using carbon dioxide to make sugars, animals eating the sugars, respiration, and combustion putting carbon into the air. Models may also show the long-term carbon cycle in which organic matter is buried and converted to fossil fuels. Carbon dioxide is released when fossil fuels are burned.

www.almanahj.com

C. The Nitrogen Cycle

Models should show bacteria fixing nitrogen from the air into the soil, plants using it, animals eating plants and making the nitrogen into proteins. Animals make urine that goes into soil, die, and decay back into soil. They may show bacteria putting nitrogen from soil back into air.

D. The Phosphorus Cycle

(short-term and long-term)
Short-term models should show soil to plants to animals to decay and back to soil. Long-term models should show rocks dissolving into the water table and precipitating back onto the rocks.

Section 2.3 Cycling of Matter (continued)

←Main Idea

Details

Describe each of the cycles in nature. Identify where each cycle is found, how organisms use them, and what key words relate to them.

		Water	Carbon/ oxygen	Nitrogen	Phosphorus
	Where found	underground, in the atmosphere, and on Earth's surface	in all living things, in the atmosphere	in the atmosphere; in plants	cell compounds; in Earth's crust
V	How used	basis of life for all living things	to life processes; make up molecules such as carbon dioxide and sugar	to produce proteins; in chemical fertilizers	make up bones and teeth
	Key words in the cycle	evaporating, water vapor, precipitation, transpiration	photosynthesis, cellular respiration, fossil fuel, calcium carbonate	nitrogen fixation, nitrates, decom- posers, ammonia, denitrifica- tion	decomposers, weathering, erosion, phosphates

SUMMARIZE

Analyze current farming practices that are designed to make the best use of energy flow in ecosystems and cycles of matter.

Accept all reasonable responses. Fertilizers replace nitrogen, phosphorus, and other minerals
that are lost from the soil when vegetable matter is harvested and removed. Pesticides and
herbicides try to stop insects from eating crops, and other plants from stealing the nutrients

in the soil from the crop. Greenhouses are used to make the most of the Sun's energy.

Communities, Biomes, and Ecosystems

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- **1.** Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read Communities, Biomes, and Ecosystems		After You Read
	Once an ecosystem is established, its plant and animal species remain the same.	D
Over time, a forest can develop from bare rock.		Α
	Mountains are not a biome because climate, plants, and animals change with elevation.	А
	Most of Earth's freshwater is locked in ice.	Α

www.almanahj.com

Science Journal

"Organisms in a community reflect the	resources and	climate of	that comn	nunity." (Give some
examples to illustrate this statement.					

examples to musicate this statement.
Accept all reasonable responses.
Accept an reasonable responded.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Communities, Biomes, and Ecosystems

Section 3.1 Community Ecology

∕Main Idea⁻

Details

Skim Section 1 of the chapter. List three facts you discovered about ecosystems.

- 1. Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define abiotic factor.

abiotic factor

the nonliving part of an organism's environment

New Vocabulary

Use the new vocabulary terms to complete the following sentences

Your <u>community</u> includes the people, other animals, plants, bacteria, and fungi in your area. A <u>Colimiting factor</u>

climax community

community

ecological succession

limiting factor

primary succession

secondary succession

tolerance

is any abiotic or biotic factor that restricts the numbers, reproduction, or distribution of organisms. The ability of any organism to survive when subjected to abiotic or biotic factors is its

tolerance
Changing abiotic or biotic factors can trigger
ecological succession
—the replacement of one community with another.

Primary succession
occurs when a community becomes established in an area of exposed rock without topsoil.

Eventually, a stable, mature
climax community
can develop from bare rock. If a disturbance, such as fire, removes the community but not the soil, an orderly and predictable change called
secondary succession
restores the community over time.

Name	Date

Section 3.1 Community Ecology (continued)

Main Idea

Communities

I found this information on page ______.

SE, pp. 60-61 RE, pp. 23-24

Details

Predict how an unusually prolonged drought might affect a biological community.

Accept all reasonable responses. Drought uncharacteristic of the
ecosystem might cause some species of plants and animals to
decline or become extinct in the area. Other organisms that feed on
these plants and animals would also decline. Declining species would
be replaced by species that are less sensitive to drought.

Create a tolerance graph similar to the Tolerance of Steelhead Trout figure in your book. Title your graph Tolerance of Plant A. Label the zones. Then label the limits of each zone according to the facts about Plant A listed below.

- can live at an elevation
 between 1,000 and 2,000 m
- cannot live above 6,000 m
 grows best between 2,000
- can live at an elevation between 5,000 and 6,000 m
- and 5,000 m
 - cannot live below 1,000 m

Accept all reasonable responses.

Infer other abiotic factors that might limit the survival of Plant A.

Accept all reasonable responses. Abiotic limiting factors might
include temperature, amount of sunlight, and nutrients in the soil.

Section 3.1 Community Ecology (continued)

∕Main Idea⁻

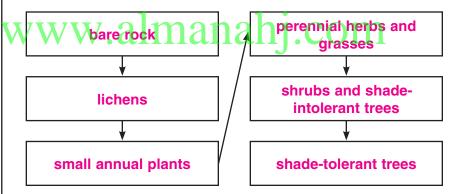
Ecological Succession

I found this information on page ______.

SE, pp. 62-64 RE, pp. 24-25

Details

Contrast primary succession and secondary succession. Give an example of each.


Accept all reasonable responses. Primary succession is the process of establishing a community in an area of exposed rock without topsoil. An example is a hardened lava flow. Secondary succession occurs after a community of organisms has been removed, but the soil remains. An example is a forest fire.

Sequence the following steps in the primary succession of a forest by writing each step in the flowchart.

- perennial herbs and grasses
 - ses bare rock

lichens

- · shrubs and shade-intolerant trees
- shade-tolerant trees
- small annual plants

CONNECT

Suppose that a recent flood devastated a wildlife preserve in your area. Local leaders suggested organizing volunteers to plant trees in the damaged area. Evaluate your plan and support your reasoning.

Accept all reasonable responses. Students may take either position as long as they support their position. Some students might argue that natural succession takes many years, and replanting could hasten the process. Other students might argue that ecosystems will naturally restore the species that thrive in these conditions. Planting trees before their natural succession could upset the balance by preventing other vegetation common to this ecosystem from taking hold.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Communities, Biomes, and Ecosystems

Section 3.2 Terrestrial Biomes

⊂Main Idea⁻

Details

Skim Section 2 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

1 Accept all reasonable responses.

Review Vocabulary

Use your book or dictionary to define biome.

biome

a large group of ecosystems that share the same climate and have

similar types of plant communities

New Vocabulary

Use your book or dictionary to define the following term.

latitude

distance of any point on the surface of Earth north or south from

Compare the terms in the tables by defining them side by side.

weather

climate

weather: condition of the atmosphere at a specific place and time

climate: average weather conditions in an area, including temperature and precipitation

Describe the vegetation and growing conditions for each biome.

boreal forest desert grassland temperate forest tropical rain forest tropical savanna

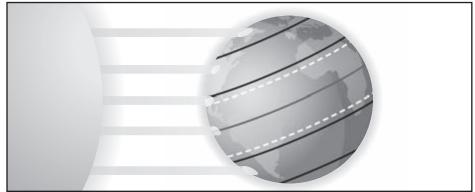
tropical seasonal forest

tundra

woodland

	1	r
tundra: treeless; cold temperatures; permafrost	boreal forest: dense evergreen forest; warmer than tundra; no permafrost	temperate forest: broad- leaved deciduous trees; well-defined seasons
woodlands: woods and mixed shrubs; less annual rainfall than temperate forests	grassland: thick cover of grasses; fertile soil; under- ground stems and buds	desert: variety of sparse plants; dry
tropical savanna: grasses and scattered trees; less precipitation than other tropical areas	tropical seasonal forest: deciduous and evergreen trees; seasonal rainfall	tropical rain forest: canopy of tall, broad- leaved trees with mosses and orchids; understory of shorter trees, shrubs, ferns, and creeping plants; warm and rainy year round

Section 3.2 Terrestrial Biomes (continued)


Effects of Latitude and Climate

I found this information on page ______.

SE, pp. 65–66 RE, pp. 26–27

Details

Model the latitude lines, poles, equator, Tropic of Cancer, Tropic of Capricorn, and the Sun below. Labels should resemble those in Fig. 3.5 on text page 65.

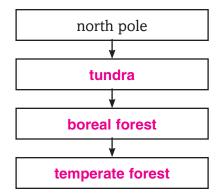
Analyze how latitude affects climate and why.

Accept all reasonable responses. Sunlight strikes different areas of

Earth at different angles. Direct sunlight provides more warmth than

less direct sunlight. As a result, areas in more direct sunlight tend to be warmer than areas in less direct sunlight.

 $\textbf{Identify} \ three \ factors \ other \ than \ latitude \ that \ affect \ climate.$


(any three) elevation, continental landmasses, ocean currents,

prevailing winds, holes in ozone layer, global warming

Major Land Biomes

I found this information on page ______.

SE, pp. 66-72 RE, pp. 27-29 **Sequence** the boreal forest, temperate forest, and tundra in the diagram below.

Section 3.2 Terrestrial Biomes (continued)

← Main Idea −

Details

Classify the land biome described by each characteristic below.

Characteristic	Biome
most trees drop their leaves during the dry season	tropical seasonal forest
annual rate of evaporation exceeds rate of precipitation	desert
open areas of trees and mixed shrubs along the west coasts of North and South America	temperate woodland
most diverse of all biomes, with a canopy and understory of vegetation	tropical rain forest
grasses and scattered trees; receives less precipitation than other tropical areas	tropical savanna
thick cover of grasses with underground stems and buds that can survive fires	temperate grassland
dense evergreen forest; also called northern coniferous forest or taiga	boreal forest
composed of broad-leaved deciduous trees; has four well-defined seasons	temperate forest
treeless; has a layer of permanently frozen soil below the surface called permafrost	tundra

Other Terrestrial Areas

I found this information on page ______.

SE, pp. 72–73 RE, p. 29 **Analyze** why the two land areas below are not true biomes.

Mountains: Climate characteristics and plant and animal life vary

depending on elevation.

Polar regions: They are ice masses and not true land areas because

they lack exposed soil.

CONNECT

Compare and contrast a tundra to a desert. Include latitude, climate, and major biomes.

Accept all reasonable responses.		

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Communities, Biomes, and Ecosystems

Section 3.3 Aquatic Ecosystems

←Main Idea

Details

Scan the titles, boldfaced words, figures, and captions in Section 3. Write three facts you discovered about aquatic ecosystems.

- 1. Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define salinity.

salinity

a measure of the amount of salt in a body of water

New Vocabulary

Write the correct term in the left column for each definition below.

profundal zone

intertidal zone

aphotic zone

photic zone

abyssal zone

wetlands

littoral zone

estuary

limnetic zone

benthic zone

sediment

plankton

deepest areas of a large lake

narrow band where the ocean meets land

area of the open ocean that is too deep for sunlight to penetrate

area of the open ocean to a depth of about 200 m that is shallow enough for sunlight to penetrate

deepest region of the ocean

areas of land such as marshes, swamps, and bogs that are saturated with water and that support aquatic plants

area of a lake or pond that is closest to shore

ecosystem that is formed where a freshwater river or stream merges with the ocean

open water area of a lake or pond that is well lit and dominated by plankton

area of sand, silt, and dead organisms along the ocean floor

material that is deposited by water, wind, or glaciers

free-floating photosynthetic autotrophs that live in freshwater or marine ecosystems

(Main Idea⁻

Section 3.3 Aquatic Ecosystems (continued)

The Water on Earth

I found this information on page ______.

SE, p. 74 RE, p. 30

Details

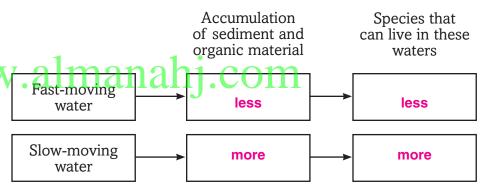
Complete this paragraph about the distribution of water on the Earth.

By far, ____salt water___ is the most common type of water on

Earth. Of the 2.5 percent of ____freshwater__ on Earth, most is

locked in the ice of ____glaciers___. Most freshwater species

live in ___lakes___, __ponds___, __rivers___, __streams__, and


___wetlands___ that make up only ____0.3__ percent of all

freshwater. The remaining freshwater is found in __groundwater__.

Freshwater **Ecosystems**

I found this information on page ______.

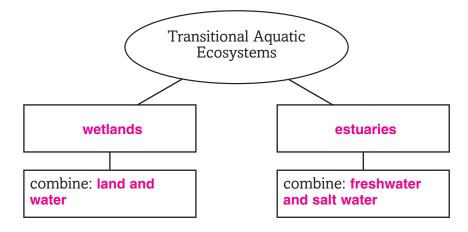
SE, pp. 74–77 RE, pp. 30–32 **Analyze** how the speed of water flow affects life in a river by writing more or less in the appropriate boxes in the figure.

Compare the zones of lakes and ponds by completing the table below.

Zone	Location	Example Species
limnetic	well-lit open water area	plankton, many species of fishes
profundal	deepest areas of a large lake	limited due to cold and reduced light and oxygen
littoral	closest to shore	algae, rooted and floating plants, snails, insects, clams, crustaceans, fishes, amphibians

Section 3.3 Aquatic Ecosystems (continued)

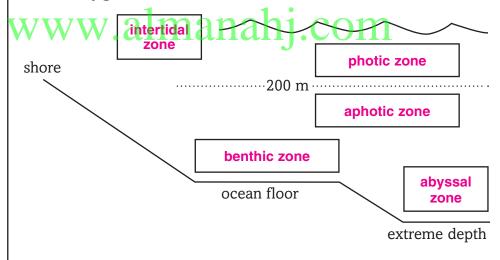
←Main Idea


Transitional Aquatic Ecosystems

I found this information on page ______.

SE, p. 78 RE, p. 32

○ Details


Compare transitional aquatic ecosystems. Identify two types in the organizer below and describe the environments each type combines.

Marine **Ecosystems**

I found this information on page ______.

SE, pp. 79–81 RE, pp. 33–34 **Identify** the marine ecosystems. Write the name of the zone in each box in the figure below.

SUMMARIZE

Analyze several adaptations that would help organisms survive in the intertidal zone.

Accept all reasonable responses. Plants and animals would have to be able to withstand the currents of tides and waves. They would benefit from adaptations that enable them to cling to rocks or sand, such as suction cups, claws, or gluelike secretions. Organisms exposed at low tide would also have to be able to survive out of water for a period of time. The ability to burrow into the sand or breathe air would help organisms survive out of water.

Name	Date

Population Ecology

Before You Read

Use the "What I Know" column to list the things you know about population biology. Then list the questions you have about population biology in the "What I Want to Find Out" column.

Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

www.almanahj.com

Science Journal

White-tailed deer have become so numerous in some areas of the United States that they are a nuisance. Why do you think these deer populations have grown so large?

Accept all reasonable responses. Human land development has removed many deer predators and competitors that would have limited the deer populations naturally. The deer have been able to adapt to the changes in their environments, while many predator and competitor species could not.

Population Ecology

Section 4.1 Population Dynamics

←Main Idea

Details

Skim Section 1 of the chapter. Write three questions that come to mind from reading the headings and illustration captions.

- 1. Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define population.

population

the members of a single species that share the same geographic

location at the same time

New Vocabulary

Compare the terms in the tables by defining them side by side.

carrying capacity

density-dependent factor

density-independent factor

dispersion

emigration

immigration

population density

population growth rate

•	population density the number of organisms per unit area	dispersion pattern of spacing of a population within an area
	density-independent factor any factor in the environment that does not depend on the number of members in a	density-independent factor any factor in the environment that depends on the number of members in a population per

unit area

population growth rate speed at which a population grows

emigration the number of individuals moving away from a population

population per unit area

immigration the number of individuals moving into a population

carrying capacity the maximum number of individuals in a species that an environment can support for the long term

-Academic | | Vocabulary

Define fluctuate to show its scientific meaning.

fluctuate

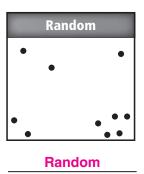
to change from high to low levels or from one thing to another in an

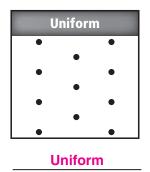
unpredictable way

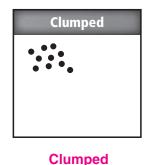
.

∕Main Idea ⊃ ____

Population Characteristics


I found this information on page _____.


SE, pp. 92-94 RE, pp. 35-36


Details

Section 4.1 Population Dynamics (continued)

Identify each pattern of dispersion represented below.

Analyze why populations are limited in their spatial distribution.

Accept all reasonable responses. A species cannot expand into a

new area if it cannot adapt to the biotic and abiotic factors there.

Classify each limiting factor below as either density-independent or density-dependent by placing an X in the appropriate column.

Factor	Density- Independent	Density- Dependent
Lava flow	X	
Number of predators		X
Spread of disease		X
Especially cold winter	X	
Toxic chemical spill into a stream	X	
Another species competing for the same resources		X
Diverting a river for irrigation	X	
Fungus that attacks elm trees		X

Analyze how the expansion of housing developments in southern California might limit coyote populations in the area.

Accept all reasonable responses. The developments reduce the land available for coyote habitat. They might also reduce the habitat for the coyotes' prey animals, which would decrease the coyotes' food supply. Less space and less food would limit the coyote populations.

Section 4.1 Population Dynamics (continued)

~Main Idea⁻

Populationlimiting factors

I found this information on page ______.

SE, pp. 94-99 RE, pp. 36-39

Details

Identify four main factors in a population's growth rate.

Factors in Population's Growth Rate		
birthrate or natality	emigration	
death rate or mortality	• immigration	

Compare the general shapes of the curves of population growth graphs. Draw the appropriate graph. Label the lag phase, exponential growth phase, and carrying capacity. Below each graph, describe what the graph shows. Accept all reasonable responses.

Exponential Population Growth

Graph should resemble the J-shape of the figure at the top of text page 97. The lag phase and exponential growth phase should be labeled.

Logistic Population Growth

Graph should resemble the S-shape of the figure at the bottom of text page 97. The lag phase, exponential growth phase, and carrying capacity should be labeled.

This graph shows how a population would grow if there were no limits placed on it by the environment. The population would grow slowly at first, and later would grow exponentially.

This graph shows typical population growth. After exponential growth, limiting factors slow the growth until the population stops growing at its carrying capacity.

SUMMARIZE

Analyze whether humans are *r*-strategists or *k*-strategists. Explain why. Support your reasoning.

Humans are *k*-strategists. Humans produce few offspring compared to other species. Human parents invest energy, resources, and time in caring for their offspring, increasing the chances that the young will survive to reproductive age. Humans also fit the profile of a *k*-strategist as a larger organism with a long life span.

Name	Date

Population Ecology

Section 4.2 Human Population

Main	ı Idea ⁻

Details

Skim Section 2 of the chapter. Make a list of the ways in which human populations change.

Accept all reasonable responses.

Use your book or dictionary to define carrying capacity.

carrying capacity

the maximum number of individuals in a species that an

environment can support for the long term

birth and death rates

New **Vocabulary**

Use your book or dictionary to define each term.

age structure

in a population, the number of males and females in each of three age groups: pre-reproductive stage, reproductive stage, and post-reproductive stage

demographic transition

a change in a population from high birth and death rates to low

demography

the study of human population size, density, distribution, movement, and birth and death rates

zero population

situation in a population in which birthrate equals death rate

35

Section 4.2 Human Population (continued)

∕Main Idea⁻

Human Population Growth

I found this information on page ______.

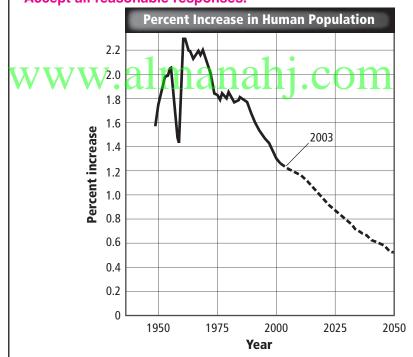
SE, pp. 100–101 RE, p. 40

⊂Details⁻

Summarize two examples of events that could produce each of the following effects. Accept all reasonable responses.

Effect: decline in world population growth

Events that could produce this effect: worldwide epidemic;


world war

Effect: increase in world population growth

Events that could produce this effect: new medicine reduces death

rate; new farming method yields more food per acre

Examine the graph below. Then complete the table that follows. Accept all reasonable responses.

Approximate Growth Rate			
1950	1975	2000	2025 (estimated)
1.7	1.8	1.3	0.9

What are the main reasons for the expected trend in human population between now and 2050?

diseases such as AIDS and voluntary population control

Name	Date

Section 4.2 Human Population (continued)

Main Idea

Trends in Human Population Growth

I found this information on page ______.

SE, pp. 102–105 RE, pp. 41–42

Details

Calculate the population growth rate for each fictitious country listed in the table below.

Country	Births per 1000	Deaths per 1000	Growth rate (percent)
X	25	9	1.6
Y	14	4	1
Z	12	15	-0.3

Compare trends in industrialized nations and developing countries in terms of the following factors.

Population growth rate: The population is growing at a faster rate in developing than in developed countries.

Resource use by individuals: **Individuals in industrialized nations**

use far more resources than individuals in developing countries.

Identify three factors that could keep the human population from reaching its carrying capacity.

- 1. family planning
- 2. improvements in technology
- 3. limiting the amount of resources each person uses

SUMMARIZE

Imagine that medical science discovered a cure for all cancers. Analyze how this medical achievement might affect life on Earth.

Accept all reasonable responses. The cure would probably decrease the death rate, resulting

in rapid human population growth at first. Then other limiting factors would slow the

exponential growth. Overcrowding would increase the spread of other diseases and of

parasites. The food supply could not support the increased population, leading to starvation.

Competition for resources between humans and other species might decimate animal and plant populations.

Tie It Together

FURTHER INQUIRY Create a demographic profile for an imaginary country by describing its population characteristics below. List the sources of your data. Accept all reasonable responses. Name of country: Geographic location: Is it classified as a developing country or as an industrialized nation? Population size: Population density: _____ Description of the population's spatial distribution across the country's land area: www.almanahi.cor Birthrate: Death rate: Current population growth rate: _____ Expected population growth rate in the next 10 to 20 years: General age structure: _____ Major factors promoting population growth: Major factors limiting population growth:

Biodiversity and Conservation

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Biodiversity and Conservation	After You Read
	Biodiversity is the variety of ecosystems in the biosphere.	D
	Genetic diversity tends to decrease over time in small pieces of habitat.	Α
	Nonnative species can damage an ecosystem.	Α
	• The first national park was established in the United States in 1972.	D

www.almanahj.com

Science Journal

For many years the bald eagle was close to extinction but now lives and reproduces in the wild. Hypothesize how scientists used their knowledge of diversity to save the bald eagle.

Accept all reasonable responses. Scientists studied the effects of the chemical DDT on the		
eagle; they understood its nesting habits; they cleaned up its feeding sites.		

Biodiversity and ConservationSection 5.1 Biodiversity

←Main Idea

Details

Skim Section 1 of the chapter. Read the headings and the illustration captions. Write two questions that come to mind.

- 1 Accept all reasonable responses.
- 2.

Review____| Vocabulary

Use your book or dictionary to define gene.

gene

functional unit that controls the expression of inherited traits

New_____ Vocabulary

Use your book or dictionary to define each term.

biodiversity

the variety of species in a particular area

ecosystem diversity

the variety of ecosystems present in the biosphere

extinction

the complete disappearance of a species when its last member dies

genetic diversity

the variety of genes present in a population

species diversity

the variety of different species in a biological community

Academic Vocabulary

Define diverse to show its scientific meaning.

diverse

made of different qualities

Name	Date

Section 5.1 Biodiversity (continued)

Main Idea

What is Biodiversity?

I found this information on page ______.

SE, pp. 116-118 RE, pp. 43-44

Details

Compare and **contrast** the species biodiversity of different areas. Accept all reasonable responses.

	Rain Forest	Corn Field	Vegetable Garden	Tundra
Plants	hundreds of species of plants	one type of plant	carrots, broccoli, corn, tomatoes, weeds, sunflowers	wild grasses, flowers
Animals	hundreds of species of birds, thousands of species of insects	hundreds of insects, several birds or animals	insects, moles, toads	polar bears, seals, birds

Describe observable differences among the types of biodiversity using a forest ecosystem. Accept all reasonable responses.

Type of Biodiversity	Example
Genetic diversity	differences in the coat color of rabbits that live in the forest
Species diversity	the number of tree species growing in the forest
Ecosystem diversity	the forest ecosystem is one of many types of ecosystems in the biosphere

Analyze how genetic diversity in a population of fishes in a stream can help the fishes resist disease.

Accept all reasonable responses. The variety present in a population of fishes with high genetic diversity increases the chance that some of the fishes will be able to resist disease, survive, and reproduce.

A population with a low level of diversity is less likely to survive and

reproduce in the face of disease.

Section 5.1 Biodiversity (continued)

Main Idea

The Importance of Biodiversity

I found this information on page ______.

SE, pp. 118–121 RE, pp. 44–45

○ Details

Summarize why species should be preserved as a possible source of useful genes.

	Agriculture	Medicine
Organisms that might have value include	wild relatives of crop plants.	unknown plants and other organisms in remote regions.
These organisms someday might be useful as	a source of genes to give disease resis- tance to crop plants.	a source of new medicines to treat human diseases.

Identify resources and services that a healthy biosphere provides to people. Accept all reasonable responses.

	Resources	Services
	1. clean water	1. protection from floods
M	2. clean air 3. fertile soil almana	2. decomposition of wastes 3. protection from droughts
	4. food	4. climate regulation

Organize how humans are dependent on plants and animals by describing two ways that you use products of each. Accept all reasonable responses.

Products of Animals	Products of Plants	
eating meat	breathing oxygen	
wearing wool clothing	eating a salad, wearing cotton	

SUMMARIZE

Explain how the health of the biosphere impacts the health of people.

Accept all reasonable responses. A healthy biosphere has a high level of biodiversity.

Biodiversity can lead to the possibility of new medicines to treat human diseases. A healthy

biosphere is able to provide clean water and clean air that people need. Healthy ecosystems

can protect people from extreme weather, floods, and droughts.

Name_____ Date ____

Biodiversity and Conservation

Section 5.2 Threats to Biodiversity

M	ai	n l	ld	ea

Details

Scan the titles, boldfaced words, figures, and captions in Section 2. List three threats you discovered to biodiversity.

- 1. Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define food web.

food web

the interconnected food chains and pathways in which matter and

energy flow through a group of organisms

New———— Vocabulary

Use your book or dictionary to define the following terms.

biological magnification the increased concentration of toxic substances in organisms at a

high trophic level in the food chain

edge effect

different environmental conditions along an ecosystem's boundaries

 $\it eutrophication$

water pollution that occurs when substances rich in nitrogen and

phosphorous flow into waterways

habitat fragmentation

the separation of an ecosystem into small pieces of land

introduced species

nonnative species that are transported to a new habitat

over exploitation

excessive use of a species, often leading to extinction

Biodiversity and Conservation

Section 5.2 Threats to Biodiversity (continued)

∕Main Idea⁻

Extinction Rates

I found this information on page _____.

SE, pp. 122–123 RE, pp. 46–47

Factors That Threaten Biodiversity

I found this information on page ______.

SE, pp. 123-128 RE, pp. 47-50

Details

Summarize extinction rates by completing the sentences below.

	Background extinction	is slow and gradual. It is caused
as _	ecosystems	change by natural processes. A
	mass extinction	is an event in which extinctions
incre	ease dramatically. Some sc	cientists believe we are in a period of
	mass extinction	today

Sequence the series of events describing how a habitat can be disrupted. The first one has been done for you.

- Owls that prey on small mammals decline.
- Deer eat most of the young trees in a forest.
- Squirrels and rabbits that live in and around trees decline.
- Deer that are prey for predators increase in number.
- Birds that eat the insects decline.
- Overhunting causes natural predators to disappear.
- √Insects that live in the bark of trees decline.

Overhunting causes natural predators to disappear.				
Deer that are prey for predators increase in number.				
	→			
Deer eat most of the young trees in a forest.				
\				
Ferns, which deer do not	eat, grow instead of trees.			
<i>\</i>	_ \			
Insects that live in the bark of trees decline.	Squirrels and rabbits that live in and around trees decline.			
or trees decline.	in and around trees decline.			
Birds that eat the insects	Owls that prey on small			
decline.	mammals decline.			

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Section 5.2 Threats to Biodiversity (continued)

Main Idea

○ Details

Explain why carnivores are subject to biological magnification of substances like DDT and PCBs.

DDT and PCBs are pollutants that accumulate in bodily tissues.

These substances enter the food chain in low amounts. As one animal eats another, they accumulate in bodily tissues. Because carnivores eat animals that have the substances in their tissues, they accumulate high levels of DDT and PCBs in their own tissues.

Describe the effects of each change in habitat on species of animals. Accept all reasonable responses.

Accept an reasonable responses.			
Edge effects	The organisms that live at the edge of a habitat are different from those that live in the middle of a habitat, due to different conditions.		
Introduced species	Introduced species often destroy native species as they feed on them or disturb their habitat.		
Pollution	Pollution in the air, water, and land can destroy soil and vegetation and make animals get sick and/or die.		
Habitat fragmentation	The separation of habitats into small plots of land increases edge effects and causes loss of genetic diversity.		
Habitat loss	Species might become extinct when habitat is destroyed.		

CONNECT

Imagine a habitat near you. Hypothesize what would happen to the ecosystem if one species died out. Support your reasoning with information from this section.

Accept all reasonable responses. Students should describe several species of plants and animals and understand that as one species dies out, other species will be affected.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Biodiversity and Conservation

Section 5.3 Conserving Biodiversity

←Main Idea

Details

Read the main idea of Section 3 of the chapter and look at the figures and captions in the section. Predict two ways that people are preserving biodiversity.

- 1. Accept all reasonable responses.
- 2

Review—— Vocabulary

Use your book or dictionary to define natural resources.

natural resources

organisms and materials found in the biosphere

New Vocabulary

Use your book or dictionary to define the following terms.

biological augmentation the practice of adding essential materials to restore a degraded ecosystem

bioremediation

a method of using living things, such as bacteria, plants, or fungi, to remove toxins from a polluted area

endemic

native to one specific geographic area

long period of time to be replaced

it is consumed

nonrenewable resource

a natural resource that is present in limited amounts or requires a

renewable resource

a natural resource that is replaced by natural processes faster than

sustainable use

philosophy that lets people use natural resources in a way that will

benefit them and maintain the ecosystem

Section 5.3 Conserving Biodiversity (continued)

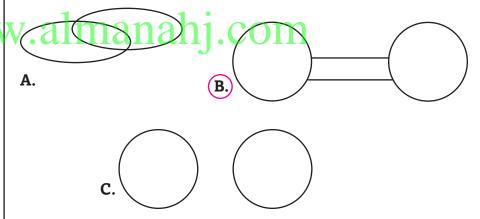
←Main Idea

Natural Resources

I found this information on page ______.

SE, pp. 129-130 RE, pp. 51-52

Protecting Biodiversity


> SE, pp. 131–133 RE, pp. 52–53

⊘Details

Compare and contrast renewable and nonrenewable resources by writing characteristics of each in the Venn diagram. Accept all reasonable responses.

Nonrenewable Renewable **Both** present in limited natural replaced by natural amounts or are resources that processes faster replaced over come from the than they are long periods of biosphere consumed time

Choose the diagram that best represents a habitat corridor. Explain your choice.

Accept all reasonable explanations. Students should note that the

habitats must be completely separate, but have a connection

between them.

Summarize the purpose of a habitat corridor. Provide an example to support your response.

Habitat corridors allow organisms to safely move among habitat

fragments. Accept any reasonable example.

47

Section 5.3 Conserving Biodiversity (continued)

Main Idea⁻

Details

Restoring Ecosystems

I found this information on page ______.

SE, pp. 134–135 RE, pp. 53–54 **Organize** the factors that impact how long it takes for an ecosystem to recover after a disaster.

Factors that affect ecosystem recovery rate

the size of the area affected

the type of disturbance

Explain the methods ecologists use to restore ecosystems.

Method: bioremediation

How it works: living things used to remove toxins from a

polluted area

Example: plants used to remove heavy metals from soil

Method: biological augmentation

How it works: natural predators are added to a degraded ecosystem

Example: ladybugs added to control aphid populations

Legally Protecting Biodiversity

I found this information on page ______.

SE, p. 135 RE, p. 54 **Rephrase** a law or treaty designed to protect biodiversity.

Who or what: **Endangered Species Act**

When: 1973

How: gives legal protection to species that are in danger

of becoming extinct

SUMMARIZE

Analyze how sustainable use could preserve biodiversity in

hot spots.

Hot spots are locations around the world with large numbers of species in danger of

extinction. Hot spots comprise only 1.5 percent of Earth's land but have a high amount of

biodiversity. Sustainable use would let people use the resources of these areas in a way

that preserves biodiversity and long-term health of the ecosystems.

Chemistry in Biology

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Chemistry in Biology	After You Read
	Atoms are the smallest particles in matter.	D
Chemical reactions occur constantly inside your body.		Α
About 70 percent of your body is water.		Α
	Almost all molecules in living things contain the element carbon.	A

www.almanahj.com

Science Journal

Consider the characteristics of a living and a nonliving thing. Describe a few ways that the two are alike and a few ways that the two are different.

Accept all reasonable responses.		
-		

Chemistry in Biology

Section 6.1 Atoms, Elements, and Compounds

←Main Idea

Details

Scan the headings and boldfaced words in Section 1 of the chapter. Predict two things that you think might be discussed.

1. Accept all reasonable responses.

2

Review Vocabulary

Use your book or dictionary to define substance.

substance

form of matter that has a uniform and unchanging composition

New Vocabulary

Compare the terms in the table by defining them side by side.

atom

electron

neutron

nucleus

proton

atom building block of matter

nucleus center of an atom that contains protons and neutrons

neutron particles with no charge that are located in the nucleus

proton positively charged particles that are located in the nucleus

electron negatively charged particles that are located outside the nucleus

compound

covalent bond

element

ion

ionic bond

isotope

molecule

van der Waals force

Complete the paragraph below using the terms listed to the left.

Section 6.1 Atoms, Elements, and Compounds (continued)

∕Main Idea⁻

CDetails⁻

Atoms

I found this information on page ______.

SE, p. 148 RE, p. 55 **Model** an oxygen atom and label the parts. Note the type of electric charge for each part. Then complete the sentence that follows.

Models should resemble the oxygen atom in the book. Accept all reasonable variations. Students should show a negative charge on the electrons, positive charge on the protons, and no charge on the neutrons.

The overall charge of the oxygen atom is _______, because the atom has an equal number of positively charged protons and negatively charged electrons, and neutrons have no charge

Elements

I found this information on page ______

SE, pp. \\ \(\frac{449}{150} \)
RE, p. 56

Compare and contrast the characteristics of carbon-14 by completing the following sentences.

Structurally, carbon-14 differs from other carbon atoms because

it has a different number of neutrons than other carbon atoms

Carbon-14 is radioactive because its nucleus decays and breaks apart

Knowing the half-life of carbon-14 enables scientists to calculate the age of an object

Compounds

I found this information on page ______.

SE, p. 151 RE, p. 56 **Identify** four unique characteristics of compounds.

always formed from a specific combination of elements in a fixed ratio

cannot be broken down into simpler compounds or elements by physical means

Compounds

chemically and physically different than the elements that comprise them

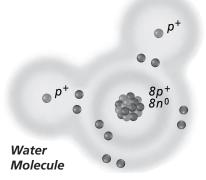
can be broken down by chemical means

Section 6.1 Atoms, Elements, and Compounds (continued)

~Main Idea⁻

Chemical Bonds

I found this information on page _


> SE, pp. 152-154 RE, pp. 57-58

Details

Label the following parts of the water molecule illustrated below.

- hydrogen atom(s)
- first energy level
- oxygen atom(s)
- · second energy level
- covalent bonds

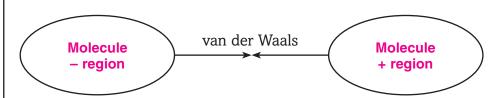
The covalent bonds occur where the electron pairs are shared. The first energy level is closest to the nucleus in the H and O atoms. The second level is the outer level on the O atom.

Compare positively and negatively charged ions.

positively charged

becomes

negatively charged when it


accepts one or more electrons

van der Waals **Forces**

I found this information on page_

> SE, p. 155 RE, p. 58

Identify the type of substances held together by van der Waals forces. Include indicators of electric charges.

CONNECT

A chemical compound in your toothpaste helps protect your teeth from decay. The formula for this compound is Na₂PO₃F. Use the periodic table in your book to identify each element in this compound.

sodium, phosphorus, oxygen, fluorine

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Chemistry in Biology

Section 6.2 Chemical Reactions

⊂Main Idea⁻

○Details

Skim Section 2 of the chapter. Write two facts that you discovered as you read the headings and illustration captions.

1 Accept all reasonable responses.

Review-Vocabulary

Use your book or dictionary to define process.

process

series of steps or actions that produces an end product

New-Vocabularv

Use your book or dictionary to define each term.

activation energy

minimum amount of energy needed for reactants to form products in

a chemical reaction

active site

catalyst

substance that lowers the activation energy needed to start a

chemical reaction

chemical reaction

process by which atoms or groups of atoms in substances are

reorganized into different substances

enzyme

protein that speeds up a chemical reaction in a biological process

product

substance formed during a chemical reaction

reactant

starting substance in a chemical reaction

substrate

reactant that binds to an enzyme

Academic Vocabulary

Define coefficient to show its scientific meaning.

number in front of a reactant or a product in a chemical equation

53

Section 6.2 Chemical Reactions (continued)

(Main Idea) -

Reactants and Products

I found this information on page ______.

SE, pp. 156–157 RE, pp. 59–60

⊘Details

Label the sides of the following equation as either products or reactants.

reactants products
$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

Calculate the number of atoms of each element in the chemical equation above. Record the information in the table below.

Element Symbol	Element Name	Number of Atoms (reactant side)	Number of Atoms (product side)
С	carbon	1	1
Н	hydrogen	4	4
0	oxygen	4	4

Analyze the formula to check to see if it is balanced. Support your reasons.

Each element has the same number of atoms on both sides of

the equation. No mass has been lost or gained.

Energy of Reactions

I found this information on page _____.

SE, pp. 157–158 RE, pp. 60–61 **Compare** what happens to energy in exothermic and endothermic reactions by completing the diagram below.

Exothermic Reaction

During the reaction, energy is released in the form of heat or light

As a result, the energy of the product is Lower than the energy of the reactants.

Endothermic Reaction

During the reaction, energy is absorbed

As a result, the energy of the product is <u>higher</u> than the energy of the reactants.

Section 6.2 Chemical Reactions (continued)

←Main Idea

\subset Details $^-$

Enzymes

I found this information on page ______.

SE, pp. 159–160 RE, p. 61 **Summarize** key characteristics of an enzyme by completing the organizer below.

Composed of: protein

Purpose: speeds up rate of chemical reactions in biological processes

used up in a reaction

pH, temperature, other

Reusable? yes; does not get

Compounds

Activity level affected by:

substances

Participates in how many different types of reactions? **one**

Analyze how an enzyme works by completing the following paragraph.

For a substrate to bind with a particular enzyme, the

		-	•	
size	and	shape	of the substrate	must
match that of	the enzyme's	active site	In the enzyr	me-
substrate com	plex, chemical	bonds in the	reactants	_ are
broken and _	new bonds	form. The r	results of the inte	raction
between an en	nzyme and its	substrates	are products	s, which
are released b	y theenz	zyme		

SUMMARIZE

Analyze the role of catalysts in chemical reactions.

Accept all reasonable responses. Catalysts begin chemical reactions by lowering the activation

energy needed to start the reaction. Some catalysts speed up reactions thousands of times.

Without them, scientists would not have been able to synthesize new elements, conduct nuclear

reactions, and so on.

Chemistry in Biology

Section 6.3 Water and Solutions

⊂Main Idea⁻

Details

Scan Section 3 of the chapter. Identify two facts you discovered about water.

1. Accept all reasonable responses.

2.

Review Vocabulary

Use your book or dictionary to define physical property.

physical property

characteristic of matter that can be observed or measured without

changing the composition of the substance

New_____ Vocabulary

Write the correct vocabulary term in the left column for each definition below.

base

acid

solvent

buffer

pН

solute

hydrogen bond

polar molecule

solution

mixture

substance that releases hydroxide ions when dissolved in water

substance that releases hydrogen ions when dissolved in water

substance in which another substance is dissolved

mixture that can react with an acid or a base to keep the pH within a particular range

measure of concentration of hydrogen ions in a solution

substance that is dissolved in a solvent

weak interaction involving a hydrogen atom and a fluorine, oxygen, or nitrogen atom

molecule that has oppositely charged regions

mixture that has a uniform composition throughout

combination of two or more substances in which each substance retains its individual characteristics and properties

Academic Vocabulary

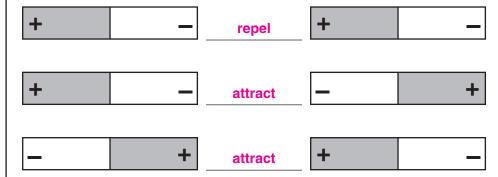
Define suspend to show its scientific meaning.

suspend

to keep from falling or sinking

Section 6.3 Water and Solutions (continued)

←Main Idea


Water's Polarity

I found this information on page ______.

SE, p. 161 RE, pp. 62–63

⊘Details⁻

Analyze polarity by writing attract or repel to complete the diagram.

Analyze reasons for water's polarity and the effect of polarity.

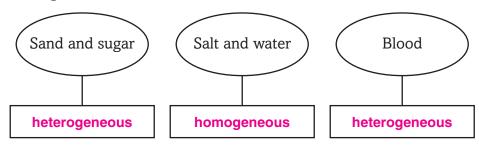
Reasons for polarity: Electrons are more strongly attracted to the oxygen nucleus than to the hydrogen nuclei, resulting in an unequal distribution of electrons. This, along with the molecule's bent shape, creates oppositely charged regions. Effects of polarity: Because oppositely charged regions attract, water molecules tend to form electrostatic bonds with other polar molecules and can readily form solutions.

Identify the properties of water that allow it to help an organism maintain homeostasis.

Property	Description
Universal solvent	Water can separate the ions in many compounds.
Adhesive	Water will form hydrogen bonds with other surfaces. Capillary action is one result.
Polar	Water has a slight positive charge on one side of the molecule and a slight negative charge on the other side.
Cohesive	Water molecules are attracted to each other.

Section 6.3 Water and Solutions (continued)

←Main Idea

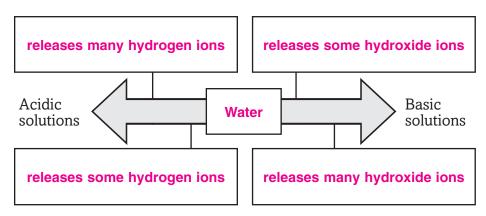

Mixtures with Water

I found this information on page ______.

SE, pp. 163–165 RE, pp. 63–64

CDetails⁻

Identify each of the following mixtures as either homogeneous or heterogeneous.


For any homogeneous mixture above, identify the solvent and the solute.

Solvent: water Solute: salt

Construct a model of acidic solutions and basic solutions by placing each of the items below in the correct sequence on the scale.

- releases some hydrogen ions releases some hydroxide ions
- releases many hydrogen ions
 - releases many hydroxide ions

water

SUMMARIZE

Analyze how water is important to life.

Accept all reasonable responses. Organisms are composed mostly of water. Humans can survive only a few days without water. Water has the ability to form many solutions in the body, enabling life functions. Water is a good insulator for the body. Water's ability to form hydrogen bonds enables functions such as capillary action in plants.

Chemistry in Biology

Section 6.4 The Building Blocks of Life

∕Main Idea⊃

○Details

Skim Section 4 of the chapter. Write two facts that you learned from reading the headings and illustration captions.

1 Accept all reasonable responses.

Review-Vocabulary

Use your book or dictionary to define organic compound.

organic compound

carbon-based substance that is the basis of living matter

New-Vocabulary

Use your book or dictionary to define each term.

amino acid

component of protein that is a compound made of carbon, nitrogen,

oxygen, hydrogen, and sometimes sulfur

carbohydrate

compound composed of carbon, hydrogen, and oxygen in a ratio of

one oxygen and two hydrogen atoms for each carbon atom

lipid

molecule made mostly of carbon and hydrogen that makes up the

fats, oils, and waxes

macromolecule

large molecule that is formed by joining smaller organic molecules

nucleic acid

complex macromolecule that stores and transmits genetic information

nucleotide

repeating subunit of a nucleic acid

polymer

molecule made from repeating units of identical or nearly identical

compounds called monomers that are linked together by a series of

covalent bonds

protein

compound made of small carbon compounds called amino acids

Section 6.4 The Building Blocks of Life (continued)

Main Idea

Organic Chemistry

I found this information on page ______.

SE, p. 166 RE, p. 65

Details

Contrast an organic compound to an inorganic compound.

Any compound that contains carbon is organic. An inorganic

compound is not carbon-based.

Model a carbon atom, and label its parts. Then use a label to point out and briefly explain why carbon can form a variety of organic compounds.

Models should resemble the carbon atom in the text, but with labels added for the nucleus, electrons, and first and second energy levels. It contains four electrons instead of the full eight, enabling covalent bonds to form chains of molecules.

Macromolecules

I found this information on page ______.

SE, pp. 167-171 RE, pp. 66-68 **Compare** the composition and functions of the four major groups of biological macromolecules by completing the table below.

Group	Composition	Functions
Proteins	amino acids made of carbon, nitrogen, oxygen, hydrogen, and sometimes sulfur	transport substances; speed reactions; provide structural support; provide hormones
Nucleic acids	nucleotides made of carbon, nitrogen, oxygen, phosphorus, and hydrogen	store and communicate genetic information
Carbohydrates	carbon, hydrogen, and oxygen in ratio of one oxygen and two hydrogen for each carbon	store energy; provide structural support
Lipids	mostly carbon and hydrogen	store energy; provide steroids; waterproof coatings

Section 6.4 The Building Blocks of Life (continued)

← Main Idea –

I found this information on page _____

> SE, pp. 167-171 RE, pp. 66-68

CDetails ■

Evaluate the number of molecules of each element in the carbohydrate described by the formula below.

$$(CH_2O)_6$$

Carbon: 6 Hydrogen: 12 Oxygen: 6

Ratio of carbon, hydrogen, and oxygen: 1:2:1

Type of carbohydrate: monosaccharide/simple sugar

Model the two general shapes of proteins named below.

Student drawings should look similar to a folded sheet of paper.

Student drawings should have a spiral appearance.

Helix

Describe nucleic acids by filling in the following chart.

Units that Make Up Nucleotides			
phosphate	nitrogenous base	ribose sugar	

Function of DNA: stores all the instructions for organisms to grow, reproduce, and adapt

Function of RNA: uses the information stored in DNA to make proteins

CONNECT

Identify two examples of foods that contain high amounts of each of the following macromolecules: carbohydrates, lipids, and proteins. If you need help, read food labels.

Accept all reasonable responses. Carbohydrates are found in pasta, potatoes, and fruit. Lipids

are found in animal fat and vegetable oil. Proteins are found in meat and beans.

Tie It Together

FURTHER INQUIRY

You have read about chemical reactions. Now create

a simple science review manual explaining how chemical reactions allow living things to grow and develop. Your review manual should be easy to read and contain basic information and specific examples. Include diagrams to illustrate the ideas. Use the space below to create an outline for your review manual.

Accept all reasonable responses.

www.almanahj.com

Cellular Structure and Function

Before You Read

Use the "What I Know" column to list the things you know about cells. Then list the questions you have about cells in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned
WWW.	almanahj.cc	m

Science Journal

Accept all reasonable responses.

Imagine that you are small enough to fit inside a cell. Describe what you think you might observe while you are there.

Cellular Structure and Function

Section 7.1 Cell Discovery and Theory

⊂Main Idea⊃_

Details

Skim Section 1 of the chapter. Write three questions that come to mind from reading the headings and the illustration captions.

- 1 Accept all reasonable responses.
- 2. _____
 - _____

Review Vocabulary

Use your book or dictionary to define organization.

organization

orderly structure of cells in an organism

New_____ Vocabulary

Use your book or dictionary to define each term.

cell

basic unit of all living things

cell theory

theory that all organisms are made of one or more cells, which are

the basic units of life, and that all cells come from other cells

eukaryotic cell

cell with specialized structures, which include the nucleus and

other organelles

nucleus

cell organelle that controls the cell's activities and contains DNA

organelle

membrane-bound structure with special functions within eukaryotic

cells

plasma membrane

boundary that helps control what enters and leaves a cell

prokaryotic cell

simple cell without specialized structures

Section 7.1 Cell Discovery and Theory (continued)

(Main Idea \)__

History of the Cell Theory

I found this information on page _____

> SE, pp. 182-183 RE, pp. 69-70

○ Details

Identify the three main ideas of the cell theory. Then write a short sentence for each one describing each idea. Accept all reasonable responses.

All living things are made of one or more cells. Sample response: I have seen that an onion is made of cells, and I know an onion was alive because it was a plant.

Cells are the basic units of structure and function in living things. Sample response: I know our muscles are made of muscle cells. I have seen that plants are made of plant cells.

All cells come from other cells. Sample response: We learned that living things only come from other living things. You cannot make a cell in a laboratory.

Microscope **Technology**

I found this information on page _____

> SE, pp. 183-185 RE, pp. 70-71

Summarize information about electron microscopes using five or six bullet points. Accept all reasonable responses. Important points are listed below.

- Microscopes improved in the 1930s–1940s.
- Microscopes allowed scientists to magnify objects up to 500,000 times.
- They use a beam of electrons instead of a beam of light.
- Scanning (SEM) can show a cell's 3-D shape.
- Transmission (TEM) can help see inside a cell.
- Scanning tunneling electron microscope (STM) can show 3-D

images of atoms.

Section 7.1 Cell Discovery and Theory (continued)

← Main Idea −

Basic Cell Types

I found this information on page _

> SE, pp. 185-186 RE, p. 71

○ Details

Compare and contrast *eukaryotic and prokaryotic cells by* putting the phrases in the Venn diagram.

• bacteria

- have membrane-bound organelles
- contain organelles
- multicellular organisms
- have loose strands of DNA unicellular organisms
- have a nucleus
- · do not have membrane-bound organelles

Eukaryotic cells

- have membranebound organelles
- multicellular organisms
- have a nucleus

Prokaryotic cells

• contain organelles

Both

- unicellular organisms
- have loose strands of **DNA**
- do not have membrane-bound organelles
- bacteria

Model a eukaryotic cell. Label the parts of the cell.

Accept all reasonable models. Students should include and label the plasma membrane, nucleus, and one or more organelles.

SUMMARIZE

Analyze how more sophisticated microscopes have allowed scientists to advance their knowledge of cells.

Accept all reasonable responses. Increased magnification has enabled scientists to study cells

in greater detail. Today's microscopes allow cell structures to be identified and studied.

Cellular Structure and Function

Section 7.2 The Plasma Membrane

Main Idea	1
-----------	---

⊘Details

Scan the illustrations and captions in Section 2 of the chapter. List two facts you discovered about the plasma membrane.

- 1. Accept all reasonable responses.
- 2.

Review—— Vocabulary

Use your book or dictionary to define ion.

ion

atom or group of atoms with a positive or negative electrical charge

New———— Vocabulary

Use your book or dictionary to define each term.

fluid mosaic model

structural model of the plasma membrane where phospholipids and

proteins float within the surface of the membrane

phospholipid bilayer

large molecule with a glycerol backbone, two fatty acid chains, and

a phosphate group

selective permeability

process in which a membrane allows some molecules to pass

through while keeping others out

transport protein

protein that moves needed substances or waste materials through

the plasma membrane into or out of the cell

Section 7.2 The Plasma Membrane (continued)

←Main Idea

Function of the Plasma Membrane

I found this information on page ______.

SE, p. 187 RE, p. 72

Details

membrane deals

with materials by

Analyze what would happen if the cell membrane were not selectively permeable. Support your response.

Accept all reasonable analyses. Sample response: The cell might be destroyed because wastes could not leave and inappropriate molecules might enter the cell.

Identify five ways that the membrane can deal with materials.

allowing molecules in at any time
allowing molecules in only at certain times
allowing molecules in only in limited amounts
expelling wastes from inside the cell

Structure of the Plasma Membrane

I found this information on page ______.

SE, pp. 188–190 RE, pp. 73–74 **Model** a phospholipid, and label its parts. Describe how the phospholipid functions to make up the fluid membrane.

Accept all reasonable responses. The phosphate group forms the polar head of the molecule. It points outward to interact with the watery environment outside the cell. The nonpolar fatty acid tails point inward toward each other (since two layers make up each membrane) away from the water outside the cell. A barrier is created that is water-soluble on the outside but water-insoluble on the inside.

Diagrams should resemble those on SE p. 188.

∕Main Idea⁻

⊘Details⁻

Section 7.2 The Plasma Membrane (continued)

I found this information on page ______.

SE, pp. 188–190 RE, pp. 73–74 **Model** the plasma membrane. Label each part, and describe the function of that part in detail.

Diagrams should clearly show and explain phospholipids, proteins, and cholesterol.

phospholipids: polar phosphate heads allow membrane to interact with surface water; nonpolar tails are on inside of membrane and make it difficult for water-soluble particles to move through the membrane

transport proteins: regulate what is allowed to enter and exit the cell through the membrane

cholesterol: keeps phospholipids fluid, prevents them from sticking together

receptors: transmit signals to the inside of cells

www.almanahj.com

Discuss how the terms fluid and mosaic describe the plasma membrane.

Fluid: It is fluid because the phospholipids, proteins, and

cholesterol float in the membrane.

Mosaic: It is a mosaic because it has many parts. The proteins

create patterns on the membrane's surface.

SUMMARIZE

Analyze the role of the plasma membrane in maintaining homeostasis in the cell.

Accept all reasonable responses. As a selectively permeable barrier between the inside of the

cell and the outside environment, the plasma membrane controls the amount of substances

entering and leaving the cell and the timing of substance flow.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Cellular Structure and Function

Section 7.3 Structures and Organelles

←Main Idea

Details

Skim Section 3 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

1 Accept all reasonable responses.

Review-**Vocabulary**

Use your book or dictionary to define enzyme.

enzyme

protein that speeds up the rate of a chemical reaction

New-**Vocabulary**

Write each term in the table under the heading that best describes it.

cell wall centriole chloroplast cilium cytoplasm cytoskeleton flagellum

endoplasmic reticulum Golgi apparatus lysosome

> nucleolus ribosome vacuole

mitochondrion

7	Cell Structure (5)	Related to Genetic Material (2)	Food, Storage, and Waste (5)	Energy (2)
/	cell wall	nucleolus	cytoplasm	chloroplast
	cilium	ribosome	endoplasmic reticulum	mitochondrion
	cytoskeleton		Golgi apparatus	
	flagellum		lysosome	
	centriole		vacuole	

Compare and contrast each pair of terms by defining them and noting their differences.

Chloroplast	Mitochondrion
plant organelle that captures light and converts it to a chemical	in plants and animals, converts energy to a form cells can use
Vacuole	Centriole
storage compartment in a cell	organelle that functions during cell division
Cilium	Flagellum
short, hairlike projection that aids in locomotion	long, hairlike projection that aids in locomotion

Name	Date

Section 7.3 Structures and Organelles (continued)

← Main Idea

Cytoplasm and Cytoskeleton

I found this information on page ______.

SE, pp. 191–192 RE, p. 75

(Details

Compare the cytoplasm and cytoskeleton by defining each in the boxes.

Cytoplasm	Cytoskeleton
semifluid material inside the organelles or plasma membrane in which cell processes take place directly	supporting network of long, thin protein fibers forming a framework for the cell and providing an anchor for organelles

Cell Structures

I found this information on page ______.

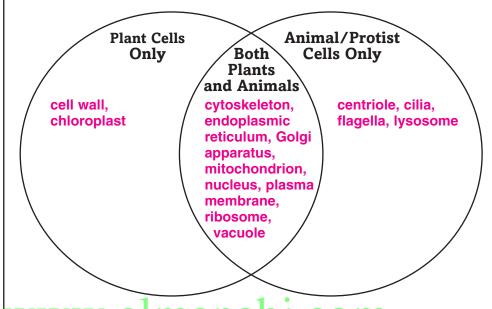
SE, pp. 193–199 RE, pp. 75–78

Identify the part of the cell that corresponds to each function described.

nucleus	directs cell processes; contains the cell's DNA; stores information for cell growth, function, and reproduction		
nuclear envelope	double membrane that surrounds the nucleus		
ribosome alla	helps manufacture proteins		
nucleolus	produces ribosomes inside the nucleus		
endoplasmic reticulum	site of ribosome attachment; can be smooth or rough		
Golgi apparatus	modifies, sorts, and packages proteins for transport outside the cell		
vacuole	membrane-bound storage area within the cell		
lysosome	vesicle that contains substances that digest excess or worn-out organelles		
centriole	structure near the nucleus that functions during cell division		
mitochondrion	converts fuel particles (sugars) into useable energy		
chloroplast	captures light energy and converts it to chemical energy through photosynthesis		
cell wall	gives support to plant cells		
cilia and flagella	projections that allow the cell to move or to move substances along the surface of the cell		

Section 7.3 Structures and Organelles (continued)

←Main Idea


Comparing Cells

I found this information on page ______.

SE, p. 200 RE, p. 79

⊘Details

Compare and contrast the cell parts found in the following categories.

Organelles at Work

I found this information on page ______.

SE, p. 200 RE, p. 79 **Sequence** the steps that describe how proteins are made by completing the flowchart.

Picks up information from DNA.
\
RNA and ribosomes leave the nucleus.
\
and ribosomes work together to make
proteins on the surface of the
endoplasmic reticulum

CONNECT

Create and describe a unique model for the structure and function

of the cell.

Accept all reasonable responses. Responses should mention specific cell parts and their role

in the metaphor.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Cellular Structure and Function

Section 7.4 Cellular Transport

∕Main Idea⁻

○Details •

Skim Section 4 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

1. Accept all reasonable responses.

2.

Review—— Vocabulary

Use your book or dictionary to define homeostasis.

homeostasis

regulation of the internal environment to maintain conditions

suitable for life

New Vocabulary

Write the correct vocabulary term in the left column for each definition below.

endocytosis

process by which the plasma membrane surrounds a substance outside the cell and moves it inside the cell

active transport

movement of substances from a region of lower concentration to a region of higher concentration

diffusion

net movement of particles from an area where there are many particles of the substance to an area where there are fewer

hypertonic solution

solution that has a higher concentration of solutes in the cell

isotonic solution

solution in which the inside of the cell and the solution it is in have the same concentration of water and solutes

exocytosis

process by which the plasma membrane surrounds a substance inside the cell and moves it outside the cell

osmosis

diffusion of water across a selectively permeable membrane

facilitated diffusion

form of transport that uses transport proteins to move other ions and small molecules across the plasma membrane

dynamic equilibrium

condition in which there is continuous movement but no overall change in concentration

hypotonic solution

solution that has a lower concentration of solutes in the cell

Section 7.4 Cellular Transport (continued)

←Main Idea

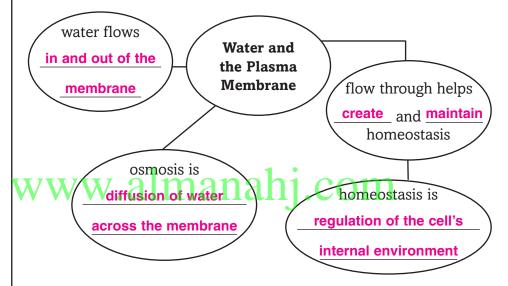
Diffusion

I found this information on page ______.

SE, pp. 201–202 RE, pp. 80–81

Osmosis: Diffusion of Water

I found this information on page ______.


SE, pp. 203–205 RE, pp. 81–82

○ Details

Rephrase the process of diffusion in your own words, and give an example.

Accept all reasonable responses.

Summarize the relationship between water and the plasma membrane by completing the concept web below.

Model a cell in a hypertonic, hypotonic, and isotonic solution. Underneath each model, summarize the effect of each solution on the cell. Accept all reasonable responses.

Solutions				
Hypertonic	Hypotonic	Isotonic		
Pressure inside the cell decreases in a hypertonic solution.	A cell swells when placed in a hypotonic solution.	Cell shows no effect when placed in an isotonic solution.		

Name______ Date _____

Section 7.4 Cellular Transport (continued)

←Main Idea

Active Transport and Transport of Large Particles

I found this information on page ______.

SE, pp. 205–207 RE, p. 82

○Details

Classify and summarize the five ways particles move through the membrane. Make notes and sketches in the rectangle for each one.

Accept all reasonable responses.

Passive Transport

simple diffusion cell uses no energy to move particles; they just diffuse through membrane facilitated diffusion transport proteins; assist passive transport

active transport

cell uses carrier proteins to help move particles; requires energy

Transport of Large Particles

For the analogy, encourage creative and original thought that synthesizes the concepts at hand.

exocytosis

requires energy, active transport; membrane capsule joins cell membrane and expels material

endocytosis

requires energy, active transport; cell engulfs materials with a portion of the cell's plasma membrane and releases the contents within the cell

CONNECT

Think of real-life movement between locations, and make analogies of the five different kinds of transport that occurs through the cell membrane. Explain how each type of transport works in your analogy.

Accept all reasonable responses. Simple diffusion is like walking through an entryway of

streamers; facilitated diffusion is like taking an escalator; active transport is like entering

through a subway gate using a ticket; endocytosis is like receiving shipping; and exocytosis

is like taking out the garbage.

Tie It Together

SUMMARIZE

Make a concept web to show the main ideas and

important details in this chapter, and the relationships between the facts you learned. Hint: You might find it easier to list the facts or topics you want to include first, then decide how to connect them in the web.

Accept all reasonable responses.

www.almanahj.com

Name	Date

Cellular Energy

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Cellular Energy	After You Read
	Energy can be transformed, but it cannot be created or destroyed.	Α
	ATP is a molecule used by cells to store energy.	Α
	Photosynthesis takes place inside the chloroplasts.	Α
	Cellular respiration occurs in two stages: glycolysis and the Calvin cycle.	D

www.almanahj.com

Science Journal

How does energy g	et to cells?	How do	cells use	energy?	Write vour	own ideas.
110W does energy 8	ct to cens.	11011 40	cens asc	chergy.	Wille your	own racus.

ccept all reasonable res	sponses.		

Cellular Energy

Section 8.1 How Organisms Obtain Energy

∕Main Idea⊃_

Details

Scan Section 1 of the chapter and make a list of three general ways in which cells use energy.

- 1. Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define metabolism.

metabolism

all the chemical reactions that occur within an organism

New Vocabulary

Use your book or dictionary to define each vocabulary term.

adenosine triphosphate energy-storing molecule in cells, made of an adenosine molecule,

a ribose sugar, and three phosphate groups

cellular respiration catabolic pathway in which organic molecules are broken down

to release energy

energy

the ability to do work

metabolism

all of the chemical reactions in a cell

photosynthesis

anabolic pathway in which light energy from the Sun is harvested

as chemical energy for use by living things

thermodynamics

the study of how energy flows and is transformed in the universe

Section 8.1 How Organisms Obtain Energy (continued)

←Main Idea

Transformation of Energy

I found this information on page _____.

SE, pp. 218–219 RE, pp. 83–84

Details

Organize at least seven of your body's cell processes that require energy. Accept all reasonable responses.

Energy in Cell Processes	
Cell Processes	

Metabolism

Compare the laws about how energy flows. Give an example of each.

I found this information on page _____

SE, p. 220 RE, pp. 84–85

V	.alm	First Law of Thermodynamics	Second Law of Thermodynamics
	Defined	Energy is neither created nor destroyed, only transformed.	The amount of entropy in a system is always increasing.
	Example	The body converts stored energy in food into chemical energy.	Some energy is changed to thermal energy as energy moves through food chain.

Sequence the flow of energy from the Sun to heterotrophs.

Plants and other autotrophs capture energy from the Sun.	Plants convert it to chemical energy.	Chemical energy is stored as food.	Heterotrophs obtain this energy by eating other organisms.
	→	→	→

Section 8.1 How Organisms Obtain Energy (continued)

←Main Idea

Details

Compare and contrast catabolic and anabolic pathways by writing characteristics of each in the Venn diagram.

Catabolic

break down larger molecules into smaller molecules and release energy

Both

part of the metabolism of cells

Anabolic

build up larger molecules from smaller ones and use energy

ATP: The Unit of Cellular Energy

I found this information on page ______.

SE, p. 221 RE, p. 85

Summarize ATP and ADP.

ATP

Explain how your body uses ATP, and list the three parts of the molecule. Adenosine triphosphate provides quick energy for cells when they need it. It is made of an adenosine molecule, a ribose sugar, and three phosphate groups.

ADP

Explain how ADP is made from ATP. Adenosine diphosphate is made when ATP loses a phosphate group.

SUMMARIZE

Design a concept map to show the three most important ideas

from this section.

Encourage students to choose concise but meaningful phrases for their maps.

Cellular Energy

Section 8.2 Photosynthesis

∕Main Idea⁻

Details

Scan Section 2 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

1. Accept all reasonable responses.

2.

Review — [|] Vocabulary

Use your book or dictionary to define carbohydrate.

carbohydrate

an organic compound containing carbon, hydrogen, and oxygen

New Vocabulary

Use your book or dictionary to define each vocabulary term.

Calvin cycle

series of reactions during the light-independent phase of

photosynthesis in which energy is stored in simple sugars

granum

a stack of thylakoid membranes on the inside of chloroplasts

NADP+

final electron-carrying molecule in light-dependent reactions;

combines with electrons to form the energy-storage molecule NADPH

pigments

molecules that absorb specific wavelengths of light

rubisco

an enzyme in the Calvin cycle that converts inorganic carbon

molecules into organic molecules that can be used by the cell

stroma

the fluid-filled space outside the grana; location of the

light-independent reactions of photosynthesis

thylakoid

flattened saclike membranes inside chloroplasts; location of the

light-dependent reactions of photosynthesis

Academic— Vocabulary

Define transport to show its scientific meaning.

transport to carry something from one place to another

81

Section 8.2 Photosynthesis (continued)

←Main Idea

Overview of Photosynthesis

I found this information on page ______.

SE, p. 222 RE, p. 86

Phase One: Light Reactions

I found this information on page ______.

SE, pp. 223-224 RE, pp. 87-88

Details

starch

Summarize the functions of the light-dependent and light-independent reactions by completing the sentences.

Plants and other green	n organisms	trap light en	ergy from
the Sun	The light-dep	endent react	ions change
light energy	_ into the mole	cules ATP ar	nd NADPH . The
light-dependent reaction	ns useATP	and NADPH	to make
glucose			
The light-independent	t reactions pro	duce sim	ple sugars
which are then made int	complex ca	rbohydrates	, such as

_____, which stores energy in plants.

Create a concept web to summarize what you know about chloroplasts and chlorophyll. Accept all reasonable responses.

contains pigments	anotosynthes	is a pigment which is a molecule that takes in specific wavelengths of light
chloroplast		chlorophyll
part of plant leaf where light- dependent and light-independent reactions of		absorbs most wavelengths of sunlight except green; makes plants look green
photosynthesis take place		

Analyze how leaves change color in the fall.

Leaves break down chlorophyll, so other pigment colors become visible.

⊂Main Idea⁻

Phase Two: The Calvin Cycle

I found this information on page ______.

SE, p. 226 RE, p. 89

Section 8.2 Photosynthesis (continued)

Details

Model light-dependent reactions in a flow chart.

Accept all reasonable responses.

Compare light-dependent and light-independent reactions by putting each phrase into the correct part of the Venn diagram.

- forms stored energy
- makes NADPH
- makes sugar
- needs sunlight

- occurs in the chloroplast
- occurs in the dark
- uses Calvin cycle
- uses electron transport chain

Light-Dependent

needs sunlight, uses electron transport chain, makes NADPH

Both

occurs in the chloroplast, forms stored energy

Light-Independent

occurs in the dark, uses Calvin cycle, makes sugar

Alternative Pathways

I found this information on page ______.

SE, p. 227 RE, p. 89 **Compare** two alternative photosynthesis pathways. Identify plants that use each pathway.

Pathway: C ₄ pathway	Pathway: CAM pathway
Description: carbon dioxide fixed in 4-carbon instead of 3-carbon compounds	Description: carbon dioxide enters leaves only at night
Plants that use this pathway: sugar cane and corn	Plants that use this pathway: cacti, orchids, and pineapple

SUMMARIZE

Explain the results of light-dependent and light-independent reactions. Accept all reasonable responses.

Sunlight triggers light-dependent reactions, which produce ATP and NADPH molecules to

produce sugars out of carbon dioxide and water.

Section 8.3 Cellular Respiration

Cellular Energy

⊂Main Idea⁻

Details

Scan the headings, illustrations, and captions in Section 3 of the chapter. Write three facts that you discover about cellular respiration.

1 Accept all reasonable responses.

Review Vocabulary

Use your book or dictionary to define cyanobacterium.

cyanobacterium

a type of eubacterium that is a photosynthetic autotroph

Vocabulary

Read the definitions below and write the correct vocabulary term in the blank.

anaerobic process

glycolysis

metabolic process that does not require oxygen

in cellular respiration, a series of anaerobic chemical reactions in the cytoplasm that break down glucose into pyruvic acid; forms a net profit of two ATP molecules

aerobic

metabolic processes that require oxygen

Krebs cycle

in cellular respiration, a cycle of chemical reactions that break down glucose and produce ATP; energizes electron carriers that pass the energized electrons on to the electron transport chain

fermentation

a series of anaerobic reactions in the cytoplasm that regenerate NAD⁺ for glycolysis and produce ATP; supplies energy for aerobic organisms when oxygen is low

aerobic respiration

in cellular respiration, the processes that take place in the mitochondrion and require oxygen; includes the Krebs cycle and electron transport

Section 8.3 Cellular Respiration (continued)

←Main Idea

⊘Details[−]

Overview of Cellular Respiration

I found this information on page ______.

SE, p. 228 RE, p. 90

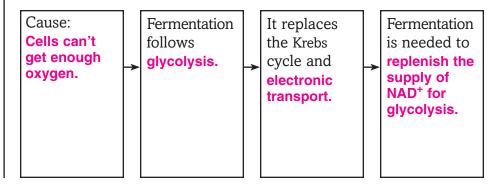
Glycolysis, Krebs Cycle, and Electron Transport

I found this information on page ______.

SE, pp. 229–231 RE, pp. 90–91 **Rephrase** the function of cellular respiration in your own words. Write the equation that describes it.

Function: harvest electrons from carbon compounds and use that energy to make QTP

 $C_6H_{12}O_6 + 6 O_2 \longrightarrow 6 CO_2 + 6 H_2O + energy$


Compare and summarize the three stages of cellular respiration. Accept all reasonable responses.

Glycolysis	Krebs Cycle	Electron Transport
a series of chemical	a series of chemical reactions that break	ATP made from
reactions that break	down pyruvate from glycolysis	high-energy electrons
down glucose		and protons.
a mana	takes place in	takes place in
the cytoplasm of	the mitochondria	mitochondrial
the cell		membrane
produces two ATP molecules for every	produces one ATP	provides energy for ATP production
glucose molecule that is broken down	and two CO ₂	final electron acceptor is
		electron oxygen

Anaerobic Respiration

I found this information on page ______.

SE, pp. 231–232 RE, p. 92 **Sequence** events that lead to fermentation in aerobic organisms.

Section 8.3 Cellular Respiration (continued)

←Main Idea

Details

Summarize a process of fermentation that is useful to humans.

Alcoholic fermentation is a process used by some types of bacteria and yeast to make CO₂ and ethyl alcohol from pyruvic acid (which is made during glycolysis from glucose). This process is used to produce alcoholic beverages.

Photosynthesis and Cellular Respiration

I found this information on page ______.

SE, p. 233 RE, p. 98 **Compare** photosynthesis and respiration in a Venn diagram. Encourage students to make detailed notes. Accept all reasonable

responses. **Photosynthesis** Respiration Both food is made; use electron food is broken carriers and a down; energy from the cycle of chemical Sun is stored as sugar energy is sugar; reactions to form used: ATP; electron CO₂ is used; CO₂ and H₂O transport takes O₂ is produced: are produced; place in needs light; O_2 is used; membranes occurs in does not need chloroplasts light: occurs in all cells, both plant and animal

SUMMARIZE

Create a graphic organizer to compare aerobic and anaerobic processes. Accept all reasonable responses.

Cellular Reproduction

Before You Read

Use the "What I Know" column to list the things you know about how cells work. Then list the questions you have about how cells work in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

www.almanahj.com

Science Journal

Accept all reasonable responses.

New cells are created in your body every day. Write about the reasons your body might need new cells.

-		

Sopyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Cellular Reproduction

Section 9.1 Cellular Growth

∕Main Idea⊃

○ Details

Scan the titles, boldfaced words, pictures, figures, and captions in Section 1. Write three facts you discovered about cellular growth as you scanned the section.

- 1 Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define carbohydrate.

carbohydrate

an organic compound containing carbon, hydrogen, and oxygen,

usually in a 1:2:1 ratio

New Vocabulary

Use your book or dictionary to define each term.

cell cycle

the sequence of events by which cells grow and divide

chromatin

the relaxed form of DNA in the cell's nucleus

chromosome

structure in the nucleus that contains the genetic material

cytokinesis

the stage of the cell cycle in which the cytoplasm divides and a new

cell is created

interphase

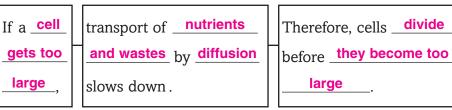
the stage of the cell cycle during which the cell grows, carries out

normal functions, and copies its DNA

mitosis

the stage of the cell cycle during which the nucleus and nuclear

material divide

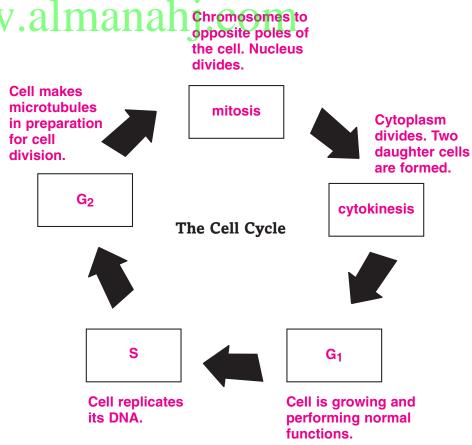

←Main Idea

\subset Details $^-$

Cell Size Limitations

I found this information on page ______.

SE, pp. 244-246 RE, pp. 93-94 **Analyze** movement of nutrients and wastes as cell size increases. Accept all reasonable responses.


Describe how surface area-to-volume ratio relates to cell size by completing the sentence.

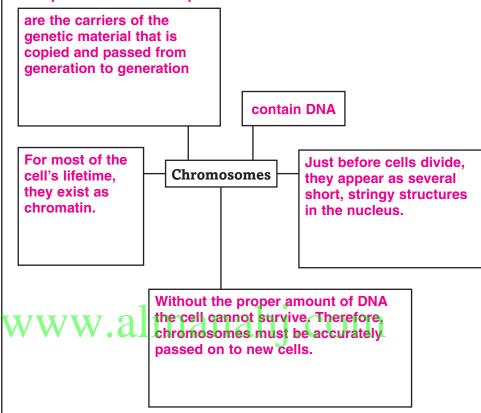
As a cell grows larger, its <u>volume</u> increases more rapidly than its <u>surface area</u>, thus surface area-to-volume ratio <u>decreases</u>.

The Cell Cycle

> SE, pp. 246–247 RE, pp. 94–95

Complete the diagram of the cell cycle. Describe the main events in each stage.

← Main Idea →


on page ___

I found this information

SE, pp. 246–247 RE, pp. 94-95

○ Details

Organize information about chromosomes in the concept web. Accept all reasonable responses.

Identify four events that occur in a cell during interphase.

- 1. cell grows 3. cell duplicates chromosomes
- 2 cell carries on metabolism 4 cell prepares for division

SUMMARIZE

cell cycle.

Analyze the relationship between cell size and the stages of the

Cells must stay small to function properly. Cells use the cell cycle to stay small. Actively growing cells are in interphase. When a growing cell reaches its maximum size, it keeps itself

small by entering mitosis and cytokinesis and dividing into two smaller daughter cells.

Cellular Reproduction

Section 9.2 Mitosis and Cytokinesis

∕Main Idea−

Details

Scan Section 2 of the chapter. From the headings and illustrations list the four stages of mitosis.

1. prophase

3. anaphase

- 2. metaphase
- _____ 4. telophase

Review ____ Vocabulary

Use your book or dictionary to define life cycle.

life cycle

the sequence growth and development stages that an organism goes through during its life

New——— Vocabulary

anaphase

Use your book or dictionary to define the following terms.

the third stage of mitosis, during which the centromeres separate

and the chromatids are pulled apart

centromere

structure at the center of the chromosome to which the sister

chromatids attach

metaphase

the second stage of mitosis, during which the sister chromatids line

up along the equator of the cell

prophase

the first stage of mitosis, during which the chromatid condenses into

chromosomes

sister chromatid

structures in a chromosome containing identical copies of the DNA

spindle apparatus

structure that helps move and organize the chromosomes during

mitosis; made of spindle fibers, centrioles, and aster fibers

telophase

the final stage of mitosis, during which the chromosomes migrate to

the poles of the cell and then decondense

Section 9.2 Mitosis and Cytokinesis (continued)

←Main Idea⁻

Mitosis

I found this information on page ______.

SE, p. 248 RE, p. 96

The Stages of Mitosis

I found this information on page ______.

SE, pp. 248-251 RE, pp. 96-98

(Details

Identify two functions of mitosis in animals.

F	wound repair
Function of	
mitosis in	growth of organism to adult size
animals	

Model the stages of mitosis and the process of cytokinesis. Draw and label a cell in each stage, name each stage, and describe what is happening. Accept all reasonable responses.

	Name of Phase	Sketch of Cell	Description
	prophase		chromatin coils to form chromosomes
V	metaphase	manahj	chromosomes move to the center of the cell
	anaphase		centromeres split and sister chromatids are pulled to the opposite sides of the cell
	telophase		two new nuclei are formed and a double membrane begins to form between them
	cytokinesis		cell's cytoplasm divides and separates into two new identical cells

Summarize the similarities and differences of any two phases of mitosis.

Accept all reasonable responses.				

← Main Idea −

○Details

Section 9.2 Mitosis and Cytokinesis (continued)

I found this information on page __

SE, pp. 248–251 RE, pp. 96-98 Summarize the function of each structure in mitosis.

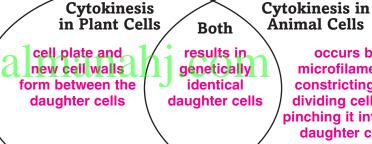
centromeres: part of chromosome to which spindle apparatus attaches

microtubules: tube-like structures that shorten and pull the

chromosomes to opposite poles of the cell

motor proteins: help microtubules pull chromosomes to poles of

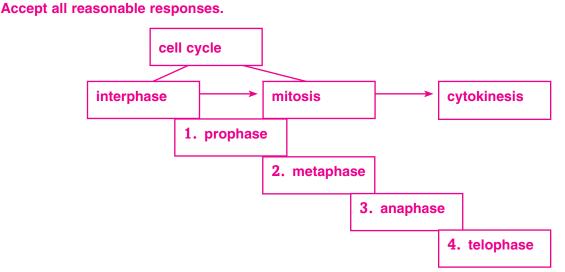
the cell


spindle apparatus: attaches to and moves the chromosomes

Cytokinesis

I found this information on page _

> SE, p. 252 RE, p. 99


Compare and contrast cytokinesis in plant and animal cells.

occurs by microfilaments constricting the dividing cell and pinching it into two daughter cells

Create a concept map describing the stages of the cell cycle.

Cellular Reproduction Section 9.3 Cell Cycle Regulation

←Main Idea

Details

Scan the illustrations and read the captions in Section 3 of the chapter. Write three facts you discovered about stem cells.

- 1 Accept all reasonable responses.
- 2. _____
 - _____

Review Vocabulary

Use your book or dictionary to define nucleotide.

nucleotide

subunit that makes up RNA and DNA

New Vocabulary

Use your book or dictionary to define the following term.

apoptosis

process of programmed cell death

cancer

uncontrolled growth and division of cells; results from a failure of

cell cycle regulation

carcinogen

substance known to cause cancer

cyclin

protein that binds to cyclin-dependent kinases to regulate the

activities of the cell cycle

cyclin-dependent kinase enzymes that are activated by cyclins and serve to regulate the

activities of the cell cycle

stem cell

unspecialized cells that have the potential to develop into

specialized cells

Section 9.3 Cell Cycle Regulation (continued)

∕Main Idea⁻

Normal Cell Cycle

I found this information on page ___

> SE, pp. 253-254 RE, pp. 100-101

Details

Summarize how cells regulate the cell cycle. Choose from the list of words to complete the paragraph.

- checkpoints
- cyclin-dependent kinases
- G₂ stage

cyclin/CDK

cyclins

cytokinesis

• G₁ stage

 mitosis S stage

Cells use _____ cyclins and cyclin-dependent kinases

to control the cell cycle. Different combinations of __ start the cell cycle at different <u>checkpoints</u>. The cell also uses cyclin/CDK to monitor the cycle for quality control. In G₁ stage _____, the cell checks the DNA for damage. If there is any damage, the cycle won't proceed to _____ S stage mitosis , if the spindle apparatus is malfunctioning, the cycle won't proceed to ____ cytokinesis

Abnormal Cell Cycle

I found this information on page _

> SE, pp. 254-255 RE, pp. 101–102

Sequence the causes and effects of cancer by completing the flow chart below.

Cancer is the uncontrolled growth and division of cells.

> Cancer is the result of a failure in regulation of the cell cycle.

> > Cells lose control when genes that regulate the cell cycle are damaged.

> > > Cancer cells cause damage by crowding out normal cells, leading to organ failure.

Identify four environmental factors that cause cancer.

- 1. cigarette smoke 3. X rays

2. asbestos

4. ultraviolet radiation

Section 9.3 Cell Cycle Regulation (continued)

←Main Idea

Apoptosis

I found this information on page ______.

SE, p. 256 RE, p. 102

Summarize information about apoptosis.

Apoptosis is	Organisms use apoptosis to	Two processes that use apoptosis:
a process of programmed cell death.	destroy cells that are no longer needed.	trees losing their leaves in autumn
		2. development of hands and feet

Stem Cells

I found this information on page ______.

SE, pp. 256–257 RE, p. 102 **Compare and contrast** adult and embryonic stem cells by writing characteristics in the Venn diagram.

WWW.Adult	nangothi. CEm	bryonic
come from various tissues in the body; present from infancy through adulthood	unspecialized cells that have the potential to become specialized	100–150 cells formed after fertilization; will become specialized as embryo grows

CONNECT

A classmate thinks that cancer and apoptosis are both harmful to organisms. Do you agree or disagree? Explain your reasoning.

Accept all reasonable responses. Only cancer is harmful to an organism. Apoptosis is a

normal process in which cells that are not needed by an organism die in a controlled process.

Sexual Reproduction and Genetics

Before You Read

Use the "What I Know" column to list the things you know about genetics. Then list the questions you have about genetics in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

www.almanahj.com

Science Journal

Genetics explains why you have inherited certain characteristics from your parents. Write about some characteristics that you have inherited from your own parents, or similarities in other families, animals, or plants that you think might have been inherited.

Accept an reasonable in	esponses.		

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Sexual Reproduction and Genetics

Section 10.1 Meiosis

∕Main Idea⁻

Details

Skim the headings and illustration captions in Section 1 of the chapter. Write three facts you discovered about meiosis as you scanned the section.

- 1. Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define chromosome.

chromosome

a cellular structure that contains DNA

New——' Vocabulary

Use the terms in the left margin to complete the paragraph below.

diploid
gamete
gene
haploid
homologous
chromosomes
meiosis
fertilization
crossing over

A segment of DNA on a chromosome that controls the production of a protein is called a <u>gene</u>. A <u>diploid</u> cell contains two copies of each chromosome. A sex cell, or <u>gamete</u>, is <u>haploid</u>, meaning it contains one copy of each chromosome. <u>Homologous chromosomes</u> are pairs of chromosomes, one from each parent.

Describe three processes that occur during sexual reproduction. Accept all reasonable responses.

	Meiosis	Fertilization	Crossing Over
What happens?	cell division reduces chromosome number	two haploid sex cells, one from each parent combine	segments of homologous chromosomes break and change places
What is the product?	four haploid cells	a diploid fertilized egg	new combinations of genetic material on chromosomes

Section 10.1 Meiosis (continued)

Main Idea

Chromosomes and Chromosome Numbers

I found this information on page ______.

SE, pp. 270-271 RE, pp. 103-104

Meiosis I, Meiosis II, and The Importance of Meiosis

I found this information on page ______.

SE, pp. 271–276 RE, pp. 105–108

Details

Identify three characteristics that are the same in each member of a pair of homologous chromosomes. Name one thing that is different.

Same	Different
1. length	1. exact version of each gene
2. centromere position	
3. position of genes	

Compare and contrast the phases of Meiosis I and Meiosis II. Sketch each phase. Accept all reasonable responses. Sketches should be similar to those in the text.

Meiosis I	Prophase I	Metaphase I	Anaphase I	Telophase I
Description Calm Sketch	chromosomes condense and pair up, spindle forms	spindle fiber attaches to centromere, pulls chro- mosomes to center of cell	chromo- somes move apart from each other toward poles of cell	each pole contains one mem- ber of a pair of homolo- gous chro- mosomes, cell divides
Meiosis II	Prophase II	Metaphase II	Anaphase II	Telophase II
Description	chromo- somes condense and spindle forms	haploid number of chromo- somes line up at center of cell	sister chromatids are pulled apart	nuclear membrane and nucleus reforms, cell divides into 4 hap- loid cells
Sketch				

Analyze the chart above to determine the phase of meiosis when crossing over can occur. Mark a star on the correct phase. Students should place a star by Prophase I.

Section 10.1 Meiosis (continued)

Main Idea

Details →

Sexual Reproduction v. Asexual Reproduction

I found this information on page ______.

SE, p. 276 RE, p. 108 **Compare** meiosis and mitosis by filling in the chart below.

	Mitosis	Meiosis
Number of DNA replications	1	1
Number of cell divisions	1	2
Number of daughter cells	2	4
Chromosome number of daughter cells	2 n	n

Organize information on how meiosis produces genetic variation.

Meiosis produces random arrangement of chromosomes at equator crossing over

Compare sexual reproduction and asexual reproduction by completing the paragraph with the terms below.

 sexual reproduction asexual reproduction mammals plants genetic diversity
Inasexual reproduction, an organism inherits its genetic
material from a single parent. The new organism has the same
genes as its parent. In sexual reproduction, an
organism inherits genetic material from two different parents.
Sexual reproduction increases genetic diversity , whereas
asexual reproduction does not. Protists, simple animals, and
most plants can reproduce sexually or asexually. Mammals
only reproduce sexually.

SUMMARIZE

Explain how meiosis and fertilization produce genetic variation during sexual reproduction.

Crossing over and random sorting of chromosomes during meiosis increase genetic variation.

Fertilization increases genetic variation further by combining genetic material from two

different individuals.

Sexual Reproduction and Genetics

Section 10.2 Mendelian Genetics

Main Idea

Details

Skim Section 1 of the chapter, and then write two questions that come to mind from reading the headings and illustration captions.

1 Accept all reasonable responses.

Review Vocabulary

Use your book or dictionary to define segregation.

segregation

the separation of alleles that occurs during meiosis

New-Vocabulary

allele

Use terms in the left margin to complete the paragraph below.

genetics

Genetics is the branch of biology that studies how traits are inherited. Hybrid offspring result from parents that have different forms of alleles for certain traits, Mendel's law of segregation

law of independent assortment states that every individual has two alleles of each gene and when gametes are produced, each gamete receives one of these alleles.

law of segregation

Mendel's law of independent assortment states that genes for different traits are inherited independently of each other.

Compare and contrast each pair of terms by defining them and/or noting their differences. Accept all reasonable responses.

dominant

genotype

heterozygous

homozygous

phenotype

recessive

dominant trait	recessive trait
an observed trait that masks the recessive form of a trait	trait that can be observed if the dominant trait is not present
genotype	phenotype
the allele combination an organism contains	the way an organism looks and behaves
homozygous	heterozygous
an organism's genotype when two alleles for a trait are the same	an organism's genotype when two alleles for a trait are different

Section 10.2 Mendelian Genetics (continued)

~Main Idea−

How Genetics Began

I found this information on page ______.

SE, p. 277 RE, p. 109

The Inheritance of Traits

I found this information on page ———.

SE, pp. 277–280 RE, pp. 109–111

⊘Details

Describe how a plant self-pollinates.

A plant self-pollinates when its male and female gametes come from the same plant.

Infer why Mendel used cross-pollination to study inheritance.

Mendel cross-pollinated plants to create offspring that have traits of both plants.

Analyze Mendel's experiment with green-seed and yellow-seed pea plants by completing this summary paragraph.

Mendel used only <u>true breeding</u> lines, which consistently produced the same trait in the offspring. He controlled variables by <u>studying one trait at a time</u>. When he crossed a green-seed plant with a yellow-seed plant, the F_1 offspring were <u>100</u> percent yellow and <u>0</u> percent green. He allowed the F_1 plants to <u>self-fertilize</u> to produce <u>F_2</u> plants. The F_2 plants were <u>75</u> percent yellow and <u>25</u> percent green. Mendel concluded that each trait has two forms, called <u>alleles</u>. Mendel called yellow seed color the <u>dominant</u> form and green seed color the <u>recessive</u> form of the trait.

Compare genotypes and phenotypes for pea plants.

Genotype	Homozygous or Heterozygous	Phenotype
YY	homozygous	yellow seeds
Yy	heterozygous	yellow seeds
уу	homozygous	green seeds

Section 10.2 Mendelian Genetics (continued)

←Main Idea

I found this information on page ______.

SE, pp. 277–280 RE, pp. 109–111

Punnett Squares and **Probability**

I found this information on page ______.

SE, pp. 280–282 RE, p. 112

Details

Demonstrate the law of independent assortment by listing the 4 alleles that are produced when a pea plant with the genotype RrYy produces gametes.

Complete the Punnett squares for height in the F_1 and F_2 generations. Tall plants (T) are dominant over short plants (t). Write the expected genotypes and the probability for each.

Identify the genotypes within the Punnett square showing the dihybrid cross of seed color and seed texture. The first row has been done for you. Write the expected phenotypic ratio.

YR	
yR	
Yr	
yr	

YR	уR	Yr	yr
YYRR	YyRR	YYRr	YyRr
YyRR	yyRR	YyRr	yyRr
YYRr	YyRr	YYrr	Yyrr
YyRr	yyRr	Yyrr	yyrr

Phenotypic ratio: 9 yellow round: 3 green round: 3 yellow wrinkled:

1 green wrinkled

SUMMARIZE

Discuss the effects of Mendel's two laws (segregation and independent assortment). Give an example. Accept all reasonable responses.

The law of segregation states that every individual has two alleles of each gene and each

gamete receives one of these alleles. The law of independent assortment states that genes

for different traits are inherited independently. For example, when a pea plant with the

genotype RrYy produces gametes, the alleles R and r will separate from each other and from

the alleles Y and y.

Sexual Reproduction and Genetics

Section 10.3 Gene Linkage and Polyploidy

←Main Idea

Details

Scan the headings, boldfaced words, pictures, figures, and captions in Section 3.

- Read all section titles.
- Read all boldfaced words.
- Look at all pictures and read the captions.
- Look at all figures.
- Read all captions.

Predict three things that you think will be discussed.

1. Accept all reasonable responses.

www.almanahj.com

3. _____

Review Vocabulary

Use your book or dictionary to define protein.

protein

the total nitrogenous material in plant and animal tissues

New Vocabulary

Use your book or dictionary to define each term.

 $genetic\ recombination$

new combinations of genes that result from crossing over and

independent assortment

polyploidy

the occurrence of one or more extra sets of all chromosomes in an

organism

Section 10.3 Gene Linkage and Polyploidy (continued)

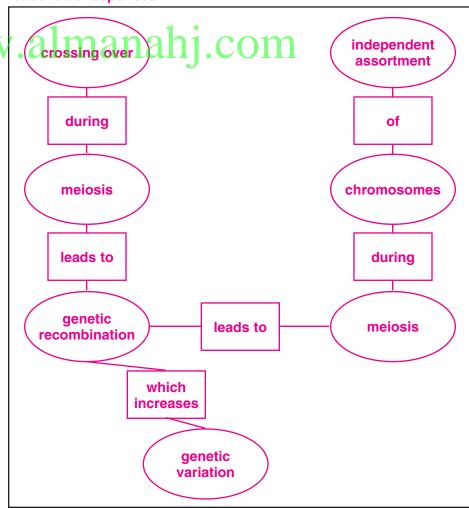
←Main Idea⁻

Genetic Recombination

I found this information on page ______.

SE, p. 283 RE, p. 113

Details


Calculate the number of chromosome combinations due to independent assortment by filling in the chart. Use the formula 2^n . The first one has been done for you.

Species	Chromosome Number (n)	Possible Combinations
Pea	7	$2^7 = 128$
Housefly	6	$2^6 = 64$
Cabbage	9	2 ⁹ = 512
Fruit fly	4	2 ⁴ = 16
Frog	13	2 ¹³ = 8192

Gene Linkage and Chromosome Maps

I found this information on page ______

SE, pp. 283–285 RE, p. 114 **Summarize** at least five pieces of information about genetic recombination by creating a concept map below. Accept all reasonable responses.

Section 10.3 Gene Linkage and Polyploidy (continued)

Main Idea

I found this information on page _____.

SE, pp. 283–285 RE, p. 114

Details

Complete the paragraph about gene linkage.

- chromosomes
- farther
- inherited
- sequence

- crossing over
- individual genes linked

Genes close together on the same chromosome are <u>linked</u>.

Linked genes are usually <u>inherited</u> together. <u>Chromosomes</u>, not <u>individual genes</u>, follow Mendel's law of independent assortment. Linked genes might become separated, as a result of <u>crossing over</u>. Crossing over is more likely to happen if

genes are <u>farther</u> apart on a chromosome.

Analyze whether the gene linkage is an exception to, or an example of, Mendel's law of independent assortment. Use an example from your book.

Gene linkage is an exception because genes that are located close

to each other on the same chromosome usually travel together.

Scientists studied the fruit fly to confirm this exception.

Polyploidy

I found this information on page ______.

SE, p. 285 RE, p. 114 **Identify** four species that show polyploidy.

1 earthworms

3. wheat

2. goldfish

4. sugar cane

SUMMARIZE

do not follow all of Mendel's laws of inheritance.

Gene Linkage	Polyploidy
 Genes close together on the chromosome do not sort independently. Each trait is controlled by two alleles. 	 Polyploid organisms have more than two sets of chromosomes. They have more than two alleles for each trait.

Name	Date

Complex Inheritance and Human Heredity

Before You Read

Use the "What I Know" column to list the things you know about human heredity and genetics. Then list the questions you have about these topics in the "What I Want to Find Out" column.

Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

www.almanahj.com

Science Journal

Describe how you think a child's DNA is different from his or her mother's DNA and father's DNA.

Accept all reasonable responses.		

Complex Inheritance and Human Heredity

Section 11.1 Basic Patterns of Human Inheritance

∕Main Idea⁻

Details

Skim and Scan Section 1 of the chapter. Use the checklist as a guide.

- Read all section titles.
- Read all boldfaced words.
- Read all tables and graphs.
- Look at all pictures and read the captions.
- ☐ Think about what you already know about patterns of heredity and human genetics.

Write three facts you discovered about patterns of heredity and human genetics as you scanned the section.

1. Accept all reasonable responses.

www.almanahj.com

3

Review Vocabulary

Use your book or dictionary to define genes.

genes

segments of DNA that control the production of proteins

New——— Vocabulary

Use your book or dictionary to define each vocabulary term.

carrier

an individual heterozygous for a recessive genetic disorder

pedigree

a diagram of genetic inheritance used by geneticists to trace genetic

traits

Explain why pedigrees are needed to identify the carriers of a recessive trait in a family.

Pedigrees are necessary to find carriers because the recessive traits

are not readily apparent by looking at the phenotype.

-Academic-Vocabulary

Define decline to show its scientific meaning.

decline

to gradually waste away; a downward slope

<u> Mai</u>

Section 11.1 Basic Patterns of Human Inheritance (continued)

← Main Idea –

Recessive Genetic Disorders

I found this information on page _____.

SE, pp. 296-298 RE, pp. 115-116

Details

Write three facts about recessive heredity in the concept map. Accept all reasonable responses.

Simple Recessive Heredity

Who:

Dr. Garrod identified that alkaptoruria was a recessive genetic disorder.

What:

Diseases caused by recessive mutations include cystic fibrosis, Tay-Sachs disease, and albinism.

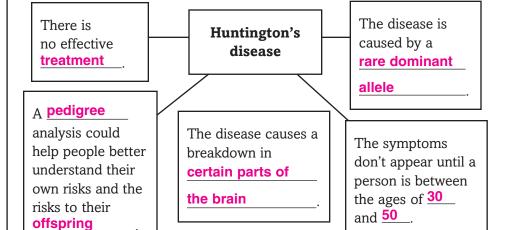
How:

For an offspring to inherit a recessive trait, both parents must have the allele.

www.almanahj.com

Dominant Genetic Disorders

I found this information on page ______.


SE, p. 298 RE, pp. 116-117 **Identify** two examples of dominant genetic disorders in humans. Accept all reasonable responses.

dominant genetic disorders

Huntington's disease

achondroplasia

Summarize the facts about Huntington's disease by completing the concept map below.

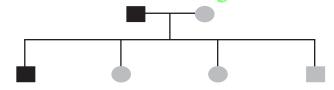
Section 11.1 Basic Patterns of Human Inheritance (continued)

←Main Idea

⊘Details[−]

Pedigrees

I found this information on page ______.


SE, p. 299 RE, p. 117 **Summarize** pedigree symbols by naming them and then drawing them in the right-hand column of the table. Sketches should resemble those in the book.

	Description of Symbol	Sketch of Symbol
male	square	
female	circle	
affected male	shaded square	
affected female	shaded circle	
known heterozygotes	half-shaded symbol	
parents and offspring siblings	line down, from parent circles or squares on second row	
parents	circle joined to square	

Analyzing Pedigrees

I found this information on page ______.

SE, pp. 299–301 RE, p. 118 **Evaluate** the inheritance of achondroplasia shown in the pedigree.

Parent with achondroplasia: the father

Number of children with achondroplasia: one

Genotype of the younger son: homozygous recessive

CONNECT

Create a pedigree diagram for an imaginary family. Pick a trait and designate it as dominant, then shade the boxes to show who has recessive genes, who has dominant genes, and who is likely heterozygous. Accept all reasonable responses.

Name Date

Complex Inheritance and Human Heredity

Section 11.2 Complex Patterns of Inheritance

←Main Idea

Details

Skim Section 2 of the chapter. Write two questions that come to mind from reading the headings and illustration captions.

1.

2

New——— Vocabulary

Use your book or dictionary to define gamete.

gamete

a mature sex cell with a haploid number of chromosomes

New Vocabulary

Use your book or dictionary to define each term.

autosomes

any chromosomes that are not sex chromosomes

codominance

inheritance pattern where phenotypes of both homozygote parents

are produced in heterozygous offspring; both alleles are expressed

epistasis

interaction of alleles with one allele masking the effects of the other

incomplete dominance

inheritance pattern where the phenotype of a heterozygote is

intermediate between those of the two homozygotes; neither allele

of the pair is dominant but combine and display a new trait

multiple alleles

presence of more than two alleles for a genetic trait

polygenic trait

inheritance pattern of a trait controlled by two or more genes; genes

may be on the same or different chromosomes

sex chromosomes

the chromosomes that determine the sex of an individual and

carry sex-linked characteristics

sex-linked traits

traits controlled by genes located on sex chromosomes

Section 11.2 Complex Patterns of Inheritance (continued)

○ Details

←Main Idea

Incomplete | Analyze

Incomplete Dominance

I found this information on page ______.

SE, p. 302 RE, p. 119 **Analyze** the ratios of offspring of the following snapdragon pairs. Hint: To write the genotypes, designate the dominant red allele as R and the recessive white allele as r.

Parent Flowers	Genotypes of Parent Flowers	Punnett Square		ıare	Ratio of Offspring
red and	$RR \times rr$		R	R	4 pink
white		r	Rr	Rr	
		r	Rr	Rr	
pink and	$Rr \times rr$		R	r	2 pink: 2 white
white		r	Rr	rr	
		r	Rr	rr	
red and	$RR \times rr$		R	R	2 red: 2 pink
pink		R	RR	RR	
		r	Rr	Rr	
pink and	$Rr \times Rr$		R	r	1 red: 2 pink:
pink	1	R	•RR	Rr	1 white
WWW.	alman	241	Rr	rr	1

Codominance

I found this information on page ______.

SE, pp. 302-303 RE, pp. 119-120

Multiple Alleles

I found this information on page ______.

SE, p. 304 RE, pp. 120–121 **Predict** the results if two people who are heterozygous for sickle-cell anemia but lead normal lives have a child.

The child might have no alleles for the disease, might be heterozygous,

or might be homozygous for the disease.

Identify the blood group that results from each combination of genotypes. The first one has been done for you.

Possible Genotype Combinations	Phenotypes
A and A	A
A and B	AB
A and O	Α
B and B	В
B and O	В
O and O	0

Name	Date
Name	Date

Section 11.2 Complex Patterns of Inheritance (continued)

Main Idea

Epistasis, Sex Determination, Dosage Compensation, Sex-Linked Traits, and Polygenic Traits

I found this information on page ______.

SE, pp. 305-309 RE, pp. 121-123

Environmental Influences

I found this information on page ______.

SE, p. 309 RE, p. 123

Twin Studies

I found this information on page ______.

SE, p. 310 RE, p. 123

Details

Analyze the role of each item in inheritance. Give an example of a trait governed by each process.

	Role in Inheritance	Example
Epistasis	interaction where one allele masks another	coat color in Labrador retrievers
Polygenic traits	traits that arise from the interaction of multiple genes	skin color
X-chromosome inactivation	X chromosome stops working in female to balance gene dosage	coat color in calico cats
X-linked traits	traits controlled by genes on the X chromosome	red-green color blindness

Identify environmental influences that can affect phenotype.

External factors	Behaviors
1. heat III all all III.	1. diet
2. sunlight	2. exercise

Describe the use of twin studies in the study of genetics by completing the paragraph.

Scientists use twin studies to distinguish between _____genetic
and ___environmental ___influences on a trait. If a high percentage of ___identical twins ___ but not ___fraternal twins ___ express a trait, there is a strong chance that the trait is _____genetic ___.

CONNECT

Think of some traits in people, plants, or animals. Describe one trait and tell whether you think the trait is a dominant/recessive, multiple allele, codominant, incompletely dominant, sex-linked, or polygenic trait. Explain your reasoning.

Accept all reasonable responses. Eye color; some people have blue eyes, some have green,

and some have brown. I think this is a multiple allele situation because there are many

possible colors, and some colors seem dominant over others.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Complex Inheritance and Human Heredity

Section 11.3 Chromosomes and Human Heredity

_	M	ain	Id	ea
		100		

Details

Organize Information Make a list of some physical characteristics that appear in your family members or friends. Try to determine how each trait is inherited by examining its inheritance pattern.

Accept all reasonable responses.

Review Vocabulary

Use your book or dictionary to define mitosis.

mitosis

a process in the nucleus of a dividing cell; made of prophase,

metaphase, anaphase, and telophase

New Vocabulary

Use your book or dictionary to define the following terms.

nondisjunction

cell division during which sister chromatids fail to separate properly

telomere

protective caps made of DNA and protein found at the end of

chromosomes

Define karyotype and describe its use. Then make a sketch of a human karyotype in the space below.

karyotype

chart of homologous chromosome pairs arranged according to size;

used to pinpoint unusual chromosome numbers in cells

Accept all reasonable responses.

Section 11.3 Chromosomes and Human Heredity (continued)

Main Idea Details Oetails Oetails Oetails Oetails Oetails Oetails

Karyotype Studies

I found this information on page _____.

SE, p. 311 RE, p. 124 **Sequence** how a scientist makes a karyotype.

2. The chro-1. Chromo-3. The chro-4. a microsomes are mosomes are scopic picture mosomes is taken. removed are stained. arranged in from a cell in revealing pairs by size. metaphase. the banding patterns that mark each pair of homologous chromosomes.

Compare and contrast karyotype studies and pedigrees by writing characteristics in the Venn diagram. Accept all reasonable responses.

Both **Karyotypes Pedigrees** used by a method for a method for geneticists visualizing studying to study chromosomes; inheritance by genetic used to detect following traits disorders abnormalities in a family in chromosome number

Telomeres

I found this information on page ______.

SE, p. 311 RE, p. 125 **Describe** telomeres by completing the paragraph. Accept all reasonable sketches.

Telomeres are made of ______ and ____ protein ____. They are located at _____ the ends of chromosomes _____. Their function is to protect the chromosomes

Section 11.3 Chromosomes and Human Heredity

←Main Idea

Nondisjunction

I found this information on page ______.

SE, pp. 313–314 RE, pp. 125–126 **Model** a picture showing the ways that nondisjunction during meiosis can produce a sex cell with an extra copy of a chromosome.

Sketches should be similar to parts of Figure 11.20 and should show nondisjunction during meiosis I and meiosis II.

Model a karyotype of a boy with Down's syndrome.

The karyotype should show 22 pairs of autosomes and XY sex chromosomes. There should be 3 copies of chromosome 21.

www.almanahj.com

Fetal Testing

I found this information on page ______.

SE, pp. 314–315 RE, p. 126 Summarize the following facts about fetal testing.

- how an abnormal number of chromosomes is identified
 - A sample of cells is taken from an individual or fetus.
- four possible results of abnormal chromosome numbers
 embryo death, Down syndrome, Turner's syndrome, and
 Klinefelter's syndrome

SUMMARIZE

Analyze how nondisjunction during meiosis could lead to Klinefelter's syndrome.

A person with Klinefelter's syndrome has two X chromosomes and one Y chromosome.

Nondisjunction in meiosis I or meiosis II could produce an egg with two sex chromosomes

(either XX or XY). Klinefelter's syndrome would result when an XX egg is fertilized with a

sperm carrying a Y chromosome.

Molecular Genetics

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Molecular Genetics	After You Read
	James Watson and Francis Crick discovered that DNA was the genetic material.	D
	DNA replication is the same in prokaryotes and eukaryotes.	
	Information in a cell flows from DNA to RNA to protein.	Α
	A mutation is a permanent change in a cell's DNA.	Α

www.almanahj.com

Science Journal

Ponies on the Shetland Islands in Scotland have short stature, thick hair, strength, and hardiness so they can thrive in their harsh environment. How do you think the DNA of their population has changed over time?

Accept all reasonable responses.				
			·	

Molecular Genetics

Section 12.1 DNA: The Genetic Material

←Main Idea

Details

Scan Section 1 of the chapter. Identify the results of three DNA experiments.

- 1. Accept all reasonable responses.
- 2. _____
- 3. _____

Review ____ Vocabulary

Use your book or dictionary to define nucleic acid.

nucleic acid

a biomolecule that stores cellular information in the form of a code

New Vocabulary

Use your book or dictionary to define each term. In the box to the right, make a sketch to help you remember each term.

double helix

consisting of two strands of

nucleotides that are twisted into

a coil and held together by the

nitrogenous bases

nucleosome

a structure found in chromosomes

in which DNA is coiled around

histone proteins

Academic | Vocabulary

Define transform to show its scientific meaning.

transform

to cause a change in type or kind

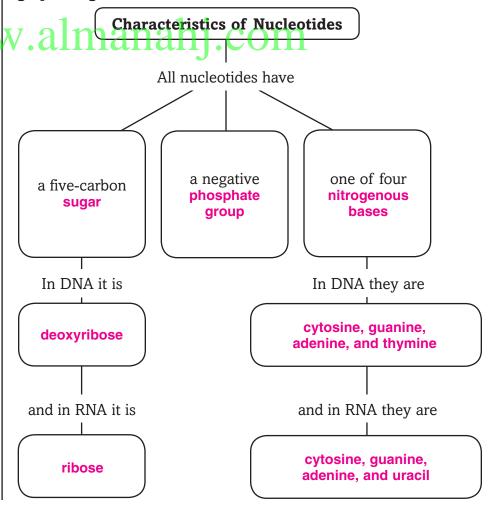
Section 12.1 DNA: The Genetic Material (continued)

Discovery of the Genetic Material

I found this information on page ______.

SE, pp. 326-328 RE, pp. 127-129

○ Details


Complete the table below about geneticists and their discoveries.

Scientist	Discovery	Year
Fredrick Griffith	discovered a transforming factor that could change rough bacteria into smooth bacteria	1928
Oswald Avery	identified DNA as the transforming factor	1931
Alfred Hershey and Martha Chase	proved that DNA was the genetic material in a virus	1952
James Watson and Francis Crick	discovered that the structure of DNA is a double helix	1953

DNA Structure

I found this information on page ______.

SE, pp. 329-331 RE, pp. 130-131 **Organize** the characteristics of nucleotides by filling in the graphic organizer below.

Section 12.1 DNA: The Genetic Material (continued)

~Main Idea−

I found this information on page ______.

SE, pp. 329-331 RE, pp. 130-131

○ Details

Create a memory device to help you remember how the nitrogenous bases are always paired.

Accept all reasonable responses that pair adenine with thymine and cytosine with guanine. Sample response: Aunt Tillie and Cousin Gus

Analyze the DNA molecule by explaining how each word applies to the molecule. Use a sketch to back up your explanation in each case.

Word and What It Means	Sketch of Effect
complementary: Nitrogenous bases are paired on the inside of the molecule.	Accept all reasonable responses.
helix: A helix is something twisted into a coil.	hj.com
double (as in "double helix"): DNA is made of two strands that are twisted into a coil.	

Chromosome Structure

I found this information on page ______.

SE, p. 332 RE, p. 131 **Synthesize and rephrase** how a DNA strand that is 200 million bases long can fit inside a cell.

A long strand of DNA is coiled around a beadlike group of histone proteins to form a nucleosome. The nucleosomes group together in fibers, then supercoil into a chromosome.

SUMMARIZE

State how Watson and Crick's DNA structure supported

Chargaff's rules.

Chargaff's data showed that for any organism, the number of purine bases in DNA (A and G)

always equals the number of pyrimidine bases (T and C). Watson and Crick's structure showed
that A pairs with T and G pairs with C, therefore A = T and G = C.

Molecular Genetics

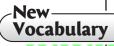
Section 12.2 Replication of DNA

←Main Idea

Details

Scan Section 2 of the chapter. Write three questions that come to mind from reading the headings and the illustration captions.

- 1. Accept all reasonable responses.
- 2. _____
- 3.


Review—— Vocabulary

Use your book or dictionary to define template.

template

a molecule of DNA that is a pattern for synthesis or a new DNA

molecule

Use your book or dictionary to define the following terms. Then look through the section to find a sentence with each term. Write the sentence. Sentences will vary.

DNA polymerase

enzyme that creates chemical bonds between nucleotides using a

DNA strand as a template

Okazaki fragment

small segments of DNA made as DNA polymerase copies DNA 3' to

5' on the lagging strand

semiconservative replication

method of DNA replication in which strands separate, serve as

templates, and produce DNA molecules each containing one original

strand and one new strand

B. Nucleotides in the cell

Section 12.2 Replication of DNA (continued)

←Main Idea

Semiconservative | D

Replication

I found this information on page ______.

SE, pp. 333-335 RE, pp. 132-133

Details

A. The DNA unzips.

Describe semiconservative DNA replication.

Model	During replication, the parental strands	The new DNA molecule is composed of
Semiconservative replication	separate and serve as templates	one parental strand and one new strand

Sequence and model each step in the replication of a DNA molecule. Write about what happens, and draw a DNA molecule going through each step. In the last box, describe and draw the products of replication. Accept all reasonable responses.

V	vww.almana	attach to the unzipped chains (A to T and C to G).	
	C. The molecule continues to unzip, and nucleotides continue to match and join.	D. Two new DNA molecules will be formed, each containing one parental and one new strand.	

Analyze how a DNA molecule acts like a template.

Complementary bases match up to the bases on the original strand,

so the two new molecules are identical to the parent molecule.

∕Main Idea⁻

⊘Details⁻

Section 12.2 Replication of DNA (continued)

I found this information on page ______.

SE, pp. 333-335 RE, pp. 132-133 **Complete** the table below on the role of each protein in DNA replication. The first one has been done for you.

Protein	Stage of DNA Replication	Activity
DNA helicase	unwinding	unwinds and unzips the DNA
DNA ligase	joining	links DNA sections after RNA primer is removed
DNA polymerase	base pairing, joining	forms new strand by base pairing; removes RNA primer and fills in with DNA
RNA primase	unwinding	adds on RNA primer to each DNA strand
Single- stranded binding protein	unwinding, base pairing	keeps the strands separate during replication

Comparing DNA Replication in Eukaryotes and Prokaryotes

I found this information on page ______.

SE, p. 335 RE, p. 132 **Contrast** the differences between prokaryotic and eukaryotic DNA replication.

	Eukaryotes	Prokaryotes
Number of origins for DNA replication	many	one
Where replication takes place in the cell	nucleus	cytoplasm

SUMMARIZE

Analyze how the activity of DNA polymerase is consistent with Watson and Crick's model of semiconservative replication.

Watson and Crick predicted that DNA replication is semiconservative, meaning the parental

strand serves as template for the daughter strand. DNA polymerase is the enzyme that creates

the daughter strand using the parental DNA as a template.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Molecular Genetics

Section 12.3 DNA, RNA, and Protein

∕Main Idea⁻

Details

Scan the headings and boldfaced words for the section. Predict two things that you think might be discussed.

1. Accept all reasonable responses.

2.

Review Vocabulary

Use your book or dictionary to define synthesis.

synthesis

the composition or combination of parts to form a whole

New Vocabulary

Write the correct term in the left column for each definition below

transcription

codon

RNA

intron

translation

messenger RNA

exon

transfer RNA

RNA polymerase

ribosomal RNA

process in which RNA is synthesized from DNA

a group of three nitrogenous bases in DNA or mRNA that code for one amino acid

nucleic acid made of ribose, phosphate, and one of four nitrogenous bases—adenine, cytosine, guanine, or uracil

intervening DNA sequences that are transcribed and then removed from the final mRNA

process by which mRNA directs the synthesis of a protein

long strands of RNA that are complementary to one strand of DNA

protein coding sequences in DNA that are transcribed into mRNA and translated into protein

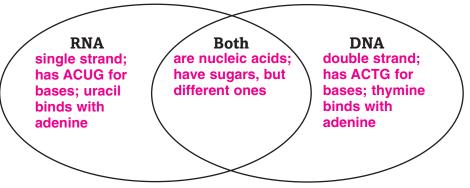
small RNA molecules that transport amino acids to the ribosome

an enzyme that catalyzes the synthesis of mRNA using DNA as a template

RNA molecules that make up part of the ribosome

Section 12.3 DNA, RNA, and Protein (continued)

←Main Idea

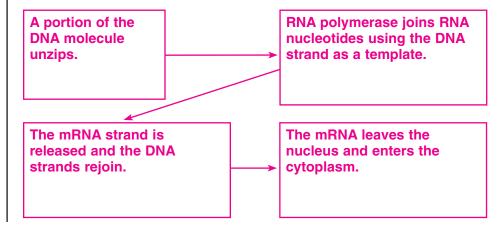

Central Dogma

I found this information on page ______.

SE, pp. 336-337 RE, pp. 134-135

⊘Details

Compare and contrast RNA and DNA by writing at least five characteristics of their structure and composition in the Venn diagram. Accept all reasonable responses.


State the central dogma of biology.

Compare the function of each type of RNA molecule by completing the table.

Type of RNA	Function
mRNA	carry genetic information from the nucleus to the cytoplasm to direct protein synthesis
rRNA	form part of the ribosome
tRNA	carry amino acids to the ribosome

Sequence the steps in transcription of RNA.

Section 12.3 DNA, RNA, and Protein (continued)

⊂Main Idea⊃——

The Code, **One Gene— One Enzyme**

I found this information on page_

> SE, pp. 338-341 RE, pp. 135-138

○ Details

Identify four examples of codons and state the instructions they encode.

- 1. (GCU) alanine
- 2. (AAA) lysine
- 3. (AUG) methionine, tells the ribosome that this is the start of the amino acid chain
- 4 (UAA) stop, tells ribosome that this is the end of the amino acid chain

Model the movement of tRNA molecules showing the translation process.

Diagrams should show tRNA molecules moving to a ribosome while carrying amino acids. As each amino acid bonds, the tRNA moves away to bring another amino acid.

vww.almanahj.com

State the updated version of Beadle and Tatum's hypothesis.

One gene codes for one polypeptide

SUMMARIZE

responses.

Create a flow chart to describe the formation of a protein. Describe the activities of DNA and the three types of RNA. Accept all reasonable

DNA issues instructions

messenger **RNA** brings instructions from DNA to the cytoplasm

ribosomal RNA binds to the mRNA

transfer RNA delivers amino acids to the ribosome to be made into a protein

the rRNA uses the instructions to assemble the amino acids in the right

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Molecular Genetics

Section 12.4 Gene Regulation and Mutation

Main	Idea
------	------

Details

Scan the illustrations and tables in Section 3. Predict the effect of mutations on organisms.

Accept all reasonable responses.

Use your book or dictionary to define prokaryote.

prokaryote

simple organism that lacks membrane-bound organelles and DNA

organized in chromosomes

New Vocabulary

Use your book or dictionary to define the following terms.

gene regulation

the ability of an organism to control the expression of genes in

response to the environment

mutagen

a substance, such as chemicals or radiation, that causes

mutations

mutation

a permanent change in the DNA sequence

operon

a section of prokaryotic DNA that contains the genes for the proteins

in a metabolic pathway

Academic Vocabulary

Define substitution and write a sentence to show its scientific meaning.

substitution

the act of replacing one thing with another

Section 12.4 Gene Regulation and Mutation (continued)

⊂Main Idea⊃_

Prokaryote Gene Regulation

I found this information on page _____

> SE, pp. 342-343 RE, pp. 139-140

⊘Details

Describe gene regulation in prokaryotes by using the terms below to complete the paragraph.

- E. coli
- metabolic pathway
- proteins
- environment operator
- repressor

- genes
- promoter
- RNA polymerase

An operon is a cluster of genes in ______. These genes make **proteins** that work together in one changes in the **environment**. The **operator** is a segment of DNA that acts as a switch for transcription, turning the operon on or off. When the operon is on, [RNA polymerase] binds promoter ____ and transcribes the DNA. When the to the ____ repressor operon is off, a ___ blocks transcription.

Compare and contrast the trp operon and the lac operon.

	Trp Operon	Lac Operon
Responds to the presence of	tryptophan	allolactose
Transcription is turned on when	no tryptophan is present	allolactose is present
The repressor is active when	tryptophan binds to it	no allolactose is bound to it
When the operon is turned on, the cell can	synthesize tryptophan	digest lactose

Eukaryote Gene Regulation

I found this information on page ______.

> SE, pp. 344–345 RE, p. 141

Analyze the ways eukaryotes control gene expression.

Molecule	Effect on Gene Expression
Hox genes	determine the body plan of an organism by control- ling gene expression during embryo development
Nucleosomes	control gene expression by inhibiting transcription of DNA in chromosomes
Small interfering RNA	inhibit gene expression by binding to a protein that degrades specific mRNA molecules in the cytoplasm
Transcription factors	regulate genes so that a gene is turned on at the right time and in the right amounts

Name	Date

Section 12.4 Gene Regulation and Mutation (continued)

Details

Main Idea

Mutations

I found this information on page ______.

SE, pp. 345-349 RE, pp. 141-142 **Compare and contrast** a point mutation and a frameshift mutation by defining each mutation and stating its consequence.

Point mutation happens when there is a change in a single base pair in the DNA.	consequence: One protein is changed.
Frameshift mutation occurs when a single nitrogenous base is added or deleted from the whole DNA sequence.	consequence: The whole sequence is changed. It is more harmful to an organism than a point mutation.

Analyze each type of DNA mutation and its result. Sketch what each change might look like. Accept all reasonable responses.

Mutation	Result	Sketch
Missense mutation	DNA codes for wrong aming acid	
Nonsense mutation	stop codon replaces amino acid codon	
Chromosome rearrangement	piece of chromosome is moved to different location	
Chromosome deletion	piece of chromosome is lost	

SUMMARIZE

Discuss why a mutagen can have longer-lasting effects in a sex cell than in a body cell.

Mutagens cause mutations, or changes in the DNA sequence. In a body cell, the mutation might kill the cell, or it might be passed to daughter cells in the body. A mutation in a sex cell can be passed on to the organism's offspring, and all subsequent generations will carry the mutation.

Tie It Together

SUMMARY

Create a concept web to tie together what you learned in this chapter about molecular genetics. Hint: You might find it easier to first list the facts or topics you want to include, then decide how to connect them in the web.

Accept all reasonable responses.

www.almanahj.com

Genetics and Biotechnology

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an A if you agree with the statement.
- **2.** Write an **D** if you disagree with the statement.

Before You Read	Genetics and Biotechnology	After You Read
	Hybridization is a type of selective breeding.	Α
	Genetic engineering is the process of breeding animals for desired traits.	D
	 Polymerase chain reaction is a way to make millions of copies of a fragment of DNA. 	Α
	Scientists have determined the sequence of all human DNA.	Α

www.almanahj.com

Science Journal

Accept all reasonable responses.

Describe two examples of genetic technology that have affected your life or that you have read about in the news.

131

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Genetics and Biotechnology

Section 13.1 Applied Genetics

Main Idea	(Details —
	Scan Section 1 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables and graphs.
	Look at all pictures and read the captions.
	Write three facts you discovered about genetic technology.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define hybrid.
hybrid	an organism whose parents have different forms of a trait
New Vocabulary inbreeding	Use your book or dictionary to define each term. Then look through the section to find a sentence with each term and write the sentence. Sentences will vary; important points are listed. mating between closely related individuals; ensures that offspring
inoreeung	are homozygous for most traits, but also brings out harmful,
	recessive traits
selective breeding	the process of breeding plants and animals for desired traits
test cross	mating of an individual of unknown genotype with an individual of
	known genotype; can help determine the unknown genotype of the
	parent
	<u> </u>

Section 13.1 Applied Genetics (continued)

Main Idea

Selective Breeding

I found this information on page ______.

SE, pp. 360-361 RE, pp. 143-144

Details

Summarize selective breeding by completing the prompts.

Accept all reasonable responses.

Goal: increase the frequency of desired traits or alleles in a population

Example: breeds of dogs such as German shepherds and huskies

The offspring of parents that have different forms of a trait:

hybrids

Two different types of selective breeding:

hybridization

__ and ____

inbreeding

Analyze inbreeding and hybridization by identifying the effect, an advantage, and a disadvantage of each.

Inbreeding

advantage:
helps eliminate
undesired traits, and
ensure desired traits

effect:
creates individuals
who are homozygous
for most traits

disadvantage:
harmful recessive
traits can be passed on

advantage:
organisms can be bred
to have a certain
combination of traits

disadvantage:
time-consuming and
expensive

Section 13.1 Applied Genetics (continued)

∕Main Idea⁻

Test Cross

I found this information on page ______.

SE, p. 362 RE, pp. 144–145

⊘Details

Analyze the use of a test cross to determine the genotype of a yellow flower by completing the prompts. The first one has been done for you.

The genotype of the white flower: <u>yy</u>

Possible genotypes of the yellow flower: YY or Yy

	Possible Phenotypes	Possible Genotypes
offspring if the yellow flower is heterozygous	50% white 50% yellow	white: yy yellow: YY or Yy
offspring if the yellow flower is homozygous	100% yellow	YY or Yy

Create a Punnett Square that shows the result of each test cross.

Heterozygous: Homozygous:

Summarize how test crosses work by using the words genotype and phenotype to complete the sentence.

In a test cross, the ____phenotype ___ of the offspring can reveal the ____genotype ___ of the parents.

CONNECT

Provide specific examples where selective breeding has resulted in plants or animals that are familiar to us today.

Accept all reasonable responses. Clydesdale horses, Angus cattle, German shepherds,

Saint Bernards, huskies, corn, beans, flowers

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Genetics and Biotechnology

Section 13.2 DNA Technology

∕Main Idea⁻

Details

Scan Section 2 of the chapter. Write two questions that come to mind from reading the headings and illustration captions.

1. Accept all reasonable responses.

2

Review Vocabulary

Use your book or dictionary to define DNA.

DNA

the genetic material of living things; the structure is a

complementary double helix

New_____ Vocabulary

Use your book or dictionary to define each term.

genetic engineering

genome

restriction enzyme

gel electrophoresis

recombinant DNA

plasmid

DNA ligase

transformation

cloning

polymerase chain reaction

transgenic organism

method of manipulating DNA from one organism and inserting the DNA fragment into a host organism of the same or different species

the total DNA present in the nucleus of each cell

bacterial enzyme that can cut foreign DNA at a specific nucleotide sequence

a method of separating DNA fragments by size with the use of an electric current

DNA made by recombining fragments of DNA from different sources

small, circular, double-stranded DNA found in bacterial cells and used as a vector

an enzyme that is used to join DNA fragments; used by the cell for DNA repair and replication

a method for getting plasmid DNA into bacterial cells

the process of creating a genetically identical copy of an organism or gene

a technique for making millions of copies of a specific region of DNA

organism that contains functional recombinant DNA from a different organism

Section 13.2 DNA Technology (continued)

Main Idea

Genetic Engineering

I found this information on page ______.

SE, p. 363 RE, p. 146

DNA Tools

I found this information on page ______.

SE, pp. 364-365 RE, pp. 146-147

Identify one transgenic organism from this chapter. Describe how it was created. Then use your imagination to think of another possible transgenic organism that could be made and identify the original organisms that could be used to make it.

A glowing mosquito was created by putting GFP from a jellyfish into a mosquito. Accept all imagined transgenic organisms, for example, horses with wings (a horse and an eagle).

Complete the paragraph about DNA tools by using the words below.

- blunt ends
- Eco RI
- gel electrophoresis

- restriction enzymes
- sticky ends

Scientists use restriction enzymes to cut DNA at specific sequences, and gel electrophoresis to separate fragments based on size. Some restriction enzymes create DNA with single-stranded, sticky ends create DNA with single-stranded, Eco RI is an example of this type of enzyme. The resulting DNA fragments can be joined with other DNA fragments that have complementary

sticky ends	Other _	restriction enzymes	_ create
blunt ends	, which	can be joined to another	DNA
fragment that has	blunt en	ds	

Recombinant DNA Technology

I found this information on page _____.

SE, pp. 366-370 RE, pp. 148-150

Compare the DNA tools and techniques used in genetic engineering.

Genetic Engineering Application	Tool or Technique Used
Make millions of copies of a region of DNA	polymerase chain reaction
Determine the order of nucleotides	DNA sequencing
Chemically join together two fragments of DNA	DNA ligase
Carry recombinant DNA into bacteria	plasmid
Produce large amounts of recombinant DNA	DNA cloning

Section 13.2 DNA Technology (continued)

I found this information on page __

> SE, p. 366-370 RE, pp. 148-150

←Details

Describe the functions of the components of PCR.

thermocycler: cycles through hot and cool temperatures

primers: starting points for DNA synthesis

nucleotides: building blocks for new DNA strand

DNA polymerase: copies the DNA; can withstand high heat

Biotechnology

I found this information on page

> SE, p. 370-371 RE, p. 151

Organize advances that have been made in transgenic organisms. Accept all reasonable responses.

	Area	Examples
	transgenic animals	goats that have been engineered to secrete antithrombin III, which is used to prevent blood clotting during surgery
V	almana.	ahj.com
	transgenic plants	herbicide- and insecticide-resistant soybeans, corn and cotton
	transgenic bacteria	bacteria engineered to clean up oil spills or to protect crops from frost damage

SUMMARIZE

Summarize the uses of genetic technology. Accept all reasonable

PCR is used to establish paternity, to identify victims and suspects in a crime, and to detect

infectious diseases. Genetic technology has been used to create transgenic organisms for

medicinal and agricultural uses.

Genetics and Biotechnology Section 13.3 The Human Genome

←Main Idea

Details

Scan Section 3 of the chapter. Use the checklist as a guide.

Read all section titles.

Read all boldfaced words.

 \square Look at all illustrations and read the captions.

Write three facts you discovered as you scanned the section.

1. Accept all reasonable responses.

2. _____

•_____

New Vocabulary

Use your book or dictionary to define each term.

bioinformatics

the creation and maintenance of databases to handle large amounts

of biological data

DNA microarray

tiny microscope slides or silicon chips dotted with DNA fragments

haplotype

regions of the human genome containing linked variations

pharmacogenomics

the study of the effect of genetics on the body's response to drugs

single nucleotide polymorphism

single nucleotide variations in human genomes; present in at least

1 percent of the human population

-Academic | | Vocabulary

Define sequence to show its scientific meaning. Write a sentence using sequence.

sequence

a continuous series

Section 13.3 The Human Genome (continued)

←Main Idea

The Human Genome Project

I found this information on page ______.

SE, pp. 372-374 RE, pp. 152-153

Details

Sequence the steps in gene sequencing by writing the steps in order.

DNA is cut with restriction enzymes to produce overlapping sequences.

Fragments are cloned.

Fragments are sequenced

Fragments are put into order by matching overlapping sequences.

Organize three applications of DNA fingerprinting.

. alman identify suspects or victims in a crime

determine paternity

DNA fingerprinting

Method for identifying genes

identify soldiers killed in war

Identifying Genes

I found this information on page ______.

SE, p. 374 RE, p. 153 **Identify** different ways to find genes in DNA sequences. Name the organisms for which each method is used.

	8
Scientists look for open reading frames, stretches of DNA that begin with a start codon, are followed by at least 100 codons, and end with a stop codon.	bacteria, yeast
Sophisticated computer algorithms are used to compare the DNA sequence under study to the genomes of other organisms.	humans, other complex organisms

Organism

Section 13.3 The Human Genome (continued)

← Main Idea[−]

Bioinformatics,
DNA Microarrays,
The Genome
and Genetic
Disorders,
Genomics and
Proteomics

I found this information on page ______.

SE, pp. 375-379 RE, pp. 153-156

Details

Organize the techniques that have arisen in the age of genomics. Give one benefit or application for each technique. The first one has been done for you.

Description	Technique	Application or Benefit
inserting recombinate DNA into human cell to treat diseases	nt gene therapy	might someday be used to cure genetic diseases
slides or chips used to analyze complex changes in gene expression	DNA microarrays	large amount of information can be stored in a small space
an international effo to describe regions of linked variations in thuman genome	of	identify genes that cause disease in humans
the study of how to manage large amoun of biological information	anahj.c	allows the study of gene evolution by comparing proteins from different organisms
the study of all of the DNA in the genome an organism		powerful method for determining the function of human genes
the study and cataloging of an organism's proteins	proteomics	development of new drugs to treat diabetes, obesity, artherosclerosis
the study of how to match a person's genetics to the drugs they are prescribed	pharmacogenomics	genetically-tailored drugs

5	U	M	M	A	RI	ZI
	$\mathbf{}$			_		

Discuss the applications of genetic technology that you think might affect your life in the future and the limitations you think there will be on DNA technology.

Accer	t all	reasonable	responses
, LOUGH		oaooiiabic	, , , , , , , , , , , , , , , , , , , ,

Name	Date

The History of Life

Before You Read

Use the "What I Know" column to list the things you know about the history of life. Then list the questions you have about the history of life in the "What I Want to Find Out" column. Accept all reasonable responses.

W What I Want to Find Out	L What I Learned
	W What I Want to Find Out

www.almanahj.com

Science Journal

Accept all reasonable responses.

Think about early life on Earth. Describe the physical conditions that needed to be present in order for life to begin to form.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

The History of Life

Section 14.1 Fossil Evidence of Change

∕Main Idea⁻

Details

Skim Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

1. Accept all reasonable responses.

2

Review Vocabulary

Use your book or dictionary to define extinction.

extinction

the death of all individuals of a species

New Vocabulary

Cambrian explosion

era

fossil

geologic time scale

half-life

K-T boundary

law of superposition

paleontologist

period

plate tectonics

radiometric dating

relative dating

Scientists measure Earth's geological and biological events using the geologic time scale, which is divided into eras and periods. The Cambrian explosion is the name of a period of rapid change during which the ancestors of most animal groups emerged. A layer of soot found between rock layers worldwide, known as the K-T boundary, might indicate that a large meteorite collided with Earth.

∕Main Idea⁻

Idea — Details

Section 14.1 Fossil Evidence of Change (continued)

Earth's Early History

I found this information on page ______.

SE, pp. 392-393 RE, pp. 157-158 **Sequence** the organizer below by listing the order of events that led to the formation of life in the oceans. The last step has been done for you.

4.5 billion years ago, Earth formed as a molten planet.

More than 4 billion years ago, Earth cooled and formed a solid crust with a molten interior.

Volcanoes erupted, giving off gases and forming the early atmosphere.

Clues in Rocks

I found this information on page ______.

SE, pp. 393-396 RE, pp. 158-160 **Identify** three types of materials in which fossils are found.

- 1. sedimentary rock
- 2. ice
- 3. amber

Compare relative and radiometric dating using the table below. Provide three facts for each type of dating.

Accept all reasonable responses.

Relative Dating	Radiometric Dating		
1. used with sedimentary rocks	measures rate of decay of radioactive isotopes		
youngest rock on top of older rocks	2. gives accurate age of fossil		
3. does not give exact age	3. cannot be used with of fossil sedimentary rocks; must date other rocks near sedimentary fossils		

Section 14.1 Fossil Evidence of Change (continued)

Main Idea⁻

_ Oetails

The Geologic Time Scale

I found this information on page ______.

SE, pp. 396-400 RE, pp. 160-163 **Summarize** the four eras of the geologic time scale using the table below.

Geologic Era	;	Major Biological Events	Organisms that Appeared	Other Facts
Precambr	ian	life began, eukaryotic cells evolved	unicellular life, eukaryotic cells, small marine animals	includes Earth's formation, almost 90% of Earth's entire history
Paleozoic		Cambrian explosion at beginning of Paleozoic, mass extinction at end	fish, amphibians, early land plants, reptiles	drastic changes in animal life occur
Mesozoic	V	mass extinction of dinosaurs, possibly caused by meteorite impact	dinosaurs, small mammals, flowering plants, birds	continents shift dramatically
Cenozoic		following extinction of dinosaurs, mammals diversify	large mammals, humans	most recent era

Rephrase the current theory on the cause of the mass extinction at the end of the Mesozoic era. Accept all reasonable responses.

Scientists propose that Earth was struck by a giant meteor, which

caused a tremendous amount of dust to enter the atmosphere. This

led to climate change. Species that could not adjust to the new

climate disappeared.

SUMMARIZE

Discuss how palentologists use relative and radiometric dating to support the geologic timescale.

Accept all reasonable responses. Paleontologists use relative dating to identify the age of rock

layers. They use radiometric dating to accurately date fossils. Findings from both tools were

helpful in structuring the geologic time scale and in determining the exact dates on the scale.

The History of Life

Section 14.2 The Origin of Life

Section 14.2 The Origin of Life		
(Main Idea)——	Details	
	Scan Section 2 of the chapter. Use the checklist as a guide.	
	Read all section titles.	
	Read all boldfaced words.	
	Look at all pictures and read the captions.	
	☐ Think about what you already know about the history of life.	
	Write three facts you discovered about the origin of life.	
	1. Accept all reasonable responses.	
	2	
	3.	
Review // Vocabulary	v.almanahi.com	
	in a sentence to show its scientific meaning.	
amino acid	building block of proteins	
New Vocabulary	Use your book or dictionary to define each term.	
endosymbiont theory	the idea that eukaryotic cells evolved from prokaryotes living	
	symbiotically with other prokaryotes	
spontaneous generation	mistaken idea that life arises from nonlife	

theory of biogenesis

idea that living things arise from other living things

Academic Vocabulary

Define mechanism to show its scientific meaning.

mechanism

an instrument or process by which something is done or comes into

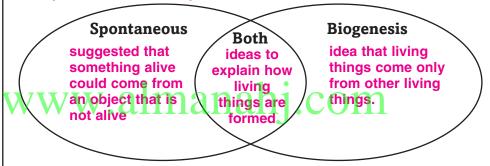
bein

Section 14.2 The Origin of Life (continued)

∕Main Idea⁻

○Details •

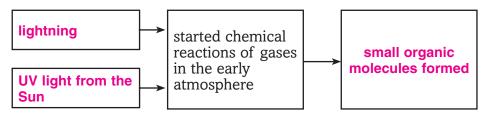
Origins: Early Ideas

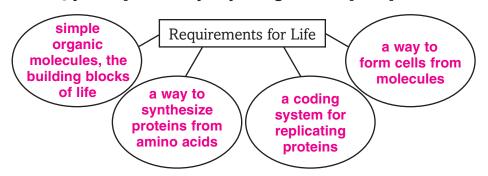

I found this information on page ______.

SE, pp. 401-402 RE, pp. 164-165 **Create** a cartoon that illustrates how Redi's experiment was used to disprove spontaneous generation.

Cartoons will vary but should include at least two different jars. One jar should be open with a piece of meat on the bottom, and a second jar should be covered with a piece of meat on the bottom. Students should show that there are flies and, later, maggots on the meat that is uncovered. The flies can be shown circling around the covered jar of meat but no maggots or flies should be shown inside the covered jar.

Compare spontaneous generation and biogenesis.


Accept all reasonable responses.

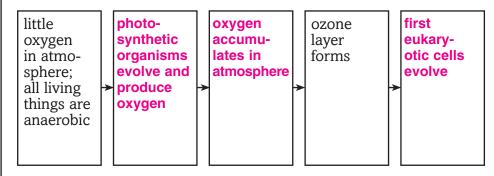

Origins: Modern Ideas

I found this information on page ______.

SE, pp. 402-404 RE, pp. 165-167 **Model** Oparin's primordial soup hypothesis for the formation of simple organic molecules by filling in the graphic organizer below.

Identify four requirements for life using the concept map below.

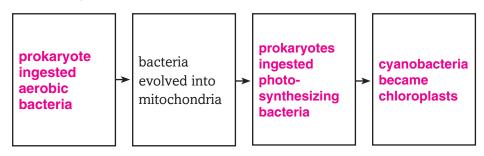
Section 14.2 The Origin of Life (continued)


←Main Idea

\subset Details $^-$

Cellular Evolution

I found this information on page ______.


SE, pp. 405-407 RE, pp. 167-168 **Sequence** how oxygen accumulated in the atmosphere and the effect it had on life by completing the flowchart below.

Identify three properties that mitochondria and chloroplasts share with prokaryotes.

- 1. circular DNA
- 2. similar ribosomes
- reproduce by fission COIII

Analyze the endosymbiont theory of the evolution of plant cells by completing the sequence chart.

SUMMARIZE

scientists.

Analyze how the four requirements for life were identified by

Accept all reasonable responses. Orapin's hypothesis identified a way in which simple organic molecules may have formed. Clay is assumed by scientists to provide a framework for protein assembly. RNA might have been life's first coding system. Researchers are still working to identify the pathways that led to cell formation.

Tie It Together

SUMMARIZE

Write an analogy to explain the difference between radiometric and relative dating. Develop a second analogy to explain the endosymbiont theory. Accept all reasonable responses.

Analogy of dating methods used by palentologists:

www.almanahj.com

Analogy of endosymbiont theory:

Name	Date

Evolution

Before You Read

Use the "What I Know" column to list the things you know about evolution. Then list the questions you have about evolution in the "What I Want to Find Out" column. Accept all reasonable responses.

K K	w	L
What I Know	What I Want to Find Out	What I Learned

www.almanahj.com

Science Journal

Accept all reasonable responses.

Life has evolved slowly on Earth. Certain organisms evolved in response to changes in their environment. Describe an adaptation of an organism that you see around you. How has the organism become better suited to its environment as a result of this adaptation?

-		
-		
-		

Evolution

Section 15.1 Darwin's Theory of Natural Selection

⊂Main Idea⊃_

Details

Skim Section 1 of the chapter. Write three questions that come to mind from reading the headings and illustration captions.

- 1. Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define selective breeding.

selective breeding

artificial selection

process by which a breeder develops a plant or animal to have

certain traits

New Vocabulary

Use your book or dictionary to define each term.

process of breeding organisms with specific traits to produce

offspring with the same traits; selective breeding

evolution

change in a species over time

natural selection

occurs in nature when organisms with favorable variations survive,

reproduce, and pass their variations to the next generation

Write a short paragraph that uses at least two of the terms above.

Accept all reasonable responses.

Section 15.1 Darwin's Theory of Natural Selection (continued)

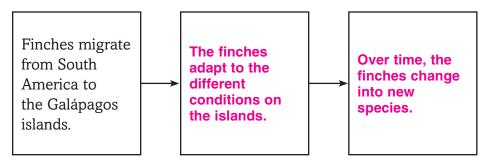
←Main Idea⁻

Developing the Theory of Natural Selection

I found this information on page ______.

SE, pp. 418–421 RE, pp. 169–171

Details


Summarize three observations Darwin made in his research on the South American mainland.

- 1 marine fossils present in Andes mountains
- 2 giant fossil versions of small, present-day animals
- 3 earthquakes can move rocks great distances

Identify three organisms from the Galápagos Islands and their distinguishing characteristics.

Organism	Variation
Mockingbirds	different mockingbirds present on each island
Tortoises	tortoises on each island have different shells
Finches Translation . C	new species different from mainland species

Analyze Darwin's hypothesis on the origin of Galápagos finches by filling in the flow chart. The first step has been done for you.

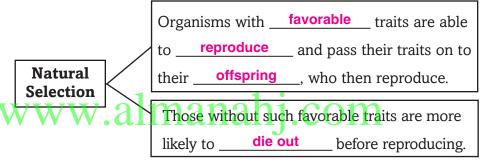
Summarize three observations that Darwin made in his research with pigeons.

- 1 small variations in traits of individual pigeons
- 2. traits inherited by offspring
- 3. traits promoted in offspring by selection and breeding

Section 15.1 Darwin's Theory of Natural Selection (continued)

←Main Idea

I found this information on page ______.

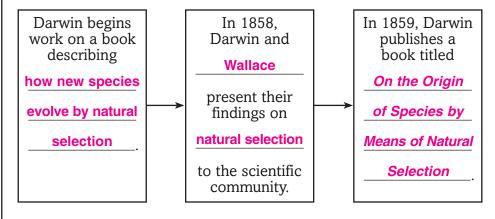

SE, pp. 418–421 RE, pp. 169–171

⊘Details⁻

Identify the four principles of natural selection.

- 1. Organisms have more offspring than can survive.
- 2. Individuals in a population show variations.
- 3 These variations are inherited.
- 4. Variations that increase survival or reproductive success will be more common in the next generation.

Summarize natural selection by completing the sentences below.



The Origin of Species

I found this information on page ______.

SE, p. 422 RE, p. 171

Sequence the events that led to the publication of Darwin's ideas.

SUMMARIZE

Discuss Darwin's different observations that led him to propose the theory of natural selection.

Accept all reasonable responses. Darwin observed that fossils he collected were distinct from present-day organisms. He observed patterns among similar species living on the Galápagos islands. He observed the process of selective breeding in pigeons.

Evolution

Section 15.2 Evidence of Evolution

∕Main Idea⁻

Details

Scan Section 2 of the chapter. List the lines of evidence that support Darwin's theory of evolution by natural selection.

Accept all reasonable responses. Answers may include fossils,

anatomy, embryology, biochemistry.

Review—— Vocabulary

Use your book or dictionary to define fossil.

fossil

remains of an organism or its activities

New_____ Vocabulary

Use your book or dictionary to define the following terms.

structures with a similar function but different form and not arising

from a common ancestor

ancestral trait

analogous structures

trait shared by species and common ancestors

biogeography

study of the distribution of plants and animals on Earth

camouflage

adaptation in which a species blends in with its environment

derived trait

newly evolved traits not found in common ancestors

embryo

early stage of development of a plant or animal

fitness

count of offspring born to an individual with a trait compared to an

individual without that trait

homologous structures

anatomically similar structures with a common evolutionary origin

mimicry

adaptation in which one species resembles another species

vestigial structure

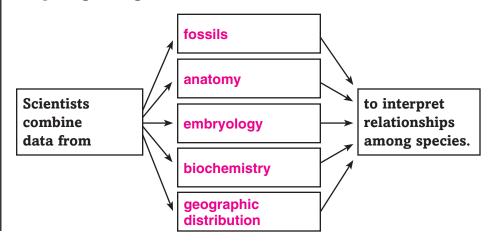
reduced form of a structure that is functional in other organisms

Section 15.2 Evidence of Evolution (continued)

←Main Idea

Support for Evolution

I found this information on page ______.


SE, pp. 423-428 RE, pp. 172-174

⊘Details

Summarize the role that anatomy plays in teaching us about evolution by completing the table below.

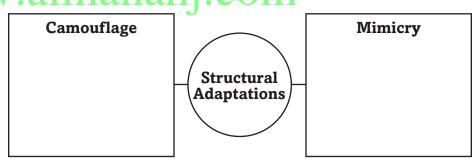
Structure	What is it?	Example
Homologous structure	structural features with common evolutionary origin	forelimbs of humans, cats, and bats are similar
Analogous structure	body parts that are similar in function but evolved from a different ancestor	birds and insects both have wings
Vestigial structure	body structure no longer serving a purpose	wings of kiwis
vww.	almanahj	com
Embryo	earliest stage of growth and development of a plant or animal	embryos of fishes, birds, reptiles, and mammals have structures that suggest they had common ancestors

Identify ways scientists interpret relationships among species by completing the organizer below.

Section 15.2 Evidence of Evolution (continued)

←Main Idea

\subset Details $^-$


Adaptation

I found this information on page ______.

SE, pp. 428–430 RE, p. 175 **Compare** similarities and differences between adaptations and non-adaptations by writing yes or no in the table. Then give an example of an adaptation and a non-adaptation.

Characteristics	Adaptations	Non-Adaptations
inherited traits	yes	yes
increase survival or reproduction	yes	no
by-product arising from other evolutionary changes	no	yes
Example:	Accept all reasonable responses.	Accept all reasonable responses.

Apply Give examples of how animals use camouflage and mimicry in order to protect themselves. Use examples that are not given in your book. Accept all reasonable responses.

Analyze how antibiotics can lose their effectiveness over time.

The bacteria can undergo physiological adaptations to keep them

from being killed by various antibiotics.

SUMMARIZE

Explain why fossils are important tools in understanding

evolution.

Accept all reasonable responses. Fossils teach us about the structure of organisms from the

past. Fossils show species that are intermediate between other species. Fossils clarify the

evolutionary relationships between species.

Evolution

Section 15.3 Shaping Evolutionary Theory

∕Main Idea⁻

Details—

Scan Section 3 of the chapter. Write two facts that you discover.

1. Accept all reasonable responses.

2. _____

Review Vocabulary

Use your book or dictionary to define allele.

allele

alternate forms of a gene

New Vocabulary

Write the correct vocabulary term in the left column for each definition below

Hardy-Weinberg Principle

founder effect

bottleneck

prezygotic isolating mechanism

genetic drift

stabilizing selection

postzygotic isolating mechanism

directional selection

disruptive selection

sexual selection

allopatric speciation

sympatric speciation

allele frequencies remain the same unless acted upon by a factor random evolution that occurs in a small, separate subpopulation process of a large population declining in number then rebounding to a large number again

mechanism that operates before fertilization occurs change in the allele frequencies in a population by chance selection which removes organisms with extreme expressions of a trait

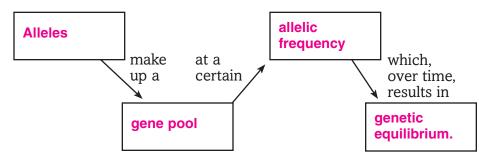
mechanism that operates after fertilization occurs to ensure that resulting hybrid remains infertile

selection which shifts a population toward an extreme trait selection which removes individuals with average traits change in a trait based on competition for mates speciation in the presence of a barrier

speciation without any barriers

a

∕Main Idea⁻


⊘Details

Section 15.3 Shaping Evolutionary Theory (continued)

Mechanisms of Evolution

I found this information on page _____.

SE, pp. 431-436 RE, pp. 176-180 **Sequence** the steps associated with genetic equilibrium by completing the graphic organizer below.

Identify three ways that genetic equilibrium can be disrupted.

- 1. genetic mutation
- 2. genetic drift
- 3. gene flow

almanahj.com

fertile offspring no longer can do so.

Reproductive Isolation

I found this information on page _____.

SE, p. 437 RE, pp. 180–181 **Contrast** geographic isolation and reproductive isolation.

Geographic isolation is when a new species develops after members of a population are separated by a physical boundary. Reproductive isolation occurs when organisms that used to mate and produce

Compare natural selection and sexual selection by completing the table.

	Species Changes Based on	Increases Fitness?
Natural selection	the environment	yes
Sexual selection	competition for a mate	not always

Section 15.3 Shaping Evolutionary Theory (continued)

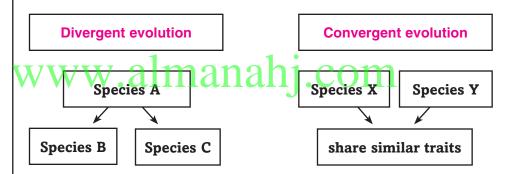
←Main Idea

Speciation

I found this information on page ______.

SE, p. 438 RE, p. 158

Details


Compare allopatric speciation and sympatric speciation by writing one fact in each segment of the Venn diagram below. Accept all reasonable responses.

Allopatric Sympatric Speciation Speciation **Both Physical barrier Populations Ancestor and** divides diverge into new species live populations. different side by side during speciation. species.

Speciation and Patterns of Evolution

I found this information on page ______.

SE, pp. 439–441 RE, pp. 181–182 **Label** each model as representing divergent evolution or convergent evolution.

Summarize the current thoughts about the rate of speciation by completing the table below.

Gradualism	Punctuated Equilibrium
species originate through a gradual change of adaptations	speciation occurs rapidly, in bursts, followed by periods of stability

SUMMARIZE

List three possible patterns of evolution and an example of each.

Accept all reasonable responses. adaptive radiation: more than 300 species of cichlid fishes

that once lived in Lake Victoria; coevolution: a species of moth and a comet orchid;

convergent evolution: mouse and marsupial mouse

Name	Date	

Primate Evolution

Before You Read

Use the "What I Know" column to list the things you know about the way primates evolved. Then list the questions you have about primate evolution in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned
WWW	almanahi co	m

Science Journal

Accept all reasonable responses.

The ability of an organism to adapt to its surroundings is needed for survival. Describe the adaptations you think were most important to the survival of primates in a variety of climates.

Primate Evolution

Section 16.1 Primates

←Main Idea

Details

Scan the title and main idea of Section 1. List two things that might be discussed in this section.

- 1. Accept all reasonable responses.
- 2

Review Vocabulary

Use your book or dictionary to define extinction.

extinction

the condition of no longer existing

New Vocabulary

Use your book or dictionary to define each term.

anthropoid

humanlike primate that appears to be more closely related to present-

day humans than it is to present-day chimpanzees and bonobos

arboreal

tree-dwelling

binocular vision

overlapping fields of vision

diurnal

active during the day

hominin

humanlike primate

nocturnal

active at night

opposable first digit

either a toe or a thumb that is set apart from other digits and can be

brought across the palm or foot so that it touches or nearly touches

the other digits

prehensile tail

tail that functions like a fifth limb

Academic Vocabulary

Define diverge to show its scientific meaning.

diverge

to become different in character or form

←Main Idea

Characteristics of Primates

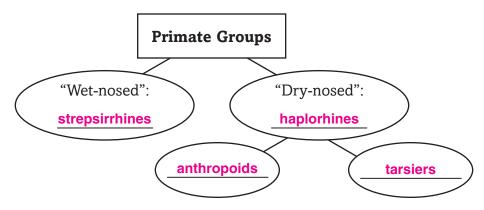
Section 16.1 Primates (continued)

I found this information on page ______.

SE, pp. 452-454 RE, pp. 183-184

Details

Identify the benefits of the following primate characteristics.


Accept all reasonable responses.

Primate Characteristic	Benefits
Opposable first digit	can grasp objects with a powerful grip
Binocular vision	enables greater depth perception
Unspecialized teeth	suitable for diverse diets
Flexible shoulders and hips	enable easy movement through trees, walking on four limbs and some upright walking
Large, complex brain	enhanced memory and coordination; problem-solving abilities; well- developed social skills; complex communication
Low reproductive rate	extended dependency period allows time to learn complex social interaction
almanah:	l.com

Primate Groups

I found this information on page ______.

SE, p. 455 RE, p. 184 **Identify** the primate groups in the diagram below.

Strepsirrhines

I found this information on page ______.

SE, pp. 455–456 RE, p. 185 **Summarize** a theory on why lemurs are found only on Madagascar and nearby islands.

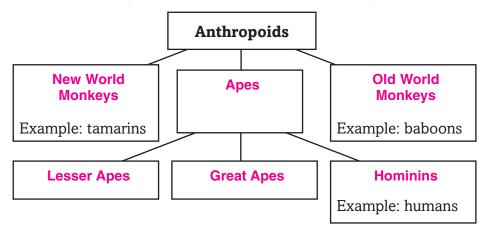
Accept all reasonable responses. During the time lemurs evolved,

Madagascar drifted away from the African mainland. Lemurs might

have migrated there on rafts of leaves. There they evolved in

reproductive isolation.

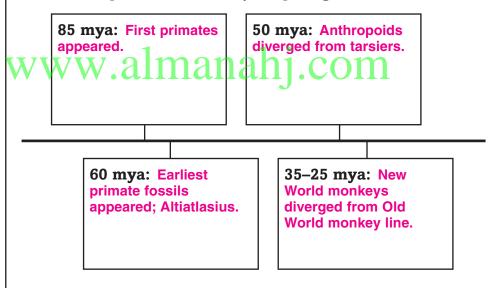
Section 16.1 Primates (continued)


~Main Idea⁻

⊘Details

Haplorhines

I found this information on page ______.


SE, pp. 456-458 RE, pp. 185-187 **Classify** the subgroups of anthropoids by completing the diagram.

Primate Evolution

I found this information on page ______.

SE, pp. 458–460 RE, p. 188 **Summarize** primate evolution by completing the time line below.

SUMMARIZE

Analyze the theory that the rise of flowering trees had a great impact on primate evolution. Explain why.

Accept all reasonable responses. Flowering trees provided new food sources, such as flowers and fruits, as well as new living environments. To take advantage of these new niche opportunities, primates evolved adaptations for an arboreal life. Adaptations included

prehensile tails, long limbs, brachiation, and opposable digits. These adaptations facilitated

movement and food gathering in the trees.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Primate Evolution

Section 16.2 Hominoids to Hominins

⊂Main Idea⊃

CDetails ■

Scan the time line and other illustrations in Section 2 of the chapter. Write two questions that come to mind.

- 1 Accept all reasonable responses.

Review-Vocabulary

Use your book or dictionary to define savanna.

savanna

flat grassland of tropical or subtropical regions

Vocabulary

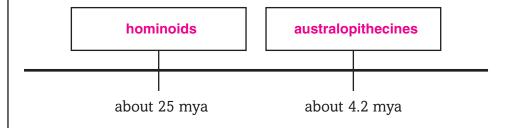
Use your book or dictionary to define each term.

australopithecine

hominin group that lived in the east-central and southern part of

2 and 1 million years ago; first truly bipedal

hominin


bipedal

ability to walk upright on two legs

hominoid

any nonmonkey anthropoid, including a human

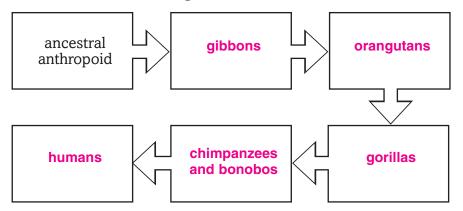
Place the first australopithecines and first hominoids in the general time line below.

Section 16.2 Hominoids to Hominins (continued)

←Main Idea

Hominoids

I found this information on page ______.


SE, pp. 461-462 RE, pp. 189-190

Details

Sequence hominoid divergence by placing the primates listed below in the proper location on the flowchart.

- gorillas
- gibbons
- chimpanzees and bonobos

- humans
- orangutans

Describe why the Proconsul species was an important find for scientists. Accept all reasonable responses.

Some of the oldest hominoid fossils are members of the genus

Proconsul. Some scientists believe that Proconsul is a human

ancestor.

Hominins

I found this information on page ______.

SE, pp. 462-466 RE, pp. 190-192 **Label** five adaptations for bipedalism on the skeleton.

Labels should include descriptions such as the following: spine attaches at base of skull; S-shaped spine; arms shorter than legs; bowl-shaped pelvis; femur angled inward.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Section 16.2 Hominoids to Hominins (continued)

I found this information on page ______.

SE, pp. 462-466 RE, pp. 190-192

○Details

Describe some potential advantages and disadvantages of bipedalism compared to quadrupedalism. Accept all reasonable responses.

Disadvantages of bipedalism: individuals easier for predators to see; slower running speed; greater strain on hips and back; might require more energy Advantages of bipedalism: could travel longer distances to search for food; could spot food sources more easily; might reduce total area of body exposed to sunlight and increase area exposed to cooling winds; hands free to carry objects or for other purposes; could reach fruit on low branches

Identify a key discovery by each of the following scientists. Then analyze how the discovery contributed to the debate about which adaptation evolved first: larger brain or bipedalism.

Raymond Dart	Donald Johanson	Mary Leakey	
Discovery: Taung baby	Discovery: Lucy	Discovery: fossilized australopithecine footprints	
Analysis: placement of the foramen magnum in the skull suggested that this small-brained australopithecine was bipedal	Analysis: helped resolve the debate; Lucy's hip and knee joints showed that she was clearly bipedal	Analysis: supplied further evidence that australopithecines were bipedal	

CONNECT

Analyze why scientists have difficulty classifying many

hominin fossils.

Accept all reasonable responses. Hominins followed mosaic evolution—different body parts and behaviors evolved at different rates. As a result, early hominin fossils showed a patchwork of human and apelike traits. A variety of hominin species lived alongside human ancestors but were not direct human ancestors themselves.

Primate Evolution

Section 16.3 Human Ancestry

←Main Idea

Details

Scan Section 3 of the chapter. Use the checklist as a guide.

	Dood	<u>~11</u>	section	titloo
	Read	all	section	riries.

Read all boldfaced words.

Read all tables, figures, and graphs.

Look at all pictures and read the captions.

Write two facts you discovered as you scanned the section.

1. Accept all reasonable responses.

2

Review Vocabulary

mitochondrion

Use your book or dictionary to define mitochondrion.

organelle found in eukaryotic cells containing genetic material

and responsible for cellular energy

New——— Vocabulary

Use your book or dictionary to define each term.

Cro-Magnon

first fully modern human group; expressed itself symbolically and artistically, developed sophisticated tools and weapons, was the first

to fish, tailor clothing, and domesticate animals

Homo

genus that includes living and extinct humans

Neanderthal

distinct human species that evolved exclusively in Europe and Asia

about 200,000 years ago, likely from *H. erectus* or a *Homo* intermediary;

larger and more heavily muscled than modern humans

Name	Date

Section 16.3 Human Ancestry (continued)

Main Idea

The *Homo* Genus

I found this information on page ______.

SE, pp. 467-470 RE, pp. 193-195

Details

Identify the correct species from the list below for each of the following characteristics.

- H. habilis
- H. erectus
- H. heidelbergensis

- H. ergaster
- H. floresiensis
- H. neanderthalensis

Characteristic	Homo Species
Evidence suggests they cared for their sick and buried their dead	H. neanderthalensis
More versatile than predecessors; adapted successfully to a variety of environments	H. erectus
First undisputed member of the <i>Homo</i> genus	H. habilis
Nicknamed "The Hobbit" because of its small size	H. floresiensis
Larger and more heavily muscled than modern humans	H. neanderthalensis
Believed to have had the first human nose (nostrils facing downward)	H. ergaster
Classification for various transitional fossils that display a mosaic of <i>H. ergaster</i> and <i>H. sapiens</i> traits	H. heidelbergensis
Name means "handy man" because of association with primitive stone tools	H. habilis
Probably evolved from <i>H. erectus</i> or a <i>Homo</i> intermediary	H. neanderthalensis
First African <i>Homo</i> species to migrate in large numbers to Asia and Europe	H. ergaster
Serves as evidence that <i>H. erectus</i> or some other ancient hominin species remained on Earth until 12,000 years ago	H. floresiensis

Identify a Homo species that scientists hypothesize to be a human ancestor, based on features shared with modern humans.

Homo ergaster

Identify a Homo species that scientists believe was not a human ancestor, based on DNA tests on fossil bones.

Homo neanderthalensis

Section 16.3 Human Ancestry (continued)

~Main Idea⁻

Details

Emergence of Modern Humans

I found this information on page ______.

SE, pp. 471–473 RE, pp. 195–196 **Rephrase** two hypotheses proposed to explain the global dominance of modern humans.

Multiregional evolution model: Modern humans evolved from several dispersed populations of early Homo species at the same time in different areas of the world. Modern races of humans arose in isolated populations by convergent evolution.

"Out of Africa" hypothesis: Modern humans evolved only once, in Africa, and then migrated to all parts of the world, eventually displacing other hominins.

Summarize a scientific study that supported the "Out of Africa" hypothesis by completing the paragraph.

- Africans have the most
 variation in mitochondrial DNA
 - mitochondrial DNA is inherited only from the mother
- mitochondrial DNA changes very little over time
- the population with the most variation had the longest existence

Because mitochondrial DNA changes very			ges very little over time
scientists reasoned	l thatthe	e populatio	n with the most variation
had the longest exi	istence	In studyir	ng the DNA of contemporary
humans, scientists	found that .	Africans	s have the most variation
in mitochondrial DI	N A	. Because _	mitochondrial DNA is
inherited only from	the mother	r	, scientists concluded that
H. sapiens emerged	in Africa fro	om a hypotl	hetical "Mitochondrial Eve."

SUMMARIZE

Contrast Homo sapiens to all other Homo species. Accept all

reasonable responses.

H. sapiens are more gracile with thinner skeletons, rounder skulls, smaller faces, and

more prominent chins than all other Homo species. Their brains are larger than all except

Neanderthals. They have developed complex language and culture.

Organizing Life's Diversity

Before You Read

Use the "What I Know" column to list the things you know about life's diversity. Then list the questions you have about diversity in the "What I Want to Find Out" column. Accept all reasonable responses.

K	W	L
What I Know	What I Want to Find Out	What I Learned

www.almanahj.com

Science Journal

Accept all reasonable responses.

Consider several living organisms that you see around you. Describe some characteristics that biologists might use when trying to classify, or organize, them into similar species.

169

Organizing Life's Diversity Section 17.1 The History of Classification

∕Main Idea⁻

Details

Scan Section 1 of the chapter. Write three questions that come to mind from reading the headings and the illustration captions.

- 1. Accept all reasonable responses.
- 2. _____
- 3. ______

Review Vocabulary

Use your book or dictionary to define morphology.

morphology

the structure and form of an organism or one of its parts

New——— Vocabulary

Classify each term at the left as being part of Linnaeus' two-word naming system or a taxonomic group.

binominal
nomenclature
class
division
domain
family
genus
kingdom
order
phylum

Linnaeus' System	Taxonomic Group
binominal nomenclature genus	class division family kingdom order phylum domain

Use your book to define each term.

grouping of objects or information based on a set of criteria

taxon a named group of organisms

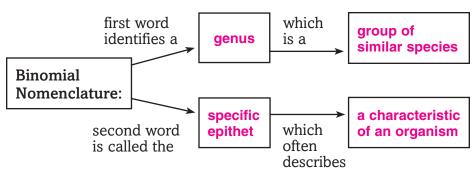
taxonomy

classification

a discipline of biology primarily concerned with identifying, naming, and classifying species based on natural relationships

Section 17.1 The History of Classification (continued)

Main Idea


Early Systems of Classification

I found this information on page ______.

SE, pp. 484-486 RE, pp. 197-200

Details

Identify the parts of Linnaeus' two-word naming system by completing the graphic organizer below.

Distinguish the genus and specific name, or epithet, for the species name of modern humans.

V.almanahj.com specific epithet

Taxonomic Categories

I found this information on page ______.

SE, pp. 487–488 RE, pp. 200–201 **1.** Compare data in the table below to determine which two animals are most closely related. Support your reasoning.

coyote and wolf; their classifications are identical down to the

species level

Classification of Selected Mammals				
Kingdom	Animalia	Animalia	Animalia	Animalia
Phylum	Chordata	Chordata	Chordata	Chordata
Class	Mammalia	Mammalia	Mammalia	Mammalia
Order	Cetacea	Carnivora	Carnivora	Carnivora
Family	Mysticeti	Felidae	Canidae	Canidae
Genus	Balenopora	Felis	Canis	Canis
Species	B. physalis	F. catus	C. latrans	C. lupus
Common name	Blue whale	Domestic cat	Coyote	Wolf

2. Analyze at which level the blue whale diverges from the other animals on the table.

at the order level

Section 17.1 The History of Classification (continued)

~Main Idea⁻

I found this information on page ______.

SE, pp. 487–488 RE, pp. 200–201

Details

Organize the following taxa from most specific to least specific: family, genus, order, species. The first one has been done for you.

Analyze the figure of the taxonomic groups in your book. Then identify the domain, kingdom, phylum, and class for humans.

Domain: Eukanya

Kingdom: Animalia

Phylum: Chordata mananl.com

Class: Mammalia

Systematics Applications

I found this information on page ______.

SE, p. 489 RE, p. 201 Summarize how a dichotomous key works.

A dichotomous key is based on a series of choices between alternate characteristics. At each choice in the key, you identify a characteristic, such as color of stem—red or green. If the answer is red, you follow the key to the next choice. At the end, you will know the scientific name of the organism.

SUMMARIZE

Explain why a name such as *catfish* is not a good scientific name. Analyze why scientific names are better.

Accept all reasonable responses. Common names may describe a characteristic of an organism but be misleading. Catfish are not related to cats. Scientific names provide a specific way of classifying organisms that all biologists understand.

Organizing Life's Diversity

Section 17.2 Modern Classification

Main Idea	in Idea	a
-----------	---------	---

Details

Scan the illustrations in Section 2 of the chapter and read the captions. Select one illustration and state why you think it will be important.

Illustration: Accept all reasonable responses.

Why it will be important: _____

Review Vocabulary

Use your book or dictionary to define evolution.

evolution

the historical development of a regulated group of organisms

New-Vocabulary

Use your book or dictionary to define each term.

characters

inherited features that vary among species; can be morphological

or biochemical

cladistics

a method of analysis that reconstructs phylogenies

cladogram

a branching diagram that represents the proposed phylogeny or

evolution of a species or group

molecular clock

a model that uses comparisons of DNA sequences to estimate how

long species have been evolving independently

phylogeny

the evolutionary history of a species

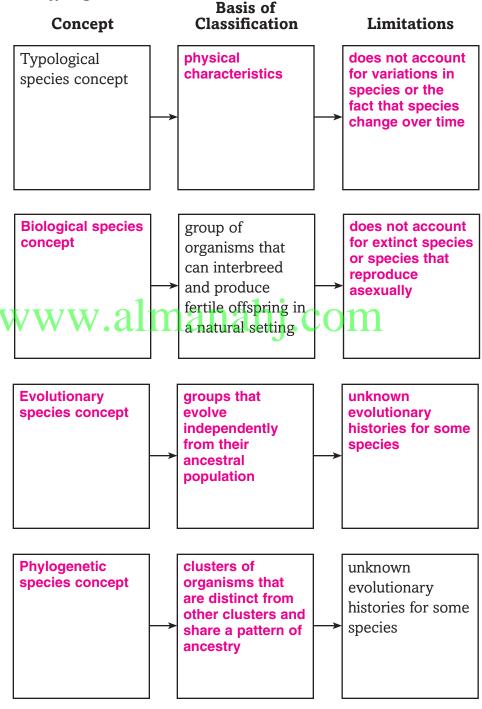
Academic Vocabulary

Define corresponding to show its scientific meaning.

corresponding

being similar or equivalent in character, quantity, origin, structure,

or function


←Main Idea

Details

Determining Species

I found this information on page ______.

SE, pp. 490–491 RE, pp. 202–204 **Compare** the four concepts that biologists have used or are using to classify organisms.

Section 17.2 Modern Classification (continued)

Main Idea

⊘Details •

Characters

I found this information on page ______.

SE, pp. 492-495 RE, pp. 204-205 **Identify** and give examples of the two types of characters in the concept map.

Characters:

Inherited features that vary among species

Morphological Characters: Similar or analogous structures

Biochemical Characters: Similarities in genetic material (DNA and RNA)

Example: hollow spaces in leg bones of oviraptors and birds Example: feathers in oviraptors and birds

Example: similar genetic makeup of broccoli, kale, and cauliflower Example: chromosome similarities among chimps, gorillas, and orangutangs

Phylogenetic Reconstruction

I found this information on page ______.

SE, pp. 495–498 RE, pp. 206–207 Describe cladograms by completing the paragraph.

A <u>cladogram</u> is a branching diagram that represents the proposed <u>phylogeny</u> or evolution of a <u>species</u> or group.

The groups used in cladograms are called <u>clades</u>. To <u>develop</u> a cladogram, <u>derived</u> characters are identified.

Then the <u>ancestry</u> of various species is identified based on the <u>presence</u> or <u>absence</u> of the derived characters in the <u>species</u>. In making a cladogram, <u>taxonomists</u> assume that groups that <u>share</u> more derived characters have a more <u>recent</u> common ancestor.

SUMMARIZE

Describe a process scientists use to construct a cladogram that includes a new species of vascular plant that was recently discovered in the rainforest.

Accept all reasonable responses. Scientists would identify derived characters and ancestral

characters. They would place the new species close to other species that share the most derived characters.

Organizing Life's Diversity Section 17.3 Domains and Kingdoms Main Idea Details

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Main Idea ——	Details
	Scan Section 3 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables and graphs.
	Look at all pictures and read the captions.
	☐ Think about what you already know about groups of organisms.
	Write three facts you discovered as you scanned the section.
	1. Accept all reasonable responses.
	2.
_Review	www.almanahj.com
Vocabulary	
eukaryote	an organism composed of one or more cells containing a nucleus
	and membrane-bound organelles
New—— Vocabulary	Use your book or dictionary to define each term.
Archaea	a kingdom of prokaryotes whose cell walls do not contain
	peptidoglycan; sometimes called extremophiles
eubacteria	a kingdom of prokaryotes whose cell walls contain peptidoglycan
fungus	eukaryotic organisms that can be unicellular or multicellular and
	absorbs nutrients from organic materials in its environment; have
	cell walls that contain chitin
	eukarvotic organisms that can be unicellular colonial or

multicellular; subclassified as algae, protozoans, and fungus-like

Name	Date

Section 17.3 Domains and Kingdoms (continued)

Grouping Species

I found this information on page ______.

SE, p. 499 RE, p. 208

Domain Bacteria

I found this information on page ______.

SE, pp. 499-500 RE, pp. 208-209

Details

Rephrase why the members formerly in the Kingdom Monera were separated into the two new domains Bacteria and Archaea.

Biochemical studies showed that there were two different types of

bacteria, so they were divided into two domains.

Model the cell walls of eubacteria. Label the features of eubacteria. Accept all reasonable drawings.

Domain Archaea

I found this information on page ______.

SE, p. 500 RE, p. 209

Domain Eukarya

I found this information on page ______.

SE, pp. 501-503 RE, pp. 209-212 Anályze why archaébacteria are sometimes called extremophiles.

Archaebacteria are called extremophiles because they live in some

of the most extreme environments on Earth, including boiling hot

springs, salty lakes, thermal vents, and mud.

Organize the kingdoms in the Domain Eukarya and describe their cell structure. List each kingdom's sources of energy and other important characteristics.

Kingdom	Cell Structure	Energy Sources	Other Characteristics
Eubacteria	strong cell walls	heterotrophs, autotrophs, and chemo- synthetic	live in most habitats
Archaebacteria	have cell walls that are different from eubacteria	autotrophs, chemo- synthetic, and photosynthetic	live in extreme environments

Section 17.3 Domains and Kingdoms (continued)

← Main Idea

⊘Details

I found this information on page ______.

SE, pp. 501–503 RE, pp. 209–212

Kingdom	Cell Structure	Energy Sources	Other Characteristics
Protists	unicellular or multicellular	autotrophs, heterotrophs	simple organ systems
Fungi	unicellular or multicellular	heterotrophs	stationary
Plants	have cell walls	autotrophs	stationary
Animals	almana no cell walls	heterotrophs	most able to move

SUMMARIZE

Model a diagram of the relationship between domains and

kingdoms. Accept all reasonable responses.

Bacteria and Viruses

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- **1.** Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Bacteria and Viruses	After You Read
	• Bacteria can live in a thermal vent on the ocean floor, where temperatures top 80°C.	A
	If you have bacteria in your intestines, you will get sick.	D
	Some viruses remain inactive for years inside human cells.	Α
	• <i>Mad cow</i> disease is caused by a protein.	Α

www.almanahj.com

Science Journal

Many viruses and bacteria can cause diseases in animals and plants. Write about a disease that you know of that is caused by a virus or a bacteria. Be sure to discuss how the disease is treated.

Accept all reasonable responses.		

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Bacteria and Viruses

Section 18.1 Bacteria

Main Idea

○ Details

Scan Section 1 of the chapter. Write two facts that you discovered as you scanned the section.

1. Accept all reasonable responses.

2.

Review Vocabulary

Use your book or dictionary to define prokaryotic cell.

prokaryotic cell

cell that does not contain any membrane-bound organelles

New——' Vocabulary

Use your book or dictionary to define each term.

bacteria

unicellular prokaryotic microorganisms

binary fission

division of a cell into two genetically identical cells

capsule

layer of secreted polysaccharides around a prokaryotic cell wall

conjugation

method of reproduction in which two prokaryotes attach to each

other and exchange genetic information

endospore

structure produced by some bacteria during harsh environmental

conditions that contains genetic information and can germinate into

a new bacterial cell when conditions improve

nucleoid

area of a prokaryotic cell that holds the chromosome

pilus

submicroscopic, hairlike structure made of protein that is found on

the outer surface of some bacteria

Section 18.1 Bacteria (continued)

←Main Idea →

Diversity of Prokaryotes

I found this information on page ______.

SE, pp. 516-517 RE, pp. 213-214

Prokaryote Structure

I found this information on page ______.

SE, p. 518 RE, pp. 214–215

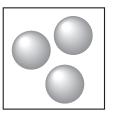
Details

Summarize three general environments where archaebacteria live, and give one example of each environment.

- 1. hot, acidic: sulfur hot springs, thermal vents, volcanoes
- 2. high concentrations of salt: Great Salt Lake, Dead Sea
- 3. oxygen-free: swamps, bogs, volcanic vents

Model a prokaryotic cell and label its structures.

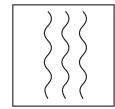
Drawings should include all labels shown in Figure 18.3. Accept all reasonable variations


almanahj.com'

Identifying Prokaryotes

I found this information on page ______.

SE, p. 519 RE, p. 215


Identify each bacterial shape below with its scientific name.

Cocci

Bacilli

Spirilli/Spirochetes

Reproduction of Prokaryotes

I found this information on page ______.

SE, p. 520 RE, pp. 215–216 **Compare** prokaryote reproduction by completing the table below.

Reproduction Method	Binary Fission	Conjugation
Process	chromosome replicates, cell elongates, new plasma membrane and cell wall form and separate cell	two individuals use pili to attach to each other and exchange genetic material
Result	two genetically identical cells	new gene combination

Section 18.1 Bacteria (continued)

-Main Idea-

○ Details

Mechanism

Metabolism of **Prokarvotes**

I found this information on page _____

> SE, pp. 520-521 RE, pp. 216-217

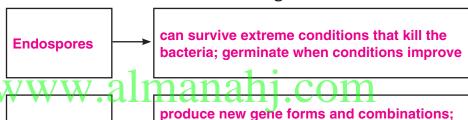
Compare prokaryotes by describing how each group below obtains energy for cellular respiration.

Saprotrophs: decompose dead organisms or organic waste

Photoautotrophs: use light for photosynthesis

Chemoautotrophs: use chemosynthesis to break down inorganic

matter that contains nitrogen and sulfur


Survival of Bacteria

I found this information on page_

> SE, pp. 521-522 RE, p. 217

Identify two bacterial survival mechanisms and describe the advantages of each mechanism.

Survival Advantages

Mutations increase chances that some can survive environmental changes and repopulate

Ecology of Bacteria

I found this information on page_

> SE, pp. 522-524 RE, p. 218

List five ways that bacteria are helpful to humans.

decompose dead organisms and recycle nutrients nitrogen fixation Bacteria normal flora protect against disease and produce are vitamin K helpful used in producing foods and vitamin pills used in producing antibiotics

SUMMARIZE

Assess whether bacteria are more harmful than helpful to humans. Defend your answer.

Accept all reasonable responses. Bacteria are more helpful than harmful. Life would be

impossible without bacteria because they produce the oxygen that is necessary for life.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Bacteria and Viruses

Section 18.2 Viruses and Prions

← Main Idea

→

Details

Scan the table and time line in Section 2 of the chapter. Write three facts you discovered about viruses from these elements.

- 1 Accept all reasonable responses.

 - •

Review Vocabulary

Use your book or dictionary to define protein.

protein

large, complex polymer composed of carbon, hydrogen, oxygen,

nitrogen, and sometimes sulfur

New Vocabulary

.almanahl.com

Use the new vocabulary terms in the left column to complete the following paragraph.

capsid

lysogenic cycle

lytic cycle

prion

retrovirus

virus

A ______ is genetic material within a protein coat, but it has no organelles or other characteristics of life. The genetic material lies inside its _____ capsid ____, or outer layer of protein. In the _____ lytic cycle _____, viral genes instruct the host cell to make many copies of the viral RNA or DNA. Some viruses replicate in a ____ lysogenic cycle ____, in which the viral DNA integrates into a host chromosome and lies dormant for some time. A ____ retrovirus ____, such as the HIV virus, contains RNA instead of DNA. Mutation in

the genes of a normal protein called a ____prion___ is responsible

-Academic | Vocabulary

Define widespread to show its scientific meaning.

widespread

widely diffused or prevalent

for diseases such as "mad cow."

Section 18.2 Viruses and Prions (continued)

∕Main Idea⁻

Viruses

I found this information on page ______.

SE, pp. 525-527 RE, pp. 219-220

Details

Model of one type of virus. Label its parts.

Drawings should resemble one of the virus diagrams in Figure 18.1.

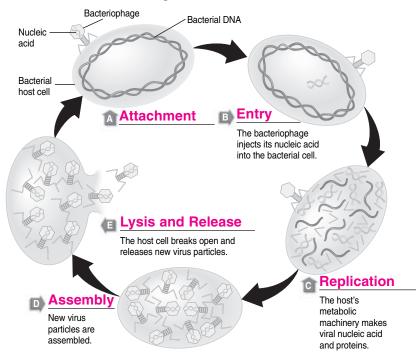
Viral Infection

I found this information on page _____.

SE, pp. 527-529 RE, pp. 220-221 **Synthesize** why many viruses cannot pass from one species to another.

The virus attaches to the host cell using specific receptors on the

plasma membrane of the host. Different types of organisms have


receptors for different types of viruses, limiting transmission

between species 1 manahj.com

Label steps A, B, C, D, and E of a lytic cycle in the figure below. Use the following terms.

- Assembly
- Attachment
- Entry

- Lysis and Release
- Replication

Name		Date	
Section 18.2 Viruses a	nd Prions (continued)		
Main Idea	Details		
	Sequence the steps of a lysogen	ic cycle.	
	Viral DNA integrates into a chromosome of a host cell.		
		↓	
	There the viral genes remain dor	mant for months or years.	
	Activation triggers the lytic cycle to begin.		
	│		
	New viruses leave the cell by exocytosis or by bursting the cell.		
Retroviruses I found this information	replication cycle of HIV.		
on page	After HIV attaches to a cell and releases its RNA, the reverse		
RE, pp. 221–222	transcriptase enzyme synthesizes DNA using the viral RNA as		
	a template.		
Prions	Summarize information about p	rions by completing the table.	
I found this information on page SE, p. 531 RE, p. 222	What is a prion? a protein that normally exists in cells but can cause infection or disease	What causes a prion to become harmful? It mutates.	
	How might humans contract a prion-caused disease? by eating beef from an infected cow	What is the result of prion infection? Prions infect nerve cells in the brain, causing them to burst.	

RE, p. 222	disease	
	How might humans contract a prion-caused disease? by eating beef from an infected cow	What is the result of prion infection? Prions infect nerve cells in the brain, causing them to burst.
····		

Conclude whether viruses that replicate by the lytic cycle or re more dangerous. Explain your reasoning. Accept all reasonable

Tie It Together

SYNTHESIZE

Create a quiz to help you review key topics in this

chapter. Write one question with its answer for each major topic listed below.

Topic: Diversity of Prokaryotes	Topic: Metabolism of Prokaryotes
Question:	Question:
Answer:	Answer:
Topic: Prokaryote Structure	Topic: Ecology of Bacteria
Question:	Question:
Answer:	Answer:
Topic: Identifying Prokaryotes V	Topic Viruses 1 . COM
Question:	Question:
Answer:	Answer:
Topic: Reproduction of Prokaryotes	Topic: Retroviruses
Question:	Question:
Answer:	Answer:
Topic: Survival of Bacteria	Topic: Prions
Question:	Question:
Answer:	Answer:

Protists

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Protists	After You Read
	Protists are not animals, plants, or fungi.	Α
	Some amoebas have a hard covering like a shell.	D
	Protists cannot make their own food.	D
	• A type of downy mildew was responsible for widespread starvation in 19th century Ireland.	Α

www.almanahj.com

Science Journal

Protists are the base for most food chains in aquatic environments. Describe how protists might contribute to an important food source—fish and other seafood.

ccept all reasona	ble responses	.		
	ло гоороноос	-		

Sopyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Protists

Section 19.1 Introduction to Protists

Main	Idea

CDetails⁻

Scan the table and pictures in Section 1 of the chapter. Read all captions. List three facts that you discovered about protists.

- 1 Accept all reasonable responses.

Review-Vocabulary

Use your book or dictionary to define heterotroph. Then use the term in a sentence to show its scientific meaning.

heterotroph

organism that cannot make its own food and must get its energy

and	nutrien	ts from	n other	organisms	

New Vocabulary

Use your book or dictionary to define each vocabulary term. Then use each term in a sentence.

microsporidium

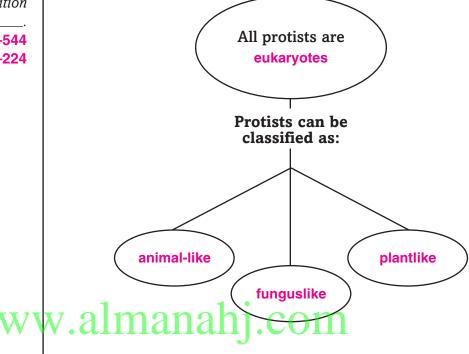
microscopic protozoan that lives in the guts of termites and

produces enzymes that digest wood

protozoan

unicellular, heterotrophic, animal-like protist

Section 19.1 Introduction to Protists (continued)


←Main Idea

Details

Protists

I found this information on page ______.

SE, pp. 542-544 RE, pp. 223-224 Organize information about how protists are classified.

Analyze the characteristics that are used to classify protists.

Type of Protist	Characteristic	Example
Animal-like	heterotrophic	protozoans
Plantlike	photosynthetic	algae
Funguslike	absorb nutrients from other organisms	water mold

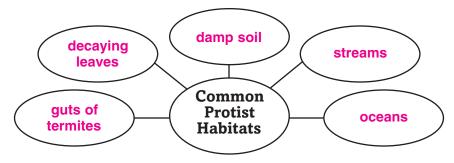
List two characteristics that distinguish funguslike protists from fungi.

distinguishing characteristics of funguslike protists

centrioles

composition of cell wall

Section 19.1 Introduction to Protists (continued)


←Main Idea

I found this information on page ______.

SE, pp. 542-544 RE, pp. 223-224

Details

Summarize the common habitats of protists by completing the graphic organizer. Accept all reasonable responses.

Identify two examples of mutualistic relationships between protists and other organisms.

- 1. protozoans produce enzymes that help termites digest wood
- 2. green algae living in the hair of sloths provides camouflauge

Origin of Protists

I found this information on page ______.

SE, p. 545 RE, p. 224 Summarize information about the origin of protists by completing the following paragraph.

The theory of	endosymbiosis	suggests that		
mitochondria	became part of	protist cells early in		
the evolutionary process. Later in the evolutionary process,				
chloroplasts	_ appeared in cells, and _	algae		
evolved as the only p	rotists that could photosy	nthesize.		

SUMMARIZE

Analyze why protists are difficult to classify and why the classification system is likely to change.

Accept all reasonable responses. Protists are difficult to classify because they have characteristics of animals, plants, and fungi, yet they have key differences as well. Classifying by method of obtaining nutrition is convenient, but it ignores an organism's evolutionary history. As a result, the classification system will likely change as scientists learn more about the evolutionary history of protists.

Protists

Section 19.2 Protozoans—Animal-like Protists

∕Main Idea \	(Details —
	Scan Section 2 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Look at all illustrations and read the captions.
	Think about what you already know about protists.
	Write two facts you discovered as you scanned the section.
	1. Accept all reasonable responses.
	2
Davie	
Review Vocabulary	Use your book or dictionary to define hypotonic. concentration of dissolved substances is lower in the solution
71	outside the cell than the concentration inside the cell
~New——	
Vocabulary	Use your book or dictionary to define each vocabulary term.
contractile vacuole	structure that collects the excess water from the cytoplasm and
	expels it from the cell
pellicle	membrane that covers a paramecium
pseudopod	temporary extensions of cytoplasm, used for feeding and locomotion
44	hard, porous covering similar to a shell that surrounds the
test	
	plasma membrane of some types of amoebas
trichocyst	elongated, cylindrical body that can discharge a spinelike structure

Section 19.2 Protozoans—Animal-like Protists (continued)

←Main Idea

Ciliophora

I found this information on page ______.

SE, pp. 546-549 RE, pp. 225-227

Details

Model and label a paramecium and its parts in the space below. Label the following parts with a brief description of each part.

- anal pore
- cilia
- contractile vacuole
- ectoplasm

Phylum:

- gullet
- micronucleus
- macronucleus

Excretion method:

oral groove

Student drawings may resemble Figure 19.6 on SE, p. 548. Accept all reasonable responses.

vww.almanahj.com

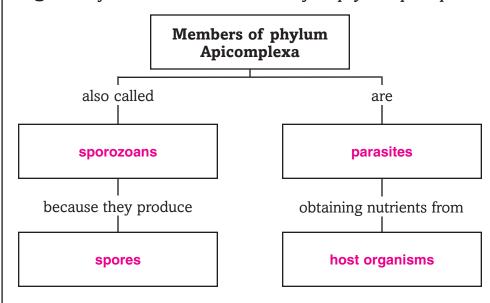
Sarcodina

I found this information on page ______.

SE, p. 550 RE, pp. 227–228 **Organize** facts about amoebas in the table below. Accept all reasonable responses.

Sarcodina	through outer membranes by diffusion
Habitats: salt water, freshwater streams, muddy bottoms of ponds, damp moss and leaves, inside animal host	Feeding method: extend pseudopodia to envelop small organism, form a food vacuole where enzymes break down food
Body structures: outer plasma membrane, inner ectoplasm membrane, cytoplasm, nucleus, food vacuoles, contractile vacuole	Reproduction method: asexually by cell division; some form cysts during harsh environmental conditions

Section 19.2 Protozoans—Animal-like Protists (continued)


⊂Main Idea⁻

\subset Details $^-$

Apicomplexa

I found this information on page ______.

SE, p. 551 RE, p. 228 **Organize** information about the members of the phylum Apicomplexa.

Zoomastigina

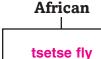
Compare American and African sleeping sickness.

I found this information on page ______.

SE, p. 552 RE, p. 228 Host insect:

Passes to human from insect's:

Can damage host's:



American

reduviid bug

feces

heart, liver, spleen

saliva

nervous system

SUMMARIZE

Compare the habitats and methods of movement among the three phyla of protozoans.

Accept all reasonable responses. Ciliates and sarcodines are found in aquatic environments.

Some sarcodines and all sporozoans are parasites that live inside animal hosts. Ciliates move

using cilia; and sarcodines move using pseudopods. Sporozoans have no method of movement.

Protists

Section 19.3 Algae—Plantlike Protists

←Main Idea

Details

Skim Section 3 of the chapter. Write three questions that come to mind from reading the headings and illustration captions.

1 Accept all reasonable responses.

2.

Review Vocabulary

Use your book or dictionary to define chloroplasts.

chloroplasts

chlorophyll-containing organelles found in the cells of green plants
and some protists that capture light energy and convert it to
chemical energy

New——' Vocabulary

Use your book or dictionary to define each vocabulary term.

Then write a sentence for each term to show its scientific meaning.

alternation of generations

life cycle of algae that takes two generations—one that reproduces sexually and one that reproduces asexually—to complete a life cycle

bioluminescent

emit light

colony

group of cells that join together to form a close association

Academic Vocabulary

Define suspension, then write a sentence to show its scientific meaning.

suspension

mixture whose particles settle out over time and whose particles

can be separated from the mixture by filtration

Section 19.3 Algae—Plantlike Protists (continued)

←Main Idea

Characteristics of Algae

I found this information on page ______.

SE, p. 553 RE, p. 229

Details

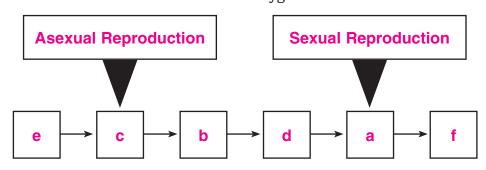
Organize information about algae by completing the chart.

Algae		
Like plants: contain photosynthetic pigments that enable algae to produce food using energy from the Sun	Unlike plants: lack roots, leaves, and other structures typical of plants	
Function of secondary pigments: allow algae to absorb light energy in deep water	Found in many colors because: secondary pigments reflect light at different wavelengths	

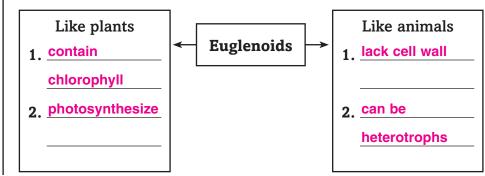
Diversity of Algae

I found this information on page ______.

SE, pp. 554-559 RE, pp. 229-232 **Sequence** the asexual and sexual reproductive cycles of diatoms by writing the letter for each step in the correct box.


- a. fusion of gametes
- d. gametes released

b. meiosis


e. wall formation around cell

c. mitosis

f. zygote

Compare the ways that euglenoids are like plants and like animals.

Section 19.3 Algae—Plantlike Protists (continued)

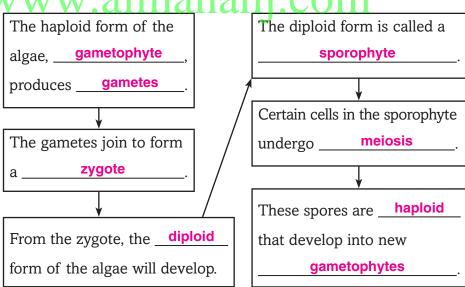
←Main Idea ¬

Uses for Algae

I found this information on page ______.

SE, pp. 554-559 RE, pp. 229-232

Details


Summarize the common uses for algae. Algae types may be used more than once.

Common Uses	Type of Algae
Used for filtering water supplies diatoms	
Used to stabilize syrups	red and brown algae
Used in the preparation of scientific gels	red algae
Used as abrasives	diatoms
Used in salads	green algae
Used to thicken puddings and shampoos	red algae
Used to preserve canned meat and fish	red algae

Life Cycle of Algae

I found this information on page ______.

SE, p. 560 RE, p. 233 Summarize the alternation of generations.

SUMMARIZE

Use the terms *meiosis*, *fertilization*, *diploid*, and *haploid* in a sentence that demonstrates your understanding of alternation of generations in green algae.

Accept all reasonable responses. In meiosis haploid spores of green algae develop, and in

fertilization they are combined to produce the diploid form.

Protists

Section 19.4 Funguslike Protists

← Main Idea

Details

Scan Section 4 of the chapter. Write three facts that you discovered about cellular and acellular slime molds.

- 1. Accept all reasonable responses.
- 2. _____
- 3._____

Review—— Vocabulary

Use your book or dictionary to define cellulose.

cellulose

glucose polymer that forms the cell walls of plants and some

funguslike protists

New———— Vocabulary

Use your book or dictionary to define each vocabulary term.

acrasin

chemical given off by a starving cellular slime mold, signaling slime

molds to congregate into a colony that functions like a single

organism and eventually reproduces asexually

plasmodium

mobile mass of cytoplasm that contains many diploid nuclei but

no separate cells

-Academic | | Vocabulary

Define phase to show its scientific meaning. Then use the word in a sentence.

phase

particular state in a regular cycle of changes

Section 19.4 Funguslike Protists (continued)

←Main Idea

Idea Details

Slime Molds

I found this information on page ______.

SE, pp. 561-563 RE, pp. 234-236 **Compare** slime molds to fungi by completing the table below.

Similarities in Slime Molds and Fungi

Reproduce using: spores

Feed on: decaying organic matter

Absorb nutrients through: cell walls

Contrast *slime molds and fungi by completing the following sentence*.

The cell walls of fungi are composed of <u>chitin</u>, and cell walls in slime molds contain <u>cellulose or celluloselike compounds</u>

Compare and contrast acellular and cellular slime molds by using the following phrases to complete the Venn diagram.

- move and surround food like amoebas
- flagellated during part of life cycle
- most of life cycle spent as single, amoeba-like cells
- form colonies when food is scarce
- mobile mass of cytoplasm with no separate cells
- make spores to reproduce

Acellular Slime Molds

- flagellated during part of life cycle
- mobile mass of cytoplasm with no separate cells

Both

- make spores to reproduce
- move and surround food like amoebas

Cellular Slime Molds

- form colonies when food is scarce
- most of life cycle spent as single, amoeba-like cells

Section 19.4 Funguslike Protists (continued)

I found this information on page _____.

SE, pp. 561-563 RE, pp. 234-236

○ Details

Analyze two ways in which the life cycles of acellular and cellular slime molds are similar and two ways in which they are different.

Similarities in Life Cycle	Differences in Life Cycle	
Both form masses during parts of their life cycles.	Cellular slime forms amoeba-like cells that feed and grow before they colonize.	
2. Both make spores to reproduce.	2. Acellular slime produces flagellated cells before becoming amoeba-like.	

Water Molds and Downy Mildew

I found this information on page ______.

SE, pp. 564-565 RE, p. 236 **Organize** information about water molds and downy mildews by completing the table below.

Water Molds and Downy Mildews		
Habitat	in water or damp places	
Source of nutrition	from surrounding water or soil or from other organisms	
Similarities to fungi	they envelop their food with a mass of threads; they break down the tissue and absorb nutrients through their cell walls	
Differences from fungi	their cell walls are made of cellulose and celluloselike compounds and they produce flagellated reproductive cells	

Tie It Together

SUMMARIZE

Malaria is a disease caused by sporozoans. It is spread

by mosquitoes. Consider which would have a greater benefit—developing a drug that would cure malaria or developing an insecticide that would kill all mosquitoes. List the possible advantages and disadvantages of each approach. Then make a conclusion about which choice would be better.

Accept all reasonable responses.

Malaria Drug	Malaria Drug			
Advantages	Disadvantages			
Insecticide WWW.a1	manahj.com			
Advantages	Disadvantages			
Conclusions				

Name	Date

Fungi

Before You Read

Use the "What I Know" column to list the things you know about fungi. Then list the questions you have about fungi in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

www.almanahj.com

Science Journal

Fungi can be both helpful and harmful to humans. On the lines below, write two things that you already know about fungi.

Accept all reasonable responses.		

Fungi

Section 20.1 Introduction to Fungi

∕Main Idea⁻

Details

Scan the figures and read the figure captions in Section 1 of the chapter. Write two facts that you discovered about fungi.

- 1. Accept all reasonable responses.
- 2.

