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14.1 Introduction

In computer-generated holography (CGH) [1] the fast Fourier transform (FFT) algorithm is
commonly used to reduce the calculation time. Based on FFT, various types of algorithms
for calculating diffraction have been developed [2]. Yoshikawa et al. have proposed a fast
calculation method for large sized holograms by interpolation [3].

Most algorithms for a computer-generated hologram (CGH) using FFT are effective only
under the condition that both the input and observation surfaces are finite planes parallel to each
other. Some authors proposed fast calculation methods using FFT that can be applied to the
case where the input plane is not parallel to the observation plane [4, 5]. These methods are very
useful for the calculation of reconstructed images observed from different points of view [6].
However, since the observation surfaces, in any of the methods, are assumed to be planes,
very high-resolution display devices are necessary to enlarge the viewing angles. Although
such devices are available, the reconstructed images cannot be observed from the opposite
side of a hologram.

A remarkable technique developed to achieve 360
∘

field of view is 360
∘

holography [7]. To
synthesize a 360

∘
hologram on a computer, a numerical simulation of diffraction on the non

planar observation surfaces is required. Rosen synthesized a CGH on a spherical observation
surface [8]. However, this method does not yield a 360

∘
field of view because the origin of

the object does not correspond to the center of the observation sphere, and also considerable
computing time is required, since the FFT algorithm cannot be applied in this method.
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To date, methods that enable the fast calculation of diffraction on spherical or cylindrical
observation surfaces have been proposed based on the convolution theorem using the FFT
algorithm. In this method, both the object and observation surfaces are cylindrical and con-
centric about the cylindrical axis [9, 10]. These methods are valid only in specific cases of
geometrical configurations.

At first, we propose a simple but rigorous equation that describes the relationship between
the diffracted wavefront of a 3D object and its 3D Fourier spectrum. In the present method,
an exact solution of the diffraction integral is given by the Green function [11]. This principle
gives us an intuitive understanding of calculation processes for various diffraction situation. To
verify this method and confirm its effectiveness, CGHs with full view-angles are reconstructed
using simulated experiments.

Alternatively, fast computation solutions for spherical computer generated hologram
employing PSF (convolution method) was proposed by Tachiki et al. [12]. Here, the object
and hologram were assumed to be concentric spherical surfaces in order to achieve shift
invariance and hence, enable fast calculation. However, though the object was assumed to
be a concentric spherical surface with the hologram surface, shift invariance does not exist
due to unequal sampling points on a spherical grid (i.e., the grid points are more crowded
at the poles). To facilitate fast calculation using FFT, an approximation to the convolution
integral was proposed, which forced the PSF to be spatially invariant. Hence this calculation
produced errors that were quantified in the same report. To solve the problem, we start the
Helmholtz equation again, considering a boundary value problem in spherical coordinates.
The solution will define the transfer function and the spectral decomposition of the wave field
on the spherical surface. Using the transfer function and the wave spectrum we can develop
a spectral propagation formula (for spherical surfaces in spherical coordinates) analogous to
the angular spectrum formula (for plane surfaces in Cartesian coordinates).

This chapter explains how such theories for spherical CGH are devised.

14.2 Three-Dimensional Object and Its Diffracted Wavefront

Consider the geometry of a 3D object and an observation space as shown in
Fig. 14.1. The coordinate system in the object is (xo,yo,zo) and that of the observation
space (x,y,z).

3D Object o

Observation point

y
P

x

z

z0

x0

y0

Figure 14.1 Geometry of 3-D object coordinates (xo,yo,zo) and observation coordinates (x,y,z). xo- and
yo-axes are parallel to the x- and y-axes, respectively, and the zo-axis is the same as z-axis
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The complex amplitude u(r) of a wave in a homogeneous field at a position r(x, y, z) satisfies
the following Helmholtz equation

(∇2 + k2
0)u(r) = 0, (14.1)

where k0 = 2𝜋∕𝜆 is a constant wavenumber in a homogeneous field and 𝜆 denotes the
wavelength.

The diffracted wavefront from the object o(r) satisfies the following equation,

(∇2 + k2
0)u(r) = −o(r) (14.2)

To solve Eq. (14.2), we employ the Green function. Green function is a solution of

(∇2 + k2
0)g(r, r

′) = −𝛿(r − r′), (14.3)

and the Green function is given by

g(r, r′) =
exp (ik0|r − r′|)

4𝜋|r − r′| . (14.4)

Therefore, the solution of Eq. (14.2) is given by

u(r) = ∫ o(r′)g(r − r′)dr. (14.5)

Equation (14.5) is a convolution integral and is rewritten by

u(x, y, z) = −1[O(kx, ky, kz) ⋅ G(kx, ky, kz)], (14.6)

where

O(kx, ky, kz) =  [o(x, u, z)] (14.7)

G(kx, ky, kz) =  [g(x, u, z)] (14.8)

and  [… ] denotes the 3D Fourier transform operator and −1[… ] its inverse transform oper-
ator.

To obtain G(kx, ky, kz) =  [g(x, y, z)], we Fourier-transform both sides of Eq. (14.3)

[−(k2
x + k2

y + k2
z ) + k2

0]G(kx, ky, kz) = −1. (14.9)

So we have

G(kx, ky, kz) =
1

k2
x + k2

y + k2
z − k2

0

. (14.10)

We use spatial frequencies (u,v,w) and since kx = 2𝜋u, ky = 2𝜋v, kz = 2𝜋w, we have

G(u, v,w) = 1
4𝜋2(u2 + v2 + w2 − 1∕𝜆2)

. (14.11)
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Finally, from Eqs. (14.6) and (14.11), we have

u(x, y, z) = 1
4𝜋2 ∫ ∫ ∫

O(u, v,w)
u2 + v2 + w2 − 1∕𝜆2

.

× exp [i2𝜋(ux + vy + wz)]dudvdw (14.12)

Next, we will find the integral with respect to w. Integral (14.12) has a singularity for

w± = ±
√

1∕𝜆2 − u2 − v2 (14.13)

By using contour integration, the integral with respect to w along the path shown in Fig. 14.2
is performed, where a complex value is defined by 𝜁 = w + i𝜂. The residues at the singularities
w± are given by

A± = lim
𝜁→w±

(𝜁 − w±)
O(u, v, 𝜁 )

𝜁2 + u2 + v2 − 1∕𝜆2
exp (i2𝜋𝜁z)

= ±
i2𝜋O(u, v,±

√
1∕𝜆2 − u2 − v2)

2
√

1∕𝜆2 − u2 − v2

× exp (±i2𝜋
√

1∕𝜆2 − u2 − v2z). (14.14)

So we have

u(x, y) = i
4𝜋 ∫ ∫

O(u, v,
√

1∕𝜆2 − u2 − v2)√
1∕𝜆2 − u2 − v2

× exp [i2𝜋(ux + vy +
√

1∕𝜆2 − u2 − v2z)]dudv

− i
4𝜋 ∫ ∫

O(u, v,−
√

1∕𝜆2 − u2 − v2)√
1∕𝜆2 − u2 − v2

× exp [i2𝜋(ux + vy −
√

1∕𝜆2 − u2 − v2z)]dudv. (14.15)

Since only the forward propagating wave is considered, only the singularity w+ is employed
to calculate the contour integral. Suppose the observation plane is located at a plane z = R and

O

η

ww− w+

Figure 14.2 Singularities (w±) and integration path in the complex plane 𝜁 = w + i𝜂
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we have

u(x, y)|z=R = i
4𝜋 ∫ ∫

O(u, v,
√

1∕𝜆2 − u2 − v2)√
1∕𝜆2 − u2 − v2

× exp [i2𝜋(ux + vy + R
√

1∕𝜆2 − u2 − v2)]dudv. (14.16)

Finally, by 2D inverse Fourier transforming Eq. (14.16), the spectrum of the observed com-
plex amplitude at z = R is given by

U(u, v)|z=R = i
4𝜋

O(u, v,
√

1∕𝜆2 − u2 − v2)√
1∕𝜆2 − u2 − v2

× exp (i2𝜋R
√

1∕𝜆2 − u2 − v2). (14.17)

In Eq. (14.17), O(u, v,
√

1∕𝜆2 − u2 − v2) implies a hemispherical surface component with
the diameter of 1∕𝜆 in the 3D spectrum O(u, v,w) of the 3D object o(x, y, z). This means that
the 2D spectrum U(u, v) of the diffracted wave is given by the hemispherical surface compo-
nent O(u, v,

√
1∕𝜆2 − u2 − v2) of the 3D spectrum with the weight of i∕(4𝜋

√
1∕𝜆2 − u2 − v2)

multiplied with a phase component exp (i2𝜋R
√

1∕𝜆2 − u2 − v2).
Next, the correspondence relation between the diffracted wavefront and the hemispherical

Fourier spectrum equivalent to it is illustrated in Fig. 14.3. Here, the diffracted wavefront to
the +z0 direction corresponds to the hemispherical spectrum with the +w axis of symme-
try. Similarly, the directions −z0, +y0, and −y0 correspond to the directions −w, +v, and −v,
respectively. Thus, it is possible to express the wavefront diffracting in all directions only by
the hemispherical Fourier spectrum with the radius 1∕𝜆.

Case of − x0 direction

Case of − z0 direction

Case of + z0 direction

Case of + x0 direction

w

w

z0

x0

y0

Object O

u

v

v

v

w

u

u

2D-FT

2D-FT

v

Figure 14.3 Three-dimensional hemispherical Fourier spectrum of diffracted wavefronts in each
direction
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14.2.1 Diffracted Waves with Full View Angles

As an example of the fast calculation method of diffraction, the diffracted images in all direc-
tions are demonstrated. Once the 3D Fourier spectrum is obtained, the diffracted images to the
arbitrary direction can be readily calculated by extracting the hemispherical spectrum, multi-
plying the weight factor and the phase components, and running the 2D inverse FFT. To verify
this method, we have simulated the diffraction under the configuration where the 2D asterism
image shown in Fig. 14.4 is distributed cylindrically as shown in Fig. 14.5.
𝜃 is the angle between the observation direction and the z axis and the diffraction distance

R is set to the radius of the cylinder of the object. The results calculated with the observation
angle 𝜃 varying are shown in Fig. 14.6.

As shown in Fig. 14.6, only the object corresponding to the angle 𝜃 is focused on the center
of the observation plane, while both ends of each image are out of focus. These results are
very natural considering the configuration shown in Fig. 14.5 and the validity of the derived
principle has been verified at once.

−180° 180°0°

Figure 14.4 Asterism map for the object

Observation
plane

z0

x0

y0

RO(x0, y0, z0)

θ

Figure 14.5 Schematic for the simulation. Perspective view of the observation plane

(c)(b)(a)

Figure 14.6 Diffracted images observed at 𝜃 = −109
∘
(a), −23

∘
(b), and 152

∘
(c)
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14.3 Point-Spread Function Approach for Spherical Holography

14.3.1 Spherical Object and Spherical Hologram

As far as we know, diffraction to a spherical surface cannot be directly expressed as a con-
volution. The pixel resolution for a grid on a spherical surface in spherical coordinates is not
constant, so the PSF is not spatially invariant. To facilitate fast calculation, an approxima-
tion to the integral is proposed, which forces the PSF to be spatially invariant and allows the
diffraction integral to be expressed as a convolution.

In this method, to obtain a convolution form, the object surface must also be spherical and
concentric with the hologram surface. The geometries of the object and CGH are shown
in Fig. 14.7, where a spherical coordinate system is used. Note that the azimuthal axis is
defined as 𝜙, and the latitudinal axis is defined as 𝜃. The object and hologram surfaces are
denoted as fo(ro, 𝜙o, 𝜃o) and fh(rh, 𝜙h, 𝜃h). In this paper we limit the discussion to the case of
a two-spherical dimensional object with hologram radius rh constant, so we can rewrite the
distributions as fo(𝜙o, 𝜃o) and fh(𝜙h, 𝜃h). A CGH of a 3D object can be created by taking the
superposition of multiple holograms, fh, computed with successive object radii to an arbitrary
resolution. In this discussion we also assume that the object surface radius is smaller than the
hologram radius, although this is not a necessary condition mathematically.

Treating the object as a composite of many point light sources, the hologram amplitude
distribution fh(𝜙h, 𝜃h) is given as the integral of the spherical wavefronts emerging from all the
point light components on the object surface:

fh(𝜙h, 𝜃h) = C ∫ ∫
fo(𝜙o, 𝜃o) exp (ikd)

d
d𝜙od𝜃o, (14.18)

Hologram surface
fh (rh, ϕh, θh)

Object surface
fo (ro, ϕo, θo)

y

ro
ϕ

θ

rh

x

z

Figure 14.7 Spherical coordinate system
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Figure 14.8 Geometry of the angular approximation (a) and geometry to solve the angle 𝛼(b)

where k denotes the wavenumber of the incident light, C denotes a constant, and d, which is
the distance between a point on the object and a point on the hologram, is given by

d = {r2
o + r2

h − 2rorh[sin(𝜃h) sin(𝜃o) + cos(𝜃h) cos(𝜃o) cos(𝜙h − 𝜙o)]}1∕2. (14.19)

To allow the integral to be expressed as a convolution, the distance formula must be expressed
as a function of (𝜃h − 𝜃o) and (𝜙h − 𝜙o).

We propose an approximation to the distance using the geometry of Fig. 14.8(a). The angle
𝛼 between the two points can be approximated from the angles Δ𝜙 and Δ𝜃 through the law
of cosines using the geometry of Fig. 14.8(b). Then the distance can be calculated using the
lengths ro and rh, and the angle 𝛼 with another application of the law of cosines. The resulting
equation for distance is

d = {r2
o + r2

h − 2rorh[cos(𝜃h − 𝜃o) cos(𝜙h − 𝜙o)]}1∕2. (14.20)

The approximated PSF can then be defined as

h(𝜙, 𝜃) =
exp{ik[r2

o + r2
h − 2rorh cos(𝜃) cos(𝜙)]1∕2}

[r2
o + r2

h − 2rorh cos(𝜃) cos(𝜙)]1∕2
. (14.21)

We substitute the PSF into Eq. (14.18) and obtain

fh(𝜙h, 𝜃h) = C ∫ ∫ fo(𝜙o, 𝜃o)h(𝜙h − 𝜙o, 𝜃h − 𝜃o)d𝜙od𝜃o, (14.22)

which takes the form of a convolution integral,

fh = Cfo ∗ h, (14.23)

where * denotes the convolution operation. Thus, the calculation of the diffracted wavefront on
the spherical hologram surface can be performed using the FFT, according to the convolution
theorem.
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14.3.2 Approximation Error

We examine the error analytically and numerically. The exact formula for the distance between
a point on the object and a point on the hologram is given by Eq. (14.2). If we insert a cos(𝜙h −
𝜙o) term next to the sine terms,

d = {r2
o + r2

h − 2rorh[sin(𝜃h) sin(𝜃o) cos(𝜙h − 𝜙o) + cos(𝜃h) cos(𝜃o) cos(𝜙h − 𝜙o)]}1∕2

(14.24)
the equation reduces to the approximation form of Eq. (14.20). It is clear that the error is
minimal when the cos(𝜙h − 𝜙o) term approaches a value of one, or (𝜙h − 𝜙o) approaches zero.
Thus, contributions to the hologram from object points far in the azimuthal axis have larger
errors. In addition, when 𝜃o approaches zero, the approximated distance equation becomes

d = {r2
o + r2

h − 2rorh[cos(𝜃h) cos(𝜙h − 𝜙o)]}1∕2, (14.25)

which is equivalent to the exact distance. Thus, the contributions to the hologram from object
points near 𝜃o = 0 have a smaller error. The same is true of 𝜃h. That is, points near 𝜃h = 0 on
the hologram have a smaller error, regardless of the area of the object image observed. Also,
as ro approaches zero, the error decreases. As can be seen from Eq. (14.14), as ro becomes
very small compared with rh, the r2

o and −2rorh cos(𝜙h − 𝜙o) cos(𝜃h − 𝜃o) terms become very
small compared with the r2

h term, and the distance approaches that given by the exact equation.

14.3.3 Computer Simulation for Spherical Holography

To demonstrate the application of the fast calculation method to holograms of more realistic
object distributions, a hologram of the image in Fig. 14.9(a) was generated with the ro = 1 cm

(a)

(b)

Figure 14.9 Object (a) and reconstructed image (b)
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and rh = 10 cm, with a wavelength of 300 μm. The reconstructed image on the same spherical
surface is shown in Fig. 14.9(b), reconstructed from the hologram region of |𝜙h| < 𝜋∕4 and|𝜃h| < 𝜋∕3. We note that a reconstruction from a hologram computed through direct calcu-
lation of the diffraction integral would yield a perfect reconstruction of the original image in
Fig. 14.9(a). Although there is distortion throughout the image, particularly as 𝜃 increases, the
image is clearly recognizable. This implies that images can be reconstructed from holograms
created using this method to a reasonable degree of practical usefulness.

14.4 Rigorous Point-Spread Function Approach

We will describe points on the sphere by their latitude 𝜃 ∈ [−𝜋∕2, 𝜋∕2] and longitude 𝜙 ∈
[0, 2𝜋] as shown in Fig. 14.7. Throughout this work we will be dealing with square-integrable
functions that span a space L2(S) on the unit sphere S. Fast computation algorithms take advan-
tage of the cyclic and periodic properties of the transformation kernel for fast calculations. The
cyclic and periodic properties exists only if the system is shift invariant between the transfor-
mation planes for that operation. Which means that the object and hologram surface should
be shift invariant in order to devise a fast computation scheme. To achieve this the object and
hologram surface are chosen to be concentric spherical surfaces, so that they can remain shift
invariant in rotation along𝜙 and 𝜃 directions. But these surfaces are defined on a spherical grid,
where the sampling points are more dense at the poles than at the equator. Hence, shift invari-
ance is not satisfied. However, in the hologram generation process, the hologram and object
are band-limited functions on L2(S) space. The band-limited functions on L2(S) space have a
very useful and important property that any rotated version of a band-limited function is also a
band-limited function with the same bandwidth [13–15]. Thus, they are refereed to as having
uniform resolution at all points on the sphere, meaning that they are shift invariant. The tri-
angular truncation and Gauss–Legendre quadrature method that occurs in the transformation
operation is responsible for this property (explained in the next section). Hence the system
shown in Fig. 14.7 does have a shift invariance relationship between object and hologram
surfaces, and confirms the possibility of a fast computation formula. With this assurance we
proceed to develop the fast calculation method for computer generated spherical holography
starting from the basic equations of electromagnetism.

An electromagnetic field is defined by Maxwell’s equations and its propagation by the
Helmholtz wave equation. Hence for any particular system the complex amplitude of a
propagating wave at any instance of time and anywhere in space can be found by solving the
wave equation, applying its constraints and conditions. Accordingly, for the system shown
in Fig. 14.7 the solution can be derived starting from the wave equation as follows. The time
independent vector wave equation u(r, 𝜃, 𝜙) is expressed the by the Helmholtz equation as

∇2u + k2u = 0, (14.26)

where r is the radius of the spherical surface of interest and 𝜃 and 𝜙 represent the azimuthal
and polar angles in the surface, respectively. The Laplacian operator ∇2 in spherical coordi-
nates is defined as

∇2 = 1
r2

𝜕

𝜕r
(r2 𝜕

𝜕r
) + 1

r2 sin 𝜃
𝜕

𝜕𝜃
(sin 𝜃

𝜕

𝜕𝜃
) + 1

r2sin2
𝜃

𝜕2

𝜕𝜙2
. (14.27)
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The scalar wave equation given in spherical coordinates becomes

1
r2

𝜕

𝜕r
(r2 𝜕u
𝜕r

) + 1
r2 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕u
𝜕𝜃

) + 1

r2sin2
𝜃

𝜕2u
𝜕𝜙2

+ k2u = 0. (14.28)

The solution of Eq. (14.28) can be found by separation of variables [16–18], which can be
expressed as shown next

u(r, 𝜃, 𝜙, t) = R(r)Θ(𝜃)Φ(𝜙). (14.29)

The separable variables obey the following four ordinary differential equations:

d2Φ
d𝜙2

+ m2Φ = 0 (14.30)

1
sin 𝜃

d
d𝜃

(sin 𝜃
dΘ
d𝜃

) + [n(n + 1) − m2

sin2
𝜃
]Θ = 0 (14.31)

1
r2

d
dr

(r2 dR
dr

) + k2R − n(n + 1)
r2

R = 0. (14.32)

The solution to all these equations are derived in by Arfken [18]. Only the final results are used
in this research work. The solution to azimuthal Eq. (14.30) is

Φ(𝜙) = Φ1eim𝜙 + Φ2e−im𝜙, (14.33)

where m must be an integer so that there is continuity and periodicity in Φ(𝜙). Φ1 and Φ2 are
constants.

