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Transverse fl uorescent micrographs showing the distribution of CD 11b/c-positive leukocytes in the 
media and adventitia of matrix-based aortic substitutes. The density of leukocytes in the elastic 
lamina-containing media was signifi cantly lower than that in the collagen-containing adventitia. 
Note that leukocytes did not migrate into the gaps between the elastic laminae at the end of the 
aortic matrix substitutes (right). Red: antibody-labeled CD 11 b/c. Green: elastic laminae. Blue: 
Hoechst 33258-labeled cell nuclei. M, media. A, adventitia. N, neointima. Scale: 100 μm. (Reprinted 
from Liu SQ et al: J Biolo Chem 280:39294–301, 2005 with permission from the American Society 
for Biochemistry and Molecular Biology). See color insert.



The extracellular matrix is the noncellular structure found in the extracellular space. This 
structure is composed of collagen fi bers, elastic fi bers or laminae, and proteoglycans. All 
components of extracellular matrix are produced and released by cells residing in the same 
tissue. Extracellular matrix plays critical roles in several aspects: (1) constituting a matrix 
framework that supports and organizes cells, tissues, and organs; (2) contributing to the 
morphogenesis and shape formation of tissues and organs; (3) providing mechanical 
strength to and protecting tissues and organs from injury; and (4) participating in the 
regulation of cell adhesion, proliferation, migration, and apoptosis. These aspects are 
outlined in this chapter.

The extracellular matrix can be used as biological materials for the regeneration of lost 
tissues and organs. Compared with synthetic polymer materials, extracellular matrix 
components are naturally occurring polymeric materials that are nontoxic and compatible 
to host cells and tissues and participate in the maintenance and regulation of cellular 
functions as described above. In particular, the collagen matrix has been used to construct 
scaffolds in experimental models for the reconstruction of a variety of tissues, such as the 
liver, pancreas, bones, and blood vessels. Since collagen matrix promotes cell adhesion, 
proliferation, and migration, collagen-based scaffolds enhance the regeneration of impaired 
tissues and organs. As other polymeric materials, extracellular matrix can be engineered 
and fabricated into various shapes and forms as desired. Thus, extracellular matrix com-
ponents are preferred materials for the repair, regeneration, and engineering of malfunc-
tioned tissues and organs.

COLLAGEN MATRIX

Composition and Formation of Collagen Matrix [4.1]

The collagen matrix is the most abundant type of extracellular matrix that is found pri-
marily in connective tissues, such as the subcutaneous tissue, bone, and the adventitia of 
tubular organs, including blood vessels, airways, esophagus, stomach, and intestines. In 
mammalian tissues, there exist more than 20 types of collagen matrix, classifi ed as col-
lagen types I, II, III, and so on. Among these types of collagen, types I, II, III, IV, V, IX, 
XI, and XII are commonly found in connective tissue. Each type of collagen matrix is 
formed with one or more types of collagen molecule. A typical collagen molecule is a 
helical fi brillar structure composed of three peptide chains, termed α chains. A large 
number of collagen genes have been identifi ed; each encodes a distinct collagen α chain. 
Combinations of various α chains give rise to different types of collagen fi bril. Table 4.1 
lists 22 types of representative collagen peptide chains.

Collagens are synthesized fi rst as procollagen molecules in the cytoplasm of several 
cell types, including fi broblast, osteoblast, smooth muscle cell, and endothelial cell. Pro-
collagen molecules are released to the extracellular space, cleaved by proteinases to 
remove procollagen peptides, and self-assembled into various forms of matrix structure. 
Collagen types I, II, III, V, and XI are organized into fi lamentous structures, known as 
collagen fi brils, with a diameter of ∼10–100 nm. These fi brils usually form larger collagen 
bundles as found in the subcutaneous tissue and the adventitia of tubular organs. Collagen 
types I and V are often found in the bone, skin, cornea, tendon, ligament, and internal 
organs, such as the lung, liver, pancreas, and kidney. Mutation of the collagen type I genes 
causes several disorders, including osteogenesis imperfecta, idiopathic osteoporosis, and 
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atypical Marfan syndrome. Collagen types II and XI are found in the cartilage, notochord, 
and intervertebral disks. Collagen type III is found in blood vessels (Fig. 4.1), skin, and 
internal organs. These collagen fi brous structures play critical roles in the support and 
protection of cells and in the regulation of cellular functions, such as cell adhesion, pro-
liferation, and migration. Collagen types IX and XII are molecules that link other types 
of collagen fi brils and are known as fi bril-associated collagens. These types are found in 
the cartilage, tendon, and ligament. In contrast to the fi lamentous collagen molecules, 
collagen type IV participates in the construction of a membrane-like structure, known as 
the basal lamina or basement membrane, which underlies epithelial and endothelial cells 
(note that other components of a basal lamina include laminin, entactin, perlecan, nidogen, 
and heparan sulfate proteoglycans; see Fig. 4.2). Additional types of collagen are listed 
in Table 4.1.

Function of Collagen Matrix [4.2]

The collagen matrix plays several roles in a mammalian tissue or organ. The collagen 
matrix serves as a structural material that supports cells, helps organize cells into various 
forms of tissues and organs, and protects cells from mechanical injury. In addition, the 
collagen matrix participates in the regulation of cellular activities such as cell survival, 
adhesion, proliferation, and migration. Collagen molecules can directly interact with cells 
via the cell membrane collagen receptors, or indirectly via the mediation of fi bronectin, 
a matrix component that binds collagen molecules at one side and cell membrane matrix 
receptors, known as integrins, at the other side. The binding of collagen and fi bronectin 
molecules to the matrix receptors initiate the activation of intracellular signaling pathways 
that stimulate or activate mitogenic processes, including cell adhesion, survival, prolifera-
tion, and migration.

Given the structural and functional features, collagen matrix has long been used for 
constructing drug delivery devices and scaffolds for tissue regeneration. Collagen matrix 

Figure 4.1. Electron micrograph showing collagen fi brils in the wall of a rat mesenteric artery. 
Scale bar: 1 μm.
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has been used for constructing tissue scaffolds in several forms: collagen gel, collagen 
mesh, composite structures with other types of extracellular matrix molecules such as 
elastic fi bers and proteoglycans, and decellularized natural collagen matrix scaffolds. The 
constructed structures can be used for various purposes of regenerative medicine. Colla-
gen gels and meshes are suitable for drug delivery, whereas the cell-free natural collagen 
matrix can be used as scaffolds or grafts for the repair or regeneration of various tissues 
and organs, such as blood vessels, airways, intestines, stomach, and bladder.

To prepare collagen gels, natural collagen-containing tissues can be collected and 
degraded (note that collagen fi bers are insoluble), and soluble collagen molecules can be 
extracted. Collagen molecules can be crosslinked into a gel structure with appropriate pH, 
temperature, and ionic strength. A therapeutic substance can be blended with the collagen 
molecules during gele formation. The collagen gel can be implanted or injected into a 
target tissue, and the therapeutic substance can be released at the rate of collagen gel 
degradation. In addition, collagen gel can be mixed with selected cells and used to deliver 
cells into a target tissue to replace malfunctioned cells. The delivered cells can be inte-
grated into and restore the function of the target tissue. Sponge-like collagen matrix can 
be prepared in vitro and used as a framework for tissue regeneration and as a scaffold for 
repairing traumatized tissues.

Whereas a native collagen matrix is mechanical tough and strong, an in vitro cross-
linked collagen gel exhibits low mechanical strength. Several methods have been devel-
oped and used to strengthen collagen gels. One method is to treat collagen gels with 
glutaraldehyde, which induces collagen crosslink and increases the strength of collagen 
gels. However, glutaraldehyde is toxic to cells and signifi cantly infl uences cellular activi-

Figure 4.2. Schematic representation of endothelial cell basement membrane. Major components 
of endothelial cell basement membrane include laminin 8 and 10 isoforms, collagen type IV, and 
nidogen 1 and 2. (Reprinted from Hallmann R et al: Physiol Rev 85:979–1000, 2005 with permis-
sion from the American Physiological Society.)



ties and functions. Another method is to facilitate collagen crosslink by introducing glyca-
tion. This method enhances the strength of collagen gels without signifi cantly compromising 
the cell functions.

Native collagen matrix is a suitable material for the construction of tissue scaffolds. 
Such a material maintains the natural biological and mechanical characteristics and 
exhibits superior biocompatibility compared to in vitro crossliked collagen gels or matrix. 
To prepare a native collagen matrix, mammalian tissue specimens can be collected from 
selected structures, such as the submucosa of intestines, the adventitia of blood vessels, 
and the subcutaneous tissue. Cells in these specimens can be removed by various enzy-
matic and hydrolytic methods. Such treatments eliminate the cellular immunogenicity of 
allogenic tissues (note that extracellular matrix molecules exhibit little immunogenicity). 
The resulting cell-free collagen matrix can be tailored into a scaffold with a desired form 
and used for tissue repair or regeneration.

ELASTIC FIBERS AND LAMINAE

Composition and Structure of Elastic Laminae [4.3]

Elastic fi bers and laminae are major extracellular matrix components found in mammalian 
tissues and organs. Elastic fi bers are present in the lung, connective tissue, the submucosa 
of intestines, and the wall of veins, whereas elastic laminae are found primarily in the 
media of large and medium arteries (Fig. 4.3). Elastic fi bers and laminae are composed 
of several proteins, including elastin, microfi brils, and microfi bril-associated proteins. 
Elastin is the most abundant protein in elastic fi bers and laminae. In this section, arterial 
elastic laminae are used as an example to describe the composition, structure, and function 
of elastin-based extracellular matrix.

Elastic laminae (see Table 4.2) are concentrically organized layers composed of tightly 
organized elastic fi bers. These elastic fi bers are composed of microfi brils and amorphous 
elastin and are arranged predominantly in the circumferential direction of arteries. Elastin 

Figure 4.3. Electron micrograph of elastic laminae in the wall of a rat pulmonary artery. Scale 
bar: 1 μm.

ELASTIC FIBERS AND LAMINAE  109



T
A

B
L

E
 4

.2
. 

C
ha

ra
ct

er
is

ti
cs

 o
f 

Se
le

ct
ed

 M
ol

ec
ul

es
 C

on
st

it
ut

in
g 

th
e 

E
la

st
ic

 L
am

in
ae

*

 
 

A
m

in
o 

M
ol

ec
ul

ar
P

ro
te

in
s 

A
lte

rn
at

iv
e 

N
am

es
 

A
ci

ds
 

W
ei

gh
t 

(k
D

a)
 

E
xp

re
ss

io
n 

F
un

ct
io

ns

T
ro

po
el

as
ti

n 
E

L
N

 
 7

57
 

 6
6 

B
lo

od
 v

es
se

ls
, s

ki
n,

 l
un

g,
 k

id
ne

y,
 

C
on

st
it

ut
in

g 
el

as
ti

n,
 a

 m
aj

or
 

 
 

 
 

ca
rt

il
ag

e 
 

co
m

po
ne

nt
 o

f 
el

as
ti

c 
fi b

er
s 

an
d

 
 

 
 

 
 

la
m

in
ae

Fi
br

il
li

n 
1 

F
B

N
1 

28
71

 
31

2 
B

lo
od

 v
es

se
ls

, s
ki

n,
 l

un
g,

 k
id

ne
y,

 
A

 c
on

st
it

ut
iv

e 
co

m
po

ne
nt

 o
f 

 
 

 
 

 
ca

rt
il

ag
e 

 
m

ic
ro

fi b
ri

ls
, w

hi
ch

 a
re

 o
rg

an
iz

ed
 

 
 

 
 

 
 

in
to

 s
ca

ff
ol

ds
 f

or
 d

ep
os

it
io

n 
of

 
 

 
 

 
 

el
as

ti
n 

an
d 

as
se

m
bl

y 
of

 e
la

st
ic

 
 

 
 

 
 

 
fi b

er
s,

 a
nd

 a
ls

o 
a 

co
m

po
ne

nt
 o

f
 

 
 

 
 

 
no

ne
la

st
ic

 m
at

ri
x,

 c
au

si
ng

 M
ar

fa
n

 
 

 
 

 
 

sy
nd

ro
m

e 
w

he
n 

m
ut

at
ed

Fi
br

il
li

n 
2 

F
B

N
2 

 
29

11
 

31
4 

B
lo

od
 v

es
se

l 
Sa

m
e 

as
 fi

 b
ri

ll
in

 1
Fi

br
il

li
n 

3 
F

B
N

3 
28

09
 

30
0 

Sk
in

, l
un

g,
 k

id
ne

y,
 s

ke
le

ta
l 

m
us

cl
e 

Sa
m

e 
as

 fi
 b

ri
ll

in
 1

M
ic

ro
fi b

ri
l-

as
so

ci
at

ed
 

M
A

G
P,

 m
ic

ro
fi b

ri
l-

 
 1

83
 

 2
1 

Sk
in

, l
un

g,
 k

id
ne

y,
 s

ke
le

ta
l 

m
us

cl
e 

R
eg

ul
at

in
g 

th
e 

as
se

m
bl

y 
an

d 
st

ab
il

it
y

 
gl

yc
op

ro
te

in
 

 
as

so
ci

at
ed

 p
ro

te
in

 2
 

 
 

 
 

of
 m

ic
ro

fi b
ri

ls
 a

nd
 e

la
st

ic
 fi

 b
er

s

*B
as

ed
 o

n 
bi

bl
io

gr
ap

hy
 4

.3
.

110



is the most abundant protein found in large arteries and contributes to approximately half 
the dry mass of the arterial wall. Mature elastin is a highly insoluble and hydrophobic 
protein, and is formed by the crosslinking of the 72-kDa elastin precursor, known as tro-
poelastin. In mammals, approximately 75% of tropoelastin is composed of four amino 
acids, including glycine, valine, alanine, and proline. Tropoelastin is produced by several 
cell types, including the smooth muscle cell (SMC) and endothelial cell (EC), and is 
released into the extracellular space where crosslinking and elastin formation take place. 
A mature elastin molecule contains two types of domain: the hydrophobic and crosslink-
ing domains. The hydrophobic domains are rich in nonpolar amino acids, including 
glycine, valine, proline, and alanine, which are often arranged in repeats of three to six 
amino acid peptides, such as GVGVP, GGVP, and GVGVAP. The crosslinking domains 
are rich in alanine and lysine; the latter is subject to enzymatic crosslinking by lysyl 
oxidase. The lysine-containing crosslinking domains appear to be well conserved through 
evolution, whereas the hydrophobic domains display considerable variability. The 
structural conservation in the cross-linking domains renders elastin a highly inert and 
nonimmunogenic protein.

In the extracellular space, tropoelastin molecules are aligned and assembled into elastin 
based on a nonelastin microfi bril mesh. Microfi brils are fi laments of 8–16 nm in diameter 
and are composed of glycoproteins known as fi brillins and several microfi bril-associated 
glycoproteins (MAGPs), including MAGP1 and MAGP2. It is thought that microfi brils 
are established prior to elastin assembly, providing a scaffold for the deposition, alignment, 
and crosslinking of tropoelastin. The MAGPs have been proposed to mediate the interac-
tion of microfi brils with tropoelastin. One possible role of the MAGPs is to bind to the 
C-terminus of tropoelastin and stabilize tropoelastin prior to enzymatic crosslinking. 
The C-terminus of tropoelastin is critical to the formation of elastin. The lack of the C-
terminus reduces the assembly of elastic laminae.

Following organized deposition to and alignment along the microfi brils, tropoelastin 
molecules are crosslinked into elastin via enzymatic reactions mediated by lysyl oxidase. 
This enzyme catalyzes oxidative deamination of the lysine residues, converting lysine to 
allysine (α-amino adipic δ-semialdehyde). Most lysine residues in tropoelastin are involved 
in such an enzymatic reaction. Lysine and allysine residues are then condensed spontane-
ously, resulting in the formation of elastin-specifi c crosslinks known as desmosines and 
isodesmosines. These crosslinks play a critical role in the assembly of elastin fi bers. Since 
desmosines and isodesmosines are very stable in structure, elastic fi bers are considered 
one of the toughest materials found in mammalian systems.

In addition to lysyl oxidase, elastin assembly may be regulated by other factors. For 
instance, negatively charged extracellular glycosaminoglycans may interact with the 
positively charged lysine residues of tropoelastin to promote elastin assembly. Conversely, 
glycosaminoglycans containing galactose derivatives, such as dermatan and chondroitin 
sulfate, have been linked to impaired elastogenesis, promoting the degradation of elastic 
fi bers. The overexpression of a chondroitin sulfate-defi cient proteoglycan known as ver-
sican (variant V3) increased tropoelastin expression and elastic fi ber formation in vitro, 
and resulted in elastic lamina formation in balloon-injured carotid arteries in vivo. Another 
protein, latent transforming growth factor β-binding protein 2 (LTBP2), is coexpressed 
with tropoelastin and may contribute to elastic fi ber formation. These examples demon-
strate that various reactions are possible for the formation of elastic fi bers and laminae, 
due to the participation of different extracellular components, although the regulatory 
mechanisms of elastin assembly remain to be clarifi ed.
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In mammals, arteries contain concentric elastic laminae with circumferentially aligned 
elastic fi bers, whereas veins consist of a network of elastic fi ber bundles aligned pre-
dominantly in the axial direction of the vessel. When observed by optical and electron 
microscopy, elastic laminae or fi bers appear amorphous under physiological conditions. 
Historically, it has been thought that elastic laminae and fi bers are stable structures that 
undergo little turnover and remodeling through the lifespan. However, recent studies have 
demonstrated that mechanical stretch in hypoxia-induced pulmonary hypertension can 
induce swelling and reorganization of elastic laminae within several hours. These observa-
tions suggest that elastic laminae and fi bers may undergo dynamic remodeling in response 
to environmental stimuli.

