
3
STRUCTURE AND FUNCTION OF 
CELLULAR COMPONENTS

52

α-Actin fi laments in vascular smooth muscle cells derived from the mouse aorta. Smooth muscle 
cells were collected from the medial layer of the mouse aorta and cultured for 10 days. The α-actin 
fi laments were labeled with an anti-smooth-muscle α actin antibody (red in color) and observed by 
fl uorescence microscopy. Cell nuclei were labeled with Hoechst 33258 (blue in color). Scale bar: 
5 μm. See color insert.
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A mammalian cell is composed of numbers of subcellular organelles, including the cell 
membrane, cytoskeleton, smooth and rough endoplasmic reticulum, Golgi apparatus, 
lysosomes, peroxisomes, mitochondria, and nucleus. A cell membrane is a phospholipid 
bilayer, which encloses cell contents and separates a cell into different compartments. The 
cytoskeleton is constituted with three distinct elements, including actin fi laments, micro-
tubules, and intermediate fi laments, which not only give a cell shape, strength, and elastic-
ity but also regulate various cellular functions. Endoplasmic reticulum is the site where 
proteins and phospholipids are synthesized. The Golgi apparatus is an organelle in which 
proteins are processed and modulated. Lysosomes contain digestive enzymes, participat-
ing in the degradation of engulfed molecules or microorganisms. Peroxisomes contain 
enzymes for the mediation of oxidative reactions. Mitochondria are machineries that 
generate and store energy in the form of ATP. The nucleus contains chromosomes and is 
the center for the storage and processing of genetic information. It becomes clear that each 
cellular organelle possesses distinct structure and function, yet all cell organelles work 
together in a highly coordinated manner, ensuring appropriate regulation of cellular activi-
ties and functions. In this chapter, the structure, organization, and function of major cel-
lular organelles and compartments are briefl y reviewed.

CELL MEMBRANE [3.1]

The cell membrane is composed of lipids and proteins. As discussed in Chapter 1, lipids 
are amphipathic in nature (i.e., each molecule contains a polar hydrophilic and a nonpolar 
hydrophobic end) and can spontaneously form bilayers when mixed with an aqueous solu-
tion. The most abundant lipids are phospholipids in the cell membrane. Each phospholipid 
molecule contains a polar hydrophilic head and two nonpolar hydrophobic tails. In addi-
tion, cholesterol molecules can be found in a cell membrane. The membrane of a mam-
malian cell contains about 1 × 109 lipid molecules. Lipid molecules constitute about half 
of the membrane mass, while the remaining half is primarily proteins. The lipid composi-
tion is asymmetric between the two lipid layers of the cell membrane. For instance, gly-
cosphingolipids are found primarily in the external layer, whereas phosphatidylserine is 
in the internal layer. The primary functions of cell membranes are to separate cellular 
contents from the extracellular space, create a suitable internal environment for intracel-
lular activities, and establish subcellular compartments for various metabolic and signal-
ing processes.

A lipid bilayer is a fl uid-like structure. Lipid molecules can move laterally or diffuse 
within a lipid monolayer, but cannot change the molecular polarity or fl ip from one lipid 
layer to the other. The fl uid-like feature of lipid bilayers is dependent on the composition 
of the cell membrane. For instance, cholesterol molecules reduce the fl uidity of cell mem-
branes, and thus enhance the membrane rigidity. The fl uidity of a cell membrane ensures 
dynamic movement of membrane components, including not only lipids but also proteins. 
The movement of membrane molecules is critical to the function of these molecules as 
well as the cell. For instance, integrins move toward the leading edge of cell migration 
and participate in the construction of focal adhesion contacts, regulating cell attachment 
to the substrate (Fig. 3.1). Growth factor receptors move dynamically, resulting in the 
redistribution of the receptors to regions that require increased signal inputs from growth 
factors.
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The cell membrane contains various types and amounts of proteins, depending on the 
type and function of the cell. For instance, a myelin membrane, which encloses and pro-
tects the nerve axon, contains proteins about 25% of the membrane mass, whereas a cell 
membrane that is involved in extensive molecular transport and ligand–receptor interac-
tion may contain up to 75% proteins. Cell membrane proteins may serve as ligand recep-
tors, ion pumps, water and ion channels, or molecule carriers. Membrane proteins can be 
divided into several classes based on the structure and relationship with the lipid bilayer. 
One type is transmembrane proteins, which pass through the cell membrane and consist 
of three domains: the extracellular, transmembrane, and intracellular domains. The extra-
cellular and intracellular domains are usually hydrophilic, whereas the transmembrane 
domain is hydrophobic. The hydrophilic domains can interact with water-soluble proteins, 
while the hydrophobic domain interacts with the fatty acid tails of membrane lipids via 
covalent bonds, serving as an anchoring structure for the protein. The second type of 
membrane protein is found at the external surface of a cell membrane. These proteins 
attach to the lipid bilayer via the linkage of oligosaccharides. The third type of protein 
attaches to the intracellular side of the cell membrane via covalent bonds with fatty acids. 
In addition, some proteins attach to membrane proteins via noncovalent bonds. The struc-
tural relationship between a protein and the cell membrane usually determines the protein 
function. For instance, transmembrane proteins are responsible for molecular transport 
across the cell membrane and signal transduction from extracellular ligands to intracel-
lular signaling pathways. Proteins attached to the cytosolic side of the cell membrane 
usually serve as signaling molecules, which relay signals from transmembrane protein 
receptors.

0'1' 1'2' 4'5' 5'6'

7'8' 9'10' 12'13' 13'14'

Figure 3.1. Dynamic formation of β3 integrin complexes in porcine arterial endothelial cells. 
Endothelial cells were transfected with a GFP-β3 integrin gene and cultured to confl uence. Cell 
wound was created by mechanical scraping, which induces cell migration. The images were taken 
from migrating endothelial cells. Note that new integrin aggregates form at the leading edge of the 
migrating cells (within the ovals). The times of the sequential images are indicated at the upper 
right corners. Scale bar: 5 μm. (Reprinted from Zaidel-Bar R et al: J Cell Sci 116:4605–13, 2003 
by permission of The Company of Biologists Ltd.)



CYTOSKELETON

The cell contains a fi lamentous framework, known as the cytoskeleton. There are three 
cytoskeletal elements: the actin fi laments, intermediate fi laments, and microtubules. These 
fi laments not only determine the shape and mechanical strength but also participate in 
the regulation of cellular activities, such as cell adhesion, division, migration, and apop-
tosis. The structure and function of these fi laments are briefl y discussed here.

Actin Filaments

Structure and Organization of Actin Filaments [3.2]. An actin fi lament is a helical 
structure of 8 nm in diameter and is established via polymerization of actin monomers. 
Each actin monomer contains about 375 amino acid residues with a molecular size about 
43 kDa. In mammalian cells, there exist several isoforms of actin (see examples listed in 
Table 3.1), including the α and β isoforms in muscular cells and β and γ isoforms in non-
muscular cells. The α type of actin constitutes the contractile actin fi laments in skeletal, 
cardiac, and smooth muscle cells. The β and γ types of actin participate in the constitution 
of the cytoskeleton. Actin fi laments with various actin isoforms are localized to different 
compartments in both muscular and nonmuscular cells. For instance, in nonmuscular 
cells, β-actin is primarily found near the edge of the cell membrane, whereas γ-actin 
constitutes stress fi bers, which are distributed more uniformly. An actin fi lament is a 
polarized structure. When an actin fi lament is bound with myosin molecules, an array of 
asymmetric arrowhead-like structures appears under an electron microscope. The end of 
an actin fi lament consistent with the arrowhead is defi ned as the pointed end, whereas the 
other end is defi ned the barbed end.

Actin monomers can be self-assembled or polymerized into actin fi laments through 
biochemical reactions (Fig. 3.2). Actin polymerization is accomplished in several steps, 
including actin nucleation, fi lament growth, and ATP hydrolysis. Actin nucleation is a 
process that induces the formation of actin trimers. These trimeric actin structures, known 
as actin nuclei, serve as initiators for actin polymerization or fi lament growth. In addition, 
actin polymerization can be initiated from the barbed end of grown actin fi laments or 
random sites along the side of actin fi laments (Fig. 3.2). The addition of an ATP-actin to 
an actin nucleus or an actin fi lament triggers hydrolysis of ATP into ADP and phosphate. 
The phosphate group dissociates from the actin, leaving a newly added actin molecule 
with a tightly bound ADP.

An actin fi lament can be simultaneously polymerized and depolymerized at both ends. 
Under a steady physiological condition, the addition of actin subunits to the barbed end 
of an actin fi lament is counterbalanced by the dissociation of actin subunits from the 
pointed end, resulting in a relatively constant density for actin monomers and fi laments. 
However, the rate of polymerization and depolymerization may change in response to 
environmental alterations. For instance, an increase in the concentration of ATP and the 
presence of cations lower the critical level of actin monomers, enhancing actin polymer-
ization. Actin monomers above a critical concentration can be all assembled into actin 
fi laments.

Actin-Binding Proteins. Actin polymerization and depolymerization are regulated by 
numbers of actin-binding proteins. These proteins are classifi ed into various groups on 
the basis of their functions, including actin monomer-binding proteins, actin fi lament-

CYTOSKELETON  55



T
A

B
L

E
 3

.1
. 

C
ha

ra
ct

er
is

ti
cs

 o
f 

Se
le

ct
ed

 A
ct

in
 I

so
fo

rm
s*

 
 

A
m

in
o 

M
ol

ec
ul

ar
P

ro
te

in
s 

A
lte

rn
at

iv
e 

N
am

es
 

A
ci

ds
 

W
ei

gh
t 

(k
D

a)
 

E
xp

re
ss

io
n 

F
un

ct
io

ns

A
ct

in
 α

, c
ar

di
ac

 
Sm

oo
th

 m
us

cl
e 

ac
ti

n,
 

37
7 

42
 

C
ar

di
om

yo
cy

te
s 

an
d 

sm
oo

th
 

Fo
rm

in
g 

co
nt

ra
ct

il
e 

ac
ti

n 
fi 

la
m

en
ts

 
 

ca
rd

ia
c 

ac
ti

n 
α

, a
ct

in
 α

 
 

 
 

m
us

cl
e 

ce
ll

s 
 

in
 c

ar
di

om
yo

cy
te

s 
an

d 
sm

oo
th

 
 

 
 

 
 

m
us

cl
e 

ce
ll

s
A

ct
in

 α
, s

ke
le

ta
l 

1 
A

ct
in

 α
1 

37
7 

42
 

Sk
el

et
al

 m
us

cl
e 

Fo
rm

in
g 

co
nt

ra
ct

il
e 

ac
ti

n 
fi 

la
m

en
ts

 i
n

 
 

 
 

 
 

sk
el

et
al

 m
us

cl
e 

ce
ll

s
A

ct
in

 α
2 

V
as

cu
la

r 
sm

oo
th

 m
us

cl
e 

ac
ti

n,
 

37
7 

42
 

V
as

cu
la

r 
sm

oo
th

 m
us

cl
e 

ce
ll

s 
Fo

rm
in

g 
ac

ti
n 

co
nt

ra
ct

il
e 

fi 
la

m
en

ts
 i

n
 

 
va

sc
ul

ar
 s

m
oo

th
 m

us
cl

e 
 

 
 

 
va

sc
ul

ar
 s

m
oo

th
 m

us
cl

e 
ce

ll
s

 
 

ac
ti

n 
α

, v
as

cu
la

r 
sm

oo
th

 
 

m
us

cl
e 

ac
ti

n 
α2

, a
ct

in
 2

α
A

ct
in

 β
 

C
yt

os
ke

le
ta

l 
ac

ti
n 

β 
37

5 
42

 
P

ri
m

ar
il

y 
no

nm
us

cu
la

r 
ce

ll
s 

C
on

st
it

ut
in

g 
th

e 
cy

to
sk

el
et

on
 o

f
 

 
 

 
 

 
no

nm
us

cu
la

r 
ce

ll
s,

  
re

gu
la

ti
ng

 t
he

 
 

 
 

 
 

 
m

ot
il

it
y 

of
 n

on
m

us
cu

la
r 

ce
ll

s
A

ct
in

 γ
1 

C
yt

os
ke

le
ta

l 
ac

ti
n 

γ 
37

5 
42

 
P

ri
m

ar
il

y 
no

nm
us

cu
la

r 
ce

ll
s 

C
yt

op
la

sm
ic

 a
ct

in
 f

ou
nd

 i
n 

 
 

 
 

 
 

no
nm

us
cu

la
r 

ce
ll

s,
  

co
ns

ti
tu

ti
ng

 
 

 
 

 
 

cy
to

sk
el

et
on

, a
nd

 m
ed

ia
ti

ng
 c

el
l

 
 

 
 

 
 

m
ot

il
it

y
A

ct
in

 γ
2 

en
te

ri
c 

A
ct

in
 α

3,
 s

m
oo

th
 m

us
cl

e 
37

6 
42

 
In

te
st

in
al

 s
m

oo
th

 m
us

cl
e 

ce
ll

s 
C

on
st

it
ut

in
g 

th
e 

cy
to

sk
el

et
on

 o
f

 
sm

oo
th

 m
us

cl
e 

 
ac

ti
n 

γ 
 

 
 

 
in

te
st

in
al

 s
m

oo
th

 m
us

cl
e 

ce
ll

s

*B
as

ed
 o

n 
bi

bl
io

gr
ap

hy
 3

.2
.

