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Interaction of bone marrow-derived smooth muscle α actin+ cells with CD11b+ cells in culture. 
Mouse bone marrow cells were collected and cultured in DMEM with 10% FBS. Smooth muscle 
α actin+ cells (green) were often found on top of CD11b+ cells (red). When the CD11b+ cells were 
selectively removed, the number of smooth muscle α actin+ cells was reduced, suggesting that the 
CD11b+ bone marrow cells play a role in regulating the development of smooth muscle cells from 
bone marrow progenitor cells. Blue: cell nuclei. Scale: 10 μm. See color insert.
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PRINCIPLES OF CELL SIGNALING [5.1]

In a multicellular system, there exist signaling activities at the molecular and cellular levels 
for cell-to-cell and cell-to-matrix communications, which are essential for the function of 
cells, tissues, and organs. In order to conduct physiological function, a cell must commu-
nicate with other cells to achieve coordinated cellular activities. Often, synchronized 
molecular and cellular activities are required for tissue and organ functions. A typical 
example is the control of the contractile activity of skeletal muscle cells in response to an 
electrical stimulation from a nerve axon. In such a regulatory process, an electrical action 
potential is generated from a motor neuron center and transmitted through the nerve axon 
to the muscle cell. At the junction, or synapse, between the nerve axon and the muscle 
cell, the electrical signal is converted to a chemical signal, which induces the activation 
of an intracellular signaling cascade in the muscle cells, resulting in cell contraction. 
Without neuron-to-muscle cell signal transduction, the skeletal muscle cells cannot con-
tract or relax in a controlled manner. Thus, coordinated cell signaling is a fundamental 
process for accomplishing complicated functional tasks. Here, the principles of cell signal-
ing and common cell signaling pathways are discussed.

Factors Serving as Signals

There are two basic types of factors, which serve as “signals” for regulating molecular 
and cellular activities as well as cell-to-cell and cell-to-matrix communications: extracel-
lular factors and intracellular factors (Fig. 5.1). Extracellular facotrs are present in extra-
cellular space and serve as signals that initiate and control molecular and cellular activities. 
Intracellular factors are present in the cytoplasm, serve as elements for signaling path-
ways, and regulate cellular activities. In general, an extracellular signal must cooperate 
with intracellular signals to initiate and control a cellular activity. The extracellular signal 
may initiate the activation of an intracellular signaling pathway via interacting with a cell 
membrane or cytoplasmic signaling factor, whereas the intracellular signaling pathway 
relays the extracellular signal to target subcellular organelles, initiating a specifi ed activity, 
such as gene expression, cell adhesion, cell proliferation, or cell migration.
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Figure 5.1. Extracellular and intracellular signals that regulate cell activities and functions (based 
on bibliography 5.1).



Cellular activities are often initiated in response to environmental or extracellular 
stimulations or cues. Extracellular factors that serve as signaling factors and induce cel-
lular activities may include biochemical molecules and substances, electrical signals, and 
physical factors. Biochemical molecules and substances include cell-secreted factors and 
extracellular matrix factors, such as ions, proteins, nucleotides, fatty acids, and steroids. 
Some of these factors, such as proteins (growth factors and extracellular matrix compo-
nents) and nucleotides, can act on cell membrane receptors, while others, such as steroids, 
can diffuse through the cell membrane and interact directly with intracellular receptors, 
inducing activation of signaling pathways. Electrical signals are action potentials, or 
changes in membrane potentials. An electrical signal initiates the activation of nerve and 
muscular cells. Physical factors, such as mechanical forces and deformation, can serve as 
signaling factors. For instance, mechanical shearing and stretching forces due to bloodfl ow 
and pressure, respectively, induce various cellular activities, ranging from cell migration, 
proliferation to apoptosis, in the vascular system. These biochemical, electrical, and physi-
cal signals initiate and control specifi ed cellular activities.

Intracellular signaling factors include proteins, lipids, steroids, and ions. These factors 
are also referred to as regulatory factors. In each cell, there exist a large number of pro-
teins. Most of these protiens serve as signaling molecules. Common types of signaling 
proteins include cell membrane receptors, ion channels, protein kinases, protein phospha-
tases, and enzymes. Certain types of structural proteins, such as actin fi laments, also play 
a role in signal transduction. A variety of lipid molecules in the cell membrane and endo-
plasmic reticulum serve as signaling factors. Ions, especially, calcium, play a critical role 
in signal transduction and the regulation of cellular activities. The roles of these signaling 
factors are discussed in the following sections.

Types of Cell Signaling

There are various cell signaling mechanisms. Based on the range of signal transduction, 
cell signaling events can be divided into long- and short-range events (Fig. 5.2). Long-
range signaling events involve cells from different systems. These events are mediated by 
either hormones or synapses. Hormones are biochemical factors, which are synthesized 
by endocrine gland cells and released into blood. These factors regulate the activities of 
remote cells. This type of signaling is also known as endocrine signaling. Since a hormone 
is delivered via the bloodfl ow, it can reach almost all cells in the body. The specifi city of 
hormones is dependent on the receptors on the target cells. Synapses are subcellular 
structures found at the junctions between different neurons and between neurons and 
muscular cells. In a synapse-related signaling event, signals from a presynaptic neuron 
are conducted to another neuron or a peripheral muscular cell via the propagation of 
electrical action potentials, which stimulate the release of neurotransmitters at the termi-
nal of the presynaptic cell. The synapse in turn delivers the neurotransmitters to the 
postsynaptic target cell, initiating postsynaptic cell activation. Synaptic signaling events 
infl uence target cells with great precision. In contrast to long-range signaling, short-range 
signaling events involve cells within a local neighborhood. These events are mediated by 
regional chemical factors and mechanical forces. Changes in mechanical forces often 
induce the activation and release of chemical factors, which in turn transmit mechanical 
signals to the cell. Signaling events mediated by regional chemical factors are often 
referred to as paracrine signaling. Chemical factors for paracrine signaling are usually 
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Figure 5.2. Long-range (hormone- and synapse-mediated) and short-range (paracrine and auto-
crine) cell signaling (based on bibliography 5.1).

endocytosed by neighboring cells or immobilized by extracellular matrix, ensuring a local 
infl uence without spreading to remote cells.

General Mechanisms of Cell Signaling

On the stimulation of an extracellular signal, a cell responds by activating its intracellular 
signaling pathways, leading to specifi c cellular activities, such as gene expression, cell 
division, cell migration, cell adhesion, and cell apoptosis. Several steps are involved in 
the activation of the intracellular signaling pathways: interaction of an extracellular signal-
ing factor with a corresponding receptor or factor in the target cell, transduction of the 
extracellular signal to the target cell, activation of intracellular biochemical and/or electri-
cal reactions, and termination of intracellular reactions.



A large number of molecules, including proteins, lipids, and ions, can serve as intracel-
lular signaling molecules and participate in signal transduction. Proteins, including recep-
tors, enzymes, and adapters, are among the common signaling molecules. Receptors are 
distributed in the cell membrane or cytoplasm, and are responsible for receiving extracel-
lular signals and transmitting the signals into intracellular signaling pathways. Enzymes 
involved in cell signaling primarily include protein kinases, protein phosphatases, and 
GTPases. Protein kinases and phosphatases are responsible for protein phosphorylation 
and dephosphorylation, respectively, which are critical processes for cell signaling. 
GTPases serve as switches for signal transduction to downstream signaling elements. 
Adapter proteins help to target, recruit, and co-localize proteins. Some adapter proteins 
serve as scaffolds or docking sites for signaling proteins.

Signaling molecules exist in two modes: inactive and active. In unstimulated cells, 
signaling molecules are present mostly in the inactive mode. In response to a stimulation, 
specifi ed signaling molecules can be activated by various mechanisms, including chemical 
modifi cation, enzymatic activation, conformational changes in signaling molecules, altera-
tions in molecular concentration, and col/localization and clustering of molecules. In most 
cases, multiple mechanisms are involved for the same or various signaling molecules at 
a given time and location.

There are several common features for cell signaling. These include signaling specifi c-
ity, the involvement of signaling cascades, and crosstalk between signaling pathways. In 
general, each signaling molecule reacts with specifi c upstream and downstream molecules, 
ensuring the induction of specifi c activities. Various signaling pathways are designed and 
developed for specifi c cellular activities. For the regulation of each cellular activity, mul-
tiple signaling molecules and pathways may be involved. In addition, each signaling mol-
ecule may exhibit multiple functions. The abundance and multifunctionality of signaling 
molecules may be a mechanism that ensures the accomplishment of cellular activities and 
functions.

Each signaling pathway is composed of a number of signaling molecules, which relay 
signals from extracellular space to the cytoplasm and nucleus. Such a cascade is also 
referred to as a signaling cascade. In each cell, there exist multiple signaling pathways. 
These pathways often communicate or crosstalk with each other via branching pathways, 
forming signaling networks. Through these crosstalk pathways, a signaling molecule can 
be activated by different upstream signaling molecules and can act on different down-
stream effectors. With such an approach, various upstream signals can be converged to a 
single signaling pathway, and one activated signaling molecule can initiate multiple down-
stream activities. In addition, signals in one pathway can infl uence signals in other path-
ways. Thus crosstalk is an effective approach for amplifying and controlling signals and 
facilitating signal transduction. In the following sections, common signaling pathways in 
mammalian cells are briefl y reviewed.

PROTEIN TYROSINE KINASE-MEDIATED CELL SIGNALING [5.2]

Protein tyrosine kinases belong to the superfamily of protein kinases. Protein kinases are 
enzymes that catalyze the phosphorylation of, or the addition of a phosphate group to, a 
substrate protein. Protein phosphorylation is a major form of molecular modifi cation, 
which mediates a variety of molecular activities, including enzymatic activation, cell sig-
naling, gene transcription, activation of ion channels, and reorganization of cytoskeletal 
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proteins. Protein kinases represent a large family of signaling molecules. The genes encod-
ing protein kinases constitute about 1.7% of total genes in the human. Based on the types 
of target amino acid, protein kinases are classifi ed into four types: serine/threonine-, 
tyrosine-, histidine-, and aspartate- (or glutamate-) specifi c protein kinases. These protein 
kinases catalyze the phosphorylation of substrate proteins on serine/threonine, tyrosine, 
histidine, and aspartate (or glutamate), respectively. Among these protein kinases, serine/
threonine and tyrosine protein kinases can phosphorylate signaling proteins, play critical 
roles in signal transduction. Thus, these two types of protein kinase are the focus of this 
book. The protein tyrosine kinases are covered in this section. The protein serine/
threonine kinases are covered later in this chapter.

Structure and Function

Protein tyrosine kinases are enzymes that catalyze the phosphorylation of the tyrosine 
residues of substrate proteins. A protein tyrosine kinase is often found as an integral part 
of growth factor receptors in the cell membrane and is referred to as receptor protein 
tyrosine kinase. A receptor with a protein tyrosine kinase is known as protein tyrosine 
kinase receptor. Such a receptor is composed of an extracellular domain for ligand 
binding, a transmembrