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3.1 Introduction

The quantitative three-dimensional reconstruction and tracking of micro or nano objects
spread in a volume is of great interest in many fields of science, such as in biomedical fields
(e.g., tracking of markers), fluid mechanics (e.g., the study of turbulence or evaporation
phenomena), and chemical engineering (e.g., the study of reactive multiphase flow), among
many other applications. The development of accurate and high-speed 3-D imaging systems
is crucial in these fields. Several imaging techniques have been investigated during the last 20
years, such as 3-D Particle Tracking Velocimetry with four cameras (Virant and Dracos 1997)
or extended Laser Doppler Anemometry (Volk et al. 2008). Three-dimensional tracking has
been performed with single-molecule fluorescent microscopy using nanometer-sized fluo-
rescent markers based on astigmatism optics (Huang et al. 2008), double-helix PSF (Pavani
et al. 2009), or multi-plane detection (Pavani et al. 2009). Each of these techniques has its
own advantages and limitations but none of these techniques can yet compete in accuracy
with digital holography (DH) to reconstruct 3-D trajectories and size of high speed moving
objects.

DH is a non invasive 3-D metrological tool that is suitable for fast moving object recon-
struction and sizing. It has proved to be efficient in many fields. Some recent examples include:
Verpillat et al. (2011); Chareyron et al. (2012); El Mallahi et al. (2013); Lamadie et al. (2012);
Moon et al. (2013) and Seifi et al. (2013b).

Two setups are commonly used in DH: the on-axis setup and the off-axis setup. Although
off-axis setups are well adapted to the reconstruction of object surface, the on-axis setups are
more suited to accurate reconstruction of micro or nano objects in a volume. In contrast to
off-axis holography, on-axis hologram exploits the whole frequency bandwidth of the sensor
to encode the depth of objects with high accuracy. Furthermore because it does not involve
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beam splitters, mirrors, and lenses, the in-line setup (i.e., Gabor setup) is less sensitive to
vibrations. This imaging technique is also called “lensless imaging” (Faulkner and Rodenburg
2004; Repetto et al. 2004; Allier et al. 2010; Fienup 2010), because it involves no lens between
the object and the sensor. The disadvantage of on-axis setups comes from the superimposition
of a background to the hologram signal, thereby reducing the dynamic range of the signal of
interest.

Over the past decade, numerous algorithms for the analysis of digital holograms have been
proposed (several journal special issues were published on the subject: see Poon et al. 2006;
Coupland and Lobera 2008, Kim et al. 2013). These reconstruction algorithms are mostly
based on a common approach (hereafter denoted the classical approach): a digital reconstruc-
tion based on the simulation of hologram diffraction.

In contrast to this optical approach, signal processing tools commonly used in the image
processing of other imaging modalities provide a rigorous way to process on-axis holograms
leading to optimal image processing in certain cases. Rather than transforming the hologram,
the aim is to find the reconstruction that best models the measured hologram. This “inverse
problems” approach extracts more information from the hologram and is proved to solve two
essential problems in digital holography: the improvement of accuracy of reconstruction and
enlargement of the studied field beyond the physical limit of the sensor size (Soulez et al.
2007a,b). It also leads to almost unsupervised algorithms (only few tuning parameters are
used). These approaches are sometimes referred to as compressive sensing methods (Brady
et al. 2009, Lim et al. 2011, Rivenson et al. 2010). The drawback of these approaches is
a computational load heavier than with classical techniques. The parameters that increase the
processing time are the size of the reconstructed volume, the number of parameters to estimate
(in the case of parametric reconstruction), and the model complexity. Accelerations have been
recently proposed to reduce processing time.

The second section of the chapter defines the framework of hologram processing and intro-
duces hologram-image formation models and the mathematical notations used in the follow-
ing. In the third section, we briefly remind that, from a signal processing point of view, the light
propagation operator classically used to reconstruct holograms does not invert hologram for-
mation. Then, Section 3.4 gives a unified presentation of hologram processing methods based
on inverse problems. We present in Section 3.5 an estimate of the parameter accuracy lower
bound reachable using such algorithms. In Section 3.6, recent algorithms aimed at reducing
the complexity of the reconstruction are presented.

3.2 Model of Hologram Image Formation

In this section, we remind the reader of the mathematical model of hologram formation (Good-
man 1996) that will be used in the reconstruction methods described in the next sections. We
also introduce the matrix notations, commonly used in inverse problem frameworks, allow-
ing us to account easily for sampling and cropping of the signal for theoretical analysis of
the problem. We consider an on-axis holography setup where n small objects are illuminated
with a collimated laser beam. We assume that the Royer criterion is satisfied (i.e., that the
surface of the projected objects on the sensor is less than 1% of the sensor area, see Royer
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Figure 3.1 Illustration of in-line hologram formation model

1974). The digital camera records both the object wave–the wave that has propagated from
the objects to the sensor–and the reference wave–the illuminating wave–(see Fig. 3.1). This
diffraction phenomenon can also be modeled as interferences between the waves diffracted
by each object aperture 𝜗j and the illuminating wave Aref (assumed to be unaltered by the
diffracting objects).