The solution to polar Eq. (14.31) is

Θ(𝜃) = Θ1Pm
n (cos 𝜃) + Θ2Qm

n (cos 𝜃) (14.34)

where, Pm
n and Qm

n are the associated Legendre polynomials of first and second kind, respec-
tively, and Θ1 and Θ2 are constants. Qm

n is not finite at the poles where cos(𝜃) = ±1, so this
solution is discarded (Θ2 = 0).

For the radial differential equation Eq. (14.32) the solutions are

R(r) = R1h(1)n (kr) + R2h(2)n (kr) (14.35)

where, h(1)n and h(2)n are the spherical Hankel functions of the first and second kind, respectively.
Since we are only interested in the outgoing wave, we can neglect the second term (R2 = 0).

The angle functions in Eq. (14.33) and Eq. (14.34) are conveniently combined into a single
function called a spherical harmonic Ym

n [17, 18] defined by

Ym
n (𝜃, 𝜙) ≡ (−1)m

√
(2n + 1)(n − m)!

4𝜋(n + m)!
Pm

n cos(𝜃)eim𝜙 (14.36)

where the quantity

P
m
n =

√
(2n + 1)(n − m)!

4𝜋(n + m)!
Pm

n (cos 𝜃) (14.37)
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is known as the orthonormalized associated Legendre polynomial. The term (−1)m is called
the Condon–Shortley phase. Hence the spherical harmonics can also be represented in short
form as shown next (neglecting the Condon–Shortley phase)

Ym
n (𝜃, 𝜙) = P

m
n (cos 𝜃)eim𝜙. (14.38)

Combining all these equations, the traveling wave solution to Eq. (14.28) can be represented as

u(r, 𝜃, 𝜙, 𝜔) =
∞∑

n=0

n∑
m=−n

Amn(𝜔)hn(kr)Ym
n (𝜃, 𝜙). (14.39)

The radiated field is completely defined when the coefficient Amn is determined. This is
achieved by using the orthonormal property of spherical harmonics. Assume that the wave
field u(r, 𝜃, 𝜙) is known on a sphere of radius r = a. We also drop the time variable (which is
not important) for simplicity. Now multiplying each side of Eq. (14.39) (evaluated at r = a)
by Ym

n (𝜃, 𝜙)∗ and integrating over the sphere, gives

Amn = 1
hn(ka) ∫

𝜋

2

−𝜋
2

∫
2𝜋

0
u(a, 𝜃, 𝜙)Ym

n (𝜃, 𝜙)∗ sin(𝜃)d𝜃d𝜙 (14.40)

where, dΩ = sin(𝜃)d𝜃d𝜙′, is the solid angle for integrating on a sphere. Inserting the expres-
sion for Amn back into Eq. (14.39), we get,

u(r, 𝜃, 𝜙) =
∞∑

n=0

n∑
m=−n

Ym
n (𝜃, 𝜙)

([
∫

𝜋

2

−𝜋
2

∫
2𝜋

0
u(a, 𝜃′, 𝜙′)Ym

n (𝜃′, 𝜙′)∗dΩ′

]
hn(kr)
hn(ka)

)
. (14.41)

Hence the wavefield at any spherical surface u(r, 𝜃, 𝜙) can be calculated knowing the wavefield
at u(a, 𝜃′, 𝜙′).

For easy understanding and interpretation of Eq. (14.41), it is compared with the well-known
angular spectrum of plane waves equation [19], which is given by

u(x, y, z) = 1
4𝜋2

∞

∫
−∞

∞

∫
−∞

ei(kxx+kyy)dkxdky

⎛⎜⎜⎝
⎡⎢⎢⎣
∞

∫
−∞

∞

∫
−∞

u(x′, y′, 0)e−i(kxx′+kyy′)dx′dy′
⎤⎥⎥⎦

eikzz
⎞⎟⎟⎠
. (14.42)

It is well known that, in Eq. (14.42), the quantity within square brackets represents the source
wave field decomposed into spectrum of plane waves in (kx, ky). The propagation of the spec-
trum is defined by the quantity eikzz, which is known as the transfer function. The propagated
spectrum is recomposed into the wave field at destination by the integral over kx, ky. Thus
this equation defines wave propagation from one plane surface u(x′, y′, 0) to another surface
u(x, y, z). When comparing Eq. (14.41) with Eq. (14.42), the following can be deduced:

• The wavefield in (𝜃, 𝜙) at a radiating spherical surface of radius r = a is decomposed into
its wave spectra in (m, n) defined by

Umn(a) = ∫ u(a, 𝜃, 𝜙)Ym
n (𝜃, 𝜙)∗dΩ. (14.43)



Rigorous Diffraction Theory for CGHs 339

• The decomposed wave components (spectra) are expressed by Eq. (14.36), which is com-
posed of a traveling wave component in 𝜙, and defined by eim𝜙 and a standing wave com-
ponent in 𝜃 given by Pm

n (cos 𝜃).
• The decomposed wave components in this system can be named spherical wave compo-

nents in analogy to plane wave components for planar systems. Similarly Eq. (14.43) can
be termed a spherical wave spectrum as analogous to the angular spectrum of plane waves.

• The wavenumbers kx and ky are imitated by the quantities m∕a and n∕a. Hence, we can refer
to the spherical wave spectrum as a k-space spectrum, due to this analogy.

• Equation (14.43) can be viewed as a forward Fourier transform using Ym
n (𝜃, 𝜙) as the basis

function. In other words, the spectral space for spherical system is spanned by spherical
harmonic functions (Yn

m(𝜃, 𝜙)). This is also termed spherical harmonic transform (SHT).
• The propagation of a spherical wave spectrum from one spherical surface of radius a to

another of radius r is given by

Umn(r) =
hn(kr)
hn(ka)

Umn(a). (14.44)

• Hence the quantity hn(kr)∕hn(ka) can be referred to the transfer function (TF) for a spherical
system, as opposed to the quantity eikzz for a planar system.

• The inverse spherical harmonic transform (ISHT) that recomposes the wave field back from
the spectrum is given by

u(r, 𝜃, 𝜙) =
∞∑

n=0

n∑
m=−n

Unm(r)Ym
n (𝜃, 𝜙). (14.45)

The transfer function is crucial since it completely defines propagation and hence it is worth
discussing some of its properties. During propagation, amplitude and phase of the spectral
components change with distance as defined by the transfer function. What is most important
is the rate of change of phase of the transfer function, which determines the sampling require-
ments. Accordingly the plot shown in Fig. 14.10 reveals that the phase change increases with
increasing orders “n” of the transfer function (the plot was generated for wavelength 100 μm,
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Figure 14.10 Plot of phase (in radians) of the transfer function for increasing order (n)
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radius 10 and 0.5 cm, and up to 256 orders). Hence, sampling requirements will be satisfied if
highest order “n” of the transfer function is sampled according to Nyquist criteria. It can also
be understood that the rate of phase change becomes higher as the distance of propagation
increases. This will demand a lot of sampling and also increase numerical errors. It is worth
noting here that the spherical Hankel functions are asymptotic in nature. In the far field, the
spherical Hankel functions can be approximated by their asymptotic expressions, which is as
shown in Eq. (14.46).

h(1)n (x) = (−i)n+1 eix

ix
. (14.46)

This could yield a formula analogous to the far field Fresnel diffraction formula. However, it
requires systematic development of theory with proper analysis of approximations and is not
discussed in this chapter. But this can be considered as future work to the proposed method.
Therefore, the devised formula, which is analogous to the angular spectrum of plane waves
(AS) formula, defines wave propagation between spherical surfaces. The numerical procedure
to implement the devised formula is discussed in the next section.

14.4.1 Numerical Computation

The numerical computation of angular spectrum (AS) method heavily depends on the FFT
operations for which a lot of tools and methods are available. But the numerical computation
of the proposed method heavily depends on the SHT operations. Fast computation was guar-
anteed from the theory and geometry of the system. Now a numerical procedure that takes
advantage of this is required. Fortunately, lot of fast computation numerical methods have
been reported for SHT and this research work could make use of it. Since FFT and numerical
computation of AS method are well understood, this section intends to introduce SHT and
numerical computation of the proposed method in close analogy to the former.

Continuing with the comparison from the previous section, the numerical computation of
wave propagation for planar and spherical systems according to Eq. (14.41) and Eq. (14.42)
can be represented respectively as

u(r, 𝜃, 𝜙) = ISHT[SHT(u(a, 𝜃, 𝜙)) × TFs] (14.47)

u(x, y, z) = IFFT[FFT(u(x, y, 0)) × TFc] (14.48)

where, FFT[...] and IFFT[...] denote the forward and inverse fast Fourier transform operations,
while SHT[...] and ISHT[...] denote the forward and inverse spherical harmonic transform
operations. TFs and TFc are the transfer functions for spherical and planar wave propagations
as defined by Eq. (14.41) and Eq. (14.42), respectively. Comparison reveals that the compu-
tation method (for spherical systems) is analogous to the angular spectrum of plane waves
method (for planar systems) except for the fact that the Fourier transform is replaced by the
spherical harmonic transform. Hence evaluation of SHT becomes key, the others being only
basic mathematical evaluations. SHT operations are fundamentally different from the FFT
operations. In FFT operation the transform is done with a sinusoid and its higher harmonics as
the basis function, whereas in the case of SHT, spherical harmonics defined by Eq. (14.36) are
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the basis. This also implies that since the transformation kernel for the FFT is a sinusoid, it is
an operation defined on a circle. But spherical harmonics are functions on a sphere and hence
the transformation is an operation defined on a sphere. Spherical harmonic transforms have
been studied extensively, and fast computation algorithms and optimization methods have been
proposed. A method that requires only O(N2logN) operations for N grid points, as opposed
to the standard N3 operations, was proposed by Chien et al. [13]. They imposed truncations
on the spectral components, and used a fast multipole method and fast Fourier transform for
evaluation. Their method is called the “spectral truncation method” and the errors due to trun-
cation were well within acceptable limits. Later on, Healy et al. [14] achieved the same using
O(N(logN))2 operations. They took advantage of the recursive properties of the associated Leg-
endre polynomial for fast computation. This method was found to be more efficient and hence
was chosen for numerical evaluation of the spherical harmonic transforms in this work. A brief
outline of the numerical evaluation is presented. For more details please refer to Healy [14]
and Driscoll [15].

Though FFT and SHT are fundamentally different, they both are variable separable. Which
means a 2D FFT is computed by separating the transformation kernel into its variables and
evaluating it as 1D column transform followed by a 1D row transformation. Similarly the
spherical harmonic transform kernel Ym

n given by Eq. (14.38) is also variable separable and
can be separated into a 𝜙 component and 𝜃 component. Then it is evaluated as a 1D transform
along the 𝜙 direction followed by another 1D transform along the 𝜃 direction. Accordingly,
the transformation given by Eq. (14.43) can be represented as shown next

Umn(r) = ∫
𝜋∕2

−𝜋∕2

(
∫

𝜋

−𝜋
u(r, 𝜃, 𝜙)eim𝜙d𝜙

)
P

m
n (cos 𝜃)d𝜃. (14.49)

First, the quantity within the round brackets alone is to be computed, which is nothing but a
Fourier transform operation. The Fourier coefficients Um(𝜃) are evaluated for m = −N ,..., N
as shown next

Um(𝜃) = ∫
𝜋

−𝜋
u(r, 𝜃, 𝜙)eim𝜙d𝜃 (14.50)

= 1
I

I∑
i=1

u(r, 𝜃, 𝜙i)eim𝜙i (14.51)

where 𝜙i = 2𝜋i∕I for i = 1,...,I. The equispaced longitudes 𝜙i enables the use of fast Fourier
transform.

Second, the Legendre transform of the Fourier coefficients Um(𝜃) is to be evaluated for |m| ≤
n ≤ N. This is done using the Gaussian–Legendre quadrature as shown next,

Unm = ∫
𝜋∕2

−𝜋∕2
Um(𝜃j)P

m
n (cos 𝜃)sin 𝜃d𝜃 (14.52)

=
N∑

j=|m|
Um(𝜃j)P

m
n (cos 𝜃j)wj, (14.53)
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where 𝜃j and wj are, respectively, the Gauss nodes and weights, and are calculated using the
Fourier–Newton method as described by Swarztrauber [16]. The Gauss–Legendre quadra-
ture replaces the integral with the sum. The fact that the summation runs only from |m| to
N is referred to as triangular truncation. The use of the Gauss–Legendre quadrature method
redistributes 𝜃 into Gaussian nodes 𝜃j. This along with the triangular truncation are responsible
for uniform resolution on the latitudinal points. Again, the triangular truncation, along with
the recurrence property of the Legendre polynomial, helps to achieve fast computation.

In a similar way the inverse spherical harmonic transform can be represented as

u(𝜃, 𝜙) =
N∑

m=−N

(
N∑

n=|m|
UnmPm

n (cos 𝜃)

)
eim𝜙. (14.54)

The inverse transform also follows the same procedure and is computed in two steps but in the
reverse order (i.e., Legendre transform first and Fourier transform next) as shown here

Um(𝜃) =
N∑

n=|m|
UnmP

m
n (cos 𝜃) (14.55)

u(𝜃, 𝜙) =
N∑

m=−N

Um(𝜃)eim𝜙. (14.56)

Thus using this numerical procedure fast computation of wave propagation in spherical com-
puter generated holograms is achieved, which uses only O(N(logN)2 operations for SHT com-
putation.

There are a lot of software tools available on the Internet to do the SHT operation. Most
of them are tuned and dedicated for geophysical processes, which only requires real SHT but
holography requires complex SHT. However, the package of SHTools by Wieczorek [20] could
do a complex SHT operation in the Fortran language. Though not tested by us, this is the best
one available that suits the work related to this paper. Hence, we recommend using this if it
is required to quickly reproduce the work in this paper. The next section describes the testing
and verification of this numerical procedure using simulations.

14.4.2 Simulation Results on Rigorous Theory

The system considered for simulation experiments is shown in Fig. 14.7. The object
(O(a, 𝜃, 𝜙)) is a spherical surface of radius 1 cm and the hologram (H(r, 𝜃, 𝜙)) is another
concentric spherical surface of radius 10 cm. The reference is considered to be a virtual source
emitting spherical waves from the center, that is, the wavefield, due to reference has same
phase and amplitude throughout the hologram plane. This is similar to using a plane reference
wave with normal incidence in plane holography.

14.4.3 Verification through Comparison

Since this the first occurrence of such a formula in computer generated holography first it is
required to test it to see if it obeys the basic diffraction laws. For this, the proposed method by
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expecting it to reproduce the already known diffraction results. To achieve this, the proposed
method is made to generate already reported diffraction patterns for spherical surfaces. For
this the diffraction pattern reported by Tachiki et al. [12] for spherical surfaces is used as
a reference. Accordingly, a simple object was chosen, which is a spherical surface with two
irradiating points at 𝜙 = −𝜋∕2 and 𝜙 = 𝜋∕2, as shown in Fig. 14.11. The object and hologram
are composed of 256 pixels in the longitudinal (north-south) direction and 512 pixels in the
latitudinal (east-west) direction. The wavelength was chosen to be 𝜆 = 100 μm, in order to
reduce sampling requirements and visibility of fringes. The procedure for numerical generation
of hologram using the proposed method is expressed in an abstract form as shown next.

AmplitudeHologram =|ISHT[SHT(Object) × TF]

+ ISHT[SHT(Reference) × TF]|2.
Then a hologram for the same object was simulated using the the well-known direct integration
formula defined in Eq. (14.57).

H(r, 𝜃, 𝜙) = ∫ ∫
O(𝜃′, 𝜙′) exp (ikL)

L
dxdy (14.57)

where,
L =

√
r2 + a2 − 2ra[sin(𝜃) sin(𝜃′) + cos(𝜃) cos(𝜃′) cos(𝜙 − 𝜙′)] (14.58)

Hologram = |Hobject(r, 𝜃, 𝜙) + Hreference(r, 𝜃, 𝜙)|2.
The simulation results are shown in Fig. 14.12. The pattern generated by the proposed

method matches the one generated by the direct integration method. However, the distribution
of brightness and contrast across the pattern is constant for the direct integration method, while
it decreases gradually from the center for our proposed method. This inconsistency can be
explained as follows. The direct integration formula Eq. (14.57) is the Rayleigh–Sommerfeld
diffraction formula [12] without the obliquity factor. The obliquity factor is the cosine of the
angle between the normal of the radiating surface to the direction of the observation point.
This is responsible for the distribution of light intensity based on the angle (i.e., more bright at
the center, gradually decreases outward, and no radiation backwards). However, the spectral
method, which is the solution to the boundary value problem of the wave equation, incorpo-
rates the obliquity factor, and hence the brightness and contrast varies radially. Moreover, the
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Figure 14.11 Two point source object
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Figure 14.12 Computed hologram (intensity) using (a) proposed method and (b) direct integration

obliquity factor does not alter the phase of the traveling wave, which in turn does not affect
the interference pattern, and hence guarantees a fair comparison.

14.4.4 Hologram Generation

Since the theory is developed in the context of computer generated holography, it is mandatory
to verify its applicability to the same. For this, it was decided to perform spherical hologram
generation and then reconstruction from the hologram on the computer using our proposed
method. The object was assumed to be a single spherical surface with some images inscribed
on it. The spherical object for which the hologram was to be made is shown in Fig. 14.13.
The object and hologram were composed of 256 × 512 pixels. The wavelength for simulation
was chosen to be 𝜆 = 30 μm. Again, here the wavelength was assumed to be large in order
to reduce sampling requirements. Now, using the developed formula, wave propagation was
simulated from the object surface to the hologram surface. Since the reference was assumed
to be a spherical wave emanating from the center, it contained the same phase and amplitude
at the hologram surface. So we have the complex amplitudes of the object and reference as a
matrix of complex numbers at the hologram surface. By adding these two complex amplitudes
and calculating the intensity, the hologram is produced and is shown in Fig. 14.14.
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Figure 14.13 Object
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Figure 14.14 Hologram (intensity)
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Figure 14.15 Reconstruction

From this hologram the object was reconstructed back onto the original spherical surface
using Eq. 14.41. Reconstruction with the original reference will only produce a virtual image
at the location of the object. In order to obtain a real reconstructed image at the original object
location, the hologram should be illuminated (or reconstructed) using the conjugate of the ref-
erence. This means that we are attempting to reconstruct a real image on the spherical surface
where the object was earlier located. The conjugate of the reference was produced by taking the
complex conjugate of the reference wave field matrix. Accordingly, the numerical procedure
of the for reconstruction is expressed in an abstract form as shown next.

Reconstruction = |ISHT[SHT(Hologram × Conjugate[Reference]) × TF]|2.
The reconstructed real image is shown in Fig. 14.15. The reconstruction matches exactly with

the object chosen. The reconstruction is crisp and is also free from any noise. As mentioned
earlier, the object and hologram are square integrable band-limited functions on a closed sur-
face. Hence, a rotated (shifted in theta or phi) version of the object or hologram will produce a
rotated version of the reconstruction. The wave propagation calculation requires O(N(logN))2

operations for N sampling points, and hence it is a fast computation formula. The calculations
were executed using a scripted language-python on a Dell Precision T7400 machine with 12
GB of RAM memory. A calculation time for the direct integration, convolution, and spectral
methods are 3730 s, 0.057 s, and 0.039 s, respectively. This means that the proposed method
took the least time for calculation, and hence is the fastest.
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14.5 Conclusion

We have revealed the information inherent to the diffracted wavefront by the derivation of
the relation with the 3D Fourier spectrum based on the Helmholtz equation and its Green
function. The diffracted wavefront propagating in all directions can be expressed completely
by just the spherical Fourier spectrum. Moreover, as an example of the application of this
basic principle, the simulation of the diffracted images to all directions has been demonstrated
and the validity of this principle has been also verified. This principle gives us the basis of
the diffraction calculation based on the Fourier spectrum and it is flexibly applicable to other
various diffractions, such as the rotation of wavefronts, cylindrical observation, and so on.
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