Function of Elastic Fibers and Laminae [4.4]

Large arteries are composed of multiple layers of elastic laminae. These laminae have 
long been known to contribute to the structural stability, mechanical strength, and elastic-
ity of the arterial wall. Arteries are subject to extensive mechanical stress induced by 
arterial blood pressure. Without the support of the elastic laminae, vascular cells may be 
overstretched under arterial blood pressure. The mechanical stretch may induce structural 
change in or degradation of elastic fi bers or laminae. The degradation of elastic laminae 
has long been considered a major factor for reducing the strength of the arterial wall and 
inducing arterial aneurysms. The importance of the elastic laminae has been demonstrated 
in experimental arterial reconstruction with vein grafts. Veins have only loosely organized 
elastic fi bers instead of elastic laminae, although veins and arteries both possess a strong 
collagen-containing adventitia. When a vein is used as an arterial substitute and exposed 
to arterial blood pressure, about 60% of endothelial cells and SMCs die within 12 h of 
implantation due to mechanical stretch. The lack of multilayer elastic laminae reduces the 
strength of the vein graft wall, contributing to the injury and death of vascualr cells. Thus, 
elastic laminae are a critical structure for the stability and mechanical strength of the 
arterial wall.

In addition to structural support, elastic laminae contribute to the elasticity of arteries. 
The recoil of the arterial wall is a critical mechanism for the continuation of bloodfl ow 
during diastole when cardiac ejection is ceased. The unique amino acid organization and 
crosslinking patterns of elastin are commonly regarded as important determinants for the 
elasticity of elastic fi bers and laminae. Investigations by nuclear magnetic resonance have 
demonstrated that the backbones of elastin amino acid chains are highly mobile and 
individual amino acid residues are able to move freely. The crosslinks help organize the 
tropoelastin peptide chains into a fi lamentous network, which is an effective structure for 
the storage of recoiling energy under mechanical stretch. Observations by electron micro-
scopy suggest the presence of ordered fi lamentous structures in elastic fi bers under 
extensive mechanical stretch (in a range of strain or degree of stretch of ∼150–200% with 
respect to the unstretched state), while amorphous appearance is observed without 
mechanical stretch. The structure and organization of elastin provide a basis for the elastic 
properties of elastic fi bers.

Elastic laminae have also been shown to serve as a signaling structure and play a role 
in regulating arterial morphogenesis and pathogenesis. An important contribution of 
elastic laminae is to confi ne smooth muscle cells to the arterial media by inhibiting smooth 
muscle cell proliferation and migration, thus preventing intimal hyperplasia under physi-
ological conditions. In addition, elastic laminae exhibit antiinfl ammatory effects relative 



to collagen matrix. In particular, elastic laminae are capable of inhibiting leukocyte adhe-
sion to and transmigration through the arterial media (Fig. 4.4 and chapter-opening Figure, 
above). Such inhibitory effects are potentially mediated by an inhibitory receptor known 
as signal-regulatory protein (SIRP) α. Elastic lamina degradation peptides extracted from 
arterial specimens bind to and activate SIRP α in monocytes, and induce the recruitment 
and phosphorylation of a protein tyrosine phosphatase known as SH2 domain-containing 
protein tyrosine phosphatase (SHP)-1. SHP-1 dephosphorylates mitogenic protein tyrosine 
kinases (see Chapter 5), resulting in the suppression of monocyte adhesion and activation. 
These anti-infl ammatory effects render elastic laminae a potential material for vascular 
reconstruction. This issue is discussed in detail in Chapter 15.

PROTEOGLYCANS

Composition and Structure of Proteoglycans [4.5]

Proteoglycan is a complex molecule composed of a core protein and a large number of 
glycosaminoglycans (GAGs). The core protein is a 10–600-kDa chain-shaped protein. 
The protein chain can link to GAGs via covalent bonds, forming proteoglycan (Fig. 4.5). 
A proteoglycan molecule is different in structure and form from a glycoprotein, another 
type of protein with sugar residues. A proteoglycan is defi ned as a molecule with long 
unbranched GAG sidechains and is found primarily in the extracellular space. A glyco-

Untreated ELNaOH EL

Basal Lamina Adventitia

Figure 4.4. En face fl uorescent micrographs showing monocytes adhered to NaOH-treated and 
untreated elastic lamina, basal lamina, and adventitia. EL: elastic lamina. Scale: 100 μm. (Reprinted 
from Liu SQ et al: J Biol Chem 280:39294–301, 2005 with permission from the American Society 
for Biochemistry and Molecular Biology.)
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protein usually contains short branched oligosaccharide chains and is found primarily in 
the cell membrane. Glycoproteins often serve as receptors.

Glycosaminoglycans are polysaccharide chains constituted with repeating 
disaccharides. Each disaccharide unit is composed of an amino sugar, either an N-
acetylglucosamine or N-acetylgalactosamine. The other molecule is a uronic acid, which 
is a sugar acid generated by oxidation of the terminal —CH2OH group of a sugar molecule 
to a carboxyl (=COOH) group. A large number of disaccharides are sulfated in a GAG 
molecule. The presence of the carboxyl and sulfate groups renders the GAGs negatively 
charged. Based on the type and arrangement of the sugar molecules as well as the location 
and number of sulfate bonds, GAGs can be classifi ed into several groups: chondroitin 
sulfate and dermatan sulfate, heparin and heparan sulfate, keratan sulfate, and hyaluronic 
acid.

Chondroitin sulfate and dermatan sulfate are GAGs composed of about 60 repeating 
disaccharide units, each containing a d-glucuronic acid residue and an N-acetyl-d-
galactosamine residue linked by glycosidic bonds (Fig. 4.6). These GAGs are sulfated at 
the C4 and C6 locations of the galactosamine residue. Chondroitin sulfate is a GAG with 
the C4 sulfate bond, whereas dermatan sulfate is a GAG with the C6 sulfate bond. These 
GAGs are found in cartilage, bone, connective tissue, and blood vessels and serve as 
ground substance, which supports and protects cells from injury.

Heparin is a highly sulfated GAG composed of repeating disaccharides of d-glucuronic 
acid and N-acetyl-d-glucosamine (Fig. 4.6). Heparan sulfate is similar to heparin in 
structure, but contains fewer N- and O-sulfate bonds. Heparin and heparan sulfate are 
generated in hepatocytes and vascular endothelial cells. These GAGs possess potent anti-
coagulant and antithrombogenic properties. Heparan sulfate is present on the surface of 
endothelial cells and plays a critical role in the maintenance of blood fl uidity.

Keratan sulfate is a GAG consisting of repeating disaccharide units containing d-
galactose and N-acetyl-d-glucosamine-6-sulfate. This type of GAG is found in the cornea 

Figure 4.5. Electron micrograph showing interaction of neurocan with hyaluronan. The fi ber-like 
structures are hyaluronan aggregates. Neurocan molecules often interact with the hyaluronan fi bers 
at the end. (Reprinted from Retzler C et al: J Biol Chem 271:17107–13, 1996 with permission from 
the American Society for Biochemistry and Molecular Biology.)



and cartilage. Hyaluronic acid is composed of more than 2000 disaccharide units, each 
containing a d-glucuronic acid and an N-acetyl-d-glucosamine residue linked by glyco-
sidic bonds. This GAG is found in the vitreous humor, synovial fl uids, cartilage, and blood 
vessels.

The GAGs described above can form various types of proteoglycan, including aggre-
can, β-glycan, decorin, perlecan, syndecans, and versican. Aggrecan is a proteoglycan 
with a molecular weight of ∼210 kDa, and is composed of about 130 chondroitin sulfate 
and keratan sulfate chains. This type of proteoglycan is found primarily in cartilage, forms 
complexes with hyaluronic acids, and serves as a ground substance in which cells reside. 
β-Glycan is a molecule with a molecular weight of ∼36 kDa. It contains a single GAG 
chain constituted by chondroitin sulfate and dermatan sulfate. β-Glycan is present in 
extracellular matrix and cell membrane and play a role in mediating the activity of trans-
forming growth factor β.

Decorin is a ∼40-kDa proteoglycan with a single chondroitin sulfate and dermatan 
sulfate GAG chain. It is present in connective tissues and can bind to collagen type I, 
regulating the organization of the collagen matrix. It also binds to transforming growth 
factor β and mediates the activity of this growth factor. Perlecan is about 500 kDa in 
molecular weight and is composed of 2–15 heparan sulfate GAG chains. It is found pri-
marily in the basal laminae of various organs and plays a role in the mechanical support 
of the basal lamina and mediating cellular activities (see next section). Syndecans are a 
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family of proteoglycans, which include four members: syndecan-1, -2, -3, and -4; each 
member is encoded by a distinct gene. These are cell-associated proteoglycans and their 
structure and function are discussed in the next section.

Versicans are another family of proteoglycans, including versican-0, -1, -2, -3, and 4. 
These isoforms are generated by alternative splicing of the mRNA transcript for the ver-
sican core protein. A versican proteoglycan contains primarily chondroitin sulfate GAGs. 
Versicans are found in the extracellular matrix of blood vessels and synthesized by vas-
cular smooth muscle cells. Versicans can bind to growth factors, enzymes, and other 
extracellular matrix components, and play a critical role in mediating the proliferation 
and migration of smooth muscle cells. The level of versicans is increased in response to 
vascular injury, promoting infl ammatory reactions, lipid accumulation, mitogenic activity 
of smooth muscle cells, and intimal hyperplasia. See Table 4.3 for further information on 
these proteoglycans and additional proteoglycans.

Function of Proteoglycans [4.6]

There are several functions for proteoglycans in general. The most important function of 
proteoglycans is probably to serve as ground substances that support and protect cells 
from mechanical injury. Proteoglycans are found primarily in extracellular space and are 
highly hydrophilic. These molecules are negatively charged and can attract positively 
charged ions such as Na+ and K+. These ions create an osmotic gradient, resulting in the 
accumulation of water in proteoglycan molecules. Given their hydrophilic nature, these 
molecules can absorb a large amount of water and form a gel-like structure even at a very 
low concentration. Such a structure can resist a high level of compressive stress induced 
by mechanical impacts. The gel-like structure of proteoglycans also helps to organize cells 
within a tissue and organ.

Proteoglycans play a role in lubricating joint surfaces and preventing blood coagulation. 
Hyaluronic acids and hyaluronic acid-containing proteoglycans are present in the joint 
fl uid and serve as lubricants, which reduce friction between the joint surfaces. Heparin 
and heparan sulfate are molecules that prevent blood coagulation and thrombogenesis. 
These molecules can inhibit the conversion of prothrombin to thrombin, a protease that 
cleaves soluble fi brinogen and catalyzes the formation of insoluble fi brin. The insoluble 
fi brin forms a solid meshwork at the site of endothelial injury and stimulates activation 
and adhesion of leukocytes and platelets. The fi brin meshwork serves as a soil for throm-
bogenesis and atherogenesis. The inhibition of thrombin formation by heparin or heparan 
sulfate prevents blood coagulation, thrombogenesis, and atherogenesis.

Proteoglycans are also involved in regulating the activity of signaling molecules. Pro-
teoglycans can form complexes with growth factors, such as fi broblast growth factor and 
transforming growth factor. Such a process may activate or inhibit the activity of a growth 
factor, depending on the nature of the proteoglycans and growth factors. For instance, the 
interaction of fi broblast growth factor with heparan sulfate-containing proteoglycans can 
promote the activation of the growth factor. In contrast, the binding of transforming 
growth factor to proteoglycans inhibits the activity of the growth factor.

Proteoglycans participate directly in the regulation of cellular activities and functions. 
A heparan sulfate proteoglycan molecule found in the basal lamina, known as perlecan, 
has been shown to serve as an inhibitor for vascular smooth muscle cells. At the site of 
vascular injury, smooth muscle cells are activated to proliferate and migrate from the 
media to the intima of blood vessels, processes contributing to intimal hyperplasia and 



T
A

B
L

E
 4

.3
. 

C
ha

ra
ct

er
is

ti
cs

 o
f 

Se
le

ct
ed

 P
ro

te
og

ly
ca

ns
*

 
 

A
m

in
o 

M
ol

ec
ul

ar
P

ro
te

in
s 

A
lte

rn
at

iv
e 

N
am

es
 

A
ci

ds
 

W
ei

gh
t 

(k
D

a)
 

E
xp

re
ss

io
n 

F
un

ct
io

ns

V
er

si
ca

n 
C

ho
nd

ro
it

in
 s

ul
fa

te
 

33
96

 
37

3 
B

lo
od

 v
es

se
l, 

li
ve

r, 
lu

ng
, u

te
ru

s,
 

R
eg

ul
at

in
g 

ce
ll

 p
ro

li
fe

ra
ti

on
 a

nd
 m

ig
ra

ti
on

 
 

pr
ot

eo
gl

yc
an

 2
, g

li
al

 
 

 
 

ki
dn

ey
, p

ro
st

at
e 

gl
an

d
 

 
hy

al
ur

on
at

e-
bi

nd
in

g
 

 
pr

ot
ei

n
D

ec
or

in
 

P
ro

te
og

ly
ca

n 
II

 (
P

G
II

),
 

 3
59

 
 4

0 
L

un
g,

 k
id

ne
y,

 s
ki

n,
 s

ke
le

ta
l 

 
C

on
st

it
ut

in
g 

th
e 

m
at

ri
x 

of
 c

on
ne

ct
iv

e
 

 
de

rm
at

an
 s

ul
fa

te
 

 
 

 
m

us
cl

e,
 b

on
e,

 c
ar

ti
la

ge
,  

 
ti

ss
ue

s,
 b

in
di

ng
 t

o 
ty

pe
 I

 c
ol

la
ge

n 
fi b

ri
ls

, 
 

 
pr

ot
eo

gl
yc

an
s 

II
, b

on
e 

 
 

 
li

ga
m

en
t 

 
re

gu
la

ti
ng

 m
at

ri
x 

as
se

m
bl

y,
 a

nd
 

 
 

pr
ot

eo
gl

yc
an

 I
I 

 
 

 
 

su
pp

re
ss

in
g 

tu
m

or
 c

el
l 

gr
ow

th
Pe

rl
ec

an
 

H
ep

ar
an

 s
ul

fa
te

 p
ro

te
og

ly
ca

n 
43

93
 

46
9 

B
lo

od
 v

es
se

l, 
in

te
st

in
e,

 c
ar

ti
la

ge
, 

C
on

st
it

ut
in

g 
th

e 
ba

se
m

en
t 

m
em

br
an

e,
 

 
 

of
 b

as
em

en
t 

m
em

br
an

e,
 

 
 

 
ki

dn
ey

 
 

co
nt

ri
bu

ti
ng

 t
o 

st
ab

il
iz

at
io

n 
of

 m
at

ri
x 

 
 

he
pa

ra
n 

su
lf

at
e 

 
 

 
 

m
ol

ec
ul

es
, r

eg
ul

at
in

g 
gl

om
er

ul
ar

 
 

 
pr

ot
eo

gl
yc

an
 2

 (
H

SP
G

2)
 

 
 

 
 

pe
rm

ea
bi

li
ty

 t
o 

m
ac

ro
m

ol
ec

ul
es

, a
nd

 
 

 
 

 
 

re
gu

la
ti

ng
 c

el
l 

ad
he

si
on

A
gg

re
ca

n 
1 

A
G

C
1,

 c
ho

nd
ro

it
in

 s
ul

fa
te

 
24

15
 

25
0 

C
ar

ti
la

ge
, b

ra
in

 
C

on
st

it
ut

in
g 

th
e 

ex
tr

ac
el

lu
la

r 
m

at
ri

x 
of

 
 

pr
ot

eo
gl

yc
an

 c
or

e 
pr

ot
ei

n 
1 

 
 

 
 

ca
rt

il
ag

e,
 p

ro
te

ct
in

g 
ca

rt
il

ag
e 

fr
om

 
 

(C
SP

C
P1

),
 c

ar
ti

la
ge

- 
  

 
 

 
co

m
pr

es
si

on
 i

nj
ur

y,
 a

nd
 c

au
si

ng
 s

ke
le

ta
l

 
 

sp
ec

ifi
 c

 p
ro

te
og

ly
ca

n 
 

 
 

 
dy

sp
la

si
a 

an
d 

sp
in

al
 d

eg
en

er
at

io
n

 
 

co
re

 p
ro

te
in

 1
 

 
 

 
 

w
he

n 
m

ut
at

ed

117



B
ig

ly
ca

n 
B

G
N

, p
ro

te
og

ly
ca

n 
I 

(P
G

-I
),

 
 3

68
 

 4
2 

B
on

e,
 c

ar
ti

la
ge

, s
ki

n,
 l

ig
am

en
t, 

B
in

di
ng

 t
o 

co
ll

ag
en

 fi
 b

ri
ls

, r
eg

ul
at

in
g 

bo
th

 
 

bo
ne

/c
ar

ti
la

ge
 p

ro
te

og
ly

ca
n 

 
 

 
br

ai
n,

 l
un

g 
 

as
se

m
bl

y 
an

d 
in

te
gr

it
y 

of
 e

xt
ra

ce
ll

ul
ar

 
 

I,
 d

er
m

at
an

 s
ul

fa
te

 
 

 
 

 
m

at
ri

x,
 p

ro
m

ot
in

g 
ne

ur
on

al
 s

ur
vi

va
l, 

 
 

pr
ot

eo
gl

yc
an

 I
 (

D
SP

G
-1

) 
 

 
 

 
an

d 
m

ed
ia

ti
ng

 m
ac

ro
ph

ag
e-

re
la

te
d

 
 

 
 

 
 

in
fl a

m
m

at
or

y 
re

ac
ti

on
s

β-
G

ly
ca

n 
T

ra
ns

fo
rm

in
g 

gr
ow

th
 f

ac
to

r 
 8

49
 

 9
3 

H
ea

rt
 

Fo
un

d 
at

 c
el

l 
su

rf
ac

e 
an

d 
in

 e
xt

ra
ce

ll
ul

ar
 

 
β 

re
ce

pt
or

 t
yp

e 
3 

 
 