We consider small objects and that Fresnel’s diffraction approximation is valid (Goodman
1996, p. 69), that is, for a propagating distance z, a width of object l and a wavelength 𝜆
the following condition is satisfied: z3 ≫ 𝜋 l4∕(64𝜆). For most experimental conditions Fres-
nel’s approximation is valid (e.g., for a laser wavelength 𝜆 = 532 nm, and an object width
l ≈ 100 μm the minimum distance to the detector zmin = 0.5 mm). Under such conditions and
for n particles of radii rj and 3-D positions (xj, yj, zj), the intensity measured by the detector at
position (x, y) is given by (Seifi et al. 2013b):

I(x, y) = I0
ref (x, y) − 2

√
I0
ref (x, y)

n∑
j=1

𝜂j.ℜ[(hzj
∗ 𝜗j)(x, y)] + 𝛽(x, y), (3.1)

where I0
ref stands for the intensity of the reference wave on the hologram plane (background

image), the real factors 𝜂j accounting for possible variations of incident energy seen by an
object due to the non-uniformity of the reference wave, 𝜗j is the complex aperture of the jth

object, and hzj
is the impulse response function for free space propagation over a distance

zj (distance of the jth object to the hologram). 𝛽 represents the sum of second-order terms
of diffraction. Under Fresnel approximation, the impulse response is the so-called Fresnel
function:

hzj
(x, y) = 1

i𝜆zj
exp

(
i𝜋(x2 + y2)

𝜆zj

)
. (3.2)

Let us note that other kernels can be used depending on the experimental conditions
(e.g., Rayleigh–Sommerfeld kernel: Goodman 1996).
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For small objects and large distances between objects and sensor (i.e., 𝜋l2∕(4𝜆z)≪ 1) the
second order terms of Eq. (3.1) are negligible. The model then simplifies to a linear model:

I(x, y) = I0
ref (x, y) +

√
I0
ref (x, y)

n∑
j=1

𝛼j.mj(x, y),

with mj(x, y) = −ℜ(hzj
∗ 𝜗j)(x, y),

𝛼j = 2 𝜂j. (3.3)

The digitization of intensity I on an N-pixel camera leads to a digital hologram. To remove
the terms in Eq. (3.3) that don’t depend on the object patterns (e.g., the background I0

ref ), a back-
ground image is usually calculated either by taking an image of an empty volume, or recording
a video of holograms and calculating the mean image of this video. To efficiently remove the
effect of background, an element-wise subtraction of I0

ref followed by an element-wise division

of the result by
√

I0
ref is performed on the digital hologram. The digital image obtained D is

therefore modeled as a sum of diffraction patterns:

D(x, y) =
n∑

j=1

𝛼j.mj(x, y). (3.4)

The digital hologram can be expressed in a vector form d of N grayvalues. Depending on
the application, it may be related to the diffraction pattern of each object (FI, see illustration
Fig. 3.2), or to the opacity distribution of the objects (FII, see illustration Fig. 3.3):

(FI) d = M 𝛂 + 𝛜 ↔
⎡⎢⎢⎣

D(x1, y1)
⋮

D(xN , yN)

⎤⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

∑
j
𝛼jmj(x1, y1) + 𝜖1

⋮∑
j
𝛼jmj(xN , yN) + 𝜖N

⎤⎥⎥⎥⎥⎦
(3.5)

(FII) d = H 𝛝 + 𝛜 ↔
⎡⎢⎢⎣

D(x1, y1)
⋮

D(xN , yN)

⎤⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

∑
k

[
hzk

∗ 𝜗k

]
(x1, y1) + 𝜖1

⋮∑
k
[hzk

∗ 𝜗k](xN , yN) + 𝜖N

⎤⎥⎥⎥⎥⎦
(3.6)

Equations (3.5) and (3.6) are written in compact form using matrix notation. In words,
Eq. (3.5) expresses the recorded hologram d as the sum of the diffraction patterns of each
object (M 𝛂), a perturbation term accounting for the different sources of noise and for our
modeling approximations (𝝐). The term M 𝛂 is the product between a N × n matrix (M)
and a n elements vector (𝜶). Matrix M may be thought of as a dictionary of the diffraction
patterns of n objects (the j-th column of matrix M corresponds to the N graylevels of the
diffraction pattern of the j-th object: [mj(x1, y1), · · · ,mj(xN , yN)]t). Vector 𝜶 defines the ampli-
tude of each of the n diffraction patterns. Equation (3.5) thus corresponds to a discretization
of Eq. (3.3).

Equation (3.6) expresses the hologram d as the sum of diffraction patterns H 𝛝 created by the
opacity distribution 𝛝 and a noise term (𝝐). If the opacity distribution is defined over K planes
of L pixels, 𝝑 is a vector of K ⋅ L elements corresponding to the stacking of all opacity values.
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Figure 3.3 Illustration of the image-hologram formation computed from opacity distribution of the
studied volume (FII)

H is then a N2 × K ⋅ L2 matrix corresponding to a (discrete) diffraction operator. Each column
of H is a discretization of the impulse response kernel h, that is, the diffraction pattern on the
hologram created by a point-like opaque object at a given 3-D location. H 𝛝 corresponds to
the summation of the convolution of the opacity distribution in each plane z by the impulse
response kernel of distance z.

Matrices M and H are written formally to clarify the proposed models and the derived recon-
struction in the subsequent sections. It is worth noting that, in practice, they are neither stored
nor explicitly multiplied to vectors 𝜶 and 𝝑. Due to (transversal) shift-invariance of models
mj and kernels hj, the products M 𝛂 and H 𝛝 can be computed using fast Fourier transforms
(Denis et al. 2009b, Soulez et al. 2007b).
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Pixel integration on the camera can be taken into account in matrices M and H by convolving
the diffraction patterns mj and diffraction kernels hzk

(which form the matrix columns) with a
2-D rectangular function with the same area as the pixel’s sensitive area.

3.3 DH Reconstruction Based on Back Propagation

Most of the methods for reconstructing digital holograms are based on the simulation of an
optical reconstruction, followed by analysis of the 3-D reconstructed volume. In all-optical
holography, after a hologram has been recorded and the holographic plate has been processed,
the plate is re-illuminated with the reference wave. Hologram diffraction creates a virtual (i.e.,
defocused) and a real (i.e., focused) image. In digital holography, the holographic plate is
replaced by a digital camera whose sensor size and resolution is worse by several orders of
magnitude. The simulation of hologram diffraction, though straightforward to implement (and
fast), leads to sub-optimal reconstructions with distortions due to boundary effects and the
presence of the virtual (twin) image. In this section, we present hologram-diffraction based
approaches and their limitations.

The classical 3-D reconstruction of digital holograms is performed in two steps. The first
step is based on a numerical simulation of the optical reconstruction. A 3-D image volume
Vrec is obtained by computing the diffracted field in planes located at increasing distances from
the hologram (see Fig. 3.4). Different techniques to simulate diffraction have been proposed:
Fresnel transform (Kreis 2005), fractional Fourier transform (Pellat-Finet 1994; Ozaktas et al.
1996), wavelets transform (Liebling et al. 2003). Using a convolution-based diffraction model,
Vrec is given by:

Vrec(xp, yq, zr) = [D ∗ hzr
](xp, yq) ↔ v = Htd. (3.7)

Using Eq. (3.6), v can be expressed as:

v = HtH𝛝 + 𝛜 (3.8)

y

x

z

DHologram

Reconstructed volume
Vrec

(xp, yq, zr)

Figure 3.4 Illustration of classical reconstruction based on hologram diffraction. The z axis is magni-
fied versus x and y axis. The red rectangle corresponds to the real size of the hologram
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Unfortunately, hologram diffraction does not invert hologram recording: operator HtH is far
from the identity (i.e., the impulse response of the system “hologram recording” + “linear
reconstruction” is a spatially variant halo).

The second step consists of localizing and sizing each object in the obtained 3-D image.
The best focusing plane for each object has to be detected. Various criteria are suggested in
the literature. Some are based on the local analysis of the sampled reconstructed volume. For
example, Murata and Yasuda (2000) searched for the minimum gray level on the z-axis crossing
the object center and Malek et al. (2004) computed the barycenter of the labeled object image
after thresholding the 3-D reconstructed image. Pan and Meng (2003) used the imaginary
part of the reconstructed field. Other approaches are based on an analysis of the object’s 3-D
image. Liebling and Unser (2004) used the criterion of the sparsity of wavelet’s coefficients
and Dubois et al. (2006) used the minimization of the integrated reconstructed amplitude.
Hologram-diffraction based approaches suffer from various limitations:

• the lateral field of view is limited and, in practice, must be restricted to the center of the
reconstructed images to reduce border effects;

• under-sampled holograms can lead to artifacts in the reconstructed volume (e.g., ghost
images);

• twin-images of the objects superimposed on the real image can bias the localization and
sizing of the objects;

• multiple intensity peaks can occur close to the actual in-focus depth location of each object
(Fournier et al. 2004), leading to biased measurements when searching for in-focus plane
using an intensity criterion;

• several tuning parameters depending on the experiment must be adjusted by the user.

In spite of these drawbacks, this approach is successfully used for many applications due to
its short processing time and to satisfying accuracy in the center of the field of view. In the
next section, we present signal processing approaches to reconstruct holograms that overcome
the previously mentioned limits.

3.4 Hologram Reconstruction Formulated as an Inverse Problem

In Section 3.2, two linear models of the hologram formation were described. The equation
FI (Eq. 3.5) models holograms of objects that have known diffraction patterns stored in a
dictionary M. This is the case for simple shaped objects described by few parameters, with
diffraction patterns, which are given by an analytical formula (e.g., radius and 3-D position
for opaque spheres with a diffraction pattern model given by Tyler and Thompson 1976, or the
Mie scattering formula, see Bohren and Huffman 2008). The non zero values of the vector 𝛂
give the amplitude of the diffraction patterns that are present on the hologram. Equation FII
(Eq. 3.6) models the diffraction of more complex objects (i.e., non parametric objects) that can
be described by their opacity distribution𝝑 sampled on a 3-D grid. The amplitude of the objects
𝜶 or the opacity distribution 𝝑 can be estimated by inverting the hologram formation model,
using a suitable regularization as typically done when dealing with ill-conditioned inverse
problems.
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Assuming, in our hologram models, that the noise 𝝐 is Gaussian and described by an inverse
covariance matrix W, data are then distributed following a distribution of the form:

(FI) p(d|𝛂) ∝ exp [−(M 𝛂 − d)tW(M 𝛂 − d)], (3.9)

(FII) p(d|𝛝) ∝ exp [−(H 𝛝 − d)tW(H 𝛝 − d)]. (3.10)

Noise is generally considered white, so that W is diagonal: W = diag(w). Non uniform w can
account for a signal-dependant variance. It can also be used to model missing data (e.g., wk = 0
for pixels k that are outside the hologram support and wk = 1 for pixels k that are inside the
hologram support). Using this rigorous way to account for the limited size of the sensor permits
an increase of the field-of-view size. Soulez et al. (2007b) showed that the field of view can
be enlarged by a factor of 16. Chareyron et al. (2012) and Seifi et al. (2013b) showed that it is
also possible to use such a binary mask to exclude, from the hologram analysis, some regions
of the signal that cannot be explained with a simple mathematical model.

The negative log-likelihood  is given, up to an additive and a multiplicative constant, by:

(FI) I(d,𝛂) = − log p(d|𝛂) = ||M 𝛂 − d||2w, (3.11)

(FII) II(d,𝛝) = − log p(d|𝛝) = ||H 𝛝 − d||2w. (3.12)

where ||u||2w is the weighted L2 norm1. To get rid of a non perfect background removal that
can leave a residual offset, we use zero mean data (d) and zero mean diffraction model (M 𝛂)
on the hologram support. The neg-log-likelihood  is then given by:

(FI) I(d,𝛂) = ||M 𝛂 − d||2w, (3.13)

(FII) II(d,𝛝) = ||H 𝛝 − d||2w, (3.14)

with the zero-mean variables expressed with weighted scalar product1:

d = d − 1⟨1, d⟩w =
⎡⎢⎢⎢⎣

d1 −
∑
k

wkdk∕
∑
k

wk

⋮
dN −

∑
k

wkdk∕
∑
k

wk

⎤⎥⎥⎥⎦
,

M = [m1, … ,mn],

∀ j, mj = 1⟨1,mj⟩w − mj =
⎡⎢⎢⎢⎣

∑
k

wkmk∕
∑
k

wk − m1

⋮∑
k

wkmk∕
∑
k

wk − mN

⎤⎥⎥⎥⎦
,

1

weighted scalar product is defined as: ⟨u, v⟩w =

∑
k

wkukvk

∑
k

wk

weighted L2norm is defined as: ||u||2w = ⟨u,u⟩w =

∑
k

wku2
k∑

k
wk
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H = [hz1
, … ,hzK

],

∀k, hk = 1⟨1,hk⟩w − hk =
⎡⎢⎢⎢⎣

∑
k

wkhk∕
∑
k

wk − h1

⋮∑
k

wkhk∕
∑
k

wk − hN2

⎤⎥⎥⎥⎦
.

When the objects can be parameterized (e.g., disks), they are detected and localized using
form (FI), as detailed in Section 3.4.1. More complex objects require the reconstruction of the
opacity distribution using form (FII), see Section 3.4.2.

3.4.1 Reconstruction of Parametric Objects (FI)

The hologram model of objects that can be described with few parameters (e.g., 3-D location,
shape, optical index,...), is also parametric. It can be used to create a dictionary M of diffrac-
tion patterns to model the hologram as a linear summation of the dictionary elements (form
FI). Since the 3-D location of an object is continuous, the dictionary M should also be contin-
uous (i.e., with infinite elements). The problem then amounts to finding the best match (least
squares solution) between a linear summation of diffraction pattern models and the captured
hologram. Several authors already suggest fitting models to the hologram leading to accurate
and impressive results (Lee et al. 2007; Cheong et al. 2010; Fung et al. 2011; Cheong et al.
2011). However, they use a starting point for a fitting algorithm that is provided by the user
or by a segmentation of the back propagated field that can be biased (e.g., for out-of-classical
field objects) and requires tuning parameters.

Our approach, proposed in Soulez et al. (2007a,b), leads to an unsupervised algorithm and
makes possible object reconstruction out of the classical field of view. It solves the problem
iteratively, that is, objects are detected one after the other, aiming in each iteration to find the
best fit between the model and the hologram. It consists of three steps:

• A global detection step (or a coarse estimation step), which finds the best-matching element
in a discrete dictionary M (i.e., the diffraction pattern for a given 3-D location and shape).
It is also called the exhaustive search step.

• A local optimization step (or a refinement step), which fits the selected diffraction pattern
to the data for sub-pixel estimation.

• A cleaning step, which subtracts the detected pattern from the hologram to increase the
signal-to-noise ratio of the remaining objects.

The procedure is then repeated on the residuals until no more object is detected. This
approach to hologram reconstruction corresponds to the class of greedy algorithms (Denis
et al. 2009a) known in signal processing as the Matching Pursuit (Mallat and Zhang 1993),
or in radio-astronomy as the CLEAN algorithm (Högbom 1974).

3.4.1.1 Global object detection

In the first step, the best matching diffraction pattern of a sampled dictionary M is searched.
The element that leads to the largest decrease of the neg-log-likelihood I is identified as the
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most probable (i.e., detected):

arg min
𝛼≥ 0

m∈{m1,… ,mn}

||𝛼 m − d||2w. (3.15)

By replacing 𝛼 by its optimal value in Eq. (3.15), the diffraction pattern m† that minimizes I
is also the one that maximizes the criterion (m) (Soulez et al. 2007b):

m† = arg max
m∈{m1,… ,mn}

(m) subject to ⟨m, d⟩w ≥ 0, (3.16)

with (m) =
⟨m, d⟩ 2

w

||m||2w . (3.17)

The detected object is the one whose diffraction pattern has the highest correlation with the
data: (m) corresponds to the square of a weighted normalized correlation between a model

(a)

(b)

(c)

z = z0 ‒ 2Δz z = z0 + 2Δzz = z0 + Δzz = z0 ‒ Δz z = z0

Figure 3.5 Illustration of classical reconstruction compared with the criterion map: (a) experimental
in-line hologram of droplets (b) classical reconstruction based on hologram diffraction at different depths
z. Artifacts appear during the numerical reconstruction due to the truncation of diffraction rings on the
hologram boundary. (c) Criterion computation based on “Inverse Problems” approach at different depths
z (see Eq. 3.17). For the sake of visualization, the contrast is inversed. The images represented in (b) and
(c) correspond to the square area drawn on the hologram (a). z0 = 0.273 m corresponds to the in-focus
distance, Δz = 6 mm
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and the hologram. Since the diffraction patterns are shift-invariant, Soulez et al. (2007b) show
that the correlations in Eq. (3.16) can be computed using fast Fourier transforms.

Note that Gire et al. (2008) show that this global detection is less sensitive to ghost images
compared with the classical reconstruction. Furthermore, “Border effects”, which classically
lead to measurement bias, are removed by taking into account the boundaries of the sensor
by means of a binary mask w. Figure 3.5(c) shows the values of the criterion (m) on several
consecutive reconstructed planes (for the sake of visualization, the contrast is inversed). Unlike
in classical reconstruction, the maximum criterion value in these planes is on the in-focus
plane.

3.4.1.2 Local optimization

The global detection step gives a rough estimation of the objects parameters. In the local opti-
mization step these parameters are used as the first guess of an optimization algorithm to get
sub-pixel accuracy.

Figures 3.6 and 3.7 illustrate an application of this algorithm to detect spherical droplets.

3.4.1.3 Cleaning

Once the local optimization step is finished, the accurate estimated parameters are used to
simulate the diffraction pattern and remove it from the data.

input hologram

global detection
(yields approximate

parameters)

local optimization
(yields refined
parameters)

no stopping
criterion?

yes
end

particle removal
(yields residual

hologram)

residual hologram

xn

y n

Figure 3.6 Iterative algorithm to estimate the parameters of objects distributed in a volume. Source:
Soulez F., Denis L., Thiebaut E., Fournier C., and Goepfert C., 2007b. Reproduced with permission from
the Optical Society
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Figure 3.7 Illustration of droplets detection located out-of-field (from Soulez et al. 2007b): (a) super-
imposition of one hologram of the series and the model of this hologram calculated from 16 detected
particles (including 12 out-of-field); (b) represents the 3-D jet obtained by the detection of all particles
located in a field equal to more than 16 times the hologram surface. The corresponding surface of the
sensor is represented by a gray rectangle. The droplet detection is realized without significant bias, even
for particles located far away from the sensor. Source: Soulez F, Denis L, Thiebaut E, Fournier C and
Goepfert C 2007b. Reproduced with permission from the Optical Society

Repeating the detection, localization, and cleaning steps on the residual signal improves
the signal-to-noise ratio of remaining objects with fainter signatures, in particular, particles
distant from the camera center, and prevents from detecting the same particle multiple times.
An illustration of cleaning is shown on Fig. 3.8 and on a video.

The algorithm stops when no more reliable particle can be detected (𝛼 < 0). This algorithm
is implemented in an online free Matlab toolbox called “HoloRec3D”.2

This greedy algorithm was used by Soulez et al. (2007a,b) to 3-D reconstruct water droplets
accurately, behaving as opaque spheres with diameters of about 100 μm. Grier’s team used
a simple model fitting algorithm and a Lorentz Mie Theory hologram formation model to
reconstruct colloidal spherical particles and their optical index with diameters of about 1 μm
(Lee et al. 2007; Cheong et al. 2010).

3.4.2 Reconstruction of 3-D Transmittance Distributions (FII)

When the objects are too complex to be parameterized by few parameters, or when the purpose
is to reconstruct unknown objects, form (FII) is considered: an opacity distribution sampled
on a 3-D grid is reconstructed from the hologram. Due to the ill-posed nature of this inversion

2 http://labh-curien.univ-st-etienne.fr/wiki-reconstruction/index.php

http://labh-curien.univ-st-etienne.fr/wiki-reconstruction/index.php
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Sensor

(a) (b) (c)

Figure 3.8 Illustration of the cleaning step: (a) experimental hologram, (b) cleaned hologram, and (c)
simulated hologram using the estimated parameters

problem, it is mandatory to regularize it. The reconstructed 3-D distribution 𝛝 is then given by
the Maximum A Posteriori estimate (MAP):

𝛝(MAP) = arg min
𝛝

||H𝛝 − d||2w + 𝛽 Φreg(𝛝). (3.18)

Several regularizations Φreg have been proposed to reconstruct holograms. When extended
objects are considered, an edge-preserving smoothness prior, like total variation (the sum of
the spatial gradient norm), is generally chosen (see Sotthivirat and Fessler 2004; Brady et al.
2009; Marim et al. 2010, 2011):

𝛝(MAP) = arg min
𝛝

||H𝛝 − d||2w + 𝛽TV(𝛝),

with TV(𝛝) =
∑

k

√
(Dx 𝛝)2k + (Dy 𝛝)2k ,

where Dx and Dy are the finite difference operators along x and y (i.e., tranversal) axes.
Denis et al. (2009b) showed that enforcing a sparsity constraint through an 𝓁1 norm is suf-

ficient to reconstruct holograms of diluted volumes:

𝛝(MAP) = arg min
𝛝

||H𝛝 − d||2w + 𝛽 ||𝛝||1, with ||𝛝||1 =
∑

k

|𝜗k|. (3.19)

A positivity constraint and spatially-variant regularization weights Φreg(𝛝) =
∑

k𝛽k|𝜗k|
improve the reconstruction and make it possible to extend the field of view, as illustrated in
Fig. 3.9.

Note that the 𝓁1 norm minimization can also be applied to the object detection problem
described in the previous section. Joint detection of all objects is more robust in the case of
many objects than iterative detection of one object at a time. Intermediate procedures have
been proposed in the compressed sensing literature (Needell and Tropp 2009) that detect sev-
eral objects at a time, in a greedy fashion, and which can be adapted to include the local
optimization step used to model a continuous dictionary.
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Figure 3.9 Reconstruction of an experimental Gabor hologram of a glass reticle (from Denis et al.
2009b): hologram (left); classical linear reconstruction (center); MAP estimate with sparsity enducing
prior to Eq. (3.19) and positivity constraint (right). Regularized reconstruction of holograms makes it
possible to extend the field the view and suppresses twin-image artifacts. Source: Denis L, Lorenz D,
Thiebaut E, Fournier C and Trede D 2009b. Reproduced with permission from the Optical Society

3.5 Estimation of Accuracy

The estimation and the improvement of accuracy are key issues in DH. (Jacquot et al. 2001;
Stern and Javidi 2006; Garcia Sucerquia et al. 2006; Kelly et al. 2009). As the accuracy
depends on several experimental parameters (e.g., sensor definition, fill factor, and record-
ing distance) experimenters are in need of criteria to tune the experimental setup and to select
the reconstruction algorithm that will provide the best achievable accuracy. The commonly
used approach for accuracy estimation is to evaluate the Rayleigh resolution by estimating
the width of the point spread function of the digital holographic system in the reconstructed
planes. Fournier et al. (2010) suggested a methodology based on parametric estimation theory
(see Kay 2008) to estimate the single point resolution defined in Dekker and den Bos (1997)
(i.e., the standard deviation of the 3-D coordinates of a point source) in on-axis DH. This
methodology can be applied to many DH configurations by adapting the hologram formation
model, and possibly changing the noise model.

According to Cramér–Rao inequality, the covariance matrix of any unbiased estimator �̂� =
{�̂�i}i=1∶np

of the unknown vector parameter 𝜃∗ is bounded from below by the inverse of the
so-called Fisher information matrix:

var(�̂�i) ≥ [I−1(𝜽∗)]i,i, (3.20)

where I(𝜽∗) is the np × np Fisher information matrix.
The Fisher information matrix is defined from the gradients of the log-likelihood function

log p(d; 𝜃) (Kay 2008):

[I(𝜽)]i,j
def
= E

[
𝜕 log p(d;𝜽)

𝜕𝜽i

𝜕 log p(d;𝜽)
𝜕𝜃j

]
, (3.21)

where 𝜽 stands for the parameters vector of the object (e.g., (x, y, z, r) for a sphere located at
(x, y, z) of radius r).
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In the case of additive white Gaussian noise model (see Section 3.4.1), Fisher information
matrix can be computed using gradients of the model m(𝜃) (Fournier et al. 2010):

[I(𝜽)]i,j = 𝛼2

⟨
𝜕m(𝜽)
𝜕𝜃i

,
𝜕m(𝜽)
𝜕𝜃j

⟩
w

. (3.22)

Note that w, as in the reconstruction algorithms, accounts for the finite sensor support size or
for excluded data region of the analysis. The Cramér–Rao lower bound (CRLB) is asymptot-
ically (for large samples) reached by maximum likelihood estimators. In digital holography,
where the signal is distributed on the whole sensor, estimation is performed using a large set of
independent identically distributed measurements (typically more than one million). The max-
imum likelihood estimator then approaches the CRLB. Note that if the optimization technique
used for maximization of the likelihood fails to reach the global minimum, or if the noise level
is too high, the resulting estimation error will exceed CRLB.