Review — | Vocabulary

Use your book or dictionary to define saprobe.

saprobe

organism that feeds on dead organisms or organic wastes

New Vocabulary

Use your book or dictionary to define each term.

chitin

strong, flexible polysaccharide found in the cell walls of all fungi and in the exoskeletons of insects and crustaceans

fruiting body

in fungi, the reproductive structure that grows above the ground

haustoria

in fungi, specialized hyphae that grow into a host's tissues and absorb their nutrients

hyphae

tubular filaments that are the basic structural units of multicellular fungi

mycelium

in fungi, netlike mass created by the hyphae as they grow at their tips and branch repeatedly

septa

cross-walls that divide the hyphae of a fungus into cells

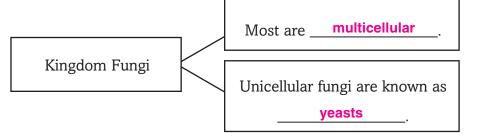
sporangium

a sac or case in which spores are produced

spore

a reproductive haploid cell with a hard outer coat that develops into a new organism without the fusion of gametes

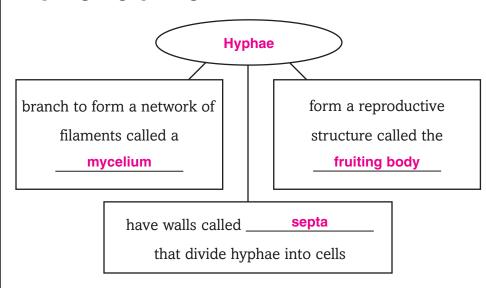
←Main Idea


Characteristics of Fungi/Major Features of Fungi

I found this information on page ______.

SE, pp. 576-578 RE, pp. 237-238

Details


Describe the kingdom Fungi.

List three features of fungi that distinguish them from plants.

Features that
distinguish fungi body structure made of tubular filaments
from plants
cross-walls

Organize information about the structure of multicellular fungi by completing the graphic organizer.

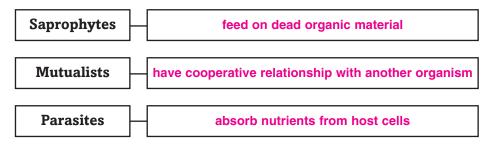
Nutrition in Fungi

I found this information on page ______.

SE, p. 578 RE, pp. 238–239 **Describe** how fungi digest their food outside the body.

Hyphae produce digestive enzymes that break down large organic

absorbed into the hyphae through their cell walls.

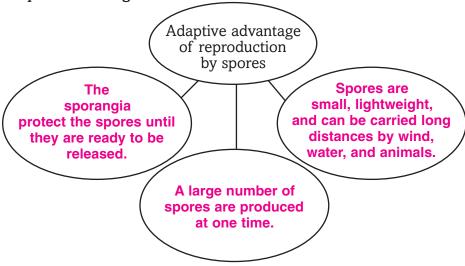

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Section 20.1 Introduction to Fungi (continued)

←Main Idea

⊘Details

Classify types of fungi by writing how each obtains food.


Reproduction in Fungi

I found this information on page ______.

SE, pp. 580-581 RE, p. 239 **Distinguish** the 3 forms of asexual reproduction in fungi in the boxes below.

	tragmentation	
Forms of asexua	l spore production	
reproduction	budding	

Analyze three ways that reproduction by spores gives fungi an adaptive advantage.

SUMMARIZE

Discuss why hyphae are an adaptive advantage in fungi.

Accept all reasonable responses. Hyphae help fungi obtain sufficient nutrients by providing a

large surface area for nutrients to be absorbed.

Name_____ Date _____

Fungi

Section 20.2 Diversity of Fungi

Main Idea

Details

Skim Section 2 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

1. Accept all reasonable responses.

2.

Review—— Vocabulary

Use your book or dictionary to define flagellated.

flagellated

having long projections that propel organisms with a whiplike

motion

New———— Vocabulary

Write the correct vocabulary term in the left column for each definition below.

stolons

rhizoids

gametangium

conidiophores

ascocarp

ascus

ascospores

basidiocarp

basidia

basidiospores

in molds, hyphae that spread across the surface of food in molds, hyphae that penetrate food and absorb nutrients

a mold reproductive structure that contains a haploid nucleus

in sac fungi, hyphae that produce spores on their tips for asexual reproduction

in sac fungi, a reproductive structure where a zygote forms during sexual reproduction

in sac fungi, a saclike structure where spores develop during sexual reproduction

spores produced by the ascus in sac fungi

fruiting body of club fungi

club-shaped hyphae that produce spores in club fungi

spores produced in basidia during sexual reproduction of club fungi

Section 20.2 Diversity of Fungi (continued)

←Main Idea¬

⊘Details

Classification of Fungi

I found this information on page ______.

SE, p. 582 RE, p. 240 **Model** a phylogenetic tree for fungi and label the major phyla.

Drawings should resemble Figure 20.8, with all major phyla labeled.

Chytrids

I found this information on page ______.

SE, p. 582 RE, p. 240 **Summarize** the evidence supporting the initial classification of chytrids as protists and later reclassification as fungi.

Chytrids are like protists. flagellated spores

One plus and one

minus hyphae

grow into new

mycelium.

www.alman

Chytrids are like fungi. similar protein and DNA

sequences, chitin-containing

The haploid

zygospore.

nuclei from each

Common Molds

I found this information on page _____.

SE, p. 583 RE, pp. 241–242 **Sequence** how zygomecotes reproduce sexually, by completing the graphic organizer.

Each hyphae

produces a

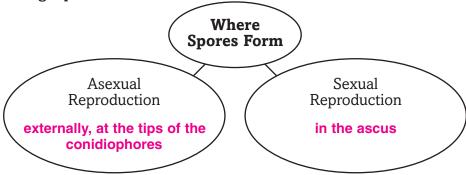
gametangium, grow together gametangium which contains a and fuse. fuse to form a haploid nucleus. diploid zygote. The resulting In favorable The zygote sporangium proconditions, develops a thick duces haploid the zygospore wall and becomes spores that can germinates and a dormant

undergoes

meiosis.

Section 20.2 Diversity of Fungi (continued)

Main Idea


Sac Fungi

I found this information on page _____.

SE, pp. 584-585 RE, pp. 242-243

Details

Organize information about where the spores of sac fungi form during reproduction.

Club Fungi

I found this information on page _____.

SE, pp. 585–586

SE, pp. 585-586 RE, p. 243 Model a club fungi. Label the basidiocarp and the basidia.

Accept all reasonable responses.

.almanahj.com

Other Fungi

I found this information on page ______.

SE, p. 586 RE, p. 243 Predict what might happen to the phylum Deuteromycota as scientists continue to study its species. Explain your reasoning.

Accept all reasonable responses. Students might predict that the phylum might eventually be discontinued. As scientists learn more about how the species in this group reproduce, they might be able to reclassify the species into other phyla.

SUMMARIZE

Explain the adaptive advantages of zygospores that help ensure the survival of the species.

Accept all reasonable responses. Zygospores have a thick wall that helps protect them. Their ability to remain dormant for months enables the next generation to germinate when growing conditions are favorable. Sexual reproduction through zygospores provides genetic diversity, helping zygomycetes survive in changing environments.

Fungi

Section 20.3 Ecology of Fungi

∕Main Idea⁻

Details

Scan Section 3 of the chapter. Use the checklist as a guide.

☐ Read all section titles.
☐ Read all boldfaced words.

Read all tables.

Look at all pictures and read the captions.

Write two facts you discovered about the ecology of fungi.

1. Accept all reasonable responses.

2

Review Vocabulary

Use your book or dictionary to define cyanobacterium.

a bacterium that is a photosynthetic autotroph

cyanobacterium

Use your book or dictionary to define each term.

bioindicator

a living organism that is sensitive to changes in environmental

conditions and is one of the first organisms to respond to changing

conditions

lichen

a symbiotic relationship between a fungus and a photosynthetic

partner

mycorrhiza

a symbiotic relationship between a specialized fungus and plant roots

Academic Vocabulary

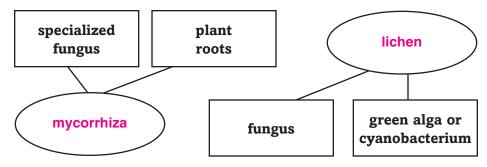
Define cooperate to show its scientific meaning.

cooperate

to work or act together toward a common end or purpose

Section 20.3 Ecology of Fungi (continued)

←Main Idea


Fungi and Photosynthesizers

I found this information on page ______.

SE, pp. 587-589 RE, pp. 244-246

○ Details

Identify the symbiotic relationships formed by the partners in the graphic organizer.

Complete the paragraph below to describe mycorrhizal relationships.

Infection by a fungal partner helps orchid seeds to

germinate . The fungal partner of a *Eucalyptus* tree

absorbs minerals for the tree. The tree can absorb more

water because the hyphae of the fungus increase the

surface area of the tree's roots. In return, the fungus receives

carbohydrates and amino acids from the tree.

Analyze the benefits of lichens as . . .

food for animals	Lichens are the main ground cover on the tundra, providing food for grazing animals. Caribou have a special enzyme for digesting lichens.
	Lichens help plants return to a devastated area by breaking down rocks to form soil and
pioneers	trapping soil and fixing nitrogen that plants need.
bioindicators	Lichens are sensitive to air pollutants. Dying lichens are a warning sign that air pollution is rising in the area.

Section 20.3 Ecology of Fungi (continued)

←Main Idea

(Details

Fungi and Humans

I found this information on page ______.

SE, pp. 589–591 RE, p. 246 **Organize** the beneficial effects of fungi in the table below.

Role of Fungi	Benefits to Humans
as decomposers	recycle nutrients; prevent dead organisms from littering the surface of Earth
in medicine	penicillin; treat high blood pressure, bleeding, migraine headaches; promote contractions during childbirth; help bodies of transplant patients avoid rejecting new organ
in foods	humans eat mushrooms and truffles; yeast used to make bread, beer, and wine; flavor cheeses and colas; used to make soy sauce
in bioremediation www.alm	used in environmental clean-up projects; decompose organic materials in pollutants, breaking them down into harmless substances

Describe the harmful effects of fungi on each of the following.

Plants	Humans
	athlete's foot, ringworm, infections, and oral thrush

SUMMARIZE

Compare and contrast mycorrhizae and lichens.

Accept all reasonable responses. Both involve symbiotic relationships between a fungus and another organism. A mycorrhizae is made up of a fungus and a plant, while a lichen is made up of a fungus and an algae or cyanobacteria.

Introduction to Plants

Before You Read

Use the "What I Know" column to list the things you know about plants. Then list the questions you have about plants in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

www.almanahj.com

Science Journal

Plants are found in many different environments. Describe some of the plants with which you are familiar. Identify the environment in which each lives.

Accept all reasonable responses.			

Introduction to Plants

Section 21.1 Plant Evolution and Adaptations

⊂Main Idea⁻

Details

Scan Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

- 1 Accept all reasonable responses.

Review-**Vocabulary**

Use your book or dictionary to define limiting factor.

limiting factor

any abiotic or biotic factor that restricts the existence, numbers,

reproduction, or distribution of organisms

New Vocabulary

Use your book or dictionary to define each term.

nonvascular plant

plants that do not have vascular tissues

seed

a plant organ of seed plants consisting of an embryo, a food supply, and a protective coat; protects the embryo from drying out

stomata

openings in the outer cell layers of leaves that enable the exchange

of gases even with the presence of a waxy cuticle

vascular plant

plants that have vascular tissues; enables taller growth and survival

on land

vascular tissue

tissues found in vascular plants composed of tubelike, elongated cells through which food, water, and other materials are transported throughout the plant; include xylem and phloem

Academic ocabulary/

Define dominant to show its scientific meaning.

dominant

most immediately noticeable

Section 21.1 Plant Evolution and Adaptations (continued)

←Main Idea

Plant Evolution

I found this information on page ______.

SE, p. 604 RE, pp. 247–248

Details

Sequence the evolution of plants by placing the following information in the correct boxes below.

- algae at edges of seas adapted to life on land
- no plants
- simple plants appear

• algae in oceans

1 billion years ago

400 million years ago

Identify the 6 characteristics of the present-day members of the algae and plant groups.

- cell walls with cellulose chlorophyll in photosynthesis
- a cell plate during cell division similar genes for ribosomal DNA
- same types of enzymes in vesicle store food in the form of starch

Plant Adaptations to Land Environments

I found this information on page _____.

SE, pp. 605–607 RE, pp. 248–249 **Organize** the plant organs by completing the table below. The first row has been filled in for you.

	Location	Purpose	Plant organ?
cuticle	on stems and leaves	reduce water loss	no
leaf	grows from stem	photosynthesis, gas exchange	yes
root	bottom of stem	absorbs water and nutrients	yes
stem	middle of plant	provides support for growth	yes
seed	on plant	protects embryo from drying	yes

Section 21.1 Plant Evolution and Adaptations (continued)

(Main Idea)

Alternation of Generations

I found this information on page ______.

SE, p. 607 RE, pp. 249–250 **Compare** the gametophyte generation and the sporophyte generation of plants. Accept all reasonable responses.

Gametophyte Generation	Sporophyte Generation
haploid	diploid
produces sperm and eggs	produced from the diploid zygote
sperm and eggs form a diploid zygote	multicellular
microscopic in size	produces spores
1	usually dominant over the gametophyte generation

Plant Classification

I found this information on page ______.

SE, p. 609 RE, p. 250 **Classify** the following plant categories by writing an NV in front of nonvascular plants, an NS in front of seedless vascular plants, and a VS in front of vascular plants with seeds.

. . . 41. 1. . . 4 . . .

NS lycophytes

vs cycadopnytes	Nv anthocerophytes
anthophytes	NV bryophytes
coniferophytes	ginkgophytes
NS pterophytes	gnetophytes

7.

SUMMARIZE

Contrast how the sperm reaches the egg differently in seed plants than in non-seed plants.

Accept all reasonable responses. Seed plant's sperm can reach the egg without needing water.

In non-seed plants the sperm need a film of water in order to reach the egg, and require a

NV hepaticophytes

wetter environment.

Introduction to Plants

Section 21.2 Nonvascular Plants

Main Idea	Scan Section 2 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables and graphs.
	Look at all pictures and read the captions.
	☐ Think about what you already know about the diversity of plants.
	Write three facts you discovered about the diversity of plants as you scanned the section.
	1. Accept all reasonable responses.
WWV	v ₂ .almanahj.com
	3
Review— Vocabulary	
symbiosis	a relationship in which two organisms live together in a close
	association
New Vocabulary	Use your book or dictionary to define the following term.
thallose	a liverwort with a body resembling a fleshy, lobed structure

Section 21.2 Nonvascular Plants (continued)

←Main Idea

Diversity of Nonvascular Plants

I found this information on page ______.

SE, pp. 610–612 RE, pp. 251–252

Details

Analyze why nonvascular plants need to be near water.

Nonvascular plants need water for life functions such as reproduction

and photosynthesis. A steady supply of water is not available

everywhere, so nonvascular plants need to be in moist habitats.

Model and label an example of a sporophyte attached to a gametophyte.

Sketches should resemble Figure 21.9 in the book, with sporophyte and gametophyte properly labeled.

www.almanahj.com

Compare characteristics of bryophytes, hepaticophytes, and anthocerophytes by completing the table below.

Accept all reasonable responses.

	Description	Environment	Example
Bryophyta	small plants with leafy stems	variety of habitats	mosses, peat moss
Hepaticophyta	thallose body, shape of liverwort gametophyte looks like an animal's liver	grown on damp soil, tropical jungles, and places with dense fog	liverworts
Anthocerophyta	thallose body, shape of hornwort sporophyte looks like an animal's horn	moist environments	hornworts

Section 21.2 Nonvascular Plants (continued)

Main Idea

Details

Organize the following terms with the correct definition below: sporophyte, gametophyte, thallus, and rhizoid.

Term	Definition
rhizoid	colorless, multicellular structures found in nonvascular plants; used to help anchor the plants to the soil
thallus	broad shape resembling a fleshy lobed leaf
sporophyte	diploid generation; grow attached to gametophytes
gametophyte	haploid generation; dominant generation

Conclude how anthocerophytes became known as hornworts.

The sporophyte of an anthocerophyte resembles the horn of an animal.

Create a graphic organizer that models the possible common ancestry of nonvascular and vascular plants. Accept all reasonable responses.

common ancestor; probably had alternating sporophyte and gametophyte generations, cellulose in cell walls, and chlorophyll nonvascular plants

vascular plants

SUMMARIZE

Classify each group of nonvascular plants by naming one species of the group and one identifiable structure on that species. Accept all reasonable responses.

Bryophytes

Anthocerophytes

Hepaticophytes

Introduction to Plants

Section 21.3 Seedless Vascular Plants

⊂Main Idea⁻

Details

Predict the primary difference between the plants you read about in Section 2 of the chapter and the seedless vascular plants that you will read about in Section 3.

Accept all reasonable responses. Students should recognize that

vascular tissue is the main difference between the two plant groups.

Review-Vocabulary

Use your book or dictionary to define spore.

spore

a reproductive haploid cell with a hard outer coat that can develop

into a new organism without the fusion of gametes

Vocabulary

Use your book or dictionary to define each term.

epiphyte

a plant that lives anchored to an object or another plant

rhizome

thick, underground stem of a fern and other vascular plants; often

functions as an organ for food storage

sorus

clusters of sporangia usually found on the surface of fern fronds

sporangium

a structure in ferns that forms spores; a cluster of sporangia form a

sorus

strobilus

compact cluster of spore-bearing leaves produced by some non-seed

vascular plants

Section 21.3 Seedless Vascular Plants (continued)

←Main Idea

Diversity of Seedless Vascular Plants

I found this information on page ______.

SE, pp. 613-616 RE, pp. 253-254

Details

Compare present-day club mosses with their ancestors and describe the structures found in present-day plants.

Fossil Evidence

- were once tree-sized plants
- formed a large part of Paleozoic forests

Present-day Plants

- usually less than 30 cm tall
- dominant sporophyte generation

Club Mosses

almanahi Structures

- roots that grow from base of stem
- · branched or unbranched stems
- small, scaly leaflike structures with vascular tissue

Describe the structures and common locations of ferns and horsetails.

	Ferns	Horsetails
Structures	roots produced from sporophyte; rhizome used to store food; photosynthetic fronds; sporangium where spores form	ribbed, hollow stems with strobili at tips, scalelike leaves, roots
Locations	moist or dry environments	wet environments

Section 21.3 Seedless Vascular Plants (continued)

←Main Idea

Details

Compare the 2 divisions of non-seed vascular plants by completing the table below.

Lycophyta	Pterophyta
club moss or spike moss; sporophyte generation is dominant; sporophyte has roots, stems, and leaflike structures; a single vein of vascular tissue runs through each leaflike structure	ferns and horsetails; become dormant when water is scarce; sporophyte generation has roots, stems, leaves, and rhizomes; the main stem is underground; first of vascular plants to have evolved leaves with veins of branching vascular tissue

Identify each of the following plants or plant structures as lycophyte or pterophyte. Write L for lycophyte and P for pterophyte.

- L club moss
- L and P strobilus
- L spike moss

- P rhizome
- L tropical tree fern
- P frond

P sorus

P scouring rushes

____L epiphyte

SUMMARIZE

Model the two main groups of non-seed vascular plants. Label the important features of each group and give an example of each one.

Accept all reasonable responses.

Introduction to Plants

Section 21.4 Vascular Seed Plants

Main Idea	-	M	air	1 Id	lea
-----------	---	---	-----	------	-----

⊘Details⁻

Scan the illustrations and read the captions. List two conclusions that you can draw about seeds and cones.

- 1. Accept all reasonable responses.
- 2.

Review—— Vocabulary

Use your book or dictionary to define parasite.

parasite

an organism that benefits at the expense of another organism

New——— Vocabulary

Use your book or dictionary to define each term.

annual

anthophyte that lives for one year or less

biennial

anthophyte that has a life span of two years

cone

reproductive structures of cycads and other gymnosperm plants;

may be male or female

cotyledon

structure of seed plant embryo that stores or absorbs food for the

developing embryo

perennial

able to live for several years and produce flowers and seed annually

Section 21.4 Vascular Seed Plants (continued)

← Main Idea −

Diversity of Seed Plants

I found this information on page _____

> SE, pp. 617-621 RE, pp. 255-257

○ Details

Summarize the information about the divisions of seed plants by writing one or two sentences about division. Accept all reasonable responses.

Division Cycadophyta: Plants with cones evolved before plants with

flowers. Cycads have soft stems consisting mostly of storage tissue.

They live in the tropics or in subtropical zones.

Division Gnetophyta: Long-lived plants with unusual structural adaptations. Only one lives in the United States. Welwitschia takes moisture directly from fog, dew, or rain.

Division Ginkgophyta: One living species, Ginkgo biloba, has fern-shaped leaves with male and female structures on separate plants.

Division Coniferophyta: Cone-bearing plants with a wide range of sizes. Male and female cones grow on different branches. Leaves are adapted as waxy needles to survive cold, dry climates.

Division Anthophyta: Flowering plants, also known as angiosperms, widely distributed, anthophytes make up 75 percent of the plant kingdom. They are adapted to a wide variety of environments.

Identify the life span of each of the following types of plants and list one example of each.

Annual: one growing season; tomatoes	Biennial: two years; carrots	Perennial: several years; roses

Section 21.4 Vascular Seed Plants (continued)

(Main Idea

Details

Compare the characteristics of the different divisions of seed plants by completing the table below. The first one has been done for you.

		-	
	Reproduction	Environment	Examples
Cycadophyta	males produce pollen grains from cones, pollen produce motile sperm	tropics and subtropics	there are about 100 species today
Ginkgophyta	males produce pollen grains from cones, pollen produce motile sperm	male ginkgoes planted in cities—they tolerate smog and pollution	Ginkgo biloba
Gnetophyta (.alma)	none given	found in deserts or mountains of Asia, Africa, North America, Central or South America	tropical climbing plants and shrub-like plants
Coniferophyta	reproductive structures produced in cones	found in many forest environments	pine, fir, spruce, juniper, cedar, redwood, yew, larch
Anthophyta	enclose seeds in a fruit	found in a variety of environments	fruit trees

CONNECT

Suppose you want to plant a vegetable garden. Research the soil conditions and overall climate in your area. Then describe a plant that should be successful, and explain your reasoning.

Accept al	l reasonab	le responses.
-----------	------------	---------------

Tie It Together

FURTHER INQUIRY

You have read about the three types of plants:

nonvascular plants, non-seed vascular plants, and seed plants. Now create a quick identification guide to common plants in your area. Your plant guide should be easy to read, yet contain basic information about the reproduction, environment, general structure, and significant characteristics of each plant. Include one plant from each type. Remember that a good plant guide has well-labeled diagrams. When you are finished, share your plant guide with your class. Accept all reasonable responses.

www.almanahj.com

Plant Structure and Function

Before You Read

Use the "What I Know" column to list the things you know about plant structure and function. Then list the questions you have about plant structure and function in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned
	olmonobi oc	

Science Journal

Accept all reasonable responses.

Describe some plants that you eat. Then describe some products that you use that come from plants.

Plant Structure and Function

Section 22.1 Plant Cells and Tissues

←Main Idea

Details

Scan Section 1 of the chapter. Write two questions that come to mind from reading the headings and illustration captions.

- 1. Accept all reasonable responses.
- 2.

Review Vocabulary

Use your book or dictionary to define adaptation.

adaptation

inherited characteristic that results from response to an environmental

factor

New Vocabulary

Classify each vocabulary word in the list to the left as being a plant cell or a plant tissue. Then give a short description.

Cells (8 terms)

Tissues (7 terms)

collenchyma cell
companion cell

cork cambium

epidermis

ground tissue

guard cell

meristem

parenchyma cell

phloem

sclerenchyma cell

sieve-tube member

tracheid

vascular cambium

vessel element

xylem

collenchyma: long plant cell with unevenly thickened walls

companion cell: cell with nucleus that helps transport sugars and other organic compounds through sieve tubes

guard cell: controls the opening and closing of the stomata

parenchyma: most abundant type of plant cell; spherical cell with thin, flexible cell walls and a large central vacuole; important for storage and food production

sclerenchyma: plant cell with rigid, thick walls; dies when mature, but still provides support

sieve-tube member: tubular cell in phloem; lacks nucleus

tracheid: tubular cell in the xylem that has tapered ends; has small openings for transport of water and minerals

vessel element: hollow, tubular cell in the xylem

that produces a tough protective covering for the surface of stems and roots

epidermis: in plants, the outermost layer of flattened cells that covers and protects all parts of the plant

ground tissue: plant tissue that is not meristemic, dermal, or vascular; has diverse functions, including photosynthesis, storage, and support

meristem: region of actively dividing cells

phloem: vascular plant tissue made of tubular cells joined end to end

vascular cambium: lateral meristem that produces new xylem and phloem cells in the stems and roots

xylem: vascular plant tissue composed of tubular cells

Section 22.1 Plant Cells and Tissues (continued)

∕Main Idea⁻

Plant Cells

I found this information on page ______.

SE, pp. 632–633 RE, pp. 259–260

Details

Point out three ways that plant cells differ from animal cells.

Plant cells have a cell wall, a central vacuole, and can contain

chloroplasts.

Model a plant cell. Label the cell wall, central vacuole, and chloroplast.

Accept all reasonable responses. The cell wall, central vacuole, and chloroplast should be accurately labeled.

.almanahj.com

Compare the three types of plant cells by completing the table below. Describe one characteristic and one function for each type of cell.

	Parenchyma	Collenchyma	Sclerenchyma
Characteristic	sphere-shaped cells that have thin, flexible walls	long cells with unevenly thickened cell walls	thick and rigid cells that often die when they mature
Function	used for storage and food production	provide strength and support for surrounding tissue	provide support for plant

Plant Tissues

I found this information on page ______.

SE, pp. 634–638 RE, pp. 260–262

Summarize the function of each of the following.

epidermis: covers and protects the body of a plant

stomata: control the exchange of gases

guard cells: control the opening and closing of stomata

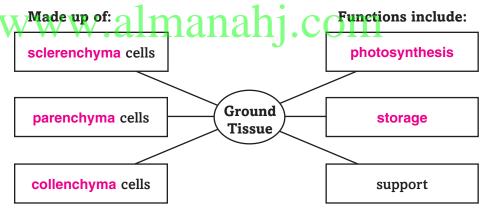
trichomes: reduce the evaporation of water from the plant

Section 22.1 Plant Cells and Tissues (continued)

←Main Idea

I found this information on page ______.

SE, pp. 634–638 RE, pp. 260–262


Details

Model a sketch of phloem tissue. Label the following parts.

- companion cell
- sieve plate
- sieve tube member

Sketches should resemble SE Figure 22.7, and the three parts should be accurately labeled.

Analyze ground tissue by completing the organizer below.

SUMMARIZE

Model a plant. Include captions that explain the three types of cells as well as the four types of tissues. Accept all reasonable responses.

Plant Structure and Function

Section 22.2 Roots, Stems, and Leaves

⊂Main Idea⁻

○ Details

Skim Section 2 of the chapter. For each structure below, list two functions. Accept all reasonable responses.

Roots: __

Stems:

Leaves:

Review Vocabulary

Use your book or dictionary to define apical meristem.

apical meristem

tissue at the tips of roots and stems that produce cells

New——— Vocabulary

Write the correct term in the left column for each definition below.

pericycle

endodermis

lateral roots
single layer of cells that forms a waterproof seal around a root's

layer of cells just within the endodermis that gives rise to

palisade mesophyll

column-shaped cells that contain many chloroplasts; most photosynthesis takes place here

transpiration

loss of water through stomata

vascular tissue

root cap

tough, protective layer of parenchyma cells that covers the tip of a root

cortex

layer of ground tissue in the root that is involved in the transport of water

petiole

stalk that joins the leaf blade to the stem

spongy mesophyll

layer of irregularly shaped, loosely packed cells through which oxygen, carbon dioxide, and water vapor move

Section 22.2 Roots, Stems, and Leaves (continued)

Main Idea

⊘Details

Roots

I found this information on page ______.

SE, pp. 639–641 RE, pp. 263–264 **Compare** the two main types of root systems. Describe taproots and fibrous roots, then make a sketch of each type.

Taproots	Fibrous Roots
Definition: single, thick structures with smaller branching roots	Definition: have many small branching roots that grow from a central point
Sketch: Accept all reasonable responses.	Sketch: Accept all reasonable responses.

Sequence the layers of cells of roots beginning with the outermost layer.

endodermis 1 epidermis 4 pericycle 2 cortex

Stems

I found this information on page ______.

SE, pp. 642-643 RE, pp. 264-265 Distinguish among the three stems that store food.

A tuber is a swollen stem that has buds from which new plants grow.

A corm is a short thickened stem surrounded by leaf scales. Rhizomes also store food.

Summarize the information on stems in the blanks in the paragraph below.

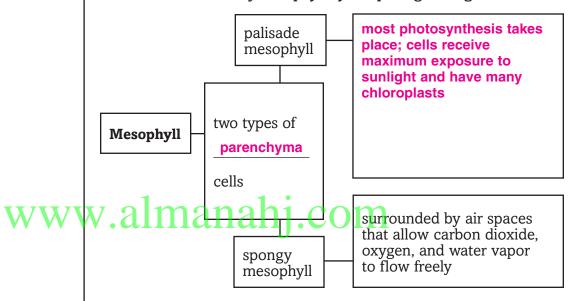
Ste	ems vary in the	eir size and	streng	th The main	
funct	ion of a plant'	s stem is _	support	of the	
	leaves	and	reproductive	_ structures. They	
also _	transport	water a	nd dissolved su	bstances throughout	
the p	lant. The annu	ıal growth	of bundles of _	xylem	
and _	phloem	in the s	stem can lead t	o the formation of	
	growth rings	that re	eveal the	age	
of th	of the plant. Some stems, such as, bulbs, and				
	corms	ctore	food		

∕Main Idea⁻

Details

Section 22.2 Roots, Stems, and Leaves (continued)

Leaves


I found this information on page ______.

SE, pp. 644-647 RE, pp. 265-266 **Compare** the shapes of leaves. Give a brief description of a simple and a compound leaf, and provide one example of each.

simple leaf: blade that is not divided; maple leaf

compound leaf: blade that is divided into leaflets; walnut leaf

Summarize the role of mesophyll by completing the organizer below.

Analyze two plants with leaves that have functions besides photosynthesis. Briefly describe these functions.

- Cacti spines help reduce water loss and provide protection from plant-eaters.
- 2. Carnivorous plants have leaves that can trap insects or small animals.

Su	MM	AR	IZE
----	----	----	-----

their functions.

Use an analogy to explain how plant structures are adapted to

Accept all reasonable responses.

Plant Structure and Function

Section 22.3 Plant Hormones and Responses

⊂Main Idea⊃

Details

Scan Section 3 of the chapter. Use the checklist as a guide. Read all section titles. Read all boldfaced words.

Look at all pictures and read the captions.

Write two facts you discovered about plant hormones.

1. Accept all reasonable responses.

Review-Vocabulary

active transport

Use your book or dictionary to define active transport.

the movement of materials across the plasma membrane against a

concentration gradient; requires energy

New-Vocabulary

Use your book or dictionary to define each term.

auxins

group of plant hormones that promote cell elongation

cytokinins

group of hormones that stimulate mitosis and cell division

ethylene

plant hormone that promotes the ripening of fruit

gibberellins

group of plant hormones that cause plants to grow taller by

stimulating cell elongation

nastic response

responsive movement of a plant not dependent on the direction of

the stimulus

tropism

growth response of a plant to an external stimulus

Section 22.3 Plant Hormones and Responses (continued)

←Main Idea

Details

Plant Hormones

I found this information on page _____.

SE, pp. 648-650 RE, pp. 267-268

Compare four plant hormones by completing the table below.

	Hormone	How This Hormone Regulates Growth	Characteristic of This Hormone	Another Benefit of This Hormone
	Auxin	causes cells to lengthen or elongate	produced in apical meristems	delays fruit formation and keeps side branches from growing
	Gibberellin	helps cells elongate	some dwarf plants do not produce these	increases the rate at which seeds begin to grow and buds develop
	Cytokinin	stimulates the production of proteins needed for mitosis	effects are enhanced by other hormones	plant cells would never divide without it
V	Ethylene	causes cell walls to weaken and soften	is a gas made of carbon and hydrogen	speeds ripening of fruits

Plant Responses

I found this information on page _____.
SE, pp. 650–651
RE, p. 268

Summarize the two types of tropisms in the organizer below.

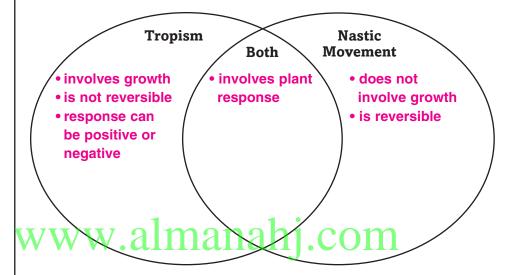
Tronism is a change in a plant's

] 1101				
due	to an	external	stim	ulus
The tropism isPotential the plant grows towa		I		•
	_	·		_ if the plant ne stimulus.
Plants respond toP they grow toward the				
		ravitropism y from the _		grow against

growth

Section 22.3 Plant Hormones and Responses (continued)

~Main Idea⁻


I found this information on page ______.

SE, pp. 650–651 RE, p. 268

○Details

Compare tropism and nastic movement. Place each characteristic in the correct location in the Venn diagram below.

- does not involve growth
- is reversible
- involves growth
- is not reversible
- involves plant response
- response can be positive or negative

Classify each of the following as an example of tropism or nastic movement.

nastic movement Venus flytrap closes on an insect.

tropism Sweet pea tendrils climb a fence.

tropism Plant grows toward a lamp.

nastic movement Mimosa pudica leaflets become limp when

touched.

tropism Plant roots grow into the soil.

CONNECT

Farmers often use hormones to improve their crop yield. Describe a hormone that a farmer might use and how the hormone can help increase crop output.

Accept all reasonable responses. Farmers use gibberellins to increase the formation of fruit.

Farmers might pick unripe fruit and use ethylene to ripen it later. Farmers can use auxins to

control the ripening of their fruits.

Reproduction in Plants

Before You Read

Use the "What I Know" column to list the things you know about plant reproduction. Then list the questions you have about reproduction in plants in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

www.almanahj.com

Science	Inurnal
JUEILLE	Julilia

Accept all reasonable responses.

Explain how you think life on Earth would be affected if plants were to stop reproducing.

Reproduction in Plants

Section 23.1 Introduction to Plant Reproduction

←Main Idea

Details

Skim Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

1. Accept all reasonable responses.

2.

Review Vocabulary

Use your book or dictionary to define flagellated.

flagellated

having one or more flagella that propel a cell by whiplike motion

New Vocabulary

Use your book or dictionary to define each term.

chemotaxis

movement of moss sperm through a film of water to the

archegonia in response to chemicals produced by archegonia

heterosporous

in conifers, the production of two types of spores that develop into

male or female gametophytes

megaspore

female spore formed by some plants; develops into a female gametophyte

micropyle

opening in the ovule through which the pollen tube enters

microspore

male spore formed by some plants; develops into a male gametophyte

prothallus

tiny heart-shaped fern gametophyte that grows from spores;

contains chloroplasts

protonema

in mosses, a small green filament of haploid cells that develops from

a spore; develops into the gametophyte

vegetative reproduction

type of asexual reproduction in plants where a new plant is

produced from existing plant organs or parts of organs

Section 23.1 Introduction to Plant Reproduction (continued)

←Main Idea

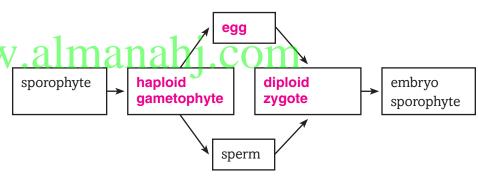
Details

A haploid cell

Vegetative Reproduction

I found this information on page _____.

SE, pp. 662-663 RE, p. 269 **List** three examples of vegetative reproduction.


- Accept reasonable responses; the text refers to moss plants
 growing from fragments; liverworts reproducing from gemmae cups;
- 2. strawberries from stolons; potatoes from eyes; and various plants from tissue culture technique.

3.

Alternation of Generations

I found this information on page _____.

SE, p. 663 RE, p. 270 **Summarize** the alternation of generations in the flowchart below. Use the words eggs, diploid zygote, and haploid gametophyte.

Moss Reproduction and Life Cycle

I found this information on page _____.

SE, p. 664 RE, p. 271 **Model** the life cycle of mosses by completing the flowchart below.

can germinate	→	protonema	→	occurs, a diploid
to form a				zygote forms.
If the spores land in		Cells in the		The zygote
a favorable		sporophyte capsule undergo		undergoes cell division to
environment, they	—	meiosis ,	—	become the
can germinate		producing		sporophyte
and develop into		haploid		
a new plant		spores.		

If fertilization

Section 23.1 Introduction to Plant Reproduction (continued)

←Main Idea

Fern Reproduction and Life Cycle

I found this information on page ______.

SE, p. 665 RE, p. 272

Details

Sequence the life cycle of ferns by numbering the following steps in the order that they occur. The first and last steps have been done for you.

- 1 A spore develops to form a prothallus.
- <u>8</u> If pieces of the rhizome break off, new fern plants can develop from the pieces by vegetative reproduction.
- 4 If fertilization occurs, the resulting diploid zygote develops into a sporophyte.
- ______ The prothallus dies and decomposes as the sporophyte matures.
- ______ The mature fern consists of rhizomes from which roots and fronds grow.
- _____ Sperm released by antheridia swim to eggs in archegonia.
- 5 As soon as the sporophyte produces green fronds, it can carry on photosynthesis and live on its own.
- The prothallus produces archegonia and antheridia on its surface.
- 9 The cycle continues when sporangia develop on the fronds, and spores are released.

Conifer Reproduction and Life Cycle

I found this information on page ______.

SE, pp. 665–667 RE, p. 273 **Compare** female and male conifer cones in the table below. List two facts about each type of cone. Accept all reasonable responses.

Female Cones	Male Cones
larger than male cones; two ovules form on each scale; megaspores eventually become female gametophyte; depend on sporophyte for protection and nutrition	sporangia undergo meiosis to microspores; pollen grains transported on air currents

SUMMARIZE

Create a graphic organizer to compare the reproductive structure of mosses, ferns, and conifers. Accept all reasonable responses.

Reproduction in Plants

Section 23.2 Flowers

⊂Main Idea⁻

Details

Skim Section 2 of the chapter. Write two facts you discover about flower organs or adaptations.

- 1. Accept all reasonable responses.
- 2. _

Review—— Vocabulary

Use your book or dictionary to define nocturnal.

nocturnal

active only at night

New Vocabulary

Use your book or dictionary to define the following term.

photoperiodism

flowering plant response to differences in the length of night and day

Classify each term as being a type of plant or a part of a plant.

Write a brief definition of each term.

day-neutral plant

intermediate-day plant

long-day plant

petal

pistil

sepal

short-day plant

stamen

Type of Flowering Plant (4 terms)	Part of Flowering Plant (4 terms)
day-neutral plant: plant that flowers over a range in the number of daylight hours	petal: leaflike flower organ, usually brightly colored structure at the top of a stem
intermediate-day plant: plant that flowers as long as the number of hours of darkness is neither too great nor too few	pistil: female reproductive organ of a flower
long-day plant: plant that flowers when the number of daylight hours is longer than its critical period	sepal: leaflike, usually green structure that encircles the top of a flower stem below the petals and protects the bud
short-day plant: plant that flowers when the number of daylight hours is shorter than its critical period	stamen: male reproductive organ of a flower consisting of an anther and a filament

Section 23.2 Flowers (continued)

←Main Idea

Flower Organs

I found this information on page ______.

SE, pp. 668–669 RE, pp. 274–275

⊘Details

Compare the organs of a flower in the table below. Give the location and function for each organ.

Organ	Location	Function	
Petal	top of stem	attracts pollinators; provides surface for insect pollinators to rest on	
Stamen	inside flower; anther at top of filament	male reproductive organ	
Sepal	outermost part of flower	protective covering for flower bud	
	z almanahi	com	
Pistil	attached to stem inside flower	female reproductive organ	

Model a complete flower and label the petals, sepals, stamen, and pistil.

Sketches should resemble the one on SE p. 668. The four organs should be labeled appropriately.

Section 23.2 Flowers (continued)

Main Idea

(Details—

Flower Adaptations

I found this information on page ______.

SE, pp. 669–673 RE, pp. 275–277 **Identify** the three types of pollination.

animal pollination

self-pollination

Types of wind pollination pollination

Compare the four types of plants based on their critical periods.

		<u> </u>		
Plant Type	Flowering Season	Characteristic	Example	
Short-day plant	winter, spring, or fall	flower when the number of hours of darkness is greater than the critical period	poinsettias, pansies, tulips, chrysanthemums	
Long-day plant	summer 1	flower when the number of hours darkness is less than the critical period	lettuce, spinach, aster, coneflowers, potatoes	
Day-neutral plant	any season	flower over a range in the number of hours of darkness	roses, corn, cotton, buckwheat, tomatoes	
Intermediate- day plant	any season	will flower if the number of hours of darkness is neither too great or too few	sugarcane, some grasses	

SUMMARIZE

Collect a flower from your home or neighborhood. On a separate sheet of paper, draw a diagram of the plant and label the major parts. List its critical period, flower adaptations, and methods of pollination. Accept all reasonable responses.

Reproduction in Plants

Section 23.3 Flowering Plants

⊂Main Idea⁻

Details

Scan the illustrations, and read the captions in Section 3 of the chapter. List two facts you learn about seeds.

- 1. Accept all reasonable responses.
- 2.

Review Vocabulary

Use your book or dictionary to define cytoskeleton.

cytoskeleton

the long, thin protein fibers that form a cell's framework

New——' Vocabulary

Use your book or dictionary to define each term.

dormancy

period of inactivity in a mature seed prior to germination

endosperm

food storage tissue in an anthophyte seed that supports development

Of the growing embryo anall. Com

germination

beginning of the development of an embryo into a new plant

hypocotyl

portion of the stem nearest the seed in a young plant

polar nuclei

two nuclei in the sac of a flowering plant that become the triploid

endosperm when joined with a sperm during double fertilization

radicle

embryonic root of an anthophyte embryo; the first part of the young sporophyte to emerge during germination

protective tissue around a seed, formed from outer layers of the ovule

Academic | Vocabulary

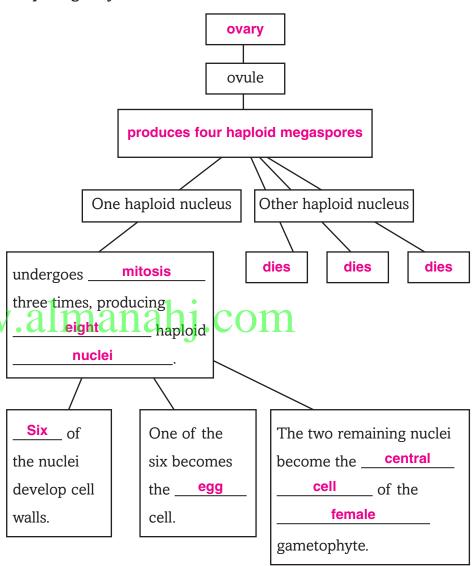
seed coat

Define compatible to show its scientific meaning.

compatible

capable of functioning together

Section 23.3 Flowering Plants (continued)


←Main Idea

____ (Details

Life Cycle

I found this information on page ______.

SE, pp. 674-676 RE, pp. 278-280 **Summarize** the development of the female gametophyte by completing the flowchart below.

Compare how the two haploid nuclei are involved in fertilization.

Tube Nucleus	Generative Nucleus
directs the growth of the pollen tube down through the pistil to the ovary	divides by mitosis, producing two sperm nuclei, which move down the pollen tube to the microphyle

Section 23.3 Flowering Plants (continued)

←Main Idea

Details

Results of Reproduction

I found this information on page ______.

SE, pp. 676–679 RE, pp. 280–282 **Compare** the characteristics of seeds and fruits in the table below.

		Structure	Formation	Benefit to Plant
•	Seed	contains an embryo and a food supply covered by a protective coat	begins when fertilization occurs; zygote divides and develops into embryo plant; triploid central cell develops into endosperm; wall of ovule becomes seed coat	ensures future generation
	Fruit	includes the ripened ovary of a flower	as seed forms, the ovary becomes the fruit	protection of seeds, dispersal of seeds, ensures future generation
	VW	w.alma	nahj.co	m

Analyze the specific conditions that the following seeds need to germinate.

some conifer and wildflower seeds: must be exposed to fire

apple seeds: need a period of freezing temperatures

coconut seeds: have to soak in salt water

SUMMARIZE

Create a flowchart to describe the life cycle of flowering plants.

Accept all reasonable responses.

Introduction to Animals

Before You Read

Use the "What I Know" column to list the things you know about animals. Then list the questions you have about animals in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

www.almanahj.com

Science Journal

Accept all reasonable responses.

Describe at least three characteristics that distinguish animals from plants.

245

Introduction to Animals

Section 24.1 Animal Characteristics

∕Main Idea⁻

Details

Scan the titles, boldfaced words, pictures, figures, and captions in Section 1 of the chapter. Write two facts you discovered about animals as you scanned the section.

- 1 Accept all reasonable responses.
- 2.

Review Vocabulary

Use your book or dictionary to define protist.

protist

diverse group of unicellular or multicellular eukaryotes that lack

complex organ systems and live in moist environments

New——' Vocabulary

Compare the terms in the table by defining them side by side.

blastula
endoskeleton
exoskeleton
external fertilization
gastrula
hermaphrodite
internal fertilization
invertebrate
vertebrate
zygote

_		
V	vertebrate animal with an endoskeleton and a backbone	invertebrate animal without a backbone
	endoskeleton internal skeleton	exoskeleton hard or tough outer covering that provides a framework of support
	internal fertilization sperm and egg combine inside the animal's body	external fertilization sperm and egg combine outside the animal's body
	blastula fluid-filled ball of cells formed during early embryo development	gastrula two-cell-layer sac with an opening at one end, formed when blastula cells move inward during embryo development
hermaphrodite produces both eggs and sperm in the same body zygote fertilized egg cell		

List the cell layers from the most interior to the most exterior. Identify the tissues that develop from each layer.

ectoderm endoderm mesoderm Layers of Cells in the Gastrula

ectoderm: nervous tissue and skin

endoderm: digestive organs and lining of the digestive tract mesoderm: muscle tissue, circulatory system, excretory system,

and, in some animals, respiratory system

Section 24.1 Animal Characteristics (continued)

Main Idea

General Animal Features and Feeding and Digestion

I found this information on page ______.

SE, p. 692 RE, p. 283

○Details

Identify the following facts about animals.

earliest true animals from which all others likely evolved choanoflagellates

features that mark the branching points of the evolutionary tree adaptations in form

way that animals differ from plants in obtaining food

Plants make their own food from sunlight; animals get their food by eating organisms.

Support

I found this information on page ______.

SE, p. 693 RE, p. 283 **Classify** each animal below as having an endoskeleton or an exoskeleton.

beetle exoskeleton shark endoskeleton horse endoskeleton cicada exoskeleton

Habitats

I found this information on page ______.

SE, p. 693 RE, p. 284 **Analyze** each habitat below. Give an example of an adaptation that enables an animal to live in that habitat.

Habitat	Adaptation
Polar region	Accept all reasonable responses.
Ocean	
Rain forest	

Animal Cell Structure and Movement

I found this information on page ______.

SE, p. 694 RE, p. 284 **Summarize** the important differences between animals and plants.

- Accept all reasonable responses.
- •
- •
- •

Section 24.1 Animal Characteristics (continued)

Main Idea

Reproduction

I found this information on page ______.

SE, pp. 695–697 RE, pp. 284–285

○Details

Sequence the development of an animal from fertilization to birth by completing the following paragraph.

During ______ reproduction, fertilization occurs
when an _____ egg cell _____ is penetrated by a ______ sperm cell _____,
forming a _____ zygote _____. After _____ mitosis _____ and cell division
begin, the egg is called an embryo. The cells form a fluid-filled ball
called a ______ blastula ______. Some cells migrate inside, forming a
cup-shaped structure called the ______ gastrula ______, which has
two cell layers. The layer on the outside is the ______ ectoderm
and will form the ______ nerve tissue and skin ______. The
inner layer is called the ______ endoderm _____, which will form
the animals's digestive tract lining and digestive organs

All animals retain the two embryonic cell layers throughout their lives, but others develop a third cell layer, the mesoderm, between the other layers. This layer forms the body

Identify the tissue types into which each layer develops.

Cell Layer	Forms These Tissues
Mesoderm	muscle, circulatory, excretory, sometimes respiratory
Ectoderm	skin, nerve
Endoderm	digestive tract lining and organs

SUMMARIZE

Next to each prefix, write a vocabulary word from this section that uses this prefix. Then write what you think the prefix means.

endo- endoskeleton or endoderm; inside

exo- exoskeleton; outside

meso- mesoderm; middle

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Introduction to Animals

Section 24.2 Animal Body Plans

∕Main Idea¬

○Details •

Scan the figures and read the captions in Section 2 of the chapter. Write two facts that you discovered about animal body plans.

1. Accept all reasonable responses.

2

Review—— Vocabulary

Use your book or dictionary to define phylogeny.

phylogeny

evolutionary history of a species based on comparative relationships

of structures and comparisons of modern life-forms with fossils

New——— Vocabulary

Compare the terms within each table by writing their definitions.

acoelomate

anterior

bilateral symmetry

cephalization

coelom

deuterostome

dorsal

posterior

protostome

pseudocoelom

radial symmetry

symmetry

ventral

anterior head end of bilateral animals where sensory organs are often located posterior tail end of bilaterally symmetrical animals

dorsal upper surface of bilaterally symmetrical animals

ventral lower surface of bilaterally symmetrical animals

cephalization body plan that tends to concentrate nervous tissue and sensory organs at the anterior end of the animal

symmetry term describing the arrangement of an animal's body structures

bilateral can be divided down the body's length into two similar right and left halves radial can be divided along any plane, through a central axis, into roughly equal halves

protostome animal with a mouth that develops from the opening in the gastrula

deuterostome animal whose mouth develops from cells other than those at the opening of the gastrula

coelom fluid-filled body cavity completely surrounded by mesoderm acoelomate an animal without a coelom

psuedocoelom fluid-filled body fluid-filled body with mesoderm

Section 24.2 Animal Body Plans (continued)

∕Main Idea⁻

Evolution of Animal Body Plans and Development of Tissues

I found this information on page ______.

SE, pp. 698–699 RE, pp. 286–287

Symmetry

I found this information on page _____.

SE, p. 700 RE, pp. 287–288

○ Details

Model an evolutionary tree, and show what the trunk, branches, and branching points represent. Accept all reasonable responses.

Analyze the evolutionary sequence by completing the sentences.

The earliest animals had <u>asymmetrical</u> body plans, as do their modern descendants, such as <u>sponges</u>.

Later, sea stars, hydras, and other animals appeared with

wadial symmetry 1. They were able to detect and capture _____ coming from any direction.

The last body plan to develop was ______bilateral symmetry with a head at the _____ end of the body and a tail at the _____ end of the body.

Model a bilaterally symmetrical being. Then create characters showing asymmetry and radial symmetry. Use your imagination. List the number of arms, legs, eyes, etc., that each character has. Accept all reasonable responses.

Bilateral Symmetry	Radial Symmetry	Asymmetry
body parts: 2 eyes, 2 legs, 2 arms, 1 nose in center	body parts:	body parts:

Section 24.2 Animal Body Plans (continued)

∕Main Idea⁻

\subset Details $^-$

Body Cavities

I found this information on page ______.

SE, p. 701 RE, p. 288 **Model** each type of body cavity labeled below. Diagrams should resemble SE p. 701. Accept reasonable variations.

Acoelomate	Pseudocoelomate	Coelomate

Development in Coelomate Animals

I found this information on page _____.

SE, p. 703 RE, p. 289 **Compare** mouth development in the two major lines of coelomates.

Coelomates

Protostomes

Mouth develops from opening in gastrula.

Deuterostomes

Anus develops from opening in gastrula; mouth develops from another part of gastrula.

Segmentation

I found this information on page ______.

SE, p. 703 RE, p. 289 **Analyze** two advantages of segmentation.

- 1. animal can survive damage to one segment; other segments
 - might be able to take over functions of damaged segment
- 2. movement more effective because segments can move

independently

SUMMARIZE

Describe the general evolutionary trend of animal body parts.

Explain your description. Accept all reasonable responses.

The general trend is from simple to complex. Early animals lacked true tissues. As animals

evolved, tissues developed. Tissues evolved into specialized tissues and organ systems.

Introduction to Animals

Section 24.3 Sponges and Cnidarians

←Main Idea

Details

Skim Section 3 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

1 Accept all reasonable responses.

2.

Review Vocabulary

Use your book or dictionary to define diploid.

diploid

cell with two of each kind of chromosome

New Vocabulary

Use your book or dictionary to define each term.

cnidocyte

stinging cell

filter feeder

organism that gets its food by filtering small particles from water

gastrovascular cavity

in cnidarians, large cavity where digestion takes place

medusa

cnidarian body form in which the body is umbrella-shaped with

tentacles that hang down

nematocyst

capsule holding a coiled, threadlike tube containing poison and barbs

nerve net

nervous system of cnidarians that conducts impulses to and from all

parts of the body

polyp

cnidarian body form in which the body is tube-shaped with a mouth

surrounded by tentacles

sessile

organism that attaches to one place and stays there

Academic - Vocabulary

Define survive to show its scientific meaning.

survive

to remain alive

Name	Date

Section 24.3 Sponges and Cnidarians (continued)

← Main Idea

Sponges |

I found this information on page _____.

SE, pp. 705-709 RE, pp. 290-292

(Details

Model a sponge. Use the figure in your book to help you. Label the six parts that are listed in the table below on your diagram. Then describe the function of each part in the table below.

Diagrams should resemble the illustration on SE p. 706. Accept all reasonable responses.

Sponges	ohi oom
Body Part	Function of Body Part
Osculum	water and wastes expelled through this mouthlike opening at the top of the sponge
Epithelial-like cells	thin, flat cells that contract (and close pores) in response to touch or an irritating chemical
Collar cells	cells that line the interior of the sponge; their agella whip back and forth to draw in water
Pores	cells that surround pores and allow water (with food and oxygen) into the sponge's body
Archaeocytes	carry nutrients to other cells, aid in reproduction, and produce spicule chemicals
Spicules	small, needlelike structures between cell layers that form the support structure

Section 24.3 Sponges and Cnidarians (continued)

Main Idea

\subset Details $^{-}$

Cnidarians

I found this information on page ______.

SE, pp. 710-715 RE, pp. 292-294 **Compare** a polyp with a medusa by filling in the table.

	Polyp	Medusa
Body shape	tubelike	umbrella (bell)
Position of mouth	top side	underside
Position of tentacles	top side	underside

Model the complete life cycle of a jellyfish.

Diagrams should resemble SE p. 712. Accept all reasonable responses.

www.almanahj.com

SUMMARIZE

Compare cnidarians and sponges.

Accept all reasonable responses. Both groups have one body opening and two cell layers, although cnidarian cell layers are organized into tissues. Cnidarians have radial symmetry, but sponges are asymmetrical. Most cnidarians have polyp and medusa stages in their life cycle.

Most sponges have the same form throughout their life cycle.

Worms and Mollusks

Before You Read

Use the "What I Know" column to list the things you know about worms and mollusks. Then list the questions you have about these organisms in the "What I Want to Find Out" column. Accept all reasonable responses.

all reasonable responses.		_
K	W	L
What I Know	What I Want to Find Out	What I Learned

www.almanahj.com

Science Journal

Even the simplest organism has a role in the ecological community. Hypothesize the role of mollusks in their ecosystems. Why would people need to know about worms?

Accept all reasonable responses.		

255

Sopyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Worms and Mollusks

Section 25.1 Flatworms

⊂Main Idea⊃

Details

Scan the illustrations and read the captions in Section 1 of the chapter. List three characteristics of flatworms that you discovered.

- 1 Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define acoelomate.

acoelomate

an animal that has no body cavity

New Vocabulary

Use your book or dictionary to define each term.

flame cells

in flatworms, bubblelike cells lined with cilia that help move water and excretory substances out of the body COM

ganglion

group of nerve cell bodies that coordinates incoming and outgoing nerve signals in flatworms

pharynx

in planarians, the tubelike, muscular organ that extends from the mouth; aids in feeding and digestion

proglottid

a section of a tapeworm that contains muscles, nerves, flame cells,

and male and female reproductive organs

regeneration

replacement or regrowth of missing body parts

scolex

knob-shaped head of a tapeworm, with hooks and suckers that

attach to the intestinal lining of a host

Name	Date
Name	Date

Section 25.1 Flatworms (continued)

(Main Idea

Body Structure

I found this information on page _____.

SE, pp. 726-728 RE, pp. 295-297

Details

Summarize facts about flatworms in the table.

Accept all reasonable responses.

Size Range 1mm to several meters	Number of Species about 20,000
Preferred Environments freshwater, marine, moist land and inside living bodies	Adaptations for Movement of Free-living Flatworm cilia on undersides, mucous production
Diet of a Free-living Flatworm dead or slow-moving organisms	Symmetry bilaterally symmetrical
What Happens When Free-living Flatworms Are Damaged can regenerate, or grow new body parts	Adaptations for Parasitic Lifestyle hooks and suckers, reduced or no digestive system

almanahj.com

Model a flatworm. Label at least nine body parts.

Diagrams should resemble SE p. 727. Accept all reasonable responses.

Section 25.1 Flatworms (continued)

←Main Idea

Diversity of Flatworms

I found this information on page ______.

SE. pp. 729–730 RE, p. 297

Details

Identify the correct flatworm class for each characteristic below and write it in the appropriate box. Some characteristics may belong in more than one class.

- parasitic
- free-living
- scolex
- eyespots

- · flukes
- auricles
- · proglottids
- planaria

Classes of Flatworms		
Trematodes	Cestodes	Turbellarians
parasitic flukes	parasitic scolex proglottids	free-living eyespots auricles planaria

Model the life cycle of a fluke.

Diagrams should resemble SE p. 729.

CONNECT

Identify and describe a human disorder that tapeworms and flukes

can cause.

Group	Human Disorder Caused
Tapeworms	infestation of intestines, can burrow through intestinal walls, entering blood and eventually muscle
Flukes	Schistosomiasis, fluke eggs clog blood vessels, causing swelling and eventual tissue damage

Worms and Mollusks

Section 25.2 Roundworms and Rotifers

(Main Idea)	(Details————————————————————————————————————
	Scan Section 2 of the chapter. Use the checklist as a guide.
	Read all the section titles.
	Read all boldfaced words.
	Look at all illustrations and read the captions.
	☐ Think about what you already know about worms.
	Write three facts that you discovered about roundworms and rotifers.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	x.almanahi.com
cilia	short, numerous projections that look like hairs
New Vocabulary	Use your book or dictionary to define each term. Then write a sentence using the word to show its scientific meaning. fluid within a closed space that provides rigid support for muscles
nyurostutie sketeton	to work against
trichinosis	a disease caused by the roundworm Trichinella that can be ingested
	in raw or undercooked pork, pork products, or wild game

Section 25.2 Roundworms and Rotifers (continued)

←Main Idea

Body Structure of Roundworms

I found this information on page ______.

SE. pp. 731–733 RE, pp. 298–299

Details

Organize information about roundworms by filling in the chart below. Accept all reasonable responses.

Phylum: Nematoda	Symmetry: bilateral	
Habitats: everywhere from marine and freshwater habitats to land; some are parasites on plants and animals		
Body shape: cylindrical, unsegmented, tapered at both ends		
Food: some are predators on tiny invertebrates, others feed on decaying plant and animal matter, some feed on living hosts		
Digestive tract of free-living forms: one way, with food entering the mouth and wastes exiting through the anus at the other end		
Circulatory and respiratory organs: none, they depend on diffusion for moving nutrients and gases throughout the body		
Stimuli they can detect: touch and chemicals, some can detect differences between light and dark		
Reproduction method: sexual	Type of fertilization: internal	

Analyze the movement of roundworms.

Roundworm Movement	
Thrashing Movement	They have muscles that run the length of their bodies. As one muscle contracts, another relaxes, causing a thrashing movement.
Role of Pseudocoelom	It acts as a hydrostatic skeleton. The fluid within the pseudocoelom provides rigid support for the muscles to work against.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Section 25.2 Roundworms and Rotifers (continued)

∕Main Idea⁻

Diversity of Roundworms

I found this information on page ______.

SE, pp. 733-735 RE, pp. 299-300

⊘Details •

Identify the roundworm that matches each description.

Animal	Description
pinworm	most common roundworm parasite in the U.S.
hookworm	enters the human body through bare feet
Ascaris	world's most common roundworm infection
Trichinella	carried by infected, undercooked pork
nematode	causes plant diseases
filarial worm	mosquito acts as intermediate host

Identify a negative and a positive effect of nematodes on plants.

Negative: By attaching themselves to plant roots, nematodes can cause the plants to sicken.

Positive: If added to soil infected with crop pests, nematodes can

Analyze the cilia of rotifers by completing the graphic organizer below.

Cilia -

control the spread of the pest insects.

Rotifers

I found this information on page ______.

SE. p. 736 RE, p. 300

Locations:

1. mouth

2. anterior end

Uses:

- 1. movement
- 2. gather food

CONNECT

Compare the digestive tracts of roundworms with those in free-living flatworms. What does the comparison suggest about the probable evolutionary history of roundworms?

Accept all reasonable responses. Free-living flatworms have a digestive tract with only one opening; wastes are ejected through the mouth. Roundworms have digestive tracts with two openings; wastes are ejected through the anus. The digestive tract of roundworms is more advanced, so roundworms probably appeared later than flatworms.

Worms and Mollusks

Section 25.3 Mollusks

←Main Idea

Details

Skim Section 3 of the chapter. Write two questions that come to mind from reading the headings and illustration captions.

1. Accept all reasonable responses.

2

Review — | Vocabulary

Use your book or dictionary to define herbivore.

herbivore

an organism that eats only plants

New———— Vocabulary

Use your book or dictionary to define each term.

closed circulatory system system in which blood moves through the body enclosed entirely in

blood vessels

gills

respiratory structures on the mantle that consist of a system of

filamentous projections; used to move water into and through mantle

mantle

a membrane that surrounds the internal organs of a mollusk;

in mollusks with shells, it secretes the shell

nephridia

organs that remove metabolic wastes from an animal's body

open circulatory system

system in which blood moves through vessels into open spaces

around the body organs

radula

in the mouth of many mollusks, the rasping, tonguelike organ with

rows of teeth; used to drill, scrape, or tear up food

siphon

a tube in octopuses and squids used to expel water taken into the

mantle cavity

•	
I found this information on page SE, pp. 737–741 RE, pp. 301–303	Diagrams should resemble SE p. 738. Accept all reasonable responses.
1 1 1 1 1 1 1 1 1 1	w almanahi com
VV VV	List the snail and squid structures that differ.
	the snail's foot, the squid's tentacles, and the squid's reduce internal shell

and tear up food

Details

Body Structure | **Model** a snail and a squid. Label the body parts of each.

Distinguish two ways mollusks feed.

in water: eggs and sperm are

released at the same time and

fertilization is external

Radula: a tonguelike organ with rows of teeth used to scrape, drill,

Filter feeders: draw in food from the water and strain it

Compare the way mollusks reproduce in water and on land.

Name

← Main Idea
−

Section 25.3 Mollusks (continued)

on land: many land mollusks

both sperm and eggs, and fertilization takes place within

the animal

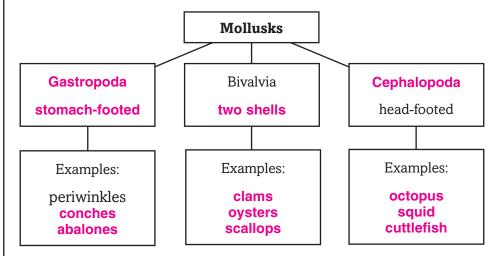
are hermaphrodites and produce

squid's reduced

Date __

Section 25.3 Mollusks (continued)

~Main Idea⁻


Diversity of Mollusks, Ecology of Mollusks

I found this information on page ______.

SE, pp. 742–743 RE, p. 304

Details

Analyze the three classes of mollusks and the meaning of each class name. Provide at least three examples of each class.

Classify each mollusk in the left column of the table. Place it in the proper class.

V VV VV C	
Class	Mollusk Characteristics
Gastropoda	has a single shell and a large foot under the body
Bivalvia	has no radula; has two shells connected with a ligament, and a large, muscular foot for digging in the sand
Gastropoda	is brightly colored and has a layer of mucus covering its body; has a large foot under the body and no shell
Cephalopoda	has a radula and tentacles; has no shell; squirts ink at predators

CONNECT

Compare mollusks' excretory structures with those of two or more groups that evolved earlier.

Accept all reasonable responses. Mollusks have nephridia, excretory structures that filter metabolic wastes from the coelom and remove the wastes from the body. Planarias have simpler structures called flame cells that move fluid along and eliminate water. A jellyfish has no excretory structures; water and salts move in and out of the body by osmosis.

Worms and Mollusks

Section 25.4 Segmented Worms

Main Idea

Details

Skim Section 4 of the chapter. Write three facts that you discovered about segmented worms.

- 1 Accept all reasonable responses.
- 3.

Review Vocabulary

Use your book or dictionary to define protostome.

protostome

an animal with a mouth that develops from the opening in the

gastrula

New Vocabulary

Use your book or dictionary to define each term.

clitellum

a thickened band of segments that produces a cocoon from which

young earthworms hatch

crop

part of the worm's digestive tract where food and soil taken in by the

mouth are stored before passing on to the gizzard

gizzard

muscular sac containing hard particles that help grind soil and food

before they pass into the intestine

setae

tiny bristles on each segment that push into the soil and anchor the

worm during movement

Academic Vocabulary

Define convert to show its scientific meaning.

convert

to change from one form to another

Section 25.4 Segmented Worms (continued)

←Main Idea

Body Structure

I found this information on page ______.

SE, pp. 745-748 RE, pp. 305-307

Details

Summarize the characteristics of segmentation. Accept all reasonable responses.

Segments separated structures for digestion excretion and locomotion.

Segmentation

A segment's rigidity is created by

fluid within the coelom

www.almanahj.com

Sequence the process of digestion in an earthworm.

Food and soil enter through the mouth.

They pass through the pharynx into the crop, where they are stored.

The soil and food pass to the gizzard, where they are ground.

The ground materials pass into the intestine, where nutrients are absorbed.

Undigested material passes out of the body through the anus.

Section 25.4 Segmented Worms (continued)

Diversity of Annelids/Ecology of Annelids/ Evolution of Mollusks and Annelids

I found this information on page ______.

SE, pp. 748–751 RE, pp. 307–308

Details

Organize information about annelids. Identify two characteristics of each annelid. Then write the class to which they belong. Accept all reasonable responses.

fanworms bristleworms

well-developed sense organs, including eyes; many setae; parapodia

Class: Polychaeta

leeches

flattened bodies; no setae; front and rear suckers; saliva contains chemical anesthetic

Class: **Hirudinea** earthworms

ingest soil to extract nutrients; aerate the soil

Class: Oligochaeta

Analyze two ways that each of these annelids benefit their ecosystem. Accept all reasonable responses.

Earthworms

food for many animals

aerate the soil

convert organic debris on the ocean floor

Marine

Polychaetes

into carbon dioxide

food for marine predators

Sequence these developments in the evolution of annelids: body suckers, parapodia, clitella.

From earliest to latest: parapodia, clitella, body suckers

SUMMARIZE

Compare the type of circulatory system found in annelids with that found in some mollusks. State the advantage of the annelid type.

Accept all reasonable responses. Annelids have closed circulatory systems, with the blood entirely enclosed in blood vessels. Some mollusks also have open circulatory systems, in which the blood flows through vessels and in open spaces. A closed system provides a more efficient means for gas exchanges (oxygen and carbon dioxide) in the animal.

Tie It Together

SUMMARIZE

Create a mini poster that highlights the diversity of worms. Accept all reasonable responses.

www.almanahj.com

Name	Date

Arthropods

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a $\bf D$ if you disagree with the statement.

Before You Read	Arthropods	After You Read
	A lobster's hard covering cannot grow as the animal grows.	Α
	A spider begins digesting its food while the food is outside its body.	Α
	When you try to swat a fly, it often escapes because it can sense changes in airflow.	Α
	A newly hatched butterfly looks like an adult butterfly only smaller.	D

www.almanahj.com

Science Journal

S	peculate	about	what	would	happen	if	cockroaches	and	other	insects	were to	disap	pear.
_					Transfer of the contract of th	J							

Accept all	reasonable re	esponses. E	Because of	their import	ance in food	webs, the imp	act of	
extinguishing insect species might be disastrous.								

Arthropods

Section 26.1 Arthropod Characteristics

∕Main Idea⁻

Details

Skim Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

- 1. Accept all reasonable responses.
- 2.

Review Vocabulary

Use your book or dictionary to define ganglion.

ganglion

a group of nerve cell bodies that coordinates messages

New Vocabulary

Write the correct term in the left column for each definition below.

cephalothorax

spiracle

tracheal tube

abdomen

Malpighian tubule

book lung

molting

thorax

appendage

mandible

pheromone

body structure consisting of fused thorax and head regions

opening from the tracheae or book lungs to the outside of an arthropod's body

tube that branches into smaller and smaller tubules to carry oxygen throughout the body

body region of fused segments at the posterior end of an arthropod that contains digestive structures and reproductive organs

in most arthropods, structure that removes cellular wastes from the blood and empties into the gut

saclike pocket with highly folded walls for respiration

in arthropods, process of shedding an exoskeleton

middle body region, consisting of three fused main segments to which, in many arthropods, legs and wings are attached

structure that grows and extends from an animal's body

mouthpart in arthropods that can be adapted for biting and chewing

chemical secreted by many animal species that influences the behavior of other animals of the same species

Academic Vocabulary

Define transport to show its scientific meaning.

transport

to transfer from one place to another

Name_____ Date _____

Section 26.1 Arthropod Characteristics (continued)

Arthropod Features

I found this information on page ______.

SE, pp. 762-764 RE, pp. 309-310

Details

Compare arthropods to annelids by listing characteristics below.

Arthropods

Like annelids: segmented invertebrates, bilateral symmetry, coelomate body cavities, protostome development

Unlike annelids: exoskeletons, jointed appendages

Identify the structures attached to or contained in the main body regions of arthropods.

Anterior: head mouthparts, eyes, antennae

Middle: thorax legs, wings

Posterior: abdomen additional legs, digestive and reproductive structures

What regions are fused in a cephalothorax? head and thorax

Analyze the advantages and disadvantages of an exoskeleton.

Advantages	Disadvantages
soft body tissues, slows water	adds weight, limits body size, made of nonliving material so must be shed to allow room to grow

Evaluate the role of the body functions below in the molting process.

Fluid secreted by skin glands: softens and eventually cracks the old

exoskeleton

Increased blood circulation: puffs up the animal to make the new

hardening exoskeleton larger for growing room

Section 26.1 Arthropod Characteristics (continued)

←Main Idea —

Body Structure of Arthropods

I found this information on page _____

> SE, pp. 765-769 RE, pp. 310-312

○ Details

Model three types of arthropod respiratory structures. Identify the habitat—aquatic or terrestrial—of the arthropods with that type of respiratory system. Label the spiracles.

No spiracles should appear in the diagram of gills.

Spiracles should appear and be labeled in the diagram of tracheal tubes.

labeled in the diagram of book lungs.

appear and be

Spiracles should

Structure:

Gills

Habitat: Aquatic

Structure:

Tracheal tubes

Habitat: Terrestrial

Structure:

Book lungs

Habitat: Terrestrial

Rephrase one key fact about arthropods for each function below.

Excretion: Malpighian tubules remove cellular wastes from the blood and help terrestrial arthropods preserve water balance.

Chemical communication: Pheromones signal behaviors such as mating and feeding, and ants use them to create scent trails.

Movement: Muscles attach to inner surface of exoskeleton and strength of contraction depends on nerve impulse rate.

SUMMARIZE

Identify three structures that arthropods use to respond to their environments. Explain how each structure is helpful to the arthropods.

Accept all reasonable responses. Compound eyes enable arthropods to analyze landscape changes as they fly. Tympanums or the forelegs of crickets allow for quick responses to sound waves. Limbs attached to the inside of exoskeletons facilitate rapid movement.

Arthropods

Section 26.2 Arthropod Diversity

←Main Idea		De	tails	_						
	'									
	_						_			

Scall Section 2 of the chapter. Ose the checklist as a guide.
Read all section titles.
Read all boldfaced words.
Read all tables, figures, graphs, and captions.
Write two facts you discovered as you scanned the section.

1. Accept all reasonable responses.

2. _

Review Vocabulary

Use your book or dictionary to define sessile.

sessile

an organism that is attached to and stays in one place

New Vocabulary

Use your book or dictionary to define each term.

chelicera

arachnid mouthpart that is adapted to function as a fang or pincer

and often is connected to a poison gland

cheliped

front leg of a crustacean that has a large claw adapted to catch and

crush food

pedipalp

arachnid appendage used to sense and hold prey; also used for

reproduction in male spiders and as large pincers in scorpions

spinneret

structure located at the end of a spider's abdomen that spins

secreted fluid protein into silk for web-building

swimmeret

crustacean appendage located behind the walking legs that is used

as a flipper during swimming

Section 26.2 Arthropod Diversity (continued)

← Main Idea

Arthropod Groups

I found this information on page ______.

SE, p. 770 RE, p. 313

Details

Compare the common characteristics of the major arthropod groups.

Arthropod Groups

Example: crab

Group: crustaceans

Antennae: two pairs

Eyes: two compound

Body sections: two-abdomen

and cephalothorax

Appendages: mandibles, five

pairs of legs, swimmerets

Example: fly

Group: insects and relatives

Antennae: yes

Eves: compound and simple

Body sections: three—head,

thorax, abdomen

Appendages: three pairs of

legs; two pairs of wings

Example: wolf spider

Group: spiders and relatives

Antennae: none

Body sections: two-cephalothorax and abdomen

Appendages: six pairs, jointed (chelicerae, pedipalps, four

pairs of walking legs)

Crustaceans

I found this information on page ______.

SE, p. 771 RE, p. 314

Model a lobster and label its appendages.

Sketches should resemble the figure on SE p. 771. Accept all reasonable variations. Students should include: antennae, eye, chelipeds, walking legs, and swimmerets.

Section 26.2 Arthropod Diversity (continued)

Spiders and Their Relatives

I found this information on page ______.

SE, pp. 771-774 RE, pp. 314-315

Details

Distinguish the arachnid appendage for each description below. Names will be used more than once.

Appendage	Description
spinnerets	create silk from fluid protein
chelicerae	function as fangs or pincers
pedipalps	used for sensing and holding prey
chelicerae	often connected to a poison gland
spinnerets	located at the end of a spider's abdomen
pedipalps	large pincers on scorpions

Analyze ways in which a spider uses the web it constructs.

- to capture prey
- to wrap prey until the spider is ready to feed
- Male spider deposits sperm.
- Female spider lays her eggs in a cocoon of spun silk.

Conclude why the leaflike plates on the posterior appendages are important to a female horseshoe crab during reproduction.

The posterior appendages are modified for digging. The female uses

these appendages to dig a burrow into the sand to deposit her eggs.

After sperm is added, she uses them again to cover the eggs with

sand.

SUMMARIZE

Create a concept web that you can use to identify arthropods.

Accept all reasonable responses.

275

Arthropods

Section 26.3 Insects and their Relatives

⊂Main Idea⊃_

Details

Skim Section 3 of the chapter. Examine each illustration and read the caption. Write three facts that you learn about the structures of insects.

- 1. Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define subphylum.

subphylum

a category in biological classification that is below a phylum and

above a class

New——— Vocabulary

Use your book or dictionary to define each term.

caste

group of individuals within a society that performs specific tasks

metamorphosis

series of major changes from a larval form to an adult form

nymph

immature form of an insect that looks like a small adult without fully

developed wings

pupa

nonfeeding stage of metamorphosis in which the animal changes

from the larval form into the adult form

Section 26.3 Insects and their Relatives (continued)

←Main Idea

Diversity of Insects

I found this information on page _____.

SE, p. 775 RE, p. 316

External Features

I found this information on page ______.

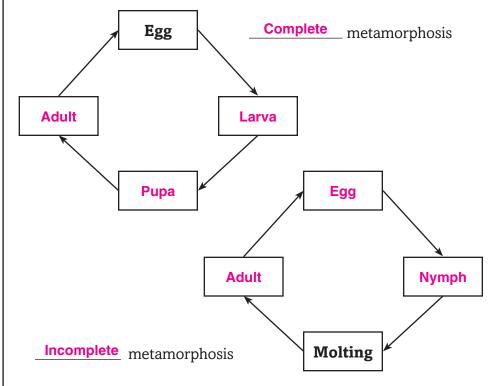
SE, p. 775 RE, p. 317

⊘Details

Conclude how insects can live in many habitats.

- ability to fly and adapt
- small size for easy movement
- exoskeleton for protection and for keeping them from drying out
- · capacity to produce large numbers of offspring

Model a cricket and label its external features.


Drawings should resemble the figure on SE p. 775. Accept all reasonable variations. Body parts should be labeled.

.almanahj.com

Insect Adaptations

I found this information on page ______.

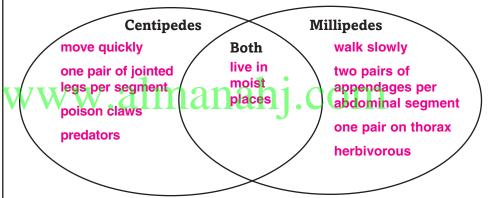
SE, pp. 776-780 RE, pp. 317-320 **Sequence** the stages in two types of metamorphosis by completing the flowcharts below. Identify each type of metamorphosis.

Section 26.3 Insects and their Relatives (continued)

⊂Main Idea⊃_

⊘Details[−]

I found this information on page ______.


SE, pp. 776-780 RE, pp. 317-320 **Model** the honeybee's waggle dance in the space below. Use labels to explain how the dance communicates where the food is.

Sketches should resemble the figure on SE p. 779. Labels should indicate that the length of the straight line gives the distance to the food source. Also, the direction of the line relative to the vertical indicates the direction of the food relative to the Sun.

Centipedes and Millipedes

I found this information on page ______.

SE, p. 780 RE, p. 320 **Compare** centipedes and millipedes by listing their characteristics in the Venn diagram.

Evolution of Arthropods

I found this information on page ______.

SE, p. 781 RE, p. 320 **Conclude** in general how segmentation has evolved from ancestral arthropods to present-day arthropods.

Ancestral arthropods tended to have a large number of identical

segments. This segmentation evolved into more specialized

appendages and fewer segments in present-day arthropods.

SUMMARIZE

Compare and contrast insect features to other arthropod groups.

Accept all reasonable responses.

Echinoderms and Invertebrate Chordates Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Echinoderms and Invertebrate Chordates	After You Read
	A sea star can make its stomach come out of its mouth.	Α
	Many echinoderms can regrow lost body parts.	Α
	A lancelet's body organs are visible through its skin.	Α
	A tunicate is called a sea squirt because it is the smallest creature in the sea.	D

www.almanahj.com

Science Journal

Write what you know	or stories	s you have	e heard	about	sea stars	, sea	urchins,	and	other
spiny sea creatures.									

cept all reasonal				

Echinoderms and Invertebrate Chordates

Section 27.1 Echinoderm Characteristics

←Main Idea

⊘Details

Skim Section 1 of the chapter. Write three questions that come to mind from reading the headings and illustration captions.

- 1 Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define endoskeleton.

endoskeleton

an internal skeleton that provides support and protection and can

act as a brace for muscles to pull against

New Vocabulary

Use your book or dictionary to define each term.

ampulla

muscular sac on a tube foot that contracts, forcing water into the

tube foot

madreporite

strainerlike opening to the water-vascular system in echinoderms

pedicellaria

small pincer on the skin of echinoderms that aids in catching food

and in removing foreign materials from the skin

tube foot

small, muscular, fluid-filled tube that ends in a suction-cuplike

structure and is used in movement, food collection, and respiration

water-vascular system

system of fluid-filled, closed tubes that work together to enable

echinoderms to move and get food

Academic Vocabulary

Define aid to show its scientific meaning.

aid

to give assistance or to help

Section 27.1 Echinoderm Characteristics (continued)

∕Main Idea⁻

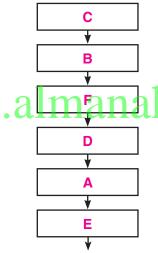
Echinoderms Are Deuterostomes

I found this information on page _____.

SE, p. 792 RE, p. 321

Body Structure

I found this information on page ______.


SE, pp. 793–796 RE, pp. 321–323

○Details

Analyze the importance of deuterostome development.

Accept all reasonable responses. The evolutionary tree branches at deterostomes, marking this development as a major transition in animal phylogeny. Only echinoderms and the chordates that evolved after echinoderms have this type of development.

Sequence the steps that occur in the water-vascular system to enable an echinoderm to move. Complete the flowchart by writing the letters of the scrambled steps in the proper boxes.

- **A.** Water is forced into the tube foot.
- **B.** Water moves through the stone canal to the ring canal.
- **C.** Water is drawn into the madreporite.
- **D.** The muscles of the ampulla contract.
- **E.** With hydraulic suction, the tube foot attaches to a surface.
- **F.** Water moves to the radial canals.

The echinoderm moves.

Identify the echinoderm that moves in the described way.

Echinoderm	Movement
sea urchin	burrows into rocky areas using movable spines
brittle star	makes snakelike movements using tube feet and arms
feather star	uses cirri to grasp soft sediments on the seafloor
sea cucumber	crawls using tube feet and body wall muscles

Section 27.1 Echinoderm Characteristics (continued)

∕Main Idea⁻

Echinoderm Diversity

I found this information on page ______.

SE, pp. 797–800 RE, pp. 324–325

○ Details

Name the class of each echinoderm described below.

Echinoderm Class	Characteristics
Holothuroidea	cucumber shape; leathery covering; tentacles near mouth
Echinoidea	body encased in a test; burrows
Ophiuroidea	often five arms; arms regenerate; no suction cups on tube feet
Asteroidea	often five arms; tube feet used for feeding and movement
Concentricycloidea	no arms; tube feet located around a central disk
Crinoidea	sessile for some part of life

List echinoderm strategies for coping with potential predators.

sea stars: protected by spiny skin

brittle stars: release an arm and regenerate it later

sea urchins: protected by venomous spines and pedicellariae

sea cucumbers: cast out some internal organs and regenerate them

Ecology of Echinoderms

I found this information on page ______.

SE, p. 801 RE, p. 325 **Analyze** the effect of echinoderms on other organisms in the following situations.

Activity as bioturbators: make nutrients available to other organisms

by stirring up sediment on ocean floor

Unexplained population explosions of crown-of-thorns sea stars:

consume so many coral polyps that they destroy reefs

CONNECT

Give an example of regeneration in humans. Then give an example of regeneration in echinoderms that is beyond the capability of humans.

Accept all reasonable responses. Humans regenerate tissues to replace shed skin cells and

repair broken bones. Humans cannot regenerate whole body parts like echinoderms can.

Name Date

Echinoderms and Invertebrate Chordates

Section 27.2 Invertebrate Chordates

∕Main Idea⁻

Details

Scan the illustrations and read the captions in Section 2. Write two facts you discovered about invertebrate chordates.

- 1. Accept all reasonable responses.
- 2.

Review — | Vocabulary

Use your book or dictionary to define deuterostome.

deuterostome

animal whose mouth develops from cells other than those at the opening of the gastrula

New Vocabulary

Use your book or dictionary to define each term.

chordate

animal belonging to phylum Chordata that has four distinctive

features—a dorsal tubular nerve cord, a notochord, pharyngeal

pouches, and a postanal tail—at some point during development

dorsal tubular nerve cord tube-shaped nerve cord located dorsal to the digestive organs

invertebrate chordate

member of phylum Chordata that has a dorsal tubular nerve cord,
a notochord, pharyngeal pouches, a postanal tail, and possibly an
ancestral thyroid gland but no backbone

notochord

flexible, rodlike structure that extends the length of the body and is

pharyngeal pouch

structure that occurs in pairs in all chordate embryos; connects the

muscular tube that links the mouth cavity and the esophagus

located just below the dorsal tubular nerve cord

postanal tail

structure used primarily for locomotion and is located behind the

digestive system and anus

Section 27.2 Invertebrate Chordates (continued)

←Main Idea

Details

Invertebrate Chordate Features

I found this information on page ______.

SE, pp. 802-804 RE, pp. 326-327 **Identify** the four distinctive features of chordates and their location on the animal. Describe how each feature benefits the animal.

Feature	Location	Benefits
notochord	just below the dorsal tubular nerve cord and runs the length of the body	enables body to bend, rather than shorten, during contraction of muscle segments; for first time enabled side-to-side, fishlike swimming motion
postanal tail	behind the digestive system and anus	can propel an animal with more powerful movements than the body structure of invertebrates without a postanal tail
dorsal tubular nerve cord	above the digestive organs	during development, anterior end becomes the brain and posterior end becomes the spinal cord
pharyngeal • C pouches	connect the muscular tube that links the mouth cavity and esophagus	evolved into gills in aquatic chordates; develop into structures such as tonsils and thymus gland in terrestrial chordates

Analyze the importance of an endostyle.

An endostyle represents an early form of thyroid gland.

Diversity of Invertebrate Chordates

I found this information on page ______.

SE, pp. 804-805 RE, pp. 327-328

Describe the following features of lancelets.

Phylum: Chordata

Skin	: lacks color	and scales; bo	ody structu	res visible th	rough skin
Feed	ling method:	filter feeders;	digestion i	n stomach-li	ke structure

Subphylum: Cephalochordata

Movement: segmented muscle blocks enable fishlike swimming

Sensory structures: **light receptors and small sensory tentacles near mouth**

Blood circulation: pumping action of blood vessels; no heart

Name	Date

Section 27.2 Invertebrate Chordates (continued)

∕Main Idea⁻

I found this information on page _____.

SE, pp. 804-805 RE, pp. 327-328

Details

Model a tunicate. Label its parts. Identify its subphylum.

Subphylum: Urochordata

Drawings should resemble SE p. 805.

Analyze why tunicates are called sea squirts.

When threatened, tunicates can eject a stream of water through the excurrent siphon, possibly distracting the potential predator.

Evolution of Echinoderms and Invertebrate Chordates

I found this information on page ______.

SE, pp. 806–807 RE, p. 328 **Identify** key developments in the evolution of echinoderms and invertebrate chordates by completing the following paragraph.

Probably echinoderms evolved from ancestors with
J
symmetry because echinoderms have this kind of symmetry in the
larval stage. Echinoderms develop radial
symmetry in the adult stage. <u>Deuterostome</u> development
links echinoderms to chordates. The key features of chordates
shared by lancelets and tunicates show their close relationship,
though <u>tunicates</u> have these features only as larvae. A key
development in the evolution of chordates was the <u>notochord</u> ,
which provided support and a place for muscles to attach,
leading to the first large animals.

SUMMARIZE

Why do lancelets excite the scientific community?

Accept all reasonable responses. Fossil evidence and recent molecular data show that lancelets are one of the closest living relatives of vertebrates. Humans are more closely related to lancelets than to any other invertebrate.

Tie It Together

SYNTHESIZE

You plan to visit a large aquarium. You want to be able to identify specific echinoderms and invertebrate chordates among the many sea creatures on display. Create an identification guide by listing two observable features that distinguish each animal below. Features can be physical or behavioral.

Accept all reasonable responses. Listed features must be observable.

Accept all reasonable responses. Listed feature	es must be observable.
Sea Star:	Brittle Star:
generally five arms; clings to rocks with	moves by rowing with snakelike
suckers on tube feet	movements of thin, flexible arms
• spiny skin	no suckers on tube feet
Sea Urchin:	Sand Dollar:
body encased in test with spines	body encased in test that reflects five-
	part pattern of arms in sea stars
burrows in rocky crevices	• burrows in sand
www.al	manah ₁ .com
Sea Lily:	Feather Star:
• sessile	long-branched arms radiating upward
	from central area
flower-shaped body at top of long stalk	• sessile
Sea Cucumber:	Lancelet:
shaped like a cucumber	translucent, scaleless skin—can see
	internal body structures through skin
outer body appears leathery	eel-like body about 5 cm long
Tunicate:	
small, saclike body with siphons	
sessile; might live in masses	

Fishes and Amphibians

Before You Read

Use the "What I Know" column to list the things you know about fishes and amphibians. Then list the questions you have about them in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

www.almanahj.com

variations, and other factors have also been suspected.

Science Journal

Hypothesize what factors might be responsible for amphibian species becoming extinct.

Accept all reasonable responses. Most biologists think amphibians are disappearing because the habitats of amphibians are becoming smaller or unusable; but pollution, temperature

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Fishes and Amphibians

Section 28.1 Fishes

∕Main Idea⁻

Details

Skim Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

1. Accept all reasonable responses.

2

Review Vocabulary

Use your book or dictionary to define notochord.

notochord

a flexible rodlike structure that extends the length of the body

New——' Vocabulary

Write the correct term in the left column for each definition below.

lateral line system

spawning

ventricle

neural crest

atrium

scale

swim bladder

cartilage

operculum

nephron

receptors that enable fishes to detect movement in the water and help keep them upright and balanced

external fertilization in which male and female fishes release their gametes near each other in the water

chamber of the heart that pumps blood to the gills

in vertebrates, group of cells that develop from the nerve cord and contribute to the development of other important features

chamber of the heart that receives blood from the body

small, flat, platelike structure near the skin surface of most fishes

gas-filled space in bony fishes that allows a fish to control its depth

tough, flexible material making up the skeletons or parts of skeletons of vertebrates

movable flap that covers the gills and protects them

filtering unit within the kidney that helps maintain the salt and water balance of the body and remove cellular waste

Academic Vocabulary

Define these terms to show their scientific meaning.

precision

act of moving forward by means of a force that causes motion

propulsion

characterized by accurate action

Section 28.1 Fishes (continued)

Main Idea

Characteristics | Sum

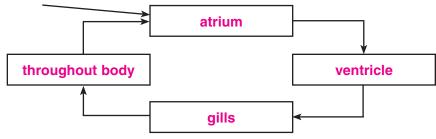
Details

of Vertebrates *I found this information*

on page _____

SE, pp. 820-821 RE, pp. 329-330 **Summarize** information about two major characteristics of vertebrates.

	Vertebral Column	Neural Crest
Formation	It replaces the notochord during embryonic development.	As the nerve cord is forming in the embryo, a layer of ectoderm pinches off just before the tube closes.
Functions V.alm	It surrounds and protects the dorsal nerve.	Important vertebrate features develop from it, including parts of the brain, skull, sense organs, pharyngeal pouches, nerve fibers and insulation, and glands.


Characteristics of Fishes

I found this information on page ______.

SE, pp. 821-827 RE, pp. 330-335 **Model** the flow of blood through the body of a fish by writing the following terms in the correct boxes in the flowchart.

• gills • throughout body • ventricle • atrium

Blood enters heart

Summarize the reproduction method of most fishes.

Most fishes use an external fertilization process called spawning.

Male and female fishes release gametes near each other in the water.

Embryos feed on the yolk of the egg.

289

Section 28.1 Fishes (continued)

(Main Idea)

(Details⁻

I found this information on page _____.

SE, pp. 821–827 RE, pp. 330–335 **Organize** facts about characteristics of fishes. Accept all reasonable responses.

Characteristic	Facts
habitats	most aquatic environments, including the ocean floor and freezing waters of polar regions
adaptive advantages of jaws	enable fishes to prey on a larger range of animals, including fishes that are larger and more active; enable a biting defense
benefits of paired fins	reduce chance of rolling to the side; allow for better steering during swimming
four types of scales and their composition	ctenoid and cycloid: bone; placoid: toothlike materials; ganoid: enamel and bone
functions of gills	take in oxygen from water and give off carbon dioxide
functions of pyloric ceca	secrete enzymes for digestion and absorb nutrients into the bloodstream
functions of nephrons	maintain salt and water balance in body and remove cellular waste from blood
sensory abilities	sense of smell can detect chemicals in the water; color vision; lateral line system to detect movement in the water
process for controlling depth in water	fish sinks when gases diffuse out of swim bladder; fish rises when gases from the blood diffuse into the swim bladder

CONNECT

Design a graphic organizer to summarize the adaptations and functions of fish. Accept all reasonable responses.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Fishes and Amphibians

Section 28.2 Diversity of Today's Fishes			
Main Idea Details			
Scan Section 2 of the chapter. Use the checklist as a guide.			
	Read all headings.		
	Read all boldfaced words.		
	Read all diagrams.		
	Look at all pictures and read the captions.		
	Write three facts that you discovered about fishes.		
	1. Accept all reasonable responses.		
	2		
	3		
Review	w.almanahj.com		

Vocabulary

Use your book or dictionary to define adaptive radiation.

adaptive radiation

the process of evolution that produces many species from an

ancestral species

tetrapod

Use your book or dictionary to define the following term.

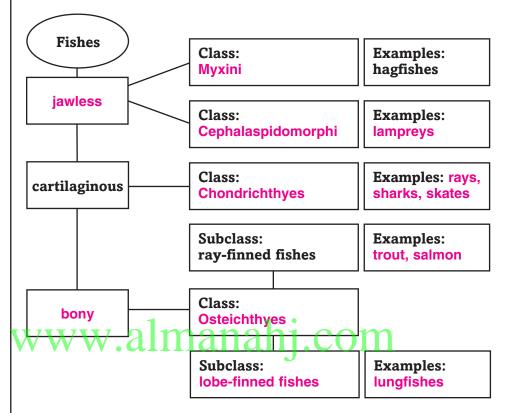
four-footed animal with legs that have feet and toes that have joints;

thought to have evolved from lobe-finned fishes

Use tetrapod in a sentence describing its possible place in the evolution of fishes.

Accept all reasonable responses.

Section 28.2 Diversity of Today's Fishes (continued)


←Main Idea

(Details —

Classes of Fishes

I found this information on page ______.

SE, pp. 828–831 RE, pp. 336–338 **Classify** fishes and provide an example in the organizer below.

Compare and contrast how each pair of fishes are alike and how they differ. Accept all reasonable responses.

Hagfish and lamprey

Alike: both lack jaws, scales, paired fins, and bony skeletons

Different: lamprey is parasite; hagfish is not

Great white shark and whale shark

Alike: both have cartilaginous skeletons

Different: great white is predator; whale shark is filter feeder

Trout and lungfish

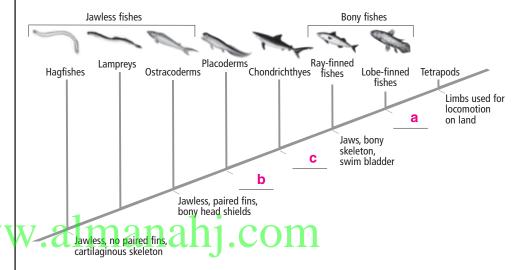
Alike: both have bony skeleton

Different: trout has ray fins; lungfish has lobes and joints

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Section 28.2 Diversity of Today's Fishes (continued)

Main Idea


Details—

Evolution of Fishes

I found this information on page ______.

SE, p. 832 RE, pp. 338-339 **Sequence** the evolution of fishes by writing the letter of the following features on the cladogram in the order in which they appeared.

- a. jaws, bony skeleton, primitive lung
- **b.** jaws, paired fins, bony plates covering body
- c. jaws, placoid scales, cartilaginous skeleton

Ecology of Fishes

I found this information on page _____.

SE, p. 833 RE, p. 339 Analyze the effects of human activities on fishes.

Damming rivers in Pacific Northwest: interfere with migration of

salmon to spawning areas; decline of salmon

Polluting waterways: decline in number and diversity of fishes

CONNECT

Describe ways in which humans can use water resources with less impact on aquatic ecosystems. Identify how an individual could support this effort.

businesses to reduce water pollutants. Dam builders can find ways to reduce the impact of a dam on fish ecology, such as providing a way for migrating salmon to get around the dam.

Individuals can support these efforts by staying informed, voting for politicians who support conservation, and expressing disapproval to companies that pollute.

Accept all reasonable responses. The government can enforce standards that require

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Fishes and Amphibians

Section 28.3 Amphibians

←Main Idea

Details

Skim Section 3 of the chapter. Name two characteristics of amphibians.

1. Accept all reasonable responses.

2.

Review ____ Vocabulary

Use your book or dictionary to define metamorphosis.

metamorphosis

a series of developmental changes in the form or structure of

an organism

New——— Vocabulary ww.almanahj.com

Use your book or dictionary to define each term.

cloaca

chamber that receives the digestive wastes, urinary waste, and eggs

or sperm before they leave the body

ectotherm

animal that cannot regulate its body temperature

nictitating membrane

transparent eyelid that can move across the eye to protect it

underwater and keep it from drying out on land

tympanic membrane

eardrum of an amphibian; in frogs, a thin external membrane on

each side of the head that hears high-pitched sounds

Academic Vocabulary

Define and use diversify in a sentence to show its scientific meaning.

diversify

to produce variety

⊂Main Idea⁻

Evolution of Tetrapods

Section 28.3 Amphibians (continued)

I found this information on page _

> SE, pp. 834-835 RE, pp. 340-341

Characteristics of Amphibians

I found this information on page _____

> SE, pp. 835-838 RE, pp. 341-343

Identify three adaptations that helped amphibians leave water for life on land. Accept all reasonable responses.

- 1 skeletal and muscular systems, including limbs
- 2 lungs for obtaining oxygen from air
- 3 ears to sense sound waves traveling through air

Summarize the characteristics of amphibians. Accept all reasonable responses.

Characteristics of Amphibians

Feeding and digestion: adults predatory; digest in stomach and intestine; wastes collect in cloaca before exiting body

Excretion: kidneys filter wastes from blood; aquatic amphibians excrete ammonia; land amphibians excrete urea

Respiration: larvae exchange gases through gills and skin; adults breathe through lungs and skin

Circulation: double-loop circulation; three chambered heart including two atria and one ventricle

Brain and senses: forebrain detects odors: vision important: nictitating membrane protects eyes; tympanic membrane for hearing; ectotherms, so cannot regulate body temperature

Reproduction: eggs laid and fertilized in water; embryo feeds on yolk; tadpoles change to adults through metamorphosis

Amphibian Diversity

I found this information on page _____.

> SE, pp. 838-839 RE, p. 343

Create a concept map to show characteristics and examples of each order of amphibians. Accept all reasonable responses.