 
 

m
at

ri
x,

 i
nt

er
ac

ti
ng

 w
it

h 
tr

an
sf

or
m

in
g 

 
 

 
 

 
 

gr
ow

th
 f

ac
to

r, 
an

d 
pa

rt
ic

ip
at

in
g 

in
 

 
 

 
 

 
re

gu
la

ti
on

 o
f 

ce
ll

 p
ro

li
fe

ra
ti

on
 a

nd
 

 
 

 
 

 
di

ff
er

en
ti

at
io

n
Sy

nd
ec

an
 2

 
SY

N
D

2,
 h

ep
ar

an
 s

ul
fa

te
 

 2
01

 
 2

2 
B

on
e,

 l
iv

er
, s

ki
n 

A
 t

ra
ns

m
em

br
an

e 
he

pa
ra

n 
su

lf
at

e
 

 
pr

ot
eo

gl
yc

an
 (

H
SP

G
),

 
 

 
 

 
pr

ot
eo

gl
yc

an
; 

m
ed

ia
ti

ng
 c

el
l 

bi
nd

in
g,

 
 

fi b
ro

gl
yc

an
 

 
 

 
 

pr
ol

if
er

at
io

n,
 a

nd
 m

ig
ra

ti
on

; 
re

gu
la

ti
ng

 
 

 
 

 
 

cy
to

sk
el

et
al

 i
nt

eg
ri

ty
 a

nd
 o

rg
an

iz
at

io
n;

 
 

 
 

 
 

 
an

d 
m

ed
ia

ti
ng

 H
IV

 t
ra

ns
m

is
si

on
 t

o 
T

 
 

 
 

 
 

ly
m

ph
oc

yt
es

N
eu

ro
ca

n 
C

ho
nd

ro
it

in
 s

ul
fa

te
 

13
21

 
14

3 
N

er
vo

us
 s

ys
te

m
 

A
 c

ho
nd

ro
it

in
 s

ul
fa

te
 p

ro
te

og
ly

ca
n 

th
at

 
 

pr
ot

eo
gl

yc
an

 3
 

 
 

 
 

m
ed

ia
te

s 
th

e 
ad

he
si

on
 a

nd
 m

ig
ra

ti
on

 o
f 

 
 

 
 

 
 

ne
ur

al
 c

el
ls

K
er

at
oc

an
 

K
E

R
A

, K
T

N
, k

er
at

an
  

 3
52

 
 4

1 
C

or
ne

a 
A

 k
er

at
an

 s
ul

fa
te

 p
ro

te
og

ly
ca

n 
fo

un
d 

in
 

 
su

lf
at

e 
pr

ot
eo

gl
yc

an
 

 
 

 
 

co
rn

ea
 a

nd
 a

 c
ri

ti
ca

l 
co

m
po

ne
nt

 i
n

 
 

 
 

 
 

co
rn

ea
l 

tr
an

sp
ar

en
cy

*B
as

ed
 o

n 
bi

bl
io

gr
ap

hy
 4

.5
.

T
A

B
L

E
 4

.3
. 

C
on

ti
nu

ed

 
 

A
m

in
o 

M
ol

ec
ul

ar
P

ro
te

in
s 

A
lte

rn
at

iv
e 

N
am

es
 

A
ci

ds
 

W
ei

gh
t 

(k
D

a)
 

E
xp

re
ss

io
n 

F
un

ct
io

ns

118



atherogenesis. The perlecan molecules in the basal lamina, which resides beneath the 
endothelium, inhibit the proliferation and migration of smooth muscle cells and thus sup-
press intimal hyperplasia and atherogenesis.

In general, proteoglycans may regulate the activity of signaling molecules and cells via 
several approaches: (1) immobilizing signaling molecules and thus confi ning the mole-
cules to a specifi ed location, (2) blocking or stimulating the activity of signaling molecules 
via binding interactions, and (3) protecting signaling molecules from enzymatic degrada-
tion. Various types of proteoglycan may elect to use different mediating approaches.

While most proteoglycans are present in extracellular space, there exist cell-associated 
proteoglycans. A typical example is the proteoglycan family of syndecans. These proteo-
glycans are transmembrane receptor type of molecules. Each syndecan molecule is com-
posed of an extracellular domain, a single-span transmembrane domain, and a cytoplasmic 
domain. The extracellular domain of syndecans contains GAGs, such as chondroitin 
sulfate and heparan sulfate. The intracellular domain of syndecans interacts with actin 
fi laments. Syndecans are found in fi broblasts and epithelial cells, and serve as receptors 
for extracellular matrix components, including fi bronectin and collagen. These proteogly-
can molecules can bind to growth factors, such as fi broblast growth factor, and mediate 
the interaction of growth factors with their receptors. Such an activity contributes to the 
regulation of embryonic development, angiogenesis, and tumorigenesis.

Another type of cell-associated proteoglycan is heparan sulfate-containing proteogly-
cans. In addition to the role in regulating blood coagulation, heparan sulfate proteoglycans 
can mediate the activity of several signaling pathways involving Wnt, hedgehog, trans-
forming growth factor, and fi broblast growth factor. Such a mediating process is critical 
to embryonic development and pathogenic remodeling. Furthermore, heparan sulfate 
proteoglycans are involved in the regulation of tumorigenesis. These molecules may 
promote tumor growth and metastasis in at least two types of tumor: myeloma and breast 
cancer. Understanding the role of proteoglycans in regulating signaling processes may 
lead to the development of new therapeutic approaches for tumors and other pathological 
disorders.

MATRIX METALLOPROTEINASES

Matrix metalloproteinases (MMPs) are enzymes that induce degradation of extracellular 
matrix components. There are more than 20 types of MMPs, which are found in mam-
malian tissues and produced by different cell types. Each type of MMP can target one or 
more extracellular matrix components, although the activity of MMPs is not highly spe-
cifi c. Almost all MMPs are synthesized in cells as preproenzymes and released as inactive 
forms known as pro-MMPs. The inactive forms of MMPs can be activated by tissue and 
plasma proteinases or membrane-type MMPs (MT-MMPs), which cleave pro-MMPs. The 
production and activation of MMPs are highly regulated processes, which are critical to 
a number of physiological processes, including embryonic morphogenesis, neurite out-
growth, ovulation, bone growth, angiogenesis, apoptosis, and wound healing. In addition, 
MMPs are involved in the pathogenesis of a number of disorders, including cancer metas-
tasis, atherosclerosis, skin ulceration, gastric ulcer, corneal ulceration, liver fi brosis, and 
emphysema. MMPs mediated these physiological and pathological processes via inducing 
matrix degradation, which promotes two fundamental cellular activities: cell migration 
and proliferation.
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120  EXTRACELLULAR MATRIX

The expression of MMPs can be induced by several types of stimulating factors, such 
as growth factors, cytokines, phorbol esters, and mechanical stress. In general, factors 
that mediate infl ammatory and growth reactions likely stimulate the expression of MMPs. 
These growth and infl ammatory factors induce activation of cell signaling pathways 
involving ERK1/2, stress-activated protein kinase (SAPK)/JNK, and p38, resulting in the 
upregulation of the MMP genes (see Chapter 5 for the signaling pathways). The physio-
logical signifi cance is that MMP-induced matrix degradation, in association with the 
upregulation of growth factors (e.g., epidermal growth factor and platelet-derived growth 
factor) and infl ammatory cytokines (e.g., tumor necrosis factor α and interleukin-1), 
facilitates cell migration, an essential process for tissue regeneration in wound healing 
and leukocyte infi ltration in infl ammatory reactions. Several factors, such as transforming 
growth factor β, retinoic acids, glucocorticoids, exert an inhibitory effect on the activity 
and expression of MMPs. The effects of stimulatory and inhibitory factors are coordi-
nately regulated under physiological and pathological conditions. In a quiescent state, the 
activity and expression of MMPs are inhibited. The activity and expression of MMPs are 
usually upregulated in pathological disorders such as mechanical and chemical trauma, 
atherosclerosis, and carcinogenesis.

Structural Features of MMPs [4.7]

A MMP is composed of several common domains, including a signal peptide domain, a 
propeptide domain, and a catalytic domain (Fig. 4.7). There are other MMP domains, 

Signal 
peptide

Propeptide
Catalytic
 domain Linker

Hemopexin-like
        domain

  Fibronectin
type II domain

Stretch with a furin-
recognition sequence

Vitronectin-like
       domain

Transmembrane
       domain

IL-1 receptor-like 
        domain

Figure 4.7. Schematic representation of the structure of matrix metalloproteinases (MMPs). 
(Reprinted from Nagase H, Woessner JF Jr: J Biol Chem 274:21491–4, 1999 with permission from 
the American Society for Biochemistry and Molecular Biology.)



such as hemopexin-like domain, fi bronectin type II domain, vitronectin-like domain, 
furin recognition sequence, linker, and transmembrane-cytoplasmic domain, but these 
domains are not present in all MMPs. Figure 4.7 shows the common and specifi c domains 
for MMPs. There are several structural features that are important for the function of 
MMPs. The propeptide domain contains a PRCG(V/N)PD sequence, which inhibits the 
activity of the zinc-dependent catalytic domain of MMPs and renders the enzymes inac-
tive. The removal of the propeptide by an enzyme or chemical compound induces the 
activation of the MMPs. The catalytic domain can bind to zinc and calcium ions, which 
are necessary for the stability and activity of MMPs. Several MMPs, including MMP2 
and MMP9, contain repeated fi bronectin type II-like sequences in the catalytic domain. 
These sequences mediate the interaction of MMPs with substrate molecules, such as col-
lagen. MMPs that possess a collagenase activity contain a C-terminal hemopexin-like 
domain. This domain is essential for cleaving helical collagen fi brils. The transmembrane 
domain found in MT-MMPs mediates the integration of the enzymes to the cell 
membrane.

Activation of MMPs [4.8]

Matrix metalloproteinases (see Table 4.4) are released from cells as inactive pro-MMPs. 
The inactive forms can be activated by a number of factors, including proteinases, mercu-
rial compounds, reactive-oxygen species, and protein-denaturing reagents, under experi-
mental conditions in vitro. These factors can degrade or remove the propeptide domain, 
which inhibits the catalytic activity of MMPs. Under physiological conditions in an 
in vivo system, the propeptide domain of pro-MMPs is cleaved by proteinases, resulting 
in the activation of MMPs. Plasmin is a typical proteinase that activates pro-MMPs. 
Furthermore, certain types of pro-MMP, such as pro-MMP2, are activated by a group of 
MMPs, known as membrane-type MMPs (MT-MMPs), which are anchored to the cell 
membrane. For instance, MT1-MMP can cleave and activate pro-MMP2 on the cell 
surface. MT-MMP-induced activation of MMP is critical to several biological processes, 
including angiogenesis, cell migration, and cancer metastasis. In these processes, activated 
MMPs on the cell surface induce matrix degradation, creating a channel that allows cell 
migration.

The activity of MMPs can be suppressed by a family of molecules, known as 
tissue inhibitors of metalloproteinases (TIMPs). This family includes four known 
members: TIMP1, TIMP2, TIMP3, and TIMP4, with molecular weight ranging from 
21 to 30 kDa. TIMPs can inhibit cell migration, tumor cell invasion, and angiogenesis 
via their negative infl uence on MMPs. Thus, TIMPs participate in the regulation of 
the activity of MMPs together with growth factors and cytokines. In addition, 
TIMPs exert other activities. These activities are dependent on the type of TIMPs and 
the type of target cells. TIMP1 and TIMP2 have been shown to stimulate cell 
proliferation and prevent cell apoptosis. However, TIMP2 has also been found to inhibit 
the proliferation of vascualr endothelial cells and angiogenesis. TIMP3 can induce apop-
tosis in carcinoma cells and melanoma cells. These diverse activities of TIMPs play 
important roels in the regulation of not only matrix degradation but also cellular 
activities.
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