In a previous study (Fournier et al. 2010) about single point resolution estimation, we pre-
sented closed-form expressions of resolutions. It showed that:

• the CRLB predicted resolution behaves on optical axis as the classical Rayleigh resolution
predicts;

• the CRLB give the resolution out of the optical axis and even out of the classical field of
view;

• estimated parameters are correlated (an error on one parameter influences the estimation of
the others).

Examples of standard deviation maps calculated using the described methodology are pre-
sented in Fig. 3.10 (Plate 5).

3.6 Fast Processing Algorithms

Reducing the processing time is one of the main issues in digital holography. One way to fix
it is to use hardware device (e.g., Graphics Processing Units or multiprocessors: see Ahren-
berg et al. 2009, Shimobaba et al. 2008, Page et al. 2008). A second way is to decrease the
complexity of the algorithms. We worked on the latter issue tackling the time processing bot-
tleneck of the global detection step in parametric object reconstruction (see 3.4.1). We present,
in this section, two of our contributions aimed at reducing the complexity of this step while
preserving the optimality of the signal processing approach.

3.6.1 Multiscale Algorithm for Reconstruction of Parametric Objects

Considering parametric objects described by n𝜃 parameters (e.g., 3-D position and intrinsic
parameters such as radius, optical index etc.), the exhaustive-search step requires a time con-
suming exploration of the sampled parameter space of n𝜃 dimensions. Let us consider the
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Figure 3.10 (Plate 5) Single point resolution in a transversal plane (from Fournier et al. 2010): (a)
x-resolution map normalized by the value of x-resolution on the optical axis; (b) normalized z-resolution
map; (c) x-resolution for y = 0; (d) z-resolution for y = 0; for z = 100 mm, 𝜆 = 0.532 μm, Ω = 8.6.10−3

and SNR = 10. The squares in the center of figures (a) and (b) represent the sensor boundaries. Source:
Fournier C, Denis L and Fournel T 2010. Reproduced with permission from the Optical Society. See
plate section for the color version

simple case of spherical opaque objects with only four parameters (i.e., (x, y, z, r) 3-D coordi-
nates, and radius). The search step is performed in 4-D space. To reach pixel-accuracy in (x, y)
and sufficient accuracy in other parameters, hundreds of (z, r) pairs may need to be considered
for each (x, y) location, leading to hundreds of millions or billions of quadruples (x, y, z, r)
to be tested. Shift-invariance of the model can be exploited by using the Fast Fourier Trans-
forms (FFT). The search is thus reduced for each exhaustive-search step to the computation
of hundreds of convolutions to evaluate the generalized maximum correlation criterion given
in 3.17 (the criterion requires 7 FFTs for each (z, r) pair (Soulez et al. 2007b). This is then
repeated for each object unless multiple object detection is implemented (Needell and Tropp
2009). The main feature of the multiscale algorithm is to replace the computationally intensive
exhaustive search by coarse-to-fine processing. The exhaustive search is carried out only on a
down-sampled version of the hologram.

A sketch of the algorithm is illustrated in Fig. 3.11 (for more detail please refer to Seifi et al.
2013a). Since exhaustive search is a computational bottleneck, we build a multi-resolution
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Figure 3.11 (a) Schema of the proposed multiscale algorithm, (b) 1-D profile of the cost function
computed on the original hologram: the black crosses show the results of the estimation after each step
of pyramidal multiscale algorithm on the profile of the cost function, the black circle shows an example of
a coarse estimation from exhaustive search in the single-scale approach (k = 0). Source: Seifi M, Fournier
C, Denis L, Chareyron D and Marie JL 2012. Reproduced with permission from the Optical Society
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pyramid from the hologram and perform an exhaustive search only on the coarsest scale. Local
optimization is then performed on increasingly fine scales, restarting numerical optimization
each time from the parameters obtained at the previous (coarser) scale. The down-sampled
hologram at level k is computed by low-pass filtering and downsampling the full-resolution
hologram d by a linear filter. Using a coarse resolution hologram for the exhaustive search step
not only reduces the number of (x, y) samples by a factor proportional to the layer number but
also makes the log-likelihood smoother. Sampling of parameters z and r (i.e., depth and radius
of a particle) can also be made coarser in this way. Figure 3.11(a) illustrates the widening of
cost function when coarser resolution holograms are considered (for the sake of illustration a
profile of the cost function along axis z is drawn). The risk of getting trapped in a local mini-
mum is then much weaker. This fact relaxes sampling constraints that guarantee the estimation
to be within reach of the global minimum.

The processing time gain depends on two main factors: the maximum downsampling period
that can be used and the stopping criteria of the iterative optimization operations. The maxi-
mum downsampling period is chosen considering that a minimum number of fringes should
remain on the coarsest downsampled hologram. The criterion for stopping the optimization
process is given by the CRLB estimation for each resolution of the pyramid. Indeed, the opti-
mization can be stopped when the parameters changes are equal to the theoretical standard
deviations. We have validated our algorithm using a collection of simulated holograms and real
holograms. The results indicate a factor of four increase in speed for a three-layer multiscale
pyramid.

An other advantage of the proposed coarse-to-fine approach is that it provides an early esti-
mation of parameters with additional accuracy after each refinement step. These coarse results
can provide a quick feedback for huge stacks of holograms generated by high-speed cameras
while off-line processes can refine the estimations using the finer scales.

3.6.2 Dictionary Size Reduction for Fast Global Detection

Direct matching of diffraction patterns on the in-line holograms dramatically improves the
quality of reconstructed images, as discussed in Sections 3.4 and 3.5. Reconstruction methods
dedicated to parametric objects (form FI described in Section 3.4.1) can be extended to a larger
class of objects by considering the collection (or dictionary) of all objects of interest C. Matrix
C is formed by collecting columns ci, each representing a different object. If the dictionary is
large enough (i.e., if C has many columns), any object of the considered class can be well
approximated by its closest representative ci.

Objects are not directly observed in holography, only their diffraction patterns are captured.
Object recognition can then be performed in the framework of inverse problems by match-
ing diffraction patterns. The dictionary of all possible diffraction patterns M introduced in
Section 3.4.1 is obtained by considering for each object ci diffraction patterns at various dis-
tances and all possible (x, y) translations. Let K be the dictionary of geometrically-centered
diffraction patterns, that is, the collection of the diffraction patterns for all objects, at all con-
sidered depths, for objects centered on the optical axis. Dictionary K captures the variability
of diffraction patterns of different objects with different recording distances. Due to object
variability (the number of columns of dictionary C) and depth range, the dictionary of diffrac-
tion patterns K may be very large. Direct application of the greedy algorithm described in
Section 3.4.1 would then lead to prohibitive computation time.
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(a)

(b)

(2) (3) (4) (5)(1)

Figure 3.12 (a) Five random patterns of a 600-pattern dictionary and (b) the first five modes of the same
dictionary. Patterns of the dictionary are calculated respectively for: (a-1) a “1” placed at 0.15 m from
sensor, (a-2) a “2” placed at 0.1583 m, (a-3) a “3” placed at 0.1683 m, (a-4) a “6” placed at 0.1817 m,
(a-5) a “7” placed at 0.19 m. The sensor is a 400 × 400 pixel camera with a fill-factor of 0.7 and a pixel
size of 20 μm. The wavelength of the illuminating laser beam is 0.532 μm. The depth range of patterns
in the dictionary is [0.15 m, 0.2 m]

Diffraction patterns in dictionary K exhibit various degrees of correlation and most of their
variability can be captured in a low-dimensional sub-space:

K ≈
t∑

i=1

ui𝜎iv
t
i , (3.23)

where K is approximated by the best rank-t matrix as obtained by the singular value decom-
position (SVD) considering the singular vectors ui and vi associated with the t largest singular
values {𝜎1, … , 𝜎t}. Within this approximation, diffraction pattern kj is represented by the
linear combination

∑
i𝛽i,j ui, where coefficient 𝛽i,j is equal to 𝜎ivi(j). Vectors ui represent

so-called modes of the diffraction-patterns.
Using this approximation, the correlation terms in Eq. (3.17) are approximated as a linear

combination of the correlation of each of the t modes with the data:

⟨kj, d⟩w ≈
t∑

i=1

𝛽i,j⟨ui, d⟩w . (3.24)

In Eq. (3.24), the scalar product ⟨ui, d⟩w does not depend on the considered diffraction-pattern
kj and can thus be computed once for all the diffraction-patterns. For more details, please refer
to Seifi et al. (2013a).

3.7 Conclusion

Digital holography is very efficient for quantitative 3-D tracking and sizing of high speed
objects spread in a volume. Classical reconstruction methods, based on back-propagation,
have been used successfully since the 1980s to perform 3-D reconstructions. However, image
processing techniques based on signal processing approaches and aiming to invert the image
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formation have been used increasingly in recent years to achieve accurate 3-D reconstruction.
These approaches provide a rigorous way to process on-axis holograms. They lead, in cer-
tain cases, to optimal image processing so that their accuracy gets close to the Cramér–Rao
lower bound. By processing the hologram directly, they also get rid of all sources of bias
appearing when simulating the back-propagation of the hologram. In this framework, our
team proposed two reconstruction algorithms dedicated to two types of objects: simple shape
parametric objects and sparse object fields. These algorithms lead to accurate reconstruc-
tion and enlargement of the field of view. Let us note that the algorithm dedicated to para-
metric objects reconstruction is unsupervised and the one dedicated to the reconstruction of
sparse field object opacity distribution requires only tuning of a single hyper-parameter. How-
ever, the processing time of inverse problems algorithms can be huge when the parameters to
reconstruct are numerous. To tackle this drawback one can use dedicated hardware acceleration
and/or decrease the complexity of the algorithms. Recently, we suggested two algorithms with
reduced complexity: a coarse-to-fine algorithm based on a multiscale resolution pyramid and
an algorithm aiming to reduce the diffraction-pattern dictionary (Fig. 3.12). We expect strong
development and generalization of this new family of algorithms based on inverse approaches.
Some current issues are the optic modeling of image-hologram formation for some specific
objects and the reduction of the algorithm’s complexity.
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