Amphibians				
Order Anura Order Caudata Order Gymnophiona				
frogs, toads	salamanders, newts	caecilians		
lack tails; long legs for jumping; need water for reproduc- tion; toads have poison-secreting gland for protection	long, slim bodies with necks and tails; four legs; salaman- ders live near water; newts aquatic throughout life	legless; wormlike; burrow in soil; feed on worms; skin covers eyes; inter- nal fertilization; lay eggs near water		

Section 28.3 Amphibians (continued)

Main Idea⁻

⊘Details ¹

Evolution of Amphibians

I found this information on page ______.

SE, p. 840 RE, p. 344 **Identify** the evolutionary adaptations that make the branching points for each amphibian group.

Amphibian Group	Evolutionary Branching Points
Rhipidistians	lobe-finned, nostril-like structures on top of mouth
Igthyostegans	heavier leg bones, ankle and wrist joints, stronger muscles
Tetrapods	five toes on front and hind limbs
Caecilians	legless
Salamanders	most have four legs
Frogs and toads	four legs, no tail

Ecology of Amphibians

I found this information on page ______.

SE, p. 841 RE, p. 344 **Describe** factors in the worldwide decline of amphibians and explain how each factor affects the ability of amphibians to survive.

Local factors: habitat destruction, such as draining wetlands to build

buildings; introduction of exotic species

Effects: less water available for amphibian reproduction; exotic species compete with amphibians for food and space or might be

predators of amphibians

Global factors: global climate change, such as changes in

temperature, length of dry season, soil moisture, and rainfall

Effects: can kill amphibians or stress their bodies, making them

more susceptible to disease

SUMMARIZE

Compare amphibians with fishes. List some important evolutionary advances seen in amphibians.

Accept all reasonable responses. Amphibians have a double-loop circulatory system and a

three-chambered heart. Fishes have a single loop and two chambers. Amphibians have lungs

during part of their life cycle; fish breathe by using gills. Most amphibians have limbs.

Reptiles and Birds

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Reptiles and Birds	After You Read
	Snakes flick their tongue to smell odors.	Α
	Some scientists hypothesize that a meteorite crashed to Earth, causing extinction of the dinosaurs.	Α
	All birds have feathers.	Α
	All birds can fly.	D

www.almanahj.com

Science Journal

Think about the lives of fishes compared to the lives of reptiles and the lives of birds. What adaptations do birds and reptiles have to suit them to life on land and in the air?

Accept all reasonable responses.		

297

Reptiles and Birds

Section 29.1 Reptiles

←Main Idea

Details

Skim Section 1 of the chapter. Read the headings and illustration captions. Write three questions that come to mind.

- 1 Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define embryo.

embryo

the earliest stage of development of plants and animals after an egg

has been fertilized

New Vocabulary

Use your book or dictionary to define each term.

amnion

fluid-filled membrane that surrounds a developing embryo inside an

amniotic egg

amniotic egg

egg that is covered with a protective shell and has several internal

membranes with fluids contained between the membranes

carapace

dorsal part of a turtle's shell

Jacobson's organ

saclike structure on the roof of a snake's mouth that senses odors

plastron

ventral part of a turtle's shell

Academic - Vocabulary

Define interpretation to show its scientific meaning.

interpretation

a particular adaptation or version of a work, method, or style

Name	Date

Section 29.1 Reptiles (continued)

Main Idea

Characteristics of Reptiles

I found this information on page ______.

SE, pp. 852-856 RE, pp. 345-348

Details

Identify the adaptations reptiles made to survive on land.

Needed for Life on Land	Adaptation
protect embryo from drying out	amniotic egg
prevent excessive loss of water and minerals from the body	dry, scaly skin; cloaca that reabsorbs water from urine before excretion
exchange gases other than through skin	lungs with larger surface area and ability to inhale and exhale through muscular contraction
crocodile's need for more oxygen delivered to cells to help move its large body	four-chambered heart
snake's need to swallow prey larger than itself	loosely joined bones of the skull and jaw that can spread apart
complex vision and muscle function	larger optic lobes and cerebellum
move faster and bear more body weight	limbs rotated farther under the body; claws on toes

Model a reptilian egg. Label the amnion, embryo, allantois, yolk sac, chorion, and shell.

Diagrams should resemble SE p. 853. Accept all reasonable responses.

Section 29.1 Reptiles (continued)

←Main Idea

Diversity of Modern Reptiles

I found this information on page ______.

SE, pp. 856–857 RE, pp. 348–349

Details

Contrast characteristics of each order in class Reptilia. Accept all reasonable responses.

Squamata

examples: snakes, lizards
key features: lizards: long legs,
claws, movable eyelids, and hinge
joint on lower jaw, tympanic
membranes; snakes: legless, shorter
tails, movable lower jaw, lack movable
eyelids and tympanic membranes

Crocodilia

examples: crocodiles, alligators key features: four-chambered heart, long snout, sharp teeth, powerful jaws; alligators: broad snout, upper jaw wider than lower jaw; crocodiles: jaws about same width, teeth visible when mouth closed

Testudinata

examples: turtles, tortoises key features: shell; vertebrae and ribs fused to inside of carapace; pull in heads and legs for protection; turtles aquatic; tortoises live on land

Sphenodonta

examples: tuataras key features: on islands near New Zealand; spiny crest down back; scaly third eye senses sunlight; two rows of teeth in upper jaw, one row in lower jaw

Evolution of Reptiles

I found this information on page ______.

SE, pp. 858-859 RE, p. 349

Identify each animal's ancestors as diapsids, anapsids, or synapsids.

Vdiápsids 2 → Birds 11 211 1 diapsids 1 → lizards

synapsids → mammals

anapsids → turtles

Ecology of Reptiles

I found this information on page ______.

SE, p. 860 RE, p. 349 **Analyze** how loss of a reptile species could upset the balance of an ecosystem.

Accept all reasonable responses. Reptiles are both predator and

prey. Removing a species could cause its prey to increase out of

control. Also, predators that feed on the species would decline.

SUMMARIZE

Evaluate whether a meteorite crashing to Earth could have doomed the dinosaurs. Discuss the catastrophic effects of such a crash and adaptations needed to survive the event.

Accept all reasonable responses. The dust cloud caused by the crash could have blocked the

Sun, killing plants on which dinosaurs and their prey fed. Earth would have cooled rapidly.

Dinosaurs might not have been able to adapt quickly enough to the colder climate to survive.

Reptiles and Birds

Section 29.2 Birds

Main Idea

Details

Skim Section 2 of the chapter. Identify characteristics of birds that make them different from reptiles.

Accept all reasonable responses. Present-day birds have feathers,

bones with cavities of air, and beaks. Most species can fly. Birds are

endotherms with a high metabolic rate. They lay hard-shelled eggs.

Review _____ Vocabulary

Use your book or dictionary to define terrestrial.

terrestrial

living on or in land

New Vocabulary

Use your book or dictionary to define each term.

air sac

saclike structure located at the anterior and posterior of a bird's

respiratory system an 1. Com

contour feather

type of feather that covers the body, wings, and tail of a bird

down feather

soft feather located beneath contour feathers

endotherm

organism that generates its body heat internally by its own

metabolism

feather

specialized outgrowth of the skin of birds that provides insulation

and enables flight

incubate

maintain favorable conditions for hatching

preen gland

gland located near the base of a bird's tail that secretes oil for

waterproofing feathers

sternum

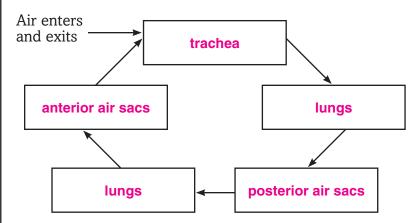
breastbone

Section 29.2 Birds (continued)

Characteristics of Birds

I found this information on page _____

> SE, pp. 861-866 RE, pp. 350-353


Details

Model a contour feather and a down feather. Label the structures. Write brief captions describing the characteristics or functions of each feather. Accept all reasonable responses. For each feather, students should label the shaft and barbs.

Down feathers	Contour feathers
The caption for the down feather should note that the loose structure can trap air for insulation.	The caption for the contour feather should note that the barbs are joined with hooks, and that preening rejoins separated barbs.

Sequence the respiratory organs of a bird. Place the organs from the list below in the proper sequence. One organ appears more than once.

- · anterior air sacs
- posterior air sacs
 trachea

Analyze how eye position reflects a bird's life habits.

Accept all reasonable responses. Predatory birds need to focus both eyes on distant prey, so their eyes are in the front of their head. The eyes of grain-feeding birds are on the sides of their head, enabling them to detect predators in any direction.

Name______ Date _____

Section 29.2 Birds (continued)

Main Idea

Diversity of Modern Birds

I found this information on page ______.

SE, pp. 866-867 RE, p. 353

○Details

Identify the order and one member of the order for each distinguishing characteristic listed below.

Characteristic	Order/Member
builds nests in cavities	Piciformes/woodpecker
flipper-like wings; solid bones	Sphenisciformes/penguin
flightless; includes largest living birds	Struthioniformes/ostrich
sing; feet adapted for perching	Passeriformes/blue jay
marine; tube-shaped nostrils	Procellariiformes/albatross
long legs for wading	Ciconiiformes/heron
nocturnal; large eyes; talons	Strigiformes/owl
aquatic; round beak	Anseriformes/duck

Evolution of Birds

I found this information on page ______.

SE, p. 868 RE, p. 354 **Compare** features of dinosaurs found in fossil records that are similar to features of present-day birds.

One species of dinosaur had a coat of downy, featherlike fibers.

Two others had feathers on their front appendages and tails.

Archaeopteryx had asymmetrical feathers and a brain much like present-day birds. Another species had features for hovering flight.

Ecology of Birds

I found this information on page ______.

SE, p. 869 RE, p. 354 Analyze how birds are key to the survival of many plants.

Birds disperse seeds. Seeds eaten or caught in feathers move with

birds to new locations, where the seeds are eliminated after digestion or

drop off feathers. Hummingbirds pollinate plants as they feed on nectar.

SUMMARIZE

Compare and contrast ectothermy and endothermy.

Accept all reasonable responses. Endotherms can alter their metabolism to regulate their body temperature and produce a large amount of ATP to power complex movement. Ectotherms must regulate body temperature through behavior. Endotherms must eat large amounts of food to maintain their high metabolic rate. Ectotherms need less food energy.

Tie It Together

SUMMARIZE

Create a profile of one bird and one reptile common to your area. Identify the animal's order and species. Sketch each animal and label characteristics that distinguish it from other birds or reptiles. Write a brief summary of its life habits from your research. Point out characteristics on the sketches that are adapted for the animal's life habits.

Accept all reasonable responses.

Reptile species:

Order:

www.almanahj.com

Bird species:

Order:

Mammals

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Mammals	After You Read
	If an animal has hair, it is a mammal.	Α
	Mammals produce their body heat internally.	Α
	A duck-billed platypus is not a true mammal because it lays eggs.	D
	The first mammals probably evolved from reptiles.	Α

www.almanahj.com

Science Journal

Mammals are one of the most successful groups of animals on Earth. Think about a specific mammal and some of its characteristics. Write about how you think some of these characteristics help the mammal to survive and be successful.

Accept all reasonable responses.			

Mammals

Section 30.1 Mammalian Characteristics

∕Main Idea⁻

Details

Skim Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

- 1. Accept all reasonable responses.
- 2.

Review—— Vocabulary

Use your book or dictionary to define metabolic rate.

metabolic rate

the rate at which all the chemical reactions that occur within an

organism take place

Write the correct vocabulary term in the left column for each definition below.

mammary gland

diaphragm

produces and secretes milk that nourishes developing young

highly folded outer layer of the cerebrum; responsible for coordinating conscious activities, memory, and ability to learn

sheet of muscle located beneath the lungs that separates the chest cavity from the abdominal cavity; its contraction and relaxation allows air to move into and out of the lungs

cerebral cortex

cerebellum

gland

uterus

placenta

gestation

part of the brain responsible for balance and coordinating movement

group of cells that secretes fluid to be used elsewhere in the body

saclike muscular organ in which embryos develop

organ that provides food and oxygen to and removes waste from the developing young

amount of time the young stay in the uterus until they are born

Academic Vocabulary

Define retain to show its scientific meaning.

retain

to keep in possession or use

Section 30.1 Mammalian Characteristics (continued)

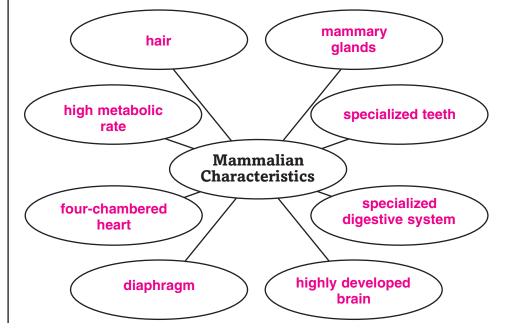
←Main Idea

(Details

Hair and Mammary Glands

I found this information on page _____.

SE, pp. 880-881 RE, pp. 355-356 **Analyze** the importance of hair by identifying the six functions of hair and giving an example of each function.


Accept all reasonable responses.

Functions	Examples
insulation	a fox's fur traps body heat
camouflage	a tiger's stripes help it blend into its habitat
sensory devices	a seal uses its sensitive whiskers to track prey
waterproofing	a sea otter's hair keeps water from reaching the skin
signaling V.alma	a white-tailed deer raises its tail to show the white underside for others to follow
defense	a porcupine's quills stab predators that touch it

Other Characteristics

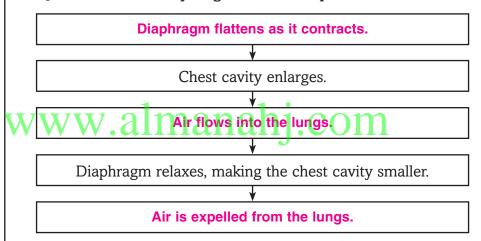
I found this information on page ______.

SE, pp. 881-888 RE, pp. 356-361 **Organize** mammalian characteristics by completing the concept map.

Section 30.1 Mammalian Characteristics (continued)

Main Idea

I found this information on page ______.


SE, pp. 881–888 RE, pp. 356–361

Details

Classify each description below as a characteristic of insectivores, herbivores, carnivores, or omnivores.

Classification	Characteristic
herbivores	have longest digestive tract
omnivores	feed on both plants and animals
insectivores	have long, curved incisors to seize prey
carnivores	have long, sharp canines to pierce prey

Sequence how the diaphragm works in respiration.

Describe the functions of each type of gland listed below.

Sweat glands: help maintain body temperature	Scent glands: mark territory and attract a mate
Mammary glands: produce and secrete milk to nourish developing young	Oil glands: maintain quality of hair and skin

SUMMARIZE

Create a graphic organizer showing characteristics of mammals.

The organizer should distinguish characteristics common to all mammals from characteristics common to only certain species. Accept all reasonable responses.

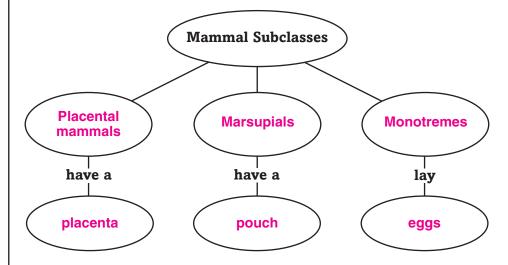
Name	Date

Mammals

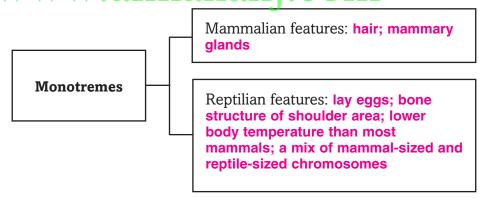
Section 30.2 Diversity of Mammals				
Main Idea	Details			
	Scan Section 2 of the chapter. Use the checklist as a guide.			
	Read all section titles.			
	Read all boldfaced words.			
	Read all tables and graphs.			
	Look at all illustrations and read the captions.			
	☐ Think about what you already know about mammals.			
	Write two facts that you discovered about the subgroups of mammals.			
	1. Accept all reasonable responses.			
	2			
Review Vocabulary				
chromosome	cell structure that carries genetic material that is copied and passed			
	from generation to generation of cells			
New Vocabulary	Use your book or dictionary to define the following terms.			
marsupial	pouched mammal that has a short period of development in the			
	uterus			
monotreme	mammal that reproduces by laying eggs			
placental mammal	mammal that has a placenta and gives birth to young that do not			
	need further development within a pouch			
therapsid	extinct vertebrate with both mammalian and reptilian features, from			
	which the first mammals probably arose			

Section 30.2 Diversity of Mammals (continued)

∕Main Idea⁻


Mammal Classification

I found this information on page ______.


SE, pp. 889-895 RE, pp. 362-365

Details

Organize information about the three subclasses of mammals by completing the concept map below.

Analyze characteristics of monotremes by identifying their mammal-like and reptilelike features.

Compare and contrast the development of young in a placental mammal with the development of young in a marsupial.

Accept all reasonable responses.

Marsupial	Placental Mammal
The young develop for a short time in the uterus. Immediately after birth, the young crawl into the mother's pouch, where they continue to develop while receiving nourishment from the milk of the mother's mammary glands.	The young receive food and oxygen from the placenta as they develop in the uterus. After birth, the young do not need further development within a pouch, but continue to nurse from their mother.

Section 30.2 Diversity of Mammals (continued)

I found this information on page ______.

SE, pp. 889-895 RE, pp. 362-365

⊘Details⁻

Contrast orders of placental mammals. List characteristics that distinguish each order.

Order	Characteristics	
Chiroptera	the only mammals that truly fly	
Xenarthra	have no teeth or simple, peglike teeth	
Carnivora	predators; teeth adapted for tearing flesh	
Primates	most developed brains of all mammals	
Artiodactyla	hoofed mammals with even number of toes	
Perissodactyla	hoofed mammals with odd number of toes	
Cetacea	front flippers and tail of fleshy flukes	

Evolution of Mammals

I found this information on page ______.

SE, pp. 886-897 RE, pp. 365-366 **Sequence** the environmental developments that led to the expansion of mammalian diversity during the Cenozoic era.

Dinosaurs disappeared at the end of the Mesozoic era.

Flowering plants flourished, providing new sources of nutrition and new habitats.

Mammals evolved to fill the new niches that became available.

SUMMARIZE

Describe what the mammals of Australia might be like today if the movement of Earth's plates had not separated Australia from other continents. Explain your reasoning.

Accept all reasonable responses. Had the separation not occurred, marsupials might be rare or even extinct in Australia today, because placental mammals had adaptive advantages, such as limbs with greater functionality and a more complex cerebral cortex. In the protective isolation of Australia, marsupials could fill the niches occupied by placental mammals elsewhere in the world.

Tie It Together

SYNTHESIZE

Describe the ideal adaptations that would be needed by a mammal who lived in a high desert with broad temperature ranges, limited food and water, and predatory birds and reptiles. Identify the likely distinguishing characteristics in the areas of hair functions, teeth, senses, limb types, movement, and metabolic rate.

Accept all reasonable responses.

www.almanahj.com

Animal Behavior

Before You Read

Use the "What I Know" column to list the things you know about animal behavior. Then list the questions you have about animal behavior in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

www.almanahj.com

Science	Journa
Science	Julila

Describe two behavior patterns in humans.

Accept all reasonable responses.

Animal Behavior

Section 31.1 Basic Behaviors

⊂Main Idea⁻

Details

Scan the titles, boldfaced words, illustrations, and captions in Section 1. Write two facts you discovered about animal behavior.

1 Accept all reasonable responses.

Reviewocabulary/

Use your book or dictionary to define natural selection.

process by which traits that result in the greatest number of offspring

eventually become the most common traits in the population

New-**Vocabulary**

Use the new vocabulary words to complete the paragraph below.

behavior

natural selection

classical conditioning

cognitive behavior

fixed action pattern

habituation

imprinting

innate behavior

learned behavior

operant conditioning

Any way that an animal responds to a stimulus is ____ Some behaviors, such as **innate behavior**, are genetically based. An animal that carries out a specific set of actions, in the same order, in response to a stimulus is exhibiting a _____fixed action pattern Behavior that results from an interaction between genetically based learned behavior An behaviors and past experiences is ____ example is habituation, in which the response decreases after repeated exposure to a stimulus that has no positive or negative effects. An animal can learn to associate two different kinds of stimuli through **__classical conditioning**_. Learning through operant conditioning involves rewards and punishments. One type of permanent learning, called ____imprinting only within a specific time period. When an animal solves a

Academic -**Vocabulary**

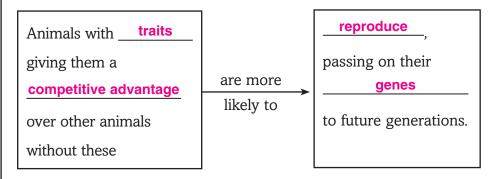
Define inanimate to show its scientific meaning.

problem, it is exhibiting <u>cognitive behavior</u>

inanimate

not having life; not alive

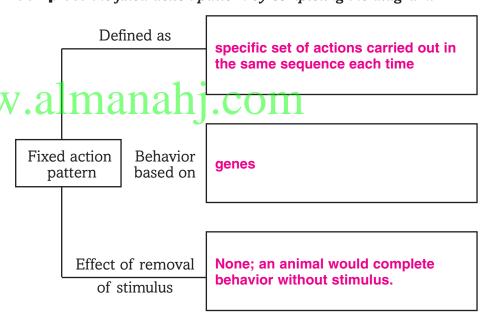
Section 31.1 Basic Behaviors (continued)


Main Idea

\subset Details $^-$

Behavior

I found this information on page ______.


SE, pp. 908-909 RE, pp. 367-368 **Analyze** the relationship of behavior and natural selection by completing the graphic organizer.

Innate Behavior

I found this information on page ______.

SE, p. 910 RE, p. 368 **Complete** the fixed action pattern by completing the diagram.

Learned Behavior

I found this information on page ______.

SE, pp. 911–915 RE, pp. 369–370 **Contrast** learned behavior to innate behavior. Give an example of a behavior in response to a particular stimulus.

Accept all reasonable responses. Innate behavior is influenced by genes alone. Learned behavior results from an interaction between genes and past experiences. An example of a learned behavior is studying in response to an upcoming test.

Section 31.1 Basic Behaviors (continued)

Main Idea

I found this information on page ______.

SE, pp. 911–915 RE, pp. 369–370

Details

Organize information about the different kinds of learned behavior in the chart. Accept all reasonable responses.

	Learned Behavior	Description	Example	
	Habituation	lack of response after repeated exposure to a stimulus with no positive or negative effects	a horse ignoring noisy cars that pass by its pasture	
	Classical conditioning	learning to associate two different kinds of stimuli	a cat rushing to its food bowl at the sound of a can opener because its food is opened with a can opener	
V	Operant conditioning	learning to associate a response to a stimulus with a reward or punishment	learning to follow the rules when playing a sport to avoid a penalty	
	Imprinting learning that can occur only within a specific time period in an animal's life and is permanent		a duck following its mother because the mother was the first thing the duck saw after birth	
	Cognitive behavior	thinking, reasoning, and processing information to understand complex concepts and solve problems	a chimpanzee using a stone to crack open nuts	

SUMMARIZE

Animals respond to both internal and external stimuli. Give an example of a response to an internal stimulus and a response to an external stimulus.

Accept all reasonable responses. Students might note that feelings of hunger are an internal

stimulus that prompts them to go to the refrigerator to find something to eat. They might

suggest that the external stimulus of a parent who promises a reward might motivate them

to clean up their room.

Name_____ Date ____

Animal Behavior

Section 31.2 Ecological Behaviors

←Main Idea¬

Details

Skim Section 2 of the chapter. Write three questions that come to mind from reading the headings and illustration captions.

1 Accept all reasonable responses.

2. _____

Review Vocabulary

Use your book or dictionary to define colony.

colony

group of unicellular or multicellular organisms that live together in

close association

New Vocabulary

.almanahi.com

Write the correct vocabulary term in the left column for each definition below.

agonistic behavior

threatening or combative interaction between two individuals of the same species

dominance hierarchy

ranking within a group, in which a top-ranked animal gets access to resources without conflict from others in the group

territorial behavior

attempt to adopt and control a physical area over other animals of the same species

foraging behavior

finding and eating food

migratory behavior

moving long distances seasonally to new locations

circadian rhythm

cycle that occurs daily

language

auditory communication in which animals use vocal organs to produce groups of sounds that have shared meanings

courting behavior

behavior designed to attract a mate

nurturing behavior

parental care of offspring in early stages of development

altruistic behavior

action that benefits another individual at a cost to the actor

Section 31.2 Ecological Behaviors (continued)

∕Main Idea⁻

Types of **Behaviors**

I found this information on page ___

> SE, pp. 916-919 RE, pp. 371-372

Details

Analyze competitive behaviors by describing the survival benefits of each behavior.

Competitive **Behaviors**

Behavior: agonistic behavior

Survival benefit: gains control over resources, such as food or potential mates

Behavior: dominance hierarchy

Survival benefit: reduces hostile behaviors within group, which would take time and energy away from survival activities such as finding food

Behavior: territorial behavior

Survival benefit: increases chances of obtaining adequate food, mates, and places to

Communication Behaviors

I found this information on page _

> SE, p. 920 RE, p. 373

Contrast language with communication. Give an example of communication and an example of language.

Accept all reasonable responses. Animals can communicate simple information, such as their location, with sounds, such as chirps, and with odors, such as through pheromones. Language, however, is the use of sounds to communicate complex information. For example, humans can communicate ideas through language.

Courting and Nurturing Behaviors

I found this information on page __

> SE, p. 921 RE, p. 373

Infer why a peacock fans and shakes his large, colorful tail in the presence of a pea hen during mating season.

Accept all reasonable responses. Often a female animal chooses to mate with a male that appears relatively larger and healthier than his rivals. Probably the peacock fans his tail to appear large, and the brightness of the colors and vigor of the shaking might attract attention and indicate his state of health.

Section 31.2 Ecological Behaviors (continued)

CDetails ■

Main Idea

Cooperative | A

I found this information on page _____.

SE, p. 922 RE, p. 374 Analyze why an animal might engage in altruistic behavior, even though the behavior does not promote its own reproductive success.

Accept all reasonable responses. The theory of kin selection holds that altruistic behavior evolves because it increases the number of copies of a gene that is common to a population. As nonreproductive members work to feed and protect the reproductive members of the colony, they ensure that genes similar to their own will pass to future generations.

Advantages and Disadvantages

I found this information on page ______

SE, p. 923 RE, p. 374 **Organize** the costs and benefits for survival and reproductive success of the behaviors listed below. Accept all reasonable responses.

Behavior	Benefit	Cost	
Geese fly south before winter in North America.	increases chances for survival by moving to an area where food and climate conditions are favorable	moving long distances consumes energy and increases chances of predation	
Male lions fight to establish a territory.	promotes survival and reproductive success by controlling an area containing resources, such as food and mates	fights to gain and defend a territory cost energy and can result in injury	
Hawk parents fly many kilometers daily to find food for their young.	offspring have increased chance of survival, ensuring the continuation of the parents' genes	energy spent in caring for offspring can endanger the parents' health and safety	

CONNECT

You have dominance hierarchies in your life similar to some animals. Although they function differently, some of the benefits are the same. Describe one of these hierarchies and its advantages.

Accept all reasonable responses. There is a dominance hierarchy in my classroom. My

teacher is dominant. He or she makes the classroom rules and leads the class in discussions.

This makes the class flow more smoothly and be more organized so we can learn more.

Tie It Together

FURTHER INQUIRY

Observe animal behaviors and take notes. Select two behaviors you observe, and analyze them, using the forms below. Conduct further research, as needed, to complete your behavior report thoroughly. Accept all reasonable responses.

Animal:

Description of behavior:

Innate or learned?

Type of behavior:

Description of stimulus:

Internal or external?

Advantages of behavior for survival or reproductive success:

Costs of behavior in terms of survival or reproductive success:

Animal:

Description of behavior:

Innate or learned?

Type of behavior:

Description of stimulus:

Internal or external?

Advantages of behavior for survival or reproductive success:

Costs of behavior in terms of survival or reproductive success:

Integumentary, Skeletal, and Muscular Systems Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Integumentary, Skeletal, and Muscular Systems	After You Read
	Skin is an organ.	Α
	Use of a tanning bed will not put you at risk for skin cancer.	D
	All joints of the skeleton allow the bones to move.	D
	Some muscles in your body are not under your conscious control.	Α

www.almanahj.com

Science Journal

Think about a sport you or someone you know plays. Describe how your skin, skeleton, and muscles help you play that sport.

321

Integumentary, Skeletal, and Muscular Systems

Section 32.1 The Integumentary System

∕Main Idea⁻

Details

Scan Use the checklist below to preview Section 1 of the chapter.

Read all section titles.

Read all boldfaced words.

Look at all pictures and read the captions.

Think about what you already know about skin.

Write two facts you discovered about skin as you scanned the section.

1. Accept all reasonable responses.

2.

Review Vocabulary

Use your book or dictionary to define integument.

integument

an enveloping layer of an organism

New——— Vocabulary

Write the correct vocabulary term in the left column for each definition below.

melanin

sebaceous gland

keratin

hair follicle

epidermis

dermis

a pigment manufactured by cells in the inner layer of epidermis that protects from ultraviolet radiation

structure that produces oil that lubricates skin and hair

protein found in the outer layers of epidermal cells that waterproofs and protects the cells and tissues underneath

narrow cavity in the dermis from which hair cells grow

the outer superficial layer of skin

the inner, thicker layer of skin

Academic | Vocabulary

Define function, then write a sentence to show its scientific meaning.

function

action, purpose

Name	Date

Section 32.1 The Integumentary System (continued)

The Structure of Skin

I found this information on page_

> SE, pp. 936-938 RE, pp. 375-376

Analyze the four types of body tissues in the integumentary system, and give the function of each one.

- 1 epithelial tissue; covers surfaces of the body
- 2. connective tissue; provides support and protection
- 3 muscle tissue; involved in body movement
- 4. nerve tissue; body's communication network

Classify each phrase as describing the dermis or epidermis. Write each phrase under the correct skin layer.

- consists of connective tissue
- has inner and outer portions
- · contains dead cells that shed
- contains keratin
- glands outer layer of skin
- inner, thicker portion of skin contains melanin

Main Layers of Skin

Dermis

consists of connective tissue: contains muscle fibers, nerve cells, sweat glands, and oil glands; inner, thicker portion of skin

Epidermis

 contains muscle fibers, nerve cells, sweat glands, and oil

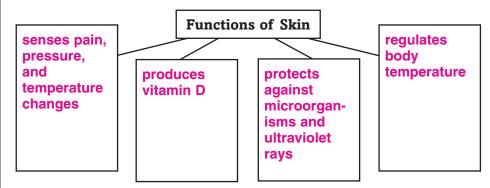
has inner and outer portions; contains dead cells that shed: contains keratin; contains melanin; outer layer of skin

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Summarize the diagram of the integumentary system in your book. Accept all reasonable responses. Encourage students to describe how each part looks and the arrangement of the parts around each other.

Section 32.1 The Integumentary System (continued)

←Main Idea →


Functions of the Integumentary System

I found this information on page ______.

SE, pp. 938–939 RE, pp. 376–377

Details

Organize information about the four functions of skin.

Damage to the Skin

I found this information on page ______.

SE, pp. 939–940 RE, p. 377

Sequence the steps that occur during skin healing.

The skin receives a cut that bleeds.

Blood flows out of the wound and

a clot forms.

A scab forms on the skin to close

the wound.

A scab forms on the skin to close the wound.

The skin receives a cut that bleeds

White blood cells move in to fight infection.

Cells beneath the scab multiply and fill the wound.

Blood flows out of the wound and a clot forms.

Cells beneath the scab multiply and fill the wound.

White blood cells move in to fight infection.

CONNECT

Your skin changes as you age. Describe some things you can do to protect your skin so that it can better protect your body.

Accept all reasonable responses. I can wear sunscreen when I am out in sunlight or just not

stay out in sunlight too long. I can avoid tanning beds. I can also use lotion to help my skin

stay moisturized. I can eat a healthy diet and exercise.

Integumentary, Skeletal, and Muscular Systems Section 32.2 The Skeletal System

Main Idea

⊘Details

Skim Section 2 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

1. Accept all reasonable responses.

2

Review—— Vocabulary

Use your book or dictionary to define cartilage.

cartilage

and later covers the surface of bones that move against each other in joints

New Vocabulary

Use your book or dictionary to define each term.

compact bone

dense and strong outer layer of all bones

osteocyte

living bone cell

spongy bone

less dense bone with cavities containing bone marrow

red bone marrow

substance in bone that produces red and white blood cells and

platelets

yellow bone marrow

substance in bone that consists of stored fat

osteoblast

bone-forming cell

ossification

formation of bone from osteoblasts

osteoclast

cell that breaks down bone cells

ligament

tough band of connective tissue that attaches one bone to another

Section 32.2 The Skeletal System (continued)

←Main Idea

Structure of the Skeletal System

I found this information on page ______.

SE, pp. 941–943 RE, pp. 378–380

○ Details

Identify the two main divisions of the human skeleton and the bones each includes.

Axial skeleton includes

the skull, the vertebral column, the ribs, and the sternum.

Appendicular skeleton

includes

the bones of the arms, hands, legs, feet, shoulders, and hips.

Create a sketch of a bone. Show and label compact bone, spongy bone, and the location of osteons. Use the figure in your book to help you.

Students should sketch a simple bone showing compact bone, spongy bone, and osteons in the area along the length of compact bone. Sketches may resemble those in the book. Accept all reasonable responses.

Sequence the steps in the repair of fractured bone. The first step has been completed for you. Accept all reasonable responses.

- **1.** Endorphins flood the area of injury.
- 2. The injured area swells.
- 3. Blood clot forms between broken ends.

4. Cartilage forms at the break.

- 5. Osteoblasts form spongy bone around the fracture.
- 6. Compact bone replaces spongy bone.

Section 32.2 The Skeletal System (continued)

←Main Idea

○Details

Joints

I found this information on page ______.

SE, pp. 944-945 RE, pp. 380-381 **Classify** each bone joint listed below as one or more of the following types:

- gliding
- hinge
- ball-and-socket

- suture
- pivot

knee joint hinge skull bone joint suture
elbow joint pivot, hinge shoulder joint ball-and-socket
hip joint ball-and-socket wrist joint gliding

ankle joint **gliding** vertebral joint **gliding**

Function of the Skeletal System

I found this information on page ______.

SE, p. 946 RE, p. 381 **Complete** the concept map about the skeletal system functions. Accept all reasonable responses.

ccept an reasonable responses

Skeletal System
Functions

protects vital organs

supports the body

stores minerals

provides a

place for muscle

attachment

manufactures blood cells and platelets

SUMMARIZE

Compare yellow bone marrow and red bone marrow.

Red bone marrow is found in the femur, humerus, sternum, ribs, vertebrae, and pelvis. This marrow makes red blood cells, white blood cells, and platelets needed for clotting. Yellow bone marrow does not produce any blood cells. It is stored fat that can be used at times when the body needs it.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Integumentary, Skeletal, and Muscular Systems

Section 32.3 The Muscular System

←Main Idea

Details

Skim Section 3 of the chapter. Write two facts you discovered about muscles.

- 1. Accept all reasonable responses.
- 2.

Review Vocabulary

Use your book or dictionary to define anaerobic.

anaerobic

chemical reactions that do not require the presence of oxygen

New Vocabulary

Use your book or dictionary to define each term.

actin

protein filament that, along with myosin, makes up a myofibril

cardiac muscle

involuntary muscle present only in the heart

involuntary muscle

muscle that cannot be controlled consciously

myofibril

small unit of muscle fiber, made up of myosin and actin

myosin

protein filament that, along with actin, makes up a myofibril

sarcomere

the functional unit of a muscle and the part that contracts

skeletal muscle

muscle attached to bone by tendons and when contracted, causes

movement

smooth muscle

involuntary muscle that lines many hollow internal organs

tendon

tough band of connective tissue that connects muscle to bone

voluntary muscle

muscle under conscious control

.

←Main Idea

Three Types of Muscle

I found this information on page ______.

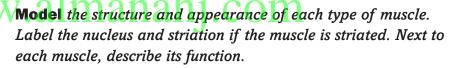
SE, pp. 947-948 RE, pp. 382-383

Details

Section 32.3 The Muscular System (continued)

Identify the three types of muscles. Classify each as voluntary or involuntary.

- 1. smooth muscle—involuntary
- 2 cardiac muscle—involuntary
- 3. skeletal muscle—voluntary


Distinguish between voluntary muscles and involuntary muscles.

Voluntary muscles are muscles you have to think about moving.

They contract under conscious control. Involuntary muscles are

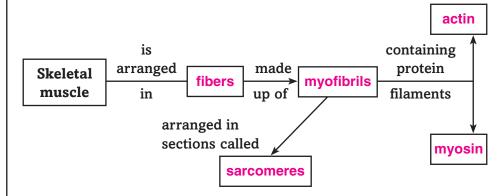
muscles that contract by themselves. You do not consciously

control involuntary muscles.

Muscle Model	Muscle Function
Smooth Muscle Sketches might resemble Figure 32.11 on page 948 of the SE. The muscle fiber and nucleus should be labeled.	for example, moves food through the digestive tract
Cardiac Muscle The muscle fiber, nucleus, and striation should be labeled.	allows heart to contract efficiently and rhythmically
Skeletal Muscle The muscle fiber, nucleus, and striation should be labeled.	contraction causes movement

Section 32.3 The Muscular System (continued)

Main Idea⁻


Skeletal Muscle Contraction

I found this information on page ______.

SE, pp. 948-950 RE, pp. 383-384

Details

Analyze muscle tissue by completing the graphic organizer.

Summarize the sliding filament theory.

Accept all reasonable responses. When a nerve impulse reaches the

muscle to be moved, calcium is released into the myofibrils. Calcium

causes myosin and actin to attach to each other, pulling the actin

filaments toward the center of the sarcomere. This causes the muscle

to shorten or contract. ATP is needed for this step. When the muscle

relaxes, the filaments slide back.

Skeletal Muscle Strength

I found this information on page ______.

SE, pp. 950-951 RE, p. 384 Contrast the abilities of slow-twitch and fast-twitch muscles.

Slow-twitch	Fast-twitch
contract more slowly than fast-	fatigue easily, but provide great
twitch muscles, but have more	strength for rapid, short
endurance	movements

CONNECT

Contract your biceps muscle. Describe what you did to contract the muscle and which muscle is relaxed. Try the opposite and contract the muscle that was relaxed and describe what happens.

Accept all reasonable responses. I contracted my biceps by bending my arm. The triceps was relaxed. Then I contracted my triceps by straightening my arm and the biceps muscle was relaxed.

Name	Date

Nervous System

Before You Read

Use the "What I Know" column to list the things you know about the nervous system. Then list the questions you have about this system in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

www.almanahj.com

Science Journal

Think about a time you have been frightened. Describe how you felt and how your body responded.

ccept all reasonal	olo reopenee	,,,,		

331

Nervous System

Section 33.1 Structure of the Nervous System

∕Main Idea⁻

Details

Skim Section 1 of the chapter. Focus on the headings, subheadings, boldfaced words, and main ideas. Write two facts you discovered about the structure of the nervous system.

1. Accept all reasonable responses.

2

Review Vocabulary

Use your book or dictionary to define diffusion.

diffusion

random movement of particles from an area of higher concentration

to an area of lower concentration resulting in even distribution

New——— Vocabulary

Write the correct vocabulary term in the left column for each definition below.

dendrite

node

action potential

reflex arc

threshold

cell body

neurotransmitter

axon

synapse

neuron

region of a neuron that receives impulses from other neurons and conducts them to the cell body

gap in the myelin sheath along the length of an axon nerve impulse

nerve pathway that consists of a sensory neuron, an interneuron, and a motor neuron; the basic structure of the nervous system

minimum stimulus to cause an action potential to be produced

contains the nucleus of a neuron and many of the cell organelles

chemical that diffuses across a synapse and binds to receptors on the dendrite of a neighboring cell

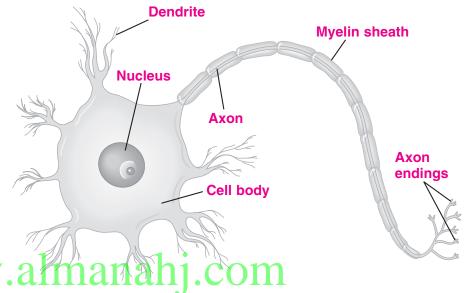
region of a neuron that carries the nerve impulse from the cell body to other neurons and muscles

small gap between the axon of one neuron and the dendrite of another neuron

specialized cell that helps you gather, interpret, and react to information about your environment

Section 33.1 Structure of the Nervous System (continued)

∕Main Idea⁻


Neurons | L

I found this information on page ______.

SE, pp. 962-963 RE, pp. 385-386

Details

Label the neuron. Include the axon, axon endings, cell body, dendrites, nucleus, and myelin sheath. Draw arrows to show the direction that impulses move through the neuron.

A Nerve Impulse

I found this information on page ______.

SE, pp. 963-967 RE, pp. 386-388 Arrows should point from the dendrite to the cell body and away from the cell body through the axon.

Analyze how the myelin sheath increases the speed at which impulses move.

The myelin sheath keeps the ions from diffusing across the plasma membrane of the axon. This makes the ions move quickly down the axon until they find a gap in the sheath through which they can pass.

This makes the impulses jump from gap to gap so they move faster.

Evaluate how neurotransmitters move across synapses. Write one question and answer about the diagram above.

Question:	Accept all reasonable responses.		
Answer: _			

Section 33.1 Structure of the Nervous System (continued)

←Main Idea

⊘Details

I found this information on page ______.

SE, pp. 963-967 RE, pp. 386-388 **Sequence** the steps in how a nerve impulse moves from one neuron to another neuron, by writing the numbers 1 to 5 in the squares to the left of the steps.

5

The neurotransmitter drifts across the synapse and binds to receptors on the dendrite of a neighboring neuron.

3

An electrical impulse is sent along an axon, jumping from node to node in axons covered with myelin.

1

The neuron is at rest, with more sodium ions outside the cell and more potassium ions inside the cell.

.almanahj.com

4

The impulse reaches the synapse, where channels again open. Vesicles fuse with the plasma membrane and release a neurotransmitter by exocytosis.

2

The threshold for an action potential is reached at a dendrite, opening channels in the plasma membrane and causing a reversal in electrical charge.

SUMMARIZE

Give an example of an impulse that would be carried by a neuron with myelin and by a neuron without myelin.

Accept all reasonable responses. A sharp pain would be carried by a neuron with myelin.

A dull, throbbing pain would be carried by a neuron without myelin.

Nervous System

Section 33.2 Organization of the Nervous System

∕Main Idea⊃

⊘Details •

Skim Section 2 of the chapter, taking note of headings, illustrations, photos, and captions. Then identify two facts that drew your interest.

Fact 1: Accept all reasonable responses.

Fact 2: _____

Review—— Vocabulary

Use your book or dictionary to define sensory.

sensory

conveying nerve impulses from the sense organs to the nerve centers

New——— Vocabulary

Classify each term in the left column as being part of the nervous system or part of the brain. Write a brief definition of each term.

autonomic nervous system

cerebrum

hypothalamus

medulla oblongata

parasympathetic nervous system

pons

somatic nervous system

sympathetic nervous system

Part of Nervous System (4 terms)

autonomic nervous system: part of the peripheral nervous system that carries impulses from the central nervous system to the heart and other organs; involuntary

parasympathetic nervous system: branch of the autonomic nervous system most active when the body is relaxed

somatic nervous system: part of the peripheral nervous system that relays information from sensory receptors to the central nervous system and from the central nervous system to the skeletal muscles

sympathetic nervous system: branch of the autonomic nervous system most active in times of emergency and stress

Part of Brain (4 terms)

cerebrum: largest part of the brain, responsible for thought processes involved with learning, memory, language, speech, voluntary body movement, and sensory perception

hypothalamus: brain structure that regulates body temperature, thirst, appetite, water balance, blood pressure, sleep, aggression, fear, and sexual behavior

medulla oblongata: part of the brain stem that helps control breathing rate, heart rate, and blood pressure

pons: part of the brain stem that helps control breathing rate

Section 33.2 Organization of the Nervous System (continued)

←Main Idea →

The Central Nervous System

I found this information on page ______.

SE, pp. 968-970 RE, pp. 389-391

⊘Details

Identify two body parts that make up the central nervous system.

1. brain

2. spinal cord

Compare and contrast the central nervous system and the peripheral nervous system.

The central nervous system coordinates all of the body's activities.

The peripheral nervous system carries messages to and from the

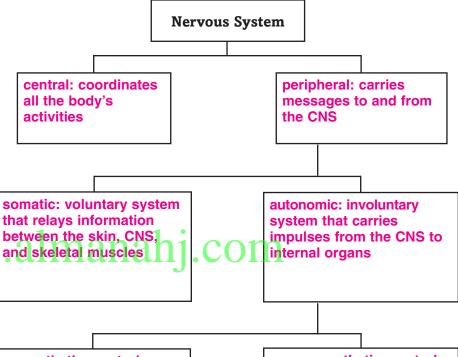
central nervous system.

Organize the information about three main sections of the brain in the table below.

	Cerebrum	Cerebellum	Medulla Oblongata
Description	divided into two halves that are connected by bundles of nerves; halves are called hemispheres	located at the back of the brain	part of the brain stem
Function	controls all conscious activity, intelligence, memory, language, skeletal muscle, and senses	controls balance, posture, and coordination	controls involuntary activities such as breathing and heart rate

Section 33.2 Organization of the Nervous System (continued)

∕Main Idea⊃——


\subset Details $^-$

The Peripheral Nervous System

I found this information on page ______.

SE, pp. 971-972 RE, p. 391 **Organize and summarize** each division of the nervous system and its function.

- autonomic
- central
- parasympathetic
- peripheralsomatic
- sympathetic

sympathetic: controls internal functions during times of stress

parasympathetic: controls body's internal functions when the body is at rest

SUMMARIZE

Compare and contrast a voluntary response of the somatic nervous system and a reflex.

Accept all reasonable responses. A voluntary response would be deciding to take a drink
of hot cocoa. I would voluntarily control the muscles that moved my hand and arm to grasp
and lift the cup and bring it to my mouth. If the cup of hot cocoa were too hot to grasp, I would
pull my hand away as a reflex. It would happen without my brain even thinking about it.

Nervous System

Section 33.3 The Senses

←Main Idea

Details

Skim Section 3 of the chapter. Write two questions that come to mind from reading the headings and illustration captions.

- 1. Accept all reasonable responses.
- 2.

Review Vocabulary

Use your book or dictionary to define stimulus.

stimulus

anything in the internal or external environment that causes an organism to react

New——— Vocabulary

Use your book or dictionary to define each term.

cochlea

snail-shaped structure in the inner ear containing fluid and hairs;

produces electrical impulses that the brain interprets as sound

lens

structure of the eye that inverts an image, focuses it, and projects it onto the retina

retina

thin layer of tissue found at the back of the eye made up of light receptors and sensory neurons

rod

receptor cell in the retina that is adapted for vision in dim light;
also helps detect shape and movement

semicircular canal

structure in the inner ear containing fluid and hairs that help the body maintain balance

taste bud

sensory receptor located on the tongue; involved in taste perception

-Academic <u></u> Vocabulary

Define interpret to show its scientific meaning.

interpret

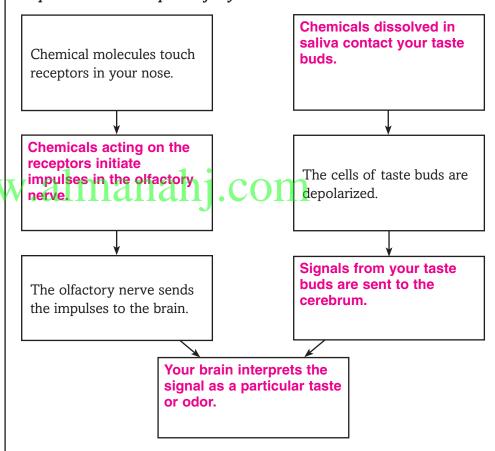
to explain or tell the meaning of

Section 33.3 The Senses (continued)

←Main Idea

Taste and Smell

I found this information on page ______.


SE, p. 973 RE, p. 392

Details

Identify the sensory receptors in the mouth and nasal cavity.

Sensory receptors taste

Compare the steps in smelling and tasting. Write the steps for smelling on the left. Write the steps for tasting on the right. Some steps have been completed for you.

Sight

I found this information on page ______.

SE, p. 974 RE, p. 392–393

Compare

Compare how rods and cones in your eyes help you to sense light.

Rods

- adapted for vision in dim light
- help you detect shape and movement

Both

receptor cells in the eve

Cones

- adapted for sharp vision in bright light

 belowed detect
- help you detect color

Section 33.3 The Senses (continued)

∕Main Idea⁻

⊘Details

Hearing and Balance and Touch

I found this information on page ______.

SE, pp. 974–976 RE, pp. 393–394 **Sequence** the steps in how your sense of hearing works, by writing the numbers 1 to 5 in the squares to the left of the steps.

5

The hairs produce electric impulses that travel to the cerebrum, where they are interpreted as sound.

3

The stapes causes the membrane of the oval window to move back and forth.

1

Sound waves enter your ear and travel down to the end of the ear canal.

2

Sound waves strike the eardrum and cause it to vibrate. The vibrations pass to the bones in the middle ear.

4

Fluid in the cochlea moves, causing the hair cells to bend.

Identify three stimuli to which receptors in the dermis of the skin respond.

1. temperature

2. pressure

3. pain

CONNECT

Predict how damage to the semicircular canals in the ears would affect balance. Support your reasoning.

Accept all reasonable responses. If the semicircular canals were damaged, you would not be

able to balance as well. The hairs in the semicircular canals are responsible for telling the

brain if you are balanced.

Nervous System

Section 33.4 Effects of Drugs

∕Main Idea⁻

Details

Scan Section 3 of the chapter and identify two legal and two illegal drugs. Accept all reasonable responses.

Legal Drugs	Illegal Drugs	
1.	1.	
2.	2.	

Review — ' Vocabulary

Use your book or dictionary to define threshold.

threshold

the certain strength of a stimulus that causes an action potential to be generated

New_____ Vocabulary

Use your book or dictionary to define the following terms.

addiction

psychological and/or physiological drug dependence

depressant

type of drug that lowers or depresses the activity of the nervous

system

dopamine

neurotransmitter found in the brain that is involved with the control

of body movement and feelings of pleasure or reward

drug

chemical substance that affects body function

stimulant

drug that increases the activity of the central and sympathetic

nervous systems

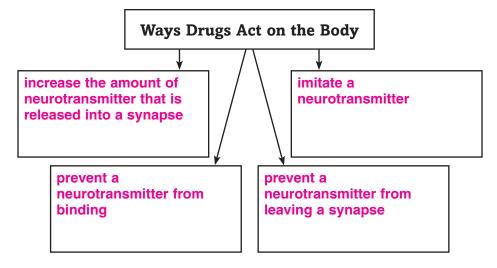
tolerance

the body becomes less responsive to a drug and an individual needs

larger or more frequent doses of the drug to achieve the same effect

Section 33.4 Effects of Drugs (continued)

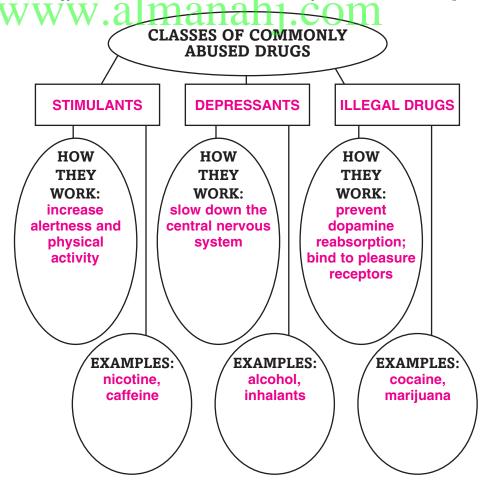
←Main Idea


How Drugs Work

I found this information on page ______.

SE, pp. 977–978 RE, p. 395

⊘Details •


Summarize four ways drugs can act on the body.

Classes of Commonly Abused Drugs

I found this information on page ______.

SE, pp. 978–980 RE, pp. 396–398 **Compare** the three main classes of commonly abused drugs. Identify each class, how it works in the body, and common examples.

Name	Date
Name	Date

Section 33.4 Effects of Drugs (continued)

Main Idea

 \subset Details $^-$

I found this information on page ______.

SE, pp. 978-980 RE, pp. 396-398 **Analyze** the short-term and long-term risks of smoking marijuana.

Short-term risks: problems with memory and learning, loss of coordination, increased heart rate, anxiety, paranoia, panic attacks

Long-term risks: lung cancer, emphysema

Tolerance and Addiction

Identify the following scenarios as tolerance, physiological dependence, or psychological dependence.

I found this information on page ______.

SE, p. 981 RE, p. 398 psychological dependence

"I just can't go to that party without having some alcohol. I need it to feel like I fit in."

tolerance

"I used to take two painkillers a day, but lately I have to take three or four pills to get the same effect as before."

physiological dependence

"When I try to go for a day without my caffeine, I get a terrible headache and nausea."

CONNECT

Analyze why some stimulants are illegal and others are not.

Accept all reasonable responses. Stimulants like amphetamines have a much greater effect on the nervous system than stimulants like caffeine. For example, amphetamines cause irregular heartbeat, chest pain, and paranoia. Caffeine causes increased alertness and mood swings. Its adverse effects are much less severe than amphetamines.

Tie It Together

You have read about the structures and functions of the human nervous system, as well as the effects of drugs on it. Create a mini poster that informs readers of the importance of the nervous system to the body's health.

Accept all reasonable responses.

www.almanahj.com

Circulatory, Respiratory, and Excretory Systems Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Circulatory, Respiratory, and Excretory Systems	After You Read
	Your pulse rate is the number of times your heart beats each minute.	A
	If you need a blood transfusion, the donated blood must be the same type as yours.	D
	Breathing and respiration are two names for the same process.	D
WW	The components of the excretory system are the lungs, skin, and kidneys.	A A

Science Journal

Accept all reasonable responses.

When you breathe in, oxygen enters your lungs. Describe what you understand about how oxygen from the air reaches the cells in your body.

Circulatory, Respiratory, and Excretory Systems

Section 34.1 Circulatory System

⊂Main Idea⁻

Details

Scan Section 1 of the chapter. Identify and list the functions of blood. Accept all reasonable responses.

- carrying oxygen and nutrients to cells
- removing cellular wastes
- carrying disease-fighting materials
- transporting chemical messengers
- . forming clots
- regulating body temperature

Review Vocabulary

Use your book or dictionary to define muscle contraction.

muscle contraction

muscle cells or fibers shorten in response to stimuli

New Vocabulary

arteries

atherosclerosis

capillaries

heart

pacemaker

plasma

platelets

red blood cells

valves

veins

white blood cells

Use the new vocabulary terms to complete the paragraph below.
Large blood vessels called <u>arteries</u> carry oxygenated blood
away from the heart. The blood flows into microscopic <u>capillaries</u> ,
where the blood exchanges oxygen and wastes with body cells.
Then veins carry deoxygenated blood back to the heart. In
these large vessels, flaps of tissue called <u>valves</u> prevent blood
from flowing backward. The hollow, muscular pumps
blood throughout the body. A <u>pacemaker</u> in the right atrium sends
out signals that tell the heart muscle to contract. Over half of blood
is made up of a clear, yellowish fluid calledplasma The function
of <u>red blood cells</u> is to carry oxygen to all body cells. The
white blood cells are the body's disease fighters. Cell fragments
calledplatelets help to form blood clots at a wound site. Blood
clots, fat deposits, or other materials can block the flow of blood
through the arteries, resulting in a condition called <u>atherosclerosis</u> .

←Main Idea

\subset Details $^-$

Functions of the Circulatory System

I found this information on page ______.

SE, p. 992 RE, p. 399 **Analyze** how the circulatory system functions as the body's transport system.

Accept all reasonable responses. The main job of the circulatory system is to carry oxygen and nutrients to the cells and remove waste products from the cells. In addition, the circulatory system transports disease-fighting materials and blood-clotting fragments and distributes heat through the body.

Blood Vessels and **The Heart**

I found this information on page ______.

SE, pp. 993-996 RE, pp. 399-403 **Sequence** the path blood takes through the human body by completing the flowchart below.

Enters capillaries tissue vena cavae right atrium arterioles right arteries ventricle pulmonary aorta artery left left atrium lungs ventricle

Section 34.1 Circulatory System (continued)

∕Main Idea⁻

← Details —

Blood Components

I found this information on page ______.

SE, pp. 997–998 RE, p. 403 **Identify** the components of blood, and list the characteristics of each.

Blood Component	Characteristics
White blood cells	surround and kill invaders
Red blood cells	mostly made up of the protein hemoglobin; resemble pinched-in discs with no nuclei
Plasma	carries most of the carbon dioxide waste; transports glucose, fats, and chemical messengers
Platelets	releases chemicals that produce the protein fibrin

Blood Types

I found this information on page ______.

SE, pp. 998–999 RE, p. 404 **Distinguish** between blood type, by putting checks in the boxes to show which marker molecules and antibodies it contains.

Blood Type	Marker A	Marker B	Anti-A Antibody	Anti-B Antibody
A	√			√
В		√	√	
AB	√	√		
0			√	√

Circulatory System Disorders

I found this information on page ______.

SE, p. 999 RE, p. 404 **Compare** heart attacks to strokes.

	Heart Attack	Stroke
Causes	blood does not reach heart muscle	blood clots in vessels supplying oxygen to brain
Effects	damage to heart or death	ruptured blood vessels; internal bleeding; parts of brain die

SUMMARIZE

Create an analogy that explains the one way flow of blood through the circulatory system.

Accept all reasonable responses. Students might suggest a racetrack analogy with the heart

and lungs functioning as pitstops.

Name_____ Date ____

Circulatory, Respiratory, and Excretory Systems

Section 34.2 Respiratory System

Main Idea

⊘Details

Skim Section 2 of the chapter. Read the headings and illustration captions. Write three questions that come to mind.

- 1. Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define ATP.

ATP

biological molecule that provides the body's cells with chemical energy

Use your book or dictionary to define each term.

alveolus

individual air sac at the end of a bronchiole where oxygen and

carbon dioxide exchange occurs

breathing

mechanical movement of air in and out of the lungs

bronchus

large tube that branches from the trachea and leads to the lungs

external respiration

exchange of gases between the atmosphere and the blood

internal respiration

exchange of gases between the blood and the body's cells

lung

largest organ in the respiratory system and the location of gas

exchange

trachea

long tube in the chest cavity; also called the windpipe

Section 34.2 Respiratory System (continued)

~Main Idea−

The Importance of Respiration

I found this information on page ______.

SE, p. 1000 RE, p. 405

The Path of Air

I found this information on page ______.

SE, p. 1001 RE, p. 406

Details

Contrast breathing and respiration.

Accept all reasonable responses. Breathing is a mechanical process of moving air in and out of the lungs and helps external respiration to occur. Respiration is an exchange of gases, which occurs with both external respiration and internal respiration.

Identify three structures that filter air as it enters through the nose on its way to the lungs.

- 1. hairs in the nose
- 2. cilia that line the nasal passages and other respiratory tubes
- 3. mucous membranes beneath the cilia in the nasal passages

Sequence the process of gas exchange by completing the sentences in the flow chart below.

Air enters the lungs from the atmosphere through the process of breathing. The blood transports the carbon dioxide _ waste to the **lungs** to be returned Oxygen diffuses into atmosphere to the _ capillaries through the alveoli and then into red _ blood cells. Meanwhile, <u>carbon dioxide</u> moves in the opposite direction, crossing capillary walls and The blood carries the **oxygen** for diffusing into the __alveoli__. release to the body's tissue cells

←Main Idea

⊘Details

Breathing

Section 34.2 Respiratory System (continued)

I found this information on page ______.

SE, pp. 1002–1003 RE, p. 407 **Model** the lungs during inhalation and exhalation. Label and describe the position of the diaphragm during each process.

Inhalation	Exhalation
Diagrams may resemble Figure 34.13 in the text. Accept all reasonable responses. Labels should clearly indicate that the diaphragm contracts during inhalation and relaxes during exhalation.	

Respiratory Disorders

I found this information on page ______.

SE, p. 1004 RE, p. 407 **Summarize** each of the following common respiratory disorders.

Respiratory Disorder	nahj.com
Pneumonia	lung infection causing mucus buildup in alveoli
Emphysema	breakdown of alveoli
Lung cancer	uncontrolled cell growth in lung tissue
Asthma	constriction of bronchioles
Bronchitis	infection of respiratory pathways
Pulmonary tuberculosis	infection of lungs by a specific bacterium

SUMMARIZE

Discuss the importance of respiration to the body.

Accept all reasonable responses. Respiration allows the body's cells to receive oxygen and get rid of carbon dioxide.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Circulatory, Respiratory, and Excretory Systems

Section 34.3 Excretory System

	•
Main Idea	Details
	Scan Section 3 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables, figures, and graphs.
	Look at all pictures and read the captions.
	☐ Think about what you already know about the excretory system.
	Write three facts you discovered as you scanned the section.
	1. Accept all reasonable responses.
	2
	www.almanahj.com
Review— Vocabulary	Use your book or dictionary to define pH.
рН	measure of acidity and alkalinity of a solution
New Vocabulary	Use your book or dictionary to define each term.
kidney	bean-shaped organ that filters out wastes, water, and salts from the
	blood
urea	nitrogenous waste product that is a component of urine
Academic- Vocabulary	Define inhibit to show its scientific meaning.
inhibit	to hold back, restrain, or block the action or function of something

Section 34.3 Excretory System (continued)

←Main Idea

Parts of the Excretory System

I found this information on page ______.

SE, p. 1005 RE, p. 408

⊘Details

Describe three functions of the excretory system that help maintain homeostasis of the body.

- 1 removes metabolic wastes from the body
- 2. regulates the amount of fluid and salts in the body
- 3 maintains the pH of the blood

Identify the main waste products secreted by the following components of the excretory system.

lungs: carbon dioxide

skin: water and salts

The Kidneys

I found this information on page

SE, pp. 1006–1007 RE, pp. 408–409 **Model** the structure of a kidney, including a diagram of a nephron. Label each major component.

Drawings should resemble the figure on SE p. 1006. Accept all reasonable responses. Labels should include the glomerulus, Bowman's capule, renal vein, renal artery, and collecting tubule.

Section 34.3 Excretory System (continued)

∕Main Idea⁻

Details

Kidnev Disorders

I found this information on page ___

> SE, p. 1008 RE, p. 410

Summarize information about kidney disorders in the table below.

	Disorder	Symptoms	Common Causes	Treatments
	Kidney infection	fever, chills, and mid- to low-back pain	bladder infection that spreads; obstructions in kidney	antibiotics
	Nephritis	blood in urine; swelling of body tissues; protein in urine	large particles in bloodstream lodge in glomeruli, causing inflammation	special diet; prescription drugs
	Kidney stones	pain	crystallized solids, such as calcium, form in kidney	ultrasonic sound waves; surgery
V	VWW.	lalman	<u>ah1.co</u> 1	\mathbf{n}

Kidney Treatments

I found this information on page __

> SE, p. 1009 RE, p. 410

Contrast the two types of dialysis by explaining how they differ in the following areas.

Filtering device: One method uses a machine to filter, and the other uses the membrane lining of the patient's abdomen.

Frequency and duration of treatment: The machine method requires three sessions of three to four hours each week. The other method requires 30 to 40 minutes daily.

SUMMARIZE

Analyze the path wastes take from the kidney out of the body by making a list of the order of the structures through which wastes flow.

- _____ 5. renal tubule 1. kidneys 2. renal artery 6. urethra
- 3. glomerulus
- 4. Bowman's capsule

- 7. urinary bladder
- _____ 8. ureter

Name	Date

Digestive and Endocrine Systems

Before You Read

Use the "What I Know" column to list the things you know about the digestive and endocrine systems. Then list the questions you have about these systems in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned
	almonobi co	

Science Journal

Accept all reasonable responses.

What can go wrong with your digestive and endocrine systems? Describe your own experience, that of someone you know, or items you have heard about in the media.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Digestive and Endocrine Systems

Section 35.1 The Digestive System

∕Main Idea⁻

Details

Skim Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.

- 1. Accept all reasonable responses.
- 2.

Review | | Vocabulary

Use your book or dictionary to define nutrients.

nutrients

vital components of foods that provide energy and materials for

growth and for body functions

New——' Vocabulary

Write the correct vocabulary term in the left column for each definition below.

mechanical digestion

small intestine

esophagus

amylase

villi

pepsin

liver

chemical digestion

peristalsis

large intestine

process that breaks food into smaller pieces by chewing and by the churning action of smooth muscles in the stomach and small intestine

longest part of the digestive tract, which connects the stomach and the large intestine and where digestion is completed

muscular tube that connects the pharynx to the stomach

enzyme found in saliva that begins chemical digestion by breaking down starches into sugars

fingerlike structures in the small intestine through which chemical digestion is completed and most nutrients from food are absorbed

enzyme in the stomach that helps digest proteins

largest internal organ of the body; produces bile, which helps to break down fats

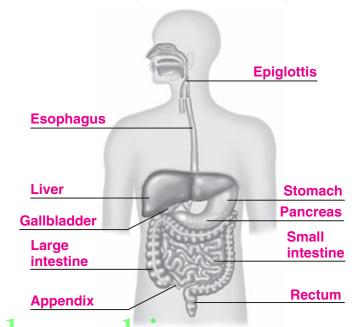
action of digestive enzymes in breaking down large molecules of food into smaller molecules that can be absorbed by cells

rhythmic contraction of smooth muscles that moves food through the digestive tract

end portion of the digestive tract, which includes the colon, rectum, and appendix

Section 35.1 The Digestive System (continued)

←Main Idea


Functions of the Digestive System

I found this information on page ______.

SE, pp. 1020–1024 RE, pp. 411–413

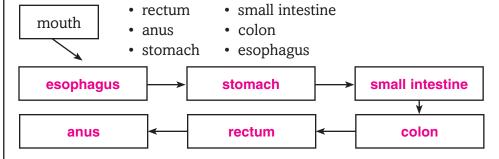
⊘Details

Label the parts of the digestive system in the figure below.

Summarize how each organ below mechanically and chemically digests food.

Organ	Mechanical Digestion	Chemical Digestion
Mouth	chewing breaks food into smaller pieces	amylase breaks down starches into sugars
Stomach	churning of the smooth muscles breaks food into smaller pieces	gastric glands secrete acid that aids the action of pepsin, which breaks down proteins
Small intestine	smooth muscle contractions continue to break food into smaller pieces	concludes chemical digestion with help of pancreas, liver, and gallbladder
Pancreas	does not apply	produces enzymes that digest carbohydrates, proteins, and fats; secretes alkaline fluid that aids enzyme action
Liver	does not apply	produces bile, which helps break down fats

Section 35.1 The Digestive System (continued)


Main Idea⁻

I found this information on page ______.

SE, pp. 1020–1024 RE, pp. 411–413

Details

Sequence the path of food through the digestive tract by placing the terms from the following list in the proper order on the flowchart.

Analyze why a sandwich would progress through your digestive tract, even if you ate it while standing on your head.

Accept all reasonable responses. Peristalsis, or the rhythmic

contraction of smooth muscles that line the digestive tract, moves

food through the system. Gravity is not required.

Contrast the digestive functions of the small intestine with those of the large intestine. Accept all reasonable responses.

Large Intestine
eliminating indigestible wastes
colon absorbs water from chyme
 converts it to feces for passage through the rectum
elimination from the anus

CONNECT

Describe how your body's ability to benefit from food would change if your small intestine did not have villi. Explain why.

Accept all reasonable responses. Without villi, the body would obtain less benefit from the food ingested. Without villi, a person would have to consume more food because digestion would be less efficient.

Digestive and Endocrine Systems Section 35.2 Nutrition

vitamin

activities

section 55.2 Mutitio	•
Main Idea	Details
	Scan Section 2 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables, figures, and graphs.
	Look at all pictures and read the captions.
	☐ Think about what you already know about nutrition.
	Write three facts you discovered as you scanned the section.
	1. Accept all reasonable responses.
	2
www	w.almanahi.com
Review— Vocabulary	
amino acids	basic building blocks of proteins
New Vocabulary	
Calorie	unit used to measure the energy content of foods
mineral	inorganic compound that is used by the body as building material
	and is involved with metabolic functions
nutrition	process by which a person takes in and uses food
vitamin	organic compound that is needed in small amounts for metabolic

Section 35.2 Nutrition (continued)

Main Idea

Details

Calories

I found this information on page ______.

SE, p. 1025 RE, p. 414 **Evaluate** Assume that playing soccer requires 540 Calories per hour. On a particular day, you ate 2,000 Calories in food. You played soccer for 2.5 hours. Your body used 800 Calories in other activities. Did you use more energy than you consumed on this day? Show your work.

Yes; you used 800 + (540 X 2.5 hours) = 2,150 Calories. You took in

2,000 Calories. You took in 150 fewer Calories than you used.

Carbohydrates and Fats and Proteins

I found this information on page ______.

SE, pp. 1026–1027 RE, p. 415 **Summarize** information about carbohydrates, fats, and proteins by completing the table below.

		Break Down Into	Importance to the Body	
V	Carbohydrates VWW.2111	simple sugars	provide energy for cells; cellulose helps food move through digestive tract	
•	Fats	fatty acids and glycerol	provide energy; building blocks for body; protect some internal organs; store and transport some vitamins	
	Proteins	amino acids	cells assemble amino acids into proteins needed for body structures and functions	

Food Pyramid

I found this information on page ______.

SE, p. 1027 RE, p. 416 **Classify** all the foods you ate yesterday in the appropriate food groups. Accept all reasonable responses.

Grains	Fruits	Milk
Vegetables	Oils	Meat and Beans

∕Main Idea⁻

⊘Details

Vitamins and Minerals and

Nutrition Labels

Section 35.2 Nutrition (continued)

I found this information on page _____.

SE, pp. 1028–1030 RE, p. 416 **Examine** the food label below, and complete the table below assuming you ate the contents of the entire container.

NUTRITION FACTS Serving Size: 1 cup (237 g) Servings Per Container: 2	
Amount Per Serving Calories 100	Calories from Fat 20
Total Fat 2 g Saturated Fat 0.5 g Cholesterol 20 mg Sodium 960 mg Total Carbohydrate 1 Dietary Fiber 1 g Sugars 1 g Protein 9 g	7% 40%
Vitamin A 30% Calcium 2%	Vitamin C 0% Iron 4%

Calories Consumed	Grams of Saturated Fat	Grams of Protein	Percent of Daily Value of Calcium
200	1 g	18 g	4%

SUMMARIZE

www.alı

Typically men need more Calories per day than women, and teenagers need more Calories than adults. Analyze why Calorie needs differ between these groups.

Accept all reasonable responses. Usually men are larger and have higher metabolic rates than

women and would need more Calories to support their body mass and higher metabolic rate.

Teenagers are still growing and need more Calories to support their growth. Also, teenagers

tend to be more physically active than adults, and physical activity uses Calories.

Digestive and Endocrine Systems

⊂Main Idea⁻

Details

Scan the titles, boldfaced words, figures, and captions in Section 3. Write two facts you discovered as you scanned the section.

- 1 Accept all reasonable responses.

Review **Vocabulary**

Section 35.3 The Endocrine System

Use your book or dictionary to define homeostasis.

homeostasis

regulation of an organism's internal environment to maintain life

New-Vocabulary

Write the correct term in the left column for each definition below.

hormone

thyroxine

endocrine gland

calcitonin

parathyroid hormone

aldosterone

cortisol

pituitary gland

glucagon

insulin

antidiuretic hormone

acts on target cells and tissues to produce a specific response

hormone that causes cells to have a higher rate of metabolism

any gland that produces hormones, which are released into the bloodstream and distributed to body cells

thyroid hormone that is partly responsible for the regulation of calcium, blood clotting, nerve function, and muscle contraction

increases blood calcium by stimulating the bones to release calcium

steroid hormone secreted by the adrenal glands that primarily affects the kidneys and is important for reabsorbing sodium

steroid hormone secreted by the adrenal glands that raises blood glucose levels and also reduces inflammation

secretes hormones that regulate many body functions as well as other endocrine glands

pancreatic hormone that signals liver cells to convert glycogen to glucose and release the glucose into the blood

pancreatic hormone that signals liver and muscle cells to accelerate the conversion of glucose to glycogen, which is stored in the liver

hormone produced by the hypothalamus, regulates water balance

Section 35.3 The Endocrine System (continued)

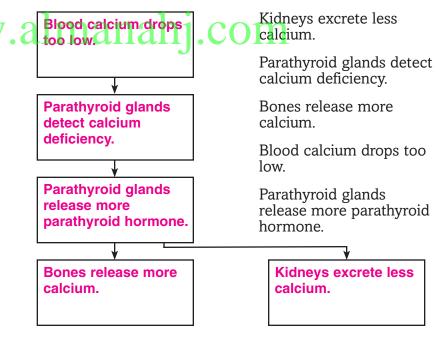
Main Idea

Action of Hormones

I found this information on page ______.

SE, pp. 1031–1032 RE, p. 417

⊘Details


Contrast the action of steroid hormones and amino acid hormones. Accept all reasonable responses.

Steroid Hormones	Amino Acid Hormones
cause target cells to initiate protein synthesis; soluble in lipids so can diffuse through plasma membrane of target cell; bind with receptors in cytoplasm; move together into nucleus; bind with DNA, activating specific genes	cannot diffuse through plasma membrane, so bind with receptors on membrane of target cell; receptors activate enzyme inside, which initiates a biochemical pathway, resulting in desired response

Negative Feedback

I found this information on page ______.

SE, p. 1032 RE, p. 418 **Sequence** the steps in a portion of the negative feedback system. Steps in the regulation of calcium are written in scrambled order at right. Write the steps in the correct order in the boxes.

Endocrine Glands and Their Hormones

I found this information on page ______.

SE, pp. 1032–1035 RE, pp. 418–419 **Explain** how the endocrine system functions as a communication system.

Serves as messengers	hormones
Produces messengers	endocrine glands
Receives the messages	target cells and tissues

Section 35.3 The Endocrine System (continued)

←Main Idea

Details

Links to the Endocrine/ Nervous System

I found this information on page ______.

SE, p. 1037 RE, p. 420 **Compare** the hormone functions of the glands listed below.

Gland/ Location	Hormones Produced	Body Functions Regulated
Pituitary Location: base of brain	human growth hormone (hGH), among others	hGH regulates physical growth; others regulate many body functions and other endocrine glands
Thyroid Location: throat	thyroxine	causes cells to have a higher metabolic rate
	calcitonin	calcium levels in blood, blood clotting, nerve function, muscle contraction
Parathyroid Location: throat	parathyroid hormone	calcium levels
Pancreas Location:	insulin	lowers blood glucose levels
below stomach V	glucagon 11 al	raises blood glucose levels
Adrenal Location:	aldosterone	reabsorption of sodium
just above kidneys	cortisol	raises blood glucose and reduces inflammation

Identify the key link in the diagram below.

Create a concept map showing two pairs of hormones that work together and the effect of their cooperation on homeostasis.

Accept all reasonable responses.

Name	Date

Human Reproduction and Development

Before You Read

Use the "What I Know" column to list the things you know about reproduction and development. Then list the questions you have about these topics in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned
	1 1 1	
WWW.	almanah _l .cc	m

w w w .amananj.com

Science Journal

As you have grown and developed since birth, you have gone through many changes. Write about some of the physical changes you have experienced since you were born.

Accept all reasonable responses.		

Human Reproduction and Development

Section 36.1 Reproductive Systems

←Main Idea

Details

Skim Section 1 of the chapter. Read the headings and illustration captions. Write three questions that come to mind.

- 1. Accept all reasonable responses.
- 2. _____
- 3. _____

Review Vocabulary

Use your book or dictionary to define hypothalamus.

hypothalamus

portion of the brain that connects the endocrine and nervous

systems and which controls the pituitary gland

New——— Vocabulary

Classify each vocabulary term. Give a brief description of each.

One term fits in both categories.

epididymis

menstrual cycle

oocyte

oviduct

polar body

puberty

semen

seminiferous tubule

urethra

vas deferens

Male Reproductive System Fe	Semale Reproductive Systen
-------------------------------	-----------------------------------

epididymis: single coiled tube menstrual cycle
where sperm mature female reprodu

puberty: time when secondary sex characteristics develop

semen: combination of sperm and fluids

seminiferous tubule: tubule in each teste in which sperm develops

urethra: tube that carries both semen and urine out of the body through the penis

vas deferens: duct that carries sperm from the epididymis toward the ducts that will force the sperm out of the body menstrual cycle: changes in the female reproductive cycle each month

oocyte: immature egg that develops into an ovum

oviduct: tube that carries an egg from ovary to uterus

polar body: is formed at the first and second meiotic divisions

puberty: time when secondary sex characteristics develop

Section 36.1 Reproductive Systems (continued)

←Main Idea⁻

Human Male Reproductive System

I found this information on page ______.

SE, pp. 1048–1049 RE, pp. 421–422

⊘Details •

Model the structures of the male reproductive system below. Label the testes, epididymus, vas deferens, and urethra. Describe the function of each.

Sketches should resemble SE p. 1048 testes—where sperm are produced; epididymus—tube where sperm mature; vas deferens—duct that carries sperm toward the ducts that will push them out of the body; urethra—carries sperm out of body

Create a diagram to show how the negative feedback system works to control FSH and LH in the male body.

Accept all reasonable diagrams that show that as the levels of testosterone in the blood increase, the body decreases the production of FSH and LH. Increased sperm production also decreases the production of these. When the levels of testosterone drop, the body increases production of FSH and LH.

Human Female Reproductive System

I found this information on page ______.

SE, p. 1050 RE, p. 423 **Identify** the three main functions of the female reproductive system.

to produce eggs, to receive sperm, and to provide an environment

in which a fertilized egg can develop

Model the structures of the human female reproductive system below. Label the oviduct, cervix, ovary, and uterus. Describe the function of each.

Sketches should resemble SE p. 1050. ovary—produces eggs; oviduct—moves eggs to the uterus; uterus—where a fetus develops; cervix—lower end of the uterus that leads to the vagina; vagina—leads to outside the female body

Section 36.1 Reproductive Systems (continued)

(Main Idea →

Details

Sex Cell Production

I found this information on page _____.

SE, p. 1051 RE, p. 424 **Summarize** the results of each meiotic division in the production of eggs.

First Meiotic Division	Second Meiotic Division
disintegrates, and a cell that	completed only if the egg is fertilized; polar body, which disintegrates, and the zygote

The Menstrual Cycle

I found this information on page ______.

SE, pp. 1051–1053 RE, pp. 424–425 **Sequence** the steps in the menstrual cycle. Describe the changes in hormones, the uterus, and the ovary at each stage.

1. The Flow Phase			
Hormone Changes Level of FSH in blood begins to rise.	Uterine Changes Endometrium is shed; uterine muscle contracts to help expel endometrium.	Ovary Changes A follicle in one ovary begins to mature; meiosis of the prophase I cells goes on.	
2. The Follicular Phas Hormone Changes Estrogen stimulates the repair of the endometrial lining; production of FSH and LH slows. Estrogen peaks causing sharp increase in release of LH.	Uterine Changes Endometrial cells undergo mitosis and uterine lining thickens.	Ovary Changes Follicle ruptures and egg is released into oviduct.	
3. The Luteal Phase			
Hormone Changes Progesterone and estrogen are produced. If egg not fertilized, release of FSH and LH blocked, hormone levels drop.	Uterine Changes If egg is not fertilized, lining sheds. If egg is fertilized, endometrium secretes fluid rich in nutrients.	Ovary Changes Corpus luteum develops from ruptured follicle. If egg is not fertilized, corpus luteum breaks up.	

SUMMARIZE

Draw a concept web that shows sex cell production in males and females. Accept all reasonable responses.

Human Reproduction and Development

Section 36.2 Human Development Before Birth

_	M	aiı	Id	ea	-

Details

Skim Section 2 of the chapter. Write two questions that come to mind from reading the heading and illustration captions.

- 1 Accept all reasonable responses.
- 2.

Review—— Vocabulary

Use your book or dictionary to define lysosome.

lysosome

organelle that contains digestive enzymes

New Vocabulary

Use your book or dictionary to define each term. Then make a sketch of each to help you remember.

amniotic fluid

liquid that protects, cushions,

and insulates the embryo

blastocyst

hollow ball of cells formed by

the fifth day of pregnancy;

attaches to the endometrium

morula

solid ball of cells at the point at

which the zygote leaves the

oviduct and enters the uterus

Academic Vocabulary

Define enable to show its scientific meaning. Write a sentence using the term.

enable

to make able or feasible

369

Section 36.2 Human Development Before Birth (continued)

∕Main Idea⊃_

Fertilization and Early **Development**

I found this information on page ___

> SE, pp. 1054-1058 RE, pp. 426-429

○ Details

Sequence the steps of fertilization of an egg and implantation of a blastocyst. The steps are written in scrambled order at right. Write the steps in the correct order in the boxes.

300 million to 500 million sperm are released in the female's vagina.

The sperm that survive the acidic vagina swim through the vagina into the uterus.

A few hundred sperm make it into the two oviducts.

The zygote moves into the uterus and becomes a blastocyst.

300 million to 500 million sperm are released in the female's vagina.

One sperm penetrates the egg, which changes the electrical charge of the egg's membrane so other sperm cannot enter.

The nucleus of the sperm and the nucleus of the egg unite,

forming a zygote.

The zygote moves down the oviduct and begins to divide by mitosis.

The zygote moves into the uterus and becomes a blastocyst.

The blastocyst attaches to the uterine lining.

The nucleus of the sperm and the nucleus of the egg unite, forming a zygote.

A few hundred sperm make it into the two oviducts.

The zygote moves down the oviduct and begins to divide by mitosis.

The blastocyst attaches to the uterine lining.

Name	Date

Section 36.2 Human Development Before Birth (continued)

Main Idea

on page __

I found this information | Mo

SE, pp. 1055-1058 RE, pp. 426-429

○Details

Model a placenta and umbilical cord attached to an embryo. Draw arrows to show the route oxygen and nutrients take from the mother's blood to the embryo and how wastes are removed.

Accept all reasonable diagrams. See SE p. 1056.

Three Trimesters of Development

I found this information on page ______.

SE, pp. 1058–1059 RE, pp. 429–430 **Compare** development of an embryo into a fetus during each trimester. Describe the changes that occur.

	First Trimester	Second Trimester	Third Trimester
V	organ systems form; fetus can move arms, legs, fingers, and toes, and make facial expressions	period of marked growth; hair forms; eyes can open; fetus cannot maintain a constant body temperature and lungs not fully developed	rapid growth; fat accumulates under the skin; rapid development of nerve cells in the brain

Diagnosis in the Fetus

I found this information on page ______.

SE, pp. 1060–1061 RE, p. 430 **Analyze** one of the methods of diagnosis in the fetus and describe its benefits and risks.

Accept all reasonable responses. The three methods discussed in

the text are ultrasound, amniocentesis, and chorionic villi sampling.

SUMMARIZE

Use the analogy of plant growth to compare to the growth and development of a fetus over nine months.

Accept all reasonable responses. A developing plant is similar to a fetus growing. The seed sprouts and the young plant begins to grow. This is similar to the first trimester growth of a fetus. The plant is developing new parts. In the second trimester, the plant makes its way above the surface of the soil. In the third trimester, the plant continues to grow and grow.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Human Reproduction and Development

Section 36.3 Birth, Growth, and Aging

←Main Idea

Details

Scan the illustrations and read the captions in Section 3 of the chapter. Predict two things you will read about birth and growth.

- 1. Accept all reasonable responses.
- 2.

Review Vocabulary

Use your book or dictionary to define growth.

growth

increase in the amount of living material and formation of new

structures in an organism

New Vocabulary

Use your book or dictionary to define the following terms.

adolescence

major phase of development that begins with puberty and ends at

adulthood .almananj.com

adulthood

phase of development that begins when physical development is

complete

dilation

opening of the cervix prior to giving birth

expulsion stage

phase of labor in which strong uterine contractions push the fetus

out through the vagina

infancy

first two years of life

labor

birthing process

placental stage

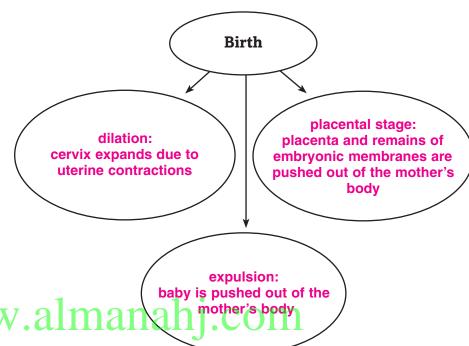
phase of labor after birth, during which the placenta detaches from

the uterus and leaves the mother's body through the vagina

Section 36.3 Birth, Growth, and Aging (continued)

←Main Idea⁻

District


Birth

I found this information on page ______.

SE, pp. 1062–1063 RE, p. 431

Details

Identify and describe the three stages of birth in the graphic organizer below.

Growth and Aging

I found this information on page ______.

SE, pp. 1063–1065 RE, p. 432 **Analyze** the primary way the following hormones affect human growth.

Hormone	Effect on Growth	
Human growth hormone	increases the rates of protein synthesis and breakdown of fats	
Thyroxine	increases the overall metabolic rate	
Steroids	activate certain genes that promote the formation of proteins, causing cell sizes to increase	

Section 36.3 Birth, Growth, and Aging (continued)

← Main Idea –

I found this information on page ______.

SE, pp. 1063–1065 RE, p. 432

○ Details

Describe the changes that occur at each stage of growth and development.

1. Infancy

Infancy describes the first two years of life. The child grows tremendously, increasing physical coordination and mental development. The infant's birth weight triples in the first year. Infants learn to control their legs and arms, roll over, sit, crawl, and walk. The child may begin to talk toward the end of this stage.

2. Childhood

Childhood lasts from the end of infancy to adolescence. The child develops ability to reason and solve problems.

Adolescence Adolescence follows childhood and begins at puberty. Teenagers have growth spurts that can be surprisingly large. Adolescents gain their maximum height. By the time adulthood is reached, physical growth is complete.

4. Adulthood

During adulthood, metabolism slows down, the skin begins to lose its elasticity, wrinkles appear, and hair begins to turn white. Disks between vertebrae compress, so people become shorter. Vision and hearing might diminish.

SUMMARIZE

Create a flowchart of the stages of human development from newborn to adulthood. Write the approximate age when an individual moves from one stage to the next. Accept all reasonable responses.

Name	Date

The Immune System

Before You Read

Use the "What I Know" column to list the things you know about disease and immunity. Then list the questions you have about disease and immunity in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned
	almanahi co	m

Science Journal

When you get a cold, your immune system fights it and you eventually feel better. Hypothesize how people with weakened immune systems might need to live their lives differently to stay healthy.

Accept all reasonable responses.			

The Immune System

Section 37.1 Infectious Diseases

⊂Main Idea⊃

Details

Skim Section 1 of the chapter and list three ways that diseases spread from person to person.

- 1 Accept all reasonable responses.

Review-Vocabulary

Use your book or dictionary to define protozoan.

protozoan

unicellular, heterotrophic, animal-like protist

New-Vocabulary

Use your book or dictionary to define each term.

antibiotic

prescription drug containing a substance that can kill or inhibit the growth of other microorganisms

endemic disease

disease continually found in small amounts within the population

epidemic

large outbreak in an area that afflicts many people with the same disease

infectious disease

disease that is caused when a pathogen is passed from one organism to another, disrupting homeostasis in the organism's body

Koch's postulates

rules for demonstrating that an organism causes a disease

pandemic

epidemic that is widespread throughout a large region, such as a country, continent, or the entire globe

pathogen

cause of infectious disease

reservoir

for diseases, a source of the pathogen in the environment

← Main Idea –

Pathogens Cause Infectious Disease

I found this information on page ______.

SE, p. 1076 RE, p. 433

Details

Section 37.1 Infectious Diseases (continued)

Identify facts about harmful and helpful microorganisms.

Five types of pathogens:

1. bacteria

2. viruses

3. protozoans

4. fungi

5. parasites

Four places that helpful microorganisms live in your body:

1. intestinal tract

2. reproductive tract

3. skin

4. hair follicles

Germ Theory and Koch's Experiments

> SE, pp. 1076–1077 RE, pp. 433–434

Design the experimental steps you would use to identify the virus that caused bird flu in a flock of chickens using Koch's postulates.

- 1. Isolate the suspected pathogen in each diseased chicken.
 - 2. Grow the suspected pathogen in pure culture in artificial media in the laboratory.
 - 3. Inject the suspected pathogen into a healthy chicken.
 - 4. Isolate suspected pathogen from new host, grow it again, and see if characteristics are the same as original pathogen.

Spread of Disease

I found this information on page ______.

SE, pp. 1078-1080 RE, pp. 435-436

Analyze how diseases spread.

Three disease reservoirs:

1. animals

2. people

inanimate objects, such as contaminated soil, water, or food Four main ways diseases are transmitted to humans:

1. direct contact

2. indirectly through the air

3. through vectors

4. indirectly through touching contaminated object

Section 37.1 Infectious Diseases (continued)

←Main Idea

Details

Symptoms of Disease

I found this information on page ______.

SE, pp. 1080–1081 RE, p. 436

Disease Patterns

I found this information on page ______.

SE, p. 1081 RE, p. 437 **Contrast** how viruses and bacteria cause symptoms of disease.

Viruses: multiply in cells; damage or kill the cells when they leave by exocytosis or by bursting the cells

Bacteria: produce toxins that can be carried throughout the body in the bloodstream, damaging various parts of the body

Compare endemic, epidemic, and pandemic disease by using different colors or patterns to represent each disease pattern. Add a key to explain your map. Accept all reasonable responses.

Treating and Fighting Diseases

I found this information on page ______.

SE, pp. 1082–1083 RE, p. 437 **Analyze** the relationship between natural selection and the increase in antibiotic-resistant bacteria.

Accept all reasonable responses. Natural selection occurs when organisms with favorable variations survive, reproduce, and pass their variations to the next generation. Bacteria with a trait that enables them to survive a particular antibiotic will pass on this favorable trait. Bacteria reproduce quickly, resulting in increased numbers with resistance.

SUMMARIZE

Critique what people can do to help keep antibiotics effective in

disease fighting.

Accept all reasonable responses. People should use antibiotics only when necessary.

This will keep them from being overused, which can lead to bacteria becoming resistant.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

The Immune System

Section 37.2 The Immune System

Main Idea

Details

Skim Section 2 of the chapter. Identify the system responsible for the body's specific immunity.

the lymphatic system

Review Vocabulary

Use your book or dictionary to define white blood cells.

white blood cells

large, nucleated blood cells that play a major role in protecting the

body from foreign substances and microorganisms

New——— Vocabulary

Write the correct vocabulary term in the left column for each definition below.

cytotoxic T cell

lymphocyte that destroys pathogens and releases cytokines

memory cell

long-living cell that is exposed to an antigen during the primary immune response and will respond rapidly if the body encounters the same pathogen later

antibody

protein produced by B lymphocytes that specifically reacts to a foreign pathogen

immunization

deliberate exposure of the body to an antigen so that a primary response and immune memory will develop

interferon

protein secreted by virus-infected cells that binds to neighboring cells and stimulates these cells to produce antiviral proteins

complement protein

protein that enhances phagocytosis by helping the phagocytic cells bind better to pathogens, activating the phagocytes, and enhancing the destruction of the pathogen's membrane

helper T cell

lymphocyte that activates antibody secretion in B cells and another type of T cell that aids in killing microorganisms

lymphocyte

type of white blood cell that is produced in red bone marrow and plays a role in specific immunity

B cell

antibody-producing cell that is present in all lymphatic tissues

Section 37.2 The Immune System (continued)

←Main Idea

Nonspecific Immunity

I found this information on page ______.

SE, pp. 1084–1085 RE, p. 438–439

⊘Details

Summarize nonspecific immune defenses by completing the table.

Defense	How it Works		
Skin	layer of dead skin cells forms barrier against invasion; bacteria living symbiotically on the skin produce acids that inhibit pathogens		
Saliva, tears, and nasal secretions	contain enzyme lysozyme that breaks down bacterial cell walls, killing these pathogens		
Mucus	blocks bacteria from sticking to inner epithelial cells; inner surfaces secrete extra mucus when infected, triggering coughing that helps move infected mucus out of the body		
Stomach acid	hydrochloric acid in the stomach kills many microorganisms found in food		
Phagocytosis	phagocytes surround and internalize foreign		
vww.al	microorganisms, and then release digestive enzymes that destroy the microorganisms		
Interferon	virus-infected cells secrete interferon, which binds to neighboring cells and stimulates these cells to produce antiviral proteins		
Inflammatory response	chemicals released by invaders and body cells attract phagocytes, increase blood flow to area, and make blood vessels more permeable to allow white blood cells to escape; result is more white blood cells in the area		

Specific Immunity

I found this information on page ______.

SE, p. 1086 RE, pp. 439–440 **Compare** the functions of these organs of the lymphatic system.

Lymph Nodes	Tonsils	Spleen	Thymus Gland
filter the lymph and remove foreign materials from the lymph	form protective ring between nasal and oral cavities, protecting against pathogens in nose and mouth	stores blood and destroys damaged red blood cells; contains lymphatic tissue that responds to foreign substances in blood	helps activate T cells, which are produced in bone marrow but mature in the thymus gland

Section 37.2 The Immune System (continued)

(Main Idea

B Cell Response, T Cell Response

I found this information on page ______.

SE, pp. 1086-1088 RE, pp. 441-442

Passive and Active Immunity

I found this information on page ______.

SE, pp. 1088–1090 RE, p. 442

⊘Details •

Sequence B cell and T cell responses. Write the numbers 1–5 next to the activities below to show the order in which they occur.

- 2 A processed antigen is displayed on the membrane of the macrophage.
- The activated helper T cell reproduces and attaches to a B cell or cytotoxic T cell.
- 1 A macrophage digests a pathogen.
- ______ The B cell begins to make antibodies and the cytotoxic T cell releases cytokines.
- _____ The macrophage binds with a helper T cell.

Contrast passive immunity and active immunity.

Passive Immunity Active Immunity Both

antibodies made by other people or animals are transferred into

transferred into the body, such as by injection or through a mother's placenta or breast

milk to her child

reduce the likelihood of developing a disease

exposure of immune system to disease antigens either through having an infectious disease or immunization

Immune System Failure

I found this information on page ______.

SE, pp. 1090–1091 RE, p. 442 **Analyze** why AIDS patients often die from a secondary infection caused by a different pathogen.

Accept all reasonable responses. The HIV virus infects helper T cells,

which produce viruses that infect other helper T cells. Eventually,

loss of helper T cells makes AIDS patients susceptible to diseases.

SUMMARIZE

Classify AIDS as an endemic, an epidemic, or a pandemic disease. Explain your reasoning.

Accept all reasonable responses. Students should recognize from Section 1 that AIDS is at

least an epidemic and probably a pandemic. Infection is widespread over many nations and

continents. An estimated 40 million people globally were living with HIV infection in 2004.

The Immune System

Section 37.3 Noninfectious Disorders

⊂Main Idea⁻

Details

Scan Section 3 of the chapter. Use the checklist as a guide.

	1 م	_ 11	section	4:41
	i Read	all	section	titles

	Read	all	boldfaced	words
ш	Neau	all	Dululaceu	worus.

☐ Think about	what you	already	know	about	noninfectious
disorders.					

Write three facts you discovered as you scanned the section.

1. Accept all reasonable responses.

2.

ww.almanahj.com

Review Vocabulary

Use your book or dictionary to define cancer.

cancer

uncontrolled cell division that might be caused by environmental

factors and/or changes in enzyme production in the cell cycle

New Vocabulary

Write the correct vocabulary term in the left column for each definition below.

anaphylactic shock

severe allergic reaction to particular allergens, which causes a massive release of histamine; smooth muscles in the bronchioles contract, restricting air flow into and out of the lungs

metabolic disease

disease that results from an error in a biochemical pathway

degenerative diseases

diseases that result when a part of the body wears out

allergy

a response to environmental antigens

Genetic Disorders. **Degenerative** Diseases, **Metabolic Diseases, Cancer**

I found this information on page _____.

> SE, pp. 1092-1093 RE, p. 443-444

Details

Section 37.3 Noninfectious Disorders (continued)

Classify each noninfectious disorder according to whether it is caused strictly by a person's genes, or by genes combined with environmental factors.

- arteriosclerosis
- Down syndrome
- coronary artery disease
- hemophilia

- · sickle cell anemia
- Type 1 diabetes
- leukemia
- albinism

Causes of Noninfectious Disorders

Genes Only	Genes and Environmental Factors
Down syndrome	arteriosclerosis
hemophilia	coronary artery disease
sickle cell anemia	Type 1 diabetes
albinism	
almonahi a	om

Evaluate ways that an individual can increase his or her chance of surviving one of the noninfectious diseases that are partly caused by environmental factors.

Accept all reasonable responses.

Identify the causes of noninfectious disorders.

Noninfectious Disorders	Causes	
genetic disorders	inheritance of genes that do not function properly; also abnormal number of chromosomes	
degenerative diseases	a part of the body wears out, sometimes due to aging and sometimes sooner than expected in a lifetime	
metabolic diseases	error in a biochemical pathway	
cancer	abnormal cell growth due to loss of the body's normal control over cell division	

Section 37.3 Noninfectious Disorders (continued)

←Main Idea

(Details

Inflammatory Diseases

I found this information on page ______.

SE, pp. 1094–1095 RE, p. 444 **Compare and contrast** the pairs of disorders in the table below.

Accept all reasonable responses.

Inflammatory response to infectious disease and inflammatory disease:

Inflammatory response to infectious disease enhances the overall immune response to infection. In inflammatory disease, the body produces an inflammatory response to a common substance. This response is not helpful to the body.

Simple allergic reaction and anaphylactic shock:

Both react to particular allergens by releasing histamine from white blood cells. In anaphylactic shock, however, the release is massive and the result is life threatening. Smooth muscles in the bronchioles contract, restricting air flow. In a simple allergic reaction, symptoms are less severe.

Degenerative arthritis and rheumatoid arthritis:

Rheumatoid arthritis is an autoimmune disorder. The body makes antibodies that attack its own proteins. Degenerative arthritis results from part of the body wearing out rather than from autoimmunity.

Identify the parts of the body attacked by antibodies in each of the following autoimmune disorders.

Rheumatic fever	Lupus	Rheumatoid arthritis
valves of the heart	cell nuclei	joints

SUMMARIZE

Make a table of the types of noninfectous disorders, listing one cause and one example of each disorder.