56



capping proteins, actin fi lament-binding proteins, actin fi lament-severing proteins, and 
actin fi lament crosslinking proteins.

Actin Monomer-Binding Proteins [3.3]. The family of actin monomer-binding proteins 
(see Table 3.2) includes several molecules, including β-thymosins, cofi lins, profi lins, and 
formins, which bind actin monomers and regulate the activities of the actin molecules. β-
Thymosins are molecules that primarily bind to and sequester ATP-actin monomers, and 
thus inhibit actin polymerization. Cofi lins bind ADP-actin with high affi nity and destabi-
lize actin fi laments. However, a controversial role of cofi lins has been observed. Profi lins 
bind to ADP- and ATP-free actin monomers and play a role in sequestration of actin 
monomers. Profi lins also inhibit nucleation and elongation at the pointed end of an actin 
fi lament, but do not infl uence the nucleation and elongation at the barbed end. Formin is 
a homodimer composed of formin homology 1 (FH1) and formin homology 2 (FH2) 
domains. The FH2 domain can bind to monomer actin and induce the nucleation and 
polymerization of actin fi laments. Furthermore, The FH2 domain can bind to the barbed 

A

B

C

D

Figure 3.2. Actin fi lament polymerization and branching. Monomer actin molecules were prepared 
from rabbit skeletal muscle and labeled on Cys-374 with rhodamine. Actin polymerization was 
induced in the presence of 20% rhodamine-actin and observed by total internal refl ection fl uores-
cence microscopy (TIRFM). The images were subsequently captured at 100, 130, 170, and 210 s 
after initiating actin polymerization. Scale bar: 4 μm. (Reprinted by permission from Amann KJ 
et al: Proc Natl Acad Sci USA 98:15009–13, copyright 2001, National Academy of Sciences, 
USA.)
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end of actin fi laments and promote the elongation of the fi laments. The FH1 domain can 
bind to the actin-binding protein profi lin. This process enhances the elongation of actin 
fi laments.

Actin Filament-Capping Proteins [3.4]. Actin fi lament-capping proteins (see Table 3.3) 
are molecules that bind either the pointed or the barbed end of actin fi laments and prevent 
actin polymerization or depolymerization. This family of proteins includes gelsolins, 
heterodimeric capping proteins, the actin-related protein (Arp)2/3 complex, tropomyosin, 
nebulin, and tropomodulin. Gelsolins are capable of binding to the barbed end and the 
side of actin fi laments and inhibiting actin polymerization. Heterodimeric capping pro-
teins bind and cap the barbed end of actin fi laments, and impose effects similar to those 
of gelsolins. Arp 2/3 is a complex of Arp 2 and Arp 3, which binds and caps the pointed 
end of an actin fi lament and promotes the attachment of the capped end to a different 
actin fi lament and the formation of actin fi lament branches. It has been shown that this 
process is regulated by the ρ family GTPases. ρ GTPases activate a protein known as the 
Wiskott–Aldrich syndrome protein (WASP), which in turn activates the Arp2/3 complex. 
Other actin fi lament-binding proteins, including tropomyosin, nebulin, capZ, and tropo-
modulin, bind to the side or ends of actin fi laments and contribute to the stability of the 
fi laments. Tropomyosin binds the side of actin fi laments, induces an increase in the stiff-
ness of the fi laments, and stimulates the interaction of actin fi laments with myosin. 
Nebulin is found in skeletal muscle cells and plays a role in the control of the length of 
actin fi laments. Tropomodulin binds to the pointed end and enhances the stability of actin 
fi laments.

Actin Filament-Severing Proteins. Actin fi lament-severing proteins include gelsolins, 
fragmin/severin, and cofi lins. These molecules are able to sever actin fi laments into short 
fragments and promote actin fi lament depolymerization. Gelsolins are also capping mol-
ecules for the barbed end of actin fi laments. Cofi lins can also bind to actin monomers.

Actin Filament-Crosslinking Proteins [3.5]. Actin fi lament crosslinking proteins (Table 
3.4) include α-actinin, fi mbrin, villin, and fi lamin. These molecules can bind simultane-
ously to multiple actin fi laments and induce crosslink of actin fi laments. α-Actinin is 
associated with actin stress fi bers and the Z-disk of striated muscular actin fi bers. In addi-
tion, α-actinin is a constituent of focal adhesion contacts, structures that mediate cell 
attachment and migration. This molecule possesses multiple functions. Fimbrin can bind 
and crosslink actin fi laments in microvilli. Villin has a similar function as fi mbrin. Filamin 
can not only crosslink actin fi laments but also anchor actin fi laments to integrins, major 
constituents of focal adhesion contacts. All these actin fi lament crosslinking molecules 
enhance the stability of actin fi laments.

Regulation of Actin Assembly and Disassembly [3.6]. In mammalian cells, actin fi la-
ments undergo a dynamic turnover process, or simultaneous assembly and disassembly, 
under physiological conditions. The rate of turnover is dependent on cell types. Nonmus-
cular cells exhibit actin fi lament turnover at a timescale of minutes, while muscular cells 
demonstrate actin fi lament turnover at a scale of days. Actin polymerization (assembly) 
and depolymerization (disassembly) can be observed in living cells with fl uorescent 
marker-tagged actin monomers. The fl uorescent markers can be incorporated into actin 
fi laments. Following photobleaching of fl uorescent actin fi laments, the bleached region 
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62  STRUCTURE AND FUNCTION OF CELLULAR COMPONENTS

can be replaced with fl uorescent actin fi laments, suggesting dynamic reassembly of actin 
fi laments. In nonmuscular cells, there exists a relatively high concentration of unpolymer-
ized actin monomers (50–100 μM). Such a concentration allows rapid actin polymeriza-
tion in response to stimulations that initiate cell adhesion and migration. Indeed, the 
concentration of actin monomers is a critical factor that controls actin fi lament assembly 
and disassembly.

The dynamics of actin assembly–disassembly is regulated by actin regulatory and 
binding proteins. Sequestration of actin monomers and the capping of actin fi laments at 
the ends are two mechanisms that control the rate of actin fi lament assembly. As discussed 
above, profi lin and thymosin can bind and sequester actin monomers and reduce the con-
centration of free actin monomers, suppressing the polymerization of actin fi laments. 
Profi lin- or thymosin-bound actin monomers have reduced capability of initiating nucle-
ation. An increase in the activity of actin fi lament-capping proteins promotes actin 
polymerization.

Actin fi laments are found in all mammalian cells and are organized into various pat-
terns and structures. For instance, actin fi laments form a network in the cortical region 
of the cell, while forming fi ber bundles within fi lopodia or microvilli. The pattern forma-
tion of actin fi laments is a process that may be regulated by the Rho family of GTPases, 
which includes Rho, Rac, and Cdc42 (see Table 3.5). These molecules have been shown 
to regulate distinct processes of actin assembly. Activated Cdc42 stimulates the formation 
of fi lopodia, Rho enhances the formation of actin “stress fi bers,” while Rac promotes the 
formation of cortical network of actin fi laments (Fig. 3.3). Although the signaling path-

Figure 3.3. Infl uence of Rho, Rac, and Cdc42 on the organization of actin fi laments and morphol-
ogy of cells: (A,B) quiescent serum-starved Swiss 3T3 fi broblasts labeled for actin fi laments and 
vinculin; (C,D) treatment of cells with lysophosphatidic acid, a growth stimulator, which activates 
Rho, leading to the formation of organized actin fi laments or stress fi bers (C) and focal adhesion 
contacts (D); (E,F) microinjection of Rac induces the formation of lamellipodia (E) and focal 
adhesion contacts (F); (G,H) microinjection of FGD1, an exchange factor for Cdc42, leads to for-
mation of fi lopodia (G) and the focal adhesion contacts (H). (Reprinted by permission from Hall 
A: Science 279:509–14, 1998.)
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64  STRUCTURE AND FUNCTION OF CELLULAR COMPONENTS

ways for these molecules remain poorly understood, these observations provide insights 
into the mechanisms by which actin fi laments form distinct patterns.

Actin assembly and disassembly are regulated by extracellular factors. For instance, 
growth factors and cytokines stimulate cell attachment and migration, which are 
associated with increased actin assembly. These observations suggest a role for growth 
factors and cytokines in the regulation of actin polymerization or depolymerization. 
However, exact mechanisms remain poorly understood. In addition, fl uid shear stress has 
been shown to infl uence actin assembly in vascular endothelial cells. In cell culture models, 
the introduction of fl uid shear stress to endothelial cells enhances actin fi lament assembly, 
forming actin “stress fi bers.” Shear stress-induced deformation of cell membrane receptors 
or other cell structures may play a role in the initiation of such a process. However, the sig-
naling pathways that transduce shear stress signals remain to be identifi ed.

Function of Actin Filaments [3.7]. Actin fi laments participate in a number of functions, 
including cell contraction, migration, and division. In contractile cells, including skeletal, 
cardiac, and smooth muscle cells, actin fi laments interact with myosin molecules, causing 
fi lament sliding and cell contraction, a fundamental process for force generation. In non-
contractile cells, directed actin polymerization contributes to regional extension of cell 
membrane, a primary step in cell migration. The interaction of actin fi laments and myosin 
molecules provide forces that induce cell traction and movement. During cell division, 
actin fi laments form a ring-shaped structure between two premature daughter cells, known 
as the contractile ring, underneath the plasma membrane. Contraction of the ring is initi-
ated following cell mitosis. Such an activity separates the mother cytoplasm into two 
daughter compartments. While chromosome separation is defi ned as mitosis, cytoplasmic 
separation is defi ned as cytokenesis.

BIBLIOGRAPHY

3.1. Cell Membrane

Mineo C, Gill GN, Anderson RG: Regulated migration of epidermal growth factor receptor from 
caveolae, J Biol Chem 274:30636–43, 1999.

Bretscher M: The molecules of the cell membrane, Sci Am 253:100–8, 1985.
Dowham W: Molecular basis for membrane phospholipid diversity: Why are there so many lipids? 

Annu Rev Biochem 66:199–212, 1997.
Englund PT: The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors, Annu 

Rev Biochem 62:121–38, 1993.
Farazi TA, Waksman G, Gordon J: The biology and enzymology of protein N-myristoylation, Annu 

Rev Biochem 276:39501–64, 2001.
Petty HR: Molewlar Biology of Membrmles: Structure and Function, Plenum Press, New York, 

1993.
Singer SJ: The structure and insertion of integral proteins in membranes, Annu Rev Cell Biol 

6:247–96, 1990.
Singer SJ, Nicolson GL: The fl uid mosaic model of the structure of cell membranes, Science 

175:720–31, 1972.
Tamm LK, Arora A, Kleinschmidt JH: Structure and assembly of beta-barrel membrane proteins, 

J Biol Chem 276:32399–402, 2001.
Towler DA, Gordon J, Adams SP, Glaser L: The biology and enzymology of eukaryotic protein 

acylation, Annu Rev Biochem 57:69–99, 1988.



White SH, Ladokhin AS, Jayasinghe S, Hristoya K: How membranes shape protein structure, 
J Biol Chem 276:32395–8, 2001.

Yeagle PL: The Membranes of Cells, 2nd ed, Academic Press, San Diego, 1993.

Zhang FL, Casey PJ: Protein prenylation: Molecular mechanisms and functional consequences, 
Annu Rev Biochem 65:241–69, 1996.

Simons K, Vaz WL: Model systems, lipid rafts, and cell membranes, Annu Rev Biophys Biomol 
Struct 33:269–95, 2004.

Vereb G, Szollosi J, Matko J, Nagy P, Farkas T et al: Dynamic, yet structured: The cell membrane 
three decades after the Singer-Nicolson model, Proc Natl Acad Sci USA 100:8053–8, 2003.

Edidin M: The state of lipid rafts: From model membranes to cells, Annu Rev Biophys Biomol 
Struct 32:257–83, 2003.

Lipowsky R: The conformation of membranes, Nature 349:475–81, 1991.

3.2. Structure and Organization of Actin Filaments

a -Actin, Cardiac
Gunning P, Ponte P, Kedes L, Eddy R, Shows T: Chromosomal location of the co-expressed human 

skeletal and cardiac actin genes, Proc Natl Acad Sci USA 81:1813–7, 1984.

Hamada H, Petrino MG, Kakunaga T: Molecular structure and evolutionary origin of human 
cardiac muscle actin gene, Proc Natl Acad Sci USA 79:5901–5, 1982.

Humphries SE, Whittall R, Minty A, Buckingham M, Williamson R: There are approximately 20 
actin genes in the human genome, Nucleic Acids Res 9:4895–908, 1981.

Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P et al: Alpha-cardiac actin is a novel 
disease gene in familial hypertrophic cardiomyopathy, J Clin Invest 103:R39–43, 1999.

Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT: Actin mutations in dilated cardio-
myopathy, a heritable form of heart failure, Science 280:750–2, 1998.

Schwartz K, de la Bastie D, Bouveret P, Oliviero P, Alonso S et al: Alpha-skeletal muscle actin 
mRNAs accumulate in hypertrophied adult rat hearts, Circ Res 59:551–5, 1986.

Takai E, Akita H, Shiga N, Kanazawa K, Yamada S et al: Mutational analysis of the cardiac actin 
gene in familial and sporadic dilated cardiomyopathy, Am J Med Genet 86:325–7, 1999.

Dunwoodie SL, Joya JE, Arkell RM, Hardeman EC: Multiple regions of the human cardiac actin 
gene are necessary for maturation-based expression in striated muscle, J Biol Chem 269:12212–
9, 1994.

Skeletal a -Actin
Agrawal PB, Strickland CD, Midgett C, Morales A, Newburger DE et al: Heterogeneity of nemaline 

myopathy cases with skeletal muscle alpha-actin gene mutations, Annu Neurol 56:86–96, 2004.

Akkari PA, Eyre HJ, Wilton SD, Callen DF, Lane SA et al: Assignment of the human skeletal 
muscle alpha actin gene (ACTA1) to 1q42 by fl uorescence in situ hybridization, Cytogenet Cell 
Genet 65:265–7, 1994.

Crawford K, Flick R, Close L, Shelly D, Paul R et al: Mice lacking skeletal muscle actin show 
reduced muscle strength and growth defi cits and die during the neonatal period, Mol Cell Biol 
22:5887–96, 2002.

Gunning P, Ponte P, Kedes L, Eddy R, Shows T: Chromosomal location of the co-expressed human 
skeletal and cardiac actin genes, Proc Natl Acad Sci USA 81:1813–7, 1984.

Gunning P, Ponte P, Okayama H, Engel J, Blau H et al: Isolation and characterization of full-length 
cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: Skeletal but not cytoplasmic 
actins have an amino-terminal cysteine that is subsequently removed, Mol Cell Biol 3:787–95, 
1983.

BIBLIOGRAPHY  65



66  STRUCTURE AND FUNCTION OF CELLULAR COMPONENTS

Hanauer A, Levin M, Heilig R, Daegelen D, Kahn A et al: Isolation and characterization of cDNA 
clones for human skeletal muscle alpha actin, Nucleic Acids Res 11:3503–16, 1983.

lkovski B, Cooper ST, Nowak K, Ryan MM, Yang N et al: Nemaline myopathy caused by mutations 
in the muscle alpha-skeletal-actin gene, Am J Hum Genet 68:1333–43, 2001.

Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR et al: Actin mutations are one cause of 
congenital fi bre type disproportion, Annu Neurol 56:689–94, 2004.

Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K et al (and 20 others): Mutations 
in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy, 
Nature Genet 23:208–12, 1999.

Taylor A, Erba HP, Muscat GEO, Kedes L: Nucleotide sequence and expression of the human 
skeletal alpha-actin gene: evolution of functional regulatory domains, Genomics 3:323–36, 
1988.

Vascular SMC a -Actin
Kumar MS, Hendrix JA, Johnson AD, Owens GK: Smooth muscle alpha-actin gene requires two 

E-boxes for proper expression in vivo and is a target of class I basic helix-loop-helix proteins, 
Circ Res 92:840–7, 2003.

Ueyama H, Bruns G, Kanda N: Assignment of the vascular smooth muscle actin gene ACTSA to 
human chromosome 10, Jpn J Hum Genet 35:145–50, 1990.

Ueyama H, Hamada H, Battula N, Kakunaga T: Structure of a human smooth muscle actin gene 
(aortic type) with a unique intron site, Mol Cell Biol 4:1073–8, 1984.

b -Actin
Erba HP, Eddy R, Shows T, Kedes L, Gunning P: Structure, chromosome location, and expression 

of the human gamma-actin gene: Differential evolution, location, and expression of the cyto-
skeletal beta- and gamma-actin genes, Mol Cell Biol 8:1775–89, 1988.

Habets GGM, van der Kammen RA, Willemsen V, Balemans M, Wiegant J et al: Sublocalization 
of an invasion-inducing locus and other genes on human chromosome 7, Cytogenet Cell Genet 
60:200–5, 1992.

Kedes L, Ng SY, Lin CS, Gunning P, Eddy R et al: The human beta-actin multigene family, Trans 
Assoc Am Phys 98:42–6, 1985.

Leavitt J, Bushar G, Kakunaga T, Hamada H, Hirakawa T et al: Variations in expression of mutant 
beta-actin accompanying incremental increases in human fi broblast tumorigenicity, Cell 
28:259–68, 1982.

Nakajima-Iijima S, Hamada H, Reddy P, Kakunaga T: Molecular structure of the human cytoplas-
mic beta-actin gene; interspecies homology of sequences in the introns, Proc Natl Acad Sci 
82:6133–7, 1985.

Ng SY, Gunning P, Eddy R, Ponte P, Leavitt J et al: Evolution of the functional human beta-actin 
gene and its multi-pseudogene family: Conservation of the noncoding regions and chromosomal 
dispersion of pseudogenes, Mol Cell Biol 5:2720–32, 1985.

Toyama S, Toyama S: A variant form of beta-actin in a mutant of KB cells resistant to cytochalasin 
B, Cell 37:609–14, 1984.

Ueyama H, Inazawa J, Nishino H, Ohkubo I, Miwa T: FISH localization of human cytoplasmic 
actin genes ACTB to 7p22 and ACTG1 to 17q25 and characterization of related pseudogenes, 
Cytogenet Cell Genet 74:221–4, 1996.

g -Actin
Erba HP, Eddy R, Shows T, Kedes L, Gunning P: Structure, chromosome location, and expression 

of the human gamma-actin gene: differential evolution, location, and expression of the cyto-
skeletal beta- and gamma-actin genes, Mol Cell Biol 8:1775–89, 1988.



Erba HP, Gunning P, Kedes L: Nucleotide sequence of the human gamma cytoskeletal actin mRNA: 
Anomalous evolution of vertebrate non-muscle actin genes, Nucleic Acids Res 14:5275–94, 
1986.

Leisel TP, Boujemaa R, Pantaloni D, Carlier MF: Reconstitution of actin-based motility of Listeria 
and Shigella using pure proteins, Nature 401:613–6, 1999.

Otterbein LR, Graceffa P, Dominguez R: The crystal structure of uncomplexed actin in the ADP 
state, Science 293:708–11, 2001.

Ueyama H, Inazawa J, Nishino H, Ohkubo I, Miwa T: FISH localization of human cytoplasmic 
actin genes ACTB to 7p22 and ACTG1 to 17q25 and characterization of related pseudogenes, 
Cytogenet Cell Genet 74:221–4, 1996.

van Wijk E, Krieger E, Kemperman MH, De Leenheer EMR, Huygen PLM et al: A mutation 
in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26), 
J Med Genet 40:879–84, 2003.

Zhu M, Yang T, Wei S, DeWan AT, Morell RJ et al: Mutations in the gamma-actin gene (ACTG1) 
are associated with dominant progressive deafness (DFNA20/26), Am J Hum Genet 73:1082–91, 
2003.

Miwa T, Manabe Y, Kurokawa K, Kamada S, Kanda N et al: Structure, chromosome location, and 
expression of the human smooth muscle (enteric type) gamma-actin gene: Evolution of six 
human actin genes, Mol Cell Biol 11:3296–306, 1991.

Szucsik JC, Lessard JL: Cloning and sequence analysis of the mouse smooth muscle gamma-enteric 
actin gene, Genomics 28:154–62, 1995.

Ueyama H, Inazawa J, Nishino H, Han-Xiang D, Ochiai Y et al: Chromosomal mapping of the 
human smooth muscle actin gene (enteric type, ACTA3) to 2p13.1 and molecular nature of the 
HindIII polymorphism, Genomics 25:720–3, 1995.

Human protein reference data base, Johns Hopkins University and the Institute of Bioinformatics, 
at http://www.hprd.org/protein.

3.3. Actin Monomer-Binding Proteins

Cofi lin
Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS et al: Cofi lin promotes actin polymer-

ization and defi nes the direction of cell motility, Science 304:743–6, 2004.
Gillett GT, Fox MF, Rowe PSN, Casimir CM, Povey S: Mapping of human non-muscle type cofi lin 

(CFL1) to chromosome 11q13 and muscle-type cofi lin (CFL2) to chromosome 14, Annu Hum 
Genet 60:201–11, 1996.

Kuhn TB, Meberg PJ, Brown MD, Bernstein BW, Minamide LS et al: Regulating actin dynamics 
in neuronal growth cones by ADF/cofi lin and Rho family GTPases, J Neurobiol 44:126–44, 
2000.

Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A et al: Signaling from Rho to the actin 
cytoskeleton through protein kinases ROCK and LIM-kinase, Science 285:895–8, 1999.

Ono S, Minami N, Abe H, Obinata T: Characterization of a novel cofi lin isoform that is predomi-
nantly expressed in mammalian skeletal muscle, J Biol Chem 269:15280–6, 1994.

Profi lin
Kovar DR, Harris ES, Mahaffy R, Higgs HN, Pollard TD: Control of the assembly of ATP- and 

ADP-actin by formins and profi lin, Cell 124:423–35, 2006.
Ampe C, Markey F, Lindberg U, Vandekerckhove J: The primary structure of human platelet pro-

fi lin: reinvestigation of the calf spleen profi lin sequence, FEBS Lett 228:17–21, 1988.
Goldschmidt-Clermont PJ, Janmey PA: Profi lin, a weak CAP for actin and RAS, Cell 66:419–21, 

1991.

BIBLIOGRAPHY  67



68  STRUCTURE AND FUNCTION OF CELLULAR COMPONENTS

Kwiatkowski DJ, Aklog L, Ledbetter DH, Morton CC: Identifi cation of the functional profi lin gene, 
its localization to chromosome subband 17p13.3, and demonstration of its deletion in some 
patients with Miller-Dieker syndrome, Am J Hum Genet 46:559–67, 1990.

Kwiatkowski DJ, Bruns GAP: Human profi lin: Molecular cloning, sequence comparison, and 
chromosomal analysis, J Biol Chem 263:5910–5, 1988.

Theriot JA, Mitchison TJ: The three faces of profi lin, Cell 75:835–8, 1993.

Vojtek A, Haarer B, Field J, Gerst J, Pollard TD et al: Evidence for a functional link between profi lin 
and CAP in the yeast S. cerevisiae, Cell 66:497–505, 1991.

Witke W, Sutherland JD, Sharpe A, Arai M, Kwiatkowski DJ: Profi lin I is essential for cell 
survival and cell division in early mouse development, Proc Natl Acad Sci USA 98:3832–6, 
2001.

b -Thymosin
Bock-Marquette I, Saxena A, White MD, DiMaio JM, Srivastava D: Thymosin beta-4 activates 

integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair, Nature 
432:466–72, 2004.

Clark EA, Golub TR, Lander ES, Hynes RO: Genomic analysis of metastasis reveals an essential 
role for RhoC, Nature 406:532–5, 2000.

Clauss IM, Wathelet MG, Szpirer J, Islam MQ, Levan G et al: Human thymosin-beta-4/6-26 gene 
is part of a multigene family composed of seven members located on seven different chromo-
somes, Genomics 9:174–80, 1991.

Gondo H, Kudo J, White JW, Barr C, Selvanayagam P et al: Differential expression of the human 
thymosin-beta(4) gene in lymphocytes, macrophages, and granulocytes, J Immunol 139:3840–8, 
1987.

Li X, Zimmerman A, Copeland NG, Gilbert DJ, Jenkins NA et al: The mouse thymosin beta-4 
gene: structure, promoter identifi cation, and chromosome localization, Genomics 32:388–94, 
1996.

Formin
Chang F, Drubin D, Nurse P: cdc12p, a protein required for cytokinesis in fi ssion yeast, is a com-

ponent of the cell division ring and interacts with profi lin, J Cell Biol 137:169–82, 1997.

Kovar DR, Kuhn JR, Tichy AL, Pollard TD: The fi ssion yeast cytokinesis formin Cdc12p is a 
barbed end actin fi lament capping protein gated by profi lin, J Cell Biol 161:875–87, 2003.

Kovar DR, Pollard TD: Insertional assembly of actin fi lament barbed ends in association with 
formins produces piconewton forces, Proc Natl Acad Sci USA 101:14725–30, 2004.

Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S et al: Role of formins in actin assembly: 
nucleation and barbed-end association, Science 297:612–5, 2002.

Romero S, Le Clainche C, Didry D, Egile C, Pantaloni D et al: Formin is a processive motor that 
requires profi lin to accelerate actin assembly and associated ATP hydrolysis, Cell 119:419–29, 
2004.

Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D: An actin nucleation mechanism mediated 
by Bni1 and profi lin, Nature Cell Biol 4:626–31, 2002.

Otomo T, Tomchick DR, Otomo C, Panchal SC, Machius M et al: Structural basis of actin fi lament 
nucleation and processive capping by a formin homology 2 domain, Nature 433:488–94, 
2005.

Li F, Higgs HN: The mouse Formin mDia1 is a potent actin nucleation factor regulated by autoin-
hibition, Curr Biol 13:1335–40, 2003.

Kovar DR, Wu JQ, Pollard TD: Profi lin-mediated competition between capping protein and formin 
Cdc12p during cytokinesis in fi ssion yeast, Mol Biol Cell 16:2313–24, 2005.



Kovar DR, Pollard TD: Insertional assembly of actin fi lament barbed ends in association with 
formins produces piconewton forces, Proc Natl Acad Sci USA 101:14725–30, 2004.

Kobielak A, Pasolli HA, Fuchs E: Mammalian formin-1 participates in adherens junctions and 
polymerization of linear actin cables, Nature Cell Biol 6:21–30, 2004.

Human protein reference data base, Johns Hopkins University and the Institute of Bioinformatics, 
at http://www.hprd.org/protein.

3.4. Actin Filament-Capping Proteins

Gelsolin
Kwiatkowski DJ, Ozelius L, Schuback D, Gusella J, Breakefi eld XO: The gelsolin (GSN) cDNA 

clone, from 9q32-34, identifi es BclI and StuI RFLPs, Nucleic Acids Res 17:4425 (only), 1989.
Kwiatkowski DJ, Stossel TP, Orkin SH, Mole JE, Colten HR et al: Plasma and cytoplasmic gelsolins 

are encoded by a single gene and contain a duplicated actin-binding domain, Nature 323:455–8, 
1986.

Lee WM, Galbraith RM: The extracellular actin-scavenger system and actin toxicity, N Engl J Med 
326:1335–41, 1992.

Vasconcellos CA, Allen PG, Wohl ME, Drazen JM, Janmey PA et al: Reduction in viscosity of 
cystic fi brosis sputum in vitro by gelsolin, Science 263:969–71, 1994.

Witke W, Sharpe AH, Hartwig JH, Azuma T, Stossel TP, Kwiatkowski DJ: Hemostatic, infl amma-
tory, and fi broblast responses are blunted in mice lacking gelsolin, Cell 81:41–51, 1995.

Capping Protein a1

Barron-Casella EA, Torres MA, Scherer SW, Heng HHQ, Tsui, LC et al: Sequence analysis and 
chromosomal localization of human Cap Z: Conserved residues within the actin-binding domain 
may link Cap Z to gelsolin/severin and profi lin protein families, J Biol Chem 270:21472–9, 
1995.

Hart MC, Korshunova YO, Cooper JA: Mapping of the mouse actin capping protein alpha subunit 
genes and pseudogenes, Genomics 39:264–70, 1997.

ARP2
Leisel TP, Boujemaa R, Pantaloni D, Carlier, MF: Reconstitution of actin-based motility of Listeria 

and Shigella using pure proteins, Nature 401:613–6, 1999.
Machesky LM, Reeves E, Wientjes F, Mattheyse FJ, Grogan A et al: Mammalian actin-related 

protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolu-
tionarily conserved proteins, Biochem J 328:105–12, 1997.

Marchand JB, Kaiser DA, Pollard TD, Higgs HN: Interaction of WASP/Scar proteins with actin 
and vertebrate Arp2/3 complex, Nature Cell Biol 3:76–82, 2001.

Prehoda KE, Scott JA, Mullins RD, Lim WA: Integration of multiple signals through cooperative 
regulation of the N-WASP-Arp2/3 complex, Science 290:801–6, 2000.

Robinson RC, Turbedsky K, Kaiser DA, Marchand JB, Higgs HN et al: Crystal structure of Arp2/3 
complex, Science 294:1679–84, 2001.

Volkmann N, Amann KJ, Stoilova-McPhie S, Egile C, Winter DC et al: Structure of Arp2/3 
complex in its activated state and in actin fi lament branch junctions, Science 293:2456–9, 
2001.

Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ: The human Arp2/3 complex is 
composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic 
actin fi lament assembly, J Cell Biol 138:375–84, 1997.

Welch MD, Iwamatsu A, Mitchison TJ: Actin polymerization is induced by Arp2/3 protein complex 
at the surface of Listeria monocytogenes, Nature 385:265–9, 1997.

BIBLIOGRAPHY  69



70  STRUCTURE AND FUNCTION OF CELLULAR COMPONENTS

ARP3
Machesky LM, Reeves E, Wientjes F, Mattheyse FJ, Grogan A et al: Mammalian actin-related 

protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolu-
tionarily conserved proteins, Biochem J 328:105–12, 1997.

Robinson RC, Turbedsky K, Kaiser DA, Marchand JB, Higgs HN et al: Crystal structure of Arp2/3 
complex, Science 294:1679–84, 2001.

Volkmann N, Amann KJ, Stoilova-McPhie S, Egile C, Winter DC et al: Structure of Arp2/3 
complex in its activated state and in actin fi lament branch junctions, Science 293:2456–9, 
2001.

Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ: The human Arp2/3 complex is 
composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic 
actin fi lament assembly, J Cell Biol 138:375–84, 1997.

Welch MD, Iwamatsu A, Mitchison TJ: Actin polymerization is induced by Arp2/3 protein complex 
at the surface of Listeria monocytogenes, Nature 385:265–9, 1997.

Tropomyosin 1
Brown JH, Kim KH, Jun G, Greenfi eld NJ, Dominguez R et al: Deciphering the design of the 

tropomyosin molecule, Proc Natl Acad Sci USA 98:8496–501, 2001.

Eyre H, Akkari PA, Wilton SD, Callen DC, Baker E et al: Assignment of the human skeletal muscle 
alpha-tropomyosin gene (TPM1) to band 15q22 by fl uorescence in situ hybridization, Cytogenet 
Cell Genet 69:15–7, 1995.

Lees-Miller JP, Helfman DM: The molecular basis for tropomyosin isoform diversity, BioEssays 
13:429–37, 1991.

Schleef M, Werner K, Satzger U, Kaupmann K, Jockusch H: Chromosomal localization and 
genomic cloning of the mouse alpha-tropomyosin gene Tpm-1, Genomics 17:519–21, 1993.

Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W et al: Alpha-tropomyosin and cardiac 
troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere, 
Cell 77:701–12, 1994.

Tiso N, Rampoldi L, Pallavicini A, Zimbello R, Pandolfo D et al: Fine mapping of fi ve human 
skeletal muscle genes: Alpha-tropomyosin, beta-tropomyosin, troponin-I slow-twitch, troponin-I 
fast-twitch, and troponin-C fast, Biochem Biophys Res Commun 230:347–50, 1997.

Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R et al: Mutations in the genes for cardiac 
troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy, N Engl J Med 332:1058–64, 
1995.

Nebulin
Donner K, Sandbacka M, Lehtokari VL, Wallgren-Pettersson C et al: Complete genomic structure 

of the human nebulin gene and identifi cation of alternatively spliced transcripts, Eur J Hum 
Genet 12:744–51, 2004.

Labeit S, Kolmerer B: The complete primary structure of human nebulin and its correlation to 
muscle structure, J Mol Biol 248:308–15, 1995.

Limongi MZ, Pelliccia F, Rocchi A: Assignment of the human nebulin gene (NEB) to chromosome 
band 2q24.2 and the alpha-1 (III) collagen gene (COL3A1) to chromosome band 2q32.2 by in 
situ hybridization: the FRA2G common fragile site lies between the two genes in the 2q31 band, 
Cytogenet Cell Genet 77:259–60, 1997.

Pelin K, Hilpela P, Donner K, Sewry C, Akkari PA et al: Mutations in the nebulin gene associated 
with autosomal recessive nemaline myopathy, Proc Natl Acad Sci USA 96:2305–10, 1999.

Schurr E, Skamene E, Gros P: Mapping of the gene coding for the muscle protein nebulin (Neb) 
to the proximal region of mouse chromosome 2, Cytogenet Cell Genet 57:214–6, 1991.



Stedman H, Browning K, Oliver N, Oronzi-Scott M, Fischbeck K et al: Nebulin cDNAs detect a 
25-kilobase transcript in skeletal muscle and localize to human chromosome 2, Genomics 2:1–7, 
1988.

Wang K, Knipfer M, Huang QQ, van Heerden A, Hsu LCL et al: Human skeletal muscle nebulin 
sequence encodes a blueprint for thin fi lament architecture: Sequence motifs and affi nity profi les 
of tandem repeats and terminal SH3, J Biol Chem 271:4304–14, 1996.

Tropomodulin
Chu X, Thompson D, Yee LJ, Sung LA: Genomic organization of mouse and human erythrocyte 

tropomodulin genes encoding the pointed end capping protein for the actin fi laments, Gene 
256:271–81, 2000.

Conley CA: Leiomodin and tropomodulin in smooth muscle, Am J Physiol Cell Physiol 280:
C1645–56, 2001.

Fowler VM, Sussmann MA, Miller PG, Flucher BE, Daniels MP: Tropomodulin is associated with 
the free (pointed) ends of the thin fi laments in rat skeletal muscle, J Cell Biol 120:411–20, 1993.

Lench NJ, Telford EA, Andersen SE, Moynihan TP, Robinson PA et al: An EST and STS-based 
YAC contig map of human chromosome 9q22.3, Genomics 38:199–205, 1996.

Sung LA, Fan YS, Lin CC: Gene assignment, expression, and homology of human tropomodulin, 
Genomics 34:92–6, 1996.

Sung LA, Fowler VM, Lambert K, Sussman MA, Karr D et al: Molecular cloning and characteriza-
tion of human fetal liver tropomodulin: a tropomyosin-binding protein, J Biol Chem 267:2616–
21, 1992

Human protein reference data base, Johns Hopkins University and the Institute of Bioinformatics, 
at http://www.hprd.org/protein.

3.5. Actin Filament Crosslinking Proteins

a -Actinin
Youssoufi an H, McAfee M, Kwiatkowski DJ: Cloning and chromosomal localization of the human 

cytoskeletal alpha-actinin gene reveals linkage to the beta-spectrin gene, Am J Hum Genet 
47:62–72, 1990.

Beggs AH, Byers TJ, Knoll JHM, Boyce FM, Bruns GAP et al: Cloning and characterization of 
two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11, J Biol Chem 
267:9281–8, 1992.

Beggs AH, Phillips HA, Kozman H, Mulley JC, Wilton SD et al: A (CA)n repeat polymorphism 
for the human skeletal muscle alpha-actinin gene ACTN2 and its localization on the linkage 
map of chromosome 1, Genomics 13:1314–5, 1992.

Harper SQ, Crawford RW, DellRusso C, Chamberlain JS: Spectrin-like repeats from dystrophin 
and alpha-actinin-2 are not functionally interchangeable, Hum Mol Genet 11:1807–15, 2002.

Mills MA, Yang N, Weinberger RP, Vander Woude DL, Beggs AH et al: Differential expression 
of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the 
evolution of functional redundancy, Hum Mol Genet 10:1335–46, 2001.

Fimbrin
Lin CS, Shen W, Chen ZP, Tu YH, Matsudaira P: Identifi cation of I-plastin, a human fi mbrin 

isoform expressed in intestine and kidney, Mol Cell Biol 14:2457–67, 1994.

Villin
Phillips MJ, Azuma T, Meredith SLM, Squire JA, Ackerley CA et al: Abnormalities in villin gene 

expression and canalicular microvillus structure in progressive cholestatic liver disease of child-
hood, Lancet 362:1112–9, 2003.

BIBLIOGRAPHY  71



72  STRUCTURE AND FUNCTION OF CELLULAR COMPONENTS

Pringault E, Arpin M, Garcia A, Finidori J, Louvard D: A human villin cDNA clone to investigate 
the differentiation of intestinal and kidney cells in vivo and in culture, EMBO J 5:3119–24, 
1986.

Pringault E, Robine S, Louvard D: Structure of the human villin gene, Proc Natl Acad Sci USA 
88:10811–5, 1991.

Rousseau-Merck MF, Simon-Chazottes D, Arpin M, Pringault E, Louvard D et al: Localization of 
the villin gene on human chromosome 2q35-q36 and on mouse chromosome 1, Hum Genet 
78:130–3, 1988.

Schurr E, Skamene E, Morgan K, Chu ML, Gros P: Mapping of Col3a1 and Col6a3 to proximal 
murine chromosome 1 identifi es conserved linkage of structural protein genes between murine 
chromosome 1 and human chromosome 2q, Genomics 8:477–86, 1990.

Filamin A
Chakarova C, Wehnert MS, Uhl K, Sakthivel S, Vosberg HP et al: Genomic structure and fi ne 

mapping of the two human fi lamin gene paralogues FLNB and FLNC and comparative analysis 
of the fi lamin gene family, Hum Genet 107:597–611, 2000.

Gariboldi M, Maestrini E, Canzian F, Manenti G, De Gregorio L et al: Comparative mapping of 
the actin-binding protein 280 genes in human and mouse, Genomics 21:428–30, 1994.

Gorlin JB, Yamin R, Egan S, Stewart M, Stossel TP et al: Human endothelial actin-binding protein 
(ABP-280, nonmuscle fi lamin): A molecular leaf spring, J Cell Biol 111:1089–105, 1990.

Loy CJ, Sim KS, Yong EL: Filamin—a fragment localizes to the nucleus to regulate androgen 
receptor and coactivator functions, Proc Natl Acad Sci USA 100:4562–7, 2003.

Maestrini E, Patrosso C, Mancini M, Rivella S, Rocchi M et al: Mapping of two genes encoding 
isoforms of the actin binding protein ABP-280, a dystrophin like protein, to Xq28 and to chro-
mosome 7, Hum Mol Genet 2:761–6, 1993.

Robertson SP, Twigg SRF, Sutherland-Smith AJ, Biancalana V, Gorlin RJ et al: Localized mutations 
in the gene encoding the cytoskeletal protein fi lamin A cause diverse malformations in humans, 
Nature Genet 33:487–91, 2003.

Sheen VL, Feng Y, Graham D, Takafuta T, Shapiro SS et al: Filamin A and fi lamin B are co-
expressed within neurons during periods of neuronal migration and can physically interact, Hum 
Mol Genet 11:2845–54, 2002.

Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP et al: Filamin is essential in actin 
cytoskeletal assembly mediated by p21-activated kinase 1, Nature Cell Biol 4:681–90, 2002.

Filamin B
Brocker F, Bardenheuer W, Vieten L, Julicher K, Werner N et al: Assignment of human fi lamin 

gene FLNB to human chromosome band 3p14.3 and identifi cation of YACs containing the 
complete FLNB transcribed region, Cytogenet Cell Genet 85:267–8, 1999.

Chakarova C, Wehnert MS, Uhl K, Sakthivel S, Vosberg HP et al: Genomic structure and fi ne 
mapping of the two human fi lamin gene paralogues FLNB and FLNC and comparative analysis 
of the fi lamin gene family, Hum Genet 107:597–611, 2000.

Krakow D, Robertson SP, King LM, Morgan T, Sebald ET et al (and 20 others): Mutations in the 
gene encoding fi lamin B disrupt vertebral segmentation, joint formation and skeletogenesis, 
Nature Genet 36:405–10, 2004.

Sheen VL, Feng Y, Graham D, Takafuta T, Shapiro SS et al: Filamin A and fi lamin B are co-
expressed within neurons during periods of neuronal migration and can physically interact, Hum 
Mol Genet 11:2845–54, 2002.

Takafuta T, Wu G, Murphy GF, Shapiro SS: Human beta-fi lamin is a new protein that interacts 
with the cytoplasmic tail of glycoprotein Ib-alpha, J Biol Chem 273:17531–8, 1998.

Human protein reference data base, Johns Hopkins University and the Institute of Bioinformatics, 
at http://www.hprd.org/protein.



3.6. Regulation of Actin Assembly and Disassembly

RhoA
Cannizzaro LA, Madaule P, Hecht F, Axel R, Croce CM et al: Chromosome localization of human 

ARH genes, a ras-related gene family, Genomics 6:197–203, 1990.

Kiss C, Li J, Szeles A, Gizatullin RZ, Kashuba VI, Lushnikova T et al: Assignment of the ARHA 
and GPX1 genes to human chromosome bands 3p21.3 by in situ hybridization and with somatic 
cell hybrids, Cytogenet Cell Genet 79:228–30, 1997.

Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A et al: Signaling from Rho to the actin 
cytoskeleton through protein kinases ROCK and LIM-kinase, Science 285:895–8, 1999.

Nakamura M, Nagano T, Chikama T, Nishida T: Role of the small GTP-binding protein Rho in 
epithelial cell migration in the rabbit cornea, Invest Ophthalm Vis Sci 42:941–7, 2001.

Sin WC, Haas K, Ruthazer ES, Cline HT: Dendrite growth increased by visual activity requires 
NMDA receptor and Rho GTPases, Nature 419:475–80, 2002.

Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E et al: Regulation of cell polarity 
and protrusion formation by targeting RhoA for degradation, Science 302:1775–9, 2003.

Wu KY, Hengst U, Cox LJ, Macosko EZ, Jeromin A et al: Local translation of RhoA regulates 
growth cone collapse [letter], Nature 436:1020–4, 2005.

RhoB
Liu AX, Cerniglia GJ, Bernhard EJ, Prendergast GC: RhoB is required to mediate apoptosis in 

neoplastically transformed cells after DNA damage, Proc Natl Acad Sci USA 98:6192–7, 
2001.

Zhang J, Zhu J, Bu X, Cushion M, Kinane TB et al: Cdc42 and RhoB activation are required for 
mannose receptor-mediated phagocytosis by human alveolar macrophages, Mol Biol Cell 
16:824–34, 2005.

Cannizzaro LA, Madaule P, Hecht F, Axel R, Croce CM et al: Chromosome localization of human 
ARH genes, a ras-related gene family, Genomics 6:197–203, 1990.

Chardin P, Madaule P, Tavitian A: Coding sequence of human rho cDNAs clone 6 and clone 9, 
Nucleic Acid Res 16:2717 (only), 1988.

Madaule P, Axel R: A novel ras-related gene family, Cell 41:31–40, 1985.

Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A et al: Signaling from Rho to the actin 
cytoskeleton through protein kinases ROCK and LIM-kinase, Science 285:895–8, 1999.

Ridley AJ, Hall A: The small GTP-binding protein rho regulates the assembly of focal adhesions 
and actin stress fi bers in response to growth factors, Cell 70:389–99, 1992.

Sandilands E, Cans C, Fincham VJ, Brunton VG, Mellor H et al: RhoB and actin polymerization 
coordinate Src activation with endosome-mediated delivery to the membrane, Dev Cell 7:855–
69, 2004.

RhoC
Cannizzaro LA, Madaule P, Hecht F, Axel R, Croce CM, Huebner K: Chromosome localization of 

human ARH genes, a ras-related gene family, Genomics 6:197–203, 1990.

Chardin P, Madaule P, Tavitian A: Coding sequence of human rho cDNAs clone 6 and clone 9, 
Nucleic Acid Res 16:2717 (only), 1988.

Clark EA, Golub TR, Lander ES, Hynes RO: Genomic analysis of metastasis reveals an essential 
role for RhoC, Nature 406:532–5, 2000.

Morris SW, Valentine MB, Kirstein MN, Huebner K: Reassignment of the human ARH9 RAS-
related gene to chromosome 1p13-p21, Genomics 15:677–9, 1993.

BIBLIOGRAPHY  73



74  STRUCTURE AND FUNCTION OF CELLULAR COMPONENTS

Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR et al: Structural and mechanistic 
insights into the interaction between Rho and mammalian Dia [letter], Nature 435:513–8, 
2005.

Rac1
Benvenuti F, Hugues S, Walmsley M, Ruf S, Fetler L et al: Requirement of Rac1 and Rac2 expres-

sion by mature dendritic cells for T cell priming, Science 305:1150–3, 2004.

Chang HY, Ready DF: Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants 
by activated Rac1, Science 290:1978–80, 2000.

Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW: Mechanism of regulation of 
WAVE1-induced actin nucleation by Rac1 and Nck, Nature 418:790–3, 2002.

Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP et al: Hematopoietic cell regulation by 
Rac1 and Rac2 guanosine triphosphatases, Science 302:445–9, 2003.

Joneson T, McDonough M, Bar-Sagi D, Van Aelst L: RAC regulation of actin polymerization and 
proliferation by a pathway distinct from Jun kinase, Science 274:1374–6, 1996.

Jordan P, Brazao R, Boavida MG, Gespach C, Chastre E: Cloning of a novel human Rac1b splice 
variant with increased expression in colorectal tumors, Oncogene 18:6835–9, 1999.

Katoh H, Negishi M: RhoG activates Rac1 by direct interaction with the Dock180-binding protein 
Elmo, Nature 424:461–4, 2003.

Kheradmand F, Werner E, Tremble P, Symons M, Werb Z: Role of Rac1 and oxygen radicals in 
collagenase-1 expression induced by cell shape change, Science 280:898–902, 1998.

Kissil JL, Johnson KC, Eckman MS, Jacks T: Merlin phosphorylation by p21-activated kinase 2 
and effects of phosphorylation on merlin localization, J Biol Chem 277:10394–9, 2002.

Lanzetti L, Rybin V, Malabarba MG, Christoforidis S, Scita G et al: The Eps8 protein coordinates 
EGF receptor signalling through Rac and traffi cking through Rab5, Nature 408:374–7, 2000.

Malecz N, McCabe PC, Spaargaren C, Qiu RG, Chuang Y et al: Synaptojanin 2, a novel Rac1 
effector that regulates clathrin-mediated endocytosis, Curr Biol 10:1383–6, 2000.

Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L: A brain serine/threonine protein kinase acti-
vated by Cdc42 and Rac1, Nature 367:40–6, 1994.

Miki H, Yamaguchi H, Suetsugu S, Takenawa T: IRSp53 is an essential intermediate between Rac 
and WAVE in the regulation of membrane ruffl ing, Nature 408:732–5, 2000.

Nakaya Y, Kuroda S, Katagiri YT, Kaibuchi K, Takahashi Y: Mesenchymal-epithelial transition 
during somitic segmentation is regulated by differential roles of Cdc42 and Rac1, Dev Cell 
7:425–38, 2004.

Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM et al: Rac1b and reactive oxygen species 
mediate MMP-3-induced EMT and genomic instability, Nature 436:123–7, 2005.

Simon AR, Vikis HG, Stewart S, Fanburg BL, Cochran BH et al: Regulation of STAT3 by direct 
binding to the Rac1 GTPase, Science 290:144–7, 2000.

Sin WC, Haas K, Ruthazer ES, Cline HT: Dendrite growth increased by visual activity requires 
NMDA receptor and Rho GTPases, Nature 419:475–80, 2002.

Walmsley MJ, Ooi SKT, Reynolds LF, Smith SH, Ruf S et al: Critical roles for Rac1 and Rac2 
GTPases in B cell development and signaling, Science 302:459–62, 2003.

Xiao GH, Beeser A, Chernoff J, Testa JR: p21-activated kinase links Rac/Cdc42 signaling to 
merlin, J Biol Chem 277:883–6, 2002.

Cdc42
Deloukas P, Schuler GD, Gyapay G, Beasley EM, Soderlund C et al (and 60 others): A physical 

map of 30,000 human genes, Science 282:744–6, 1998.



Erickson JW, Zhang C, Kahn RA, Evans T, Cerione RA: Mammalian cdc42 is a brefeldin A-
sensitive component of the Golgi apparatus, J Biol Chem 271:26850–4, 1996.

Etienne-Manneville S, Hall A: Cdc42 regulates GSK-3-beta and adenomatous polyposis coli to 
control cell polarity, Nature 421:753–6, 2003.

Garrett WS, Chen LM, Kroschewski R, Ebersold M et al: Developmental control of endocytosis 
in dendritic cells by Cdc42, Cell 102:325–34, 2000.

Irie F, Yamaguchi Y: EphB receptors regulate dendritic spine development via intersectin, Cdc42 
and N-WASP, Nature Neurosci 5:1117–8, 2002.

Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK: Autoinhibition and activation mecha-
nisms of the Wiskott-Aldrich syndrome protein, Nature 404:151–8, 2000.

Manser E, Leung T, Salihuddin H, Tan L, Lim L: A non-receptor tyrosine kinase that inhibits the 
GTPase activity of p21cdc42, Nature 363:364–7, 1993.

Munemitsu S, Innis MA, Clark R, McCormick F, Ullrich A et al: Molecular cloning and expression 
of a G25K cDNA, the human homolog of the yeast cell cycle gene CDC42, Mol Cell Biol 
10:5977–82, 1990.

Nakaya Y, Kuroda S, Katagiri YT, Kaibuchi K, Takahashi Y: Mesenchymal-epithelial transition 
during somitic segmentation is regulated by differential roles of Cdc42 and Rac1, Dev Cell 
7:425–38, 2004.

Nalbant P, Hodgson L, Kraynov V, Toutchkine A, Hahn KM: Activation of endogenous Cdc42 
visualized in living cells, Science 305:1615–9, 2004.

Nicole S, White PS, Topaloglu H, Beigthon P, Salih M et al: The human CDC42 gene: Genomic 
organization, evidence for the existence of a putative pseudogene and exclusion as a SJS1 can-
didate gene, Hum Genet 105:98–103, 1999.

Shinjo K, Koland JG, Hart MJ, Narasimhan V, Johnson DI et al: Molecular cloning of the gene for 
the human placental GTP-binding protein G(p) (G25K): identifi cation of this GTP-binding 
protein as the human homolog of the yeast cell-division-cycle protein CDC42, Proc Natl Acad 
Sci USA 87:9853–7, 1990.

Sin WC, Haas K, Ruthazer ES, Cline HT: Dendrite growth increased by visual activity requires 
NMDA receptor and Rho GTPases, Nature 419:475–80, 2002.

Wu WJ, Erickson JW, Lin R, Cerione RA: The gamma-subunit of the coatomer complex binds 
Cdc42 to mediate transformation, Nature 405:800–4, 2000.

Yasuda S, Oceguera-Yanez F, Kato T, Okamoto M et al: Cdc42 and mDia3 regulate microtubule 
attachment to kinetochores, Nature 428:767–71, 2004.

Zheng Y, Fischer DJ, Santos MF, Tigyi G, Pasteris NG et al: The faciogenital dysplasia gene product 
FGD1 functions as a Cdc42Hs-specifi c guanine-nucleotide exchange factor, J Biol Chem 
271:33169–72, 1996.

Human protein reference data base, Johns Hopkins University and the Institute of Bioinformatics, 
at http://www.hprd.org/protein.

3.7. Function of Actin Filaments

Bamburg JR, Wiggan OP: ADF/cofi lin and actin dynamics in disease, Trends Cell Biol 12:598–605, 
2002.

Campbell KP: Three muscular dystrophies: Loss of cytoskeleton-extracellular matrix linkage, Cell 
80:675–9, 1995.

Holmes KC, Popp D, Gebhard W, Kabsch W: Atomic model of the actin fi lament, Nature 347:44–9, 
1990.

Luna EJ, Hitt AL: Cytoskeleton—plasma membrane interactions, Science 258:955–64, 1992.
Schmidt A, Hall MN: Signaling to the actin cytoskeleton, Annu Rev Cell Dev Biol 14:305–38, 

1998.

BIBLIOGRAPHY  75



76  STRUCTURE AND FUNCTION OF CELLULAR COMPONENTS

Winder SJ: Structural insights into actin-binding, branching and bundling proteins, Curr Opin Cell 
Biol 15:14–22, 2003.

Finer JT, Simmons RM, Spudich JA: Single myosin molecule mechanics: piconewton forces and 
nanometre steps, Nature 368:113–9, 1994.

Geeves MA, Holmes KC: Structural mechanism of muscle contraction, Annu Rev Biochem 68:687–
728, 1999.

Goldman YE: Wag the tail: Structural dynamics of actomyosin, Cell 93:1–4, 1998.

Huxley HE: The mechanism of muscular contraction, Science 164:1356–65, 1969.

Pantaloni D, Le Clainche C, Carlier MF: Mechanism of actin-based motility, Science 292:1502–6, 
2001.

Rayment I, Smith C, Yount RG: The active site of myosin, Annu Rev Physiol 58:671–702, 1996.

Schroder RR, Manstein DJ, Jahn W, Holden H, Rayment I et al: Three-dimensional atomic model 
of F-actin decorated with Dictyostelium myosin S1, Nature 364:171–4, 1993.

Welch MD, Mallavarapu A, Rosenblatt J, Mitchison TJ: Actin dynamics in vivo, Curr Opin Cell 
Biol 9:54–61, 1997.

Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M et al: Structure of the actin-myosin 
complex and its implications for muscle contraction, Science 261:58–65, 1993.

Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR et al: Three-dimensional 
structure of myosin subfragment-1: A molecular motor, Science 261:50–58, 1993.

Ruppel KM, Spudich JA: Structure-function analysis of the motor domain of myosin, Annu Rev 
Cell Dev Biol 12:543–73, 1996.

Small JV, Glotzer M: Cell structure and dynamics, Curr Opin Cell Biol 18:1–3, 2006.

Tan JL, Ravid S, Spudich JA: Control of nonmuscle myosins by phosphorylation, Annu Rev 
Biochem 61:721–59, 1992.

Cramer LP, Mitchison TJ, Theriot JA: Actin-dependent motile forces and cell motility, Curr Opin 
Cell Biol 6:82–6, 1994.

Theriot JA, Mitchison TJ: Actin microfi lament dynamics in locomoting cells, Nature 352:126–31, 
1991.

Microtubules

Structure and Organization of Microtubules [3.8]. Microtubules are hollow polymeric 
microcylinders about 20 nm in diameter and up to 20 μm in length. Microtubules are 
composed of dimeric tubulins. There are three types of tubulin: α, β, and γ (see Table 
3.6). The α- and β-tubulins are the primary constituents of microtubules, whereas the γ-
tubulin regulates the nucleation of microtubule assembly. Each tubulin molecule used for 
constructing the microtubules is a heterodimer of α- and β-tubulin. In mammalian cells, 
there are several isoforms for α- as well as for β-tubulin. These isoforms have similar 
structures, but are originated from different genes. All tubulin isoforms can be polymer-
ized into microtubules. Tubulin can be found in all mammalian cells. However, the dis-
tribution of tubulin varies in different cell types. For instance, the nerve cells exhibit a 
higher concentration of tubulin than do other cell types. The tubulin genes are highly 
conserved among different species.

In microtubules, α- and β-tubulin dimers are uniformly aligned along the axis of the 
microtubule, forming parallel protofi laments. In each protofi lament, the α- or β-tubulin 
subunits are always arranged in the same direction, giving a polarity to microtubules with 
a plus and minus end. Each microtubule is composed of 13 protofi laments (Fig. 3.4). In 
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an interphase cell, microtubules are distributed in the radial direction with the minus end 
attached to the centrosome and the plus end toward the cell periphery.

It is important to note that several substances, including colchicine, colcemid, and taxol, 
are commonly used to modulate the assembly, structure, stability, and function of micro-
tubules. Colchicine is an alkaloid extracted from meadow saffron. Colchicine can bind to 
tubulin and suppress tubulin polymerization or microtubule assembly. Since microtubules 
undergo continuously depolymerization, a treatment with colchicine facilitates the disas-
sembly of microtubules. Once tubulin molecules are polymerized into microtubules, col-
chicine can no longer bind to tubulin. Colcemid is a substance similar to colchicine in 
function. Since the disassemble of microtubules interrupt cell mitosis, colchicine and 
colcemid are used to treat cancer. Taxol is derived from yew trees and can bind to polym-
erized microtubules. The binding of taxol enhances the stability of microtubules, inhibit-
ing tubulin depolymerization. Such an effect induces cell arrest during mitosis. Taxol is 
also used as a drug for the treatment of cancer.

Microtubule Assembly and Disassembly [3.9]. Microtubule assembly is accomplished 
via tubulin polymerization, whereas its disassembly is via tubulin depolymerization. There 
are two critical processes, which are involved in microtubule assembly: nucleation and 
elongation. Nucleation is the formation of short tubulin protofi laments or oligomers, which 
further form a short initiating microtubule (Fig. 3.4). Elongation is the growth of micro-
tubules based on the initial microtubule segment. Microtubule assembly can be simulated 
in vitro with tubulins in the presence of Mg2+ and GTP. The initial nucleation from tubulin 
heteodimers is a more diffi cult process than elongation. Thus nucleation is usually a slower 
process than elongation. While a microtubule is elongating via tubulin polymerization, 
there also exists simultaneous tubulin depolymerization. The rate of tubulin polymeriza-
tion and depolymerization is dependent on the concentration of free tubulins. At a critical 
concentration of free tubulin, the rate of tubulin polymerization is counterbalanced by 
that of depolymerization, and microtubules cease growing.

αβ heterodimers        Short 
protofilaments

Microtubule

Figure 3.4. Formation of a microtubule from tubulin molecules. A microtubule is formed via 
several steps: (1) an α, β-tubulin monomer aggregates to form a tubulin heterodimer; (2) the tubulin 
heterodimers form short linear protofi laments; (3) 13 protofi laments are joined together laterally 
to organize into a microtubule. (Adapted by permission from Macmillan Publishers Ltd.: Wester-
mann S, Weber K: Nature Rev Mol Cell Biol 4:938–48, copyright 2003.)



Microtubules are connected at their minus end to a central structure within the cell, 
known as the centrosome, which is located in the nucleus during the interphase. The 
centrosome is considered the origin where microtubules grow from. The relationship of 
microtubules with the centrosome can be verifi ed by observing the growth of degraded 
microtubules. A treatment with colcemid induces the degradation of microtubules. In the 
presence of fl uorescent marker-tagged tubulins, it can be found that new microtubules 
grow from the centrosome following the removal of colcemid. These microtubules con-
tinuously elongate toward the cell periphery until a complete microtubule network is 
reestablished. Each centrosome contains two cylindrical structures perpendicular to each 
other, known as centrioles. During the interphase, the centrosome can be split into two 
daughter centrosomes, which move to opposite sides of the nucleus during the early stage 
of cell mitosis, serving as two poles for anchoring microtubule spindles (Fig. 3.5).

A microtubule undergoes rapid assembly and disassembly. The tubulins within a micro-
tubule could be completely replaced with new tubulins within a period as short as 20 min. 
Such a process can be detected by injecting fl uorescent marker-tagged tubulins into a 
living cell and observed by fl uorescence microscopy. It is interesting to note that micro-
tubules undergo alternating growth and retraction, resulting in a dynamic change in the 
length of microtubules. These dynamic changes are critical for the redistribution of micro-
tubules within a cell.

Microtubule dynamics requires the presence of GTPs, which produce energy by hydro-
lysis. Each α- and β-tubulin is bound with a GTP molecule, which is required for tubulin 
polymerization. On the polymerization of a tubulin heterodimer to a microtubule, the GTP 
molecule associated with the β-tubulin can be hydrolyzed to produce energy, whereas the 
GTP molecule associated with the α-tubulin serves as a constituent of the tubulin and 
cannot be hydrolyzed. The energy produced by the hydrolysis of the β-tubulin-associated 
GTP is used for microtubule depolymerization, but not for polymerization. This can be 

Non-dividing cell

Dividing cell
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Figure 3.5. Centrosomes and microtubules in nondividing and dividing cells (based on bibliogra-
phy 3.9).
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verifi ed by using GTP analogs that cannot be hydrolyzed. Tubulins associated with GTP 
analogs can be polymerized. However, once incorporated into a microtubule, these tubulin 
molecules cannot be depolymerized, suggesting that GTP hydrolysis is critical to the 
depolymerization of microtubules.

A microtubule can be assembled at the plus and minus ends, but exhibits different 
assembly rate at these ends under a given condition. The assembly of microtubules can 
be observed by using in vitro experiments. Isolated microtubules from cells can grow in 
the presence of free tubulins. The plus end of a microtubule grows about 3 times faster 
than the minus end. Since microtubules are aligned in the radial direction of a cell with 
the plus ends pointing at the periphery, microtubules often grow from the cell center to 
the periphery.

Regulation of Microtubule Dynamics [3.9]. The assembly and disassembly of micro-
tubules are processes regulated by microtubule-associated proteins (Table 3.7). Two 
major types of microtubule-associated proteins have been identifi ed in nerve cells: the 
high-molecular-weight proteins and the τ proteins. The high-molecular-weight proteins 
include microtubule-associated proteins 1 and 2 with molecular weights 200 and 300 kDa, 
respectively. The τ proteins have molecular weights ranging from 55 to 62 kDa. Each of 
these microtubule-associated proteins contains two domains; the fi rst domain is capable 
of binding to microtubules, and the second domain binds to other types of intracellular 
structures. The binding of microtubule-associated proteins to microtubules prevents 
microtubules from depolymerization and enhances the stability of the microtubules. The 
exact regulatory mechanisms, however, remain to be investigated.

Function of Microtubules [3.10]. One of the primary functions of microtubules is the 
control of cell polarity. Microtubules exhibit nonuniform tubulin polymerization and 
depolymerization through the cell. Such a nonuniform feature is critical to the controlled 
distribution of microtubules, potentially contributing to cell polarization. At a given time, 
some microtubules may undergo predominant polymerization, while others may experi-
ence depolymerization. Fast-growing microtubules may be capped or protected by capping 
molecules, yielding stabilized microtubules in a specifi ed direction. Meanwhile, uncapped 
microtubules are not stable and cannot grow as rapidly as the capped microtubules. The 
rapid growth of the capped microtubules causes regional extension of the cell membrane, 
leading to the formation of cell polarity.

Microtubules play a critical role in the transport of intracellular organelles and vesicles, 
which are required for a variety of metabolic and signaling activities. The transport func-
tion is accomplished by coordinated interactions of motor proteins, including kinesin 
and dynein, with microtubules. Each motor molecule is composed of two heavy chains 
and several light chains. Each heavy chain contains a globular head and a tail. The head 
interacts directly with microtubules and induces the sliding of the motor protein along a 
microtubule, a process dependent on ATPs, whereas the tail binds to an intracellular 
component to be moved. The light chains also play a role in the regulation of motor protein 
movement.

The motor proteins kinesin and dynein (Table 3.8) are both involved in the transport 
of intracellular organelles and chromosome separation during mitosis. However, kinesin 
and dynein move in opposite directions along a microtubule. Kinesin can only move 
intracellular organelles from the centrosome or the minus end of the microtubule to the 
cell periphery or the plus end of the microtubule, whereas dynein moves toward the cen-
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trosome. A kinesin molecule is a tetramer composed of two heavy and two light 
chains. The heavy chain is located at the N-terminus of the molecule, and the light chains 
are at the C-terminus. The N-terminal heavy chains form the motor domains with the 
microtubule-binding regions, which mediate the sliding motion of the kinesin molecule 
along the microtubule. The N-terminal heavy chain also possesses an ATP-binding site, 
which serves as an ATPase and interacts with ATP molecules to provide energy for kinesin 
movement. The movement caused by kinesin molecules can be readily verifi ed by using 
in vitro assays with purifi ed motor proteins and microtubules. When microtubules are 
mixed with kinesin-coated polystyrene beads, the beads move toward the plus end of 
microtubules.

Dyneins are a family of motor proteins that are divided into two groups: the axonal 
and cytoplasmic dyneins. The axonal dynein molecules are responsible for organelle 
transport within the neuronal axon. Cytoplasmic dyneins mediate intracellular motility, 
protein sorting, and movement of intracellular organelles such as endosomes and lyso-
somes. A dynein molecule is comprised of two force-generating heavy chains and several 
intermediate and light chains. The heavy chains contain ATPases, which interact with 
ATP molecules and generate energy for mechanical movement. The motility of dynein 
molecules can be observed by using in vitro assays with purifi ed dynein molecules 
and microtubules. Dynein molecules can move intracellular organelles from the cell 
periphery or the plus end of the microtubule to the centrosome or the minus end of the 
microtubule.

Microtubules are well known for their role in regulating cell mitosis or the segregation 
of chromosomes. Microtubules and associated proteins constitute a key structure for cell 
mitosis, known as the mitotic spindle, which plays a critical role in the alignment and 
separation of chromosomes. During the early stage of mitosis or prophase, the centrosome 
is separated into two daughter centrosomes, which move toward the two opposite poles. 
A mitotic spindle is initiated from the two centrosomes and gradually forms a polar 
structure. During metaphase, chromosomes are attached to the spindle microtubules. The 
shortening of the microtubules induces the movement of separated daughter chromosomes 
from the cell center toward the two centrosome poles. The destruction of microtubules by 
a treatment with colchicine interrupts cell mitosis.

Intermediate Filaments

Structure and Organization of Intermediate Filaments [3.11]. Intermediate fi laments 
are one of the three types of fi lamentous structures that constitute the cytoskeleton. The 
term “intermediate” is derived from the fact that the diameter of intermediate fi laments 
(∼10 nm) is between the other two types of cytoskeletal fi laments (Fig. 3.6), specifi cally, 
actin fi laments (∼8 nm) and microtubules (∼25 nm). Intermediate fi laments are composed 
of various molecules, including keratin, vimentin, neurofi lament protein, and nuclear 
lamin. The constituent molecules of intermediate fi laments are fi brous in shape. To form 
an intermediate fi lament, two molecules are organized into a parallel dimer with the amino 
termini at one end and the carboxyl termini at the other end. For most types of intermedi-
ate fi laments, the two dimers in turn form an antiparallel tetramer bundle with the amino 
termini of one dimer arranged with the carboxyl termini of the other dimer at each end 
of the tetramer bundle (Fig. 3.7). The tetramers are the basic units that are assembled into 
helical intermediate fi laments via bundle–lateral interactions. Because of the antiparallel 
feature of the tetramer bundles, intermediate fi laments do not exhibit polarity.
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Figure 3.6. Electron micrographs of intermediate fi laments at different assembly stages. (A–C) 
Lamin A/C. Lamin fi laments can be dialyzed in pH 6.5/150 mM NaCl buffer, generating linear 
head-to-tail fi bers (panel A). In the presence of Ca2+, lamin fi laments can be dialyzed into beaded 
long fi laments (panel B). Panel C shows assembled lamin fi laments. (D–G) Assembly of recombi-
nant human vimentin. Vimentin fi lament assembly was initiated by adding fi lament buffer and fi xed 
with 0.1% glutaraldehyde at 10 s (panel D), 1 min (panel E), 5 min, (panel F), and 1 h (panel G). 
Scale bar: 100 nm. (Reprinted by permission from Herrmann H, Aebi U: Annu Rev Biochem, 
73:749–89, copyright 2004 by Annual Reviews, www.annualreviews.org.)

On the basis of constituents, intermediate fi laments are classifi ed into several subtypes, 
including keratin fi laments, vimentin fi laments, neurofi laments, and lamin fi laments (see 
list in Table 3.9), which are found in different cell types. Keratin fi laments are composed 
of various types of keratin and are present in epithelial cells, the hair, and the nails. Indi-
vidual keratin molecules are different in structure and can be grouped into to subfamilies, 
including types I and II keratins, based on the properties of amino acids. Type I keratins 
are acidic with a molecular weight 40–70 kDa, whereas type II keratins are basic or neutral 
with a similar molecular weight. Both type I and type II keratins are required for the 
constitution of keratin fi laments. In a typical epithelial cell, keratin fi laments are con-
nected at the end to desmosomes, a cell junction structure that joins two neighboring cells. 
In addition, keratin fi laments anchor to hemidesmosomes, a structure that mediates cell 
attachment to the basal lamina.

Vimentin fi laments are present in fi broblasts, endothelial cells, and leukocytes, and 
contain a single type of molecule: vimentin. In addition, there exist vimentin-related fi la-
ments, which exhibit structure and properties similar to those of vimentin fi laments. One 
type is desmin fi laments, which are composed of desmin and are present primarily in 



Figure 3.7. Schematic representation of intermediate fi lament assembly. (A) Lamin fi lament 
assembly. Lamin dimers are fi rst associated into head-to-tail fi laments, which are further associated 
laterally into complete fi laments. (B) Vimentin fi lament assembly. Vimentin molecules fi rst form 
antiparallel half-staggered double dimers (or tetramers), which form complete vimentin fi laments. 
(Reprinted by permission from Herrmann H, Aebi U: Annu Rev Biochem, 73:749–89, copyright 
2004 by Annual Reviews, www.annualreviews.org.)

muscle cells, including smooth, skeletal, and cardiac muscle cells. Desmin fi laments often 
anchor to cell junctions. Another type is glial fi laments composed of glial fi brillary acidic 
proteins. This type of intermediate fi lament is found in astrocytes of the central nervous 
system and Schwann cells of the peripheral nervous system. It is important to note that 
vimentin and vimentin-related proteins can be crosslinked together, but these proteins 
cannot be crosslinked with keratin-based intermediate fi laments.

Neurofi laments are present in neurons, arranged primarily along the axon. There are 
three types of neurofi lament proteins, including neurofi lament-L, -M, and -H, based on 
low, medium, and high molecular weights, respectively. These molecular types can be 
found within all neurofi laments. In a typical neuronal axon, neurofi laments are uniformly 
spaced with a high density. These fi laments are laterally crosslinked, providing mechani-
cal strength to the axon.

Lamin fi laments are found in the nuclear lamina, which is a ∼20-nm membrane lining 
the internal surface of the nuclear membrane. Lamin fi laments are composed of two types 
of lamin: lamin A (or A/C) and lamin B. In structure, lamin is similar to other intermedi-
ate fi lament proteins. However, lamin contains signaling structures that direct lamin 
transport from the cytosol to nucleus. The lamin fi laments undergo dynamic disassembly 
during early mitosis and reassembly during the late mitosis in coordination with chromo-
some reorganization and separation. In interphase cells, lamin fi laments are organized 
into a dense lattice network. The network is interrupted at nuclear pores, which allow the 
transport of molecules from and to the nucleus.

Function of Intermediate Filaments [3.12]. A major function of intermediate fi laments 
is to provide mechanical strength to cells and tissues. Such a function is supported by 
observations from transgenic keratin-defi cient animal models. In transgenic mice with a 
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mutant keratin gene that lacks the amino/carboxyl-terminal domains, the mechanical 
strength of epidermis reduces signifi cantly, resulting in cell injury in response to mechani-
cal impacts that are harmless to normal cells. In human genetic diseases with mutation 
in the keratin gene, epidermal cells and tissues demonstrate a similar phenomenon, leading 
to skin blistering. In the human or animal skin, there exists a layer of keratin fi laments 
that are highly crosslinked. Such a keratin layer serves as a protective structure for internal 
tissues.

The function of intermediate fi laments is not limited to the enhancement of mechanical 
strength. Various types of intermediate fi laments are bound to other cytoskeletal fi laments. 
For instance, desmin fi laments are linked to actin fi laments in muscular cells, suggesting 
a role for the desmin fi laments in regulating the interaction of contractile fi laments. In 
addition, desmin fi laments are attached to cell junctions, suggesting a role for these fi la-
ments in regulating cell-to-cell interactions.

ENDOPLASMIC RETICULUM [3.13]

Endoplasmic reticulum (ER) is a cytosolic membrane system consisting of lipid bilayers 
and is involved in the synthesis of proteins and lipids as well as in the sequestration and 
release of calcium. There is a rich network of interconnected tubular branches or sheets 
in the ER, forming a continuous membrane system in each cell. The ER membrane con-
stitutes about 50% of the total cell lipid membrane. The ER tubular structures occupy 
about 10% of the total volume of the cell. There are two types of ER: rough and smooth. 
Rough ER is defi ned as ER with attached ribosomes on the cytosolic surface, whereas 
smooth ER is that without ribosomes.

ER is involved in the synthesis of proteins as well as lipids. Ribosomes bound to the 
ER are sites for protein translation. Proteins translated by ribosomes are transported to 
the rough ER for further processing before being released into the cytosol. In the lumen 
of the rough ER, proteins are modifi ed by ER resident protein enzymes, a process critical 
in protein folding and assembly. An important enzyme for protein modifi cation is protein 
disulfi de isomerase in the rough ER. This enzyme catalyzes the formation of disulfi de 
(S—S) bonds between cysteines, a proces critical in the formation of a three-dimensional 
protein structure. Another function of rough ER is to add sugar residues to proteins, a 
process known as glycosylation, which results in the formation of glycoproteins. The 
addition of sugar residues to proteins is catalyzed by enzymes present in the rough ER. 
A typical enzyme is oligosaccharyl transferase, which is localized to the ER membrane. 
This enzyme catalyzes the addition of a preformed oligosaccharide, composed of N-acetyl-
glucosamine, mannose, and glucose, to the side NH2 group of asparagines. The original 
oligosaccharide chain is trimmed or processed to remove certain sugar residues while the 
glycoproteins are still in the ER. Glycoproteins will be further processed when the mole-
cules are transported into the Golgi apparatus (see the following section). Glycoproteins 
serve as cell membrane receptors. The sugar residues play a critical role in the recognition 
of and interaction with extracellular ligands.

The smooth ER constitutes a small fraction of the ER system in most cells and is con-
nected to the rough ER. Rough ER segments are often found in smooth ER-dominant 
regions. A primary function of the smooth ER is to transport proteins from the ER to the 
Golgi apparatus. In addition, smooth ER is involved in the synthesis of lipids. Almost all 
lipid bilayers are assembled within the ER system. The ER system of hepatocytes is 
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88  STRUCTURE AND FUNCTION OF CELLULAR COMPONENTS

involved in the synthesis of lipoproteins. These molecules are released into blood and 
serve as lipid carriers between various tissues and organs. Cells for the synthesis of steroid 
hormones are rich in smooth ER.

The ER system also plays a critical role in the storage and controlled release of calcium. 
In an inactive state, calcium is stored in the ER, where calcium-binding proteins sequester 
calcium. In response to stimulation for intracellular signaling processes that require 
calcium, the calcium channels of the ER are open, resulting in the release of calcium. 
Calcium mediates a variety of molecular processes, ranging from actin–myosin interaction 
to activation of signaling protein kinases.

GOLGI APPARATUS [3.14]

The Golgi apparatus is a stack of lipid membrane cisternae and tubular networks and 
is involved in the synthesis of carbohydrates and in the modifi cation and sorting of proteins 
transported from the ER. The Golgi apparatus is located near the cell nucleus and 
centrosome. There exist several subsystems in the Golgi apparatus, including the cis-
Golgi network, cis-cisterna, medial cisterna, trans-Golgi cisterna, and trans-Golgi network 
(Fig. 3.8). The cis-Golgi network is a membrane tubular network, which is connected 
to the cis-cisterna and serves as the entrance for protein-containing vesicles transported 
from the ER. Proteins are transported from the cis-Golgi network to the cis-cisterna. 
The cis-cisterna is adjacent, but not connected to the medial cisterna. Proteins are 
transported from the cis-cisterna to the medial cisterna via vesicular carriers. Similarly, 
the medial cisterna is not connected to the trans-cisterna. Vesicular transport is 
required for the movement of proteins from the medial cisterna to the trans-cisterna. The 
trans-cisterna is connected to the trans network, which serves as an exit for processed 
proteins. The exiting proteins are carried by vesicles to cellular compartments, including 
cell membranes, secretary vesicles, and lysosomes, where proteins are used for various 
purposes.

Nucleus

ER
Golgi

Medial 
cisterna

cis-cisterna Trans-cisterna

Trans-Golgi
   network

cis-Golgi 
network

Figure 3.8. Schematic representation of Golgi apparatus (based on bibliography 3.14).



Major functions of the Golgi apparatus are to modify proteins and synthesize carbo-
hydrates. Proteins are preliminarily modifi ed in the ER by the addition of oligosaccha-
rides. When transported to the Golgi apparatus, the proteins are further processed by 
glycosylation, or the addition of complex oligosaccharides and high-mannose-content 
oligosaccharides. The glycosylation process, which occurs through the Golgi cisternae, is 
critical to the formation of glycolproteins. In addition, the Golgi apparatus assembles 
proteoglycans, a process involving the polymerization of glycosaminoglycans (GAG) and 
the linkage of GAG chains to core proteins. Proteoglycans are deployed to the extracellular 
space and serve as ground substance. It is important to note that lipid vesicles can bud 
from the Golgi network and cisternae. These vesicles play a critical role for the transport 
of proteins between the Golgi subsystems and from the Golgi apparatus to destination 
compartments.

ENDOSOMES AND LYSOSOMES [3.15]

Endosomes are lipid vesicles that form by budding from cell membranes during endocy-
tosis, a process by which cells ingest macromolecules and cell debris. Endocytosis is initi-
ated when a stimulating macromolecule contacts the cell membrane. In response to such 
a contact, the stimulated region of the cell membrane invaginates, pinches off from the 
cell membrane, encloses the stimulating macromolecule, and forms an endosome. Most 
cells are capable of ingesting fl uids, solutes, and small molecules, while phagocytic cells, 
such as macrophages and neutrophils, can take up large particles with a diameter in the 
order of μm (micrometers), such as bacteria and cell debris. Endosomes in phagocytic 
cells are also known as phagosomes. Endocytosis in phagocytic cells plays a critical role 
in protecting cells from bacterial infection and in scavenging debris from damaged and 
dead cells. Endosomes or phagosomes are eventually transformed to lysosomes, where 
ingested contents are degraded by enzymes.

Lysosomes are lipid membrane vesicles in which ingested molecules or particles are 
digested or degraded. All mammalian cells contain lysosomes. A typical lysosome con-
tains numbers of hydrolytic enzymes, including proteases, lipases, phospholipases, and 
glycosidases, which degrade a variety of molecules. These digestive enzymes are synthe-
sized by ribosomes in the rough ER, processed in the ER and Golgi apparatus, and 
delivered to lysosomes by Golgi vesicles. The internal environment of lysosomes is highly 
acidic with a pH value of ∼5, which is advantageous for the activation of the hydrolytic 
enzymes. The internal H+ concentration is maintained by H+ pumps in the lysosomal 
membrane at the expense of energy from ATP molecules. The fi nal products of the diges-
tion, including saccharides, amino acids, and nucleotides, are transported across the 
lysosomal membrane to the cytosol, where these products are recycled.

In addition to the endosomes formed by endocytosis, there is another route that delivers 
materials to lysosomes for digestion. This route is used for the destruction and disposal 
of intracellular obsolete structures and organelles, a process known as autophagy. An 
obsolete organelle is usually enclosed by an ER membrane, forming an autophagosome. 
The autophagosome is then fused with a lysosome or endosome, where the enclosed 
organelle is degraded and disposed. Thus, endosomes and lysosomes play a critical role 
in the destruction and clearance of externally ingested materials as well as internally 
obsolete subcellular organelles.

ENDOSOMES AND LYSOSOMES  89



90  STRUCTURE AND FUNCTION OF CELLULAR COMPONENTS

MITOCHONDRIA [3.16]

Structure and Organization

Mitochondria are intracellular lipid membrane organelles that generate, store, and dispatch 
energy necessary for molecular activities. There are two types of specialized membrane 
for each mitochondrion: the internal and external membrane. These membranes divide a 
mitochondrion into two compartments: the internal matrix space and the intermembrane 
space. While the external membrane appears smooth, the internal membrane forms 
numbers of protrusions into the internal matrix space, known as cristae. The protrusions 
greatly increase the surface area of the internal membrane, which is necessary for mem-
brane-related energy-generating processes. Each mitochondrial compartment and mem-
brane contains distinct proteins that are developed for specialized functions as discussed 
below.

The external layer of mitochondria is composed of a large number of porins, proteins 
that form channels across the membrane. The porin channels allow the transport of water, 
salts, small proteins, and other molecules with a molecular weight <∼5 kDa. Most of these 
molecules, however, cannot pass through the internal membrane. Because of the high 
permeability of the external membrane, electrolytes, water, and small molecules are 
equilibrated between the intermembrane space and the cytosol.

The internal membrane of the mitochondria is different from the external membrane. 
It is composed of a high density of cadiolipin, a phospholipid molecule containing four 
fatty acids. The presence of this lipid molecule renders the internal membrane highly 
impermeable to ions. The internal membrane contains a variety of specialized transport 
proteins, which exhibit selective permeability to molecules necessary for intramitochon-
drial activities. Because of the selective permeability of the internal membrane, the 
environment in the internal matrix space is different from that of the intermembrane space. 
Most importantly, the internal membrane consists of enzymes of the intracellular respira-
tory chain, forming an enzymatic cascade responsible for oxidation reactions and energy 
generation. One enzyme, known as ATP synthase, catalyzes the formation of ATP 
molecules.

The internal matrix space of mitochondria contains enzymes that metabolize pyruvate 
and fatty acids, generating acetyl CoA. This space also contains enzymes that oxidize 
acetyl CoA. The end products of these enzymatic reactions include nicotine adenine 
dinucleotide hydride (NADH) and CO2. NADH is a form of nicotine adenine dinucleotide 
(NAD) with the addition of two electrons and is a major carrier and source of electrons 
for energy generation in the mitochondria. CO2 is a waste product, which is released into 
the blood and removed from the lung and kidney. The internal matrix also contains mito-
chondrial DNA, ribosomes, tRNA, and enzymes necessary for regulating the expression 
of mitochondrial genes.

ATP Generation

The primary function of mitochondria is generation of energy in the form of ATP for 
molecular and cellular activities. Sources for mitochondrial energy generation are fatty 
acids and glycogens, or glucose polymers. Fatty acids are a more effi cient form than gly-
cogen for energy generation. The oxidation of fatty acids can generate energy 6 times as 
much as that of an equal amount of glycogen. Fatty acids are mainly stored in fat cells, 



whereas glycogens are stored in liver and muscle cells. It is important to note that glucose 
can be converted to fatty acids, but fatty acids cannot be converted to glucose.

For fatty acid oxidation, fatty acid molecules are transported through the external and 
internal membranes of the mitochondria to the internal matrix. Each fatty acid is pro-
cessed through a four-enzyme oxidation cycle, which catalyzes the oxidation of fatty acids. 
Each cycle reduces a fatty acid by two carbons, giving an acetyl CoA and two distinct 
high-energy electron carriers: NADH and FADH2 (fl avin adenine dinucleotide hydride). 
The acetyl CoA molecule is further oxidized in the citric cycle, and NADH and FADH2 
are used for electron transfer in energy generation.

For glycogen metabolism, cells fi rst break down glycogen into glucose 1-phosphate, 
which occurs in the cytosol. Each glucose 1-phosphate is further catalyzed into two pyru-
vate molecules, which are transported from the cytosol into the mitochondrial internal 
matrix. The pyruvate molecules are catalyzed by a complex of enzymes and coenzymes 
into acetyl CoA and CO2. The acetyl CoA molecule is further oxidized for energy genera-
tion through the citric cycle.

The citric cycle, also known as the Krebs cycle or tricarboxylic acid cycle, is the prin-
cipal process that oxidizes fatty acids and pyruvates. About 60% of carbohydrates are 
processed by the citric cycle. Such a process produces CO2 as a waste and high-energy 
electrons, which are carried by NADH and FADH2 and used for the generation of ATP 
molecules. The citric cycle is a sequence of enzymatic events, starting with the formation 
of citric acid from acetyl CoA or pyruvate. Each cycle produces 2 CO2, 2 H2O, 1 FADH2, 
3 NADH with 3 H+, and 1 GTP. The GTP molecule is converted to ATP by direct transfer 
of a high-energy phosphate group.

In the citric cycle, most energy from the oxidation of carbohydrates is saved in the 
form of high-energy electrons, which are carried by NADH and FADH2. These electrons 
are transferred through the respiratory chain to oxygen, providing energy for the formation 
of ATP molecules. Such a process is referred to as oxidative phosphorylation. It has been 
hypothesized that oxidative phosphorylation is dependent on a chemiosmotic process. In 
such a process, chemically generated high-energy electrons from the hydrogen of NADH 
and FADH2 are transported through the electron-carrying molecules of the respiratory 
chain localized to the mitochondrial internal membrane (note that each hydrogen atom 
gives a proton H+ and an electron e−). The energy released from the electron transfer is 
used to pump H+ from the matrix side to the intermembrane side of the internal membrane, 
establishing a proton gradient across the internal membrane. This gradient drives H+ fl ow 
in the opposite direction, providing energy for the synthesis of ATPs from ADPs and 
phosphates by ATP synthase.

CELL NUCLEI [3.17]

The cell nucleus is an organelle that contains the hereditary molecules—DNAs. The 
nucleus is enclosed with a nuclear envelope, which contains two lipid membranes: the 
outer and inner membranes. The outer membrane is a continuation of the adjacent ER 
membrane, and the intermembrane space is connected to the ER. The nucleus membranes 
are supported by an internal layer and an external layer of intermediate fi laments. The 
internal supporting layer is a relatively dense structure composed of nuclear lamin and is 
defi ned as the nuclear lamina. The external supporting layer is composed of loosely 
organized intermediate fi laments. These intermediate fi lament-containing layers protect 
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the nucleus from mechanical impacts and injury. Across the nucleus membrane and dense 
nuclear lamina, there exist pores, which allow the transport of selected molecules between 
the cytosol and nucleus. The nucleus contains chromosomes. The structure and function 
of chromosomes are discussed in Chapter 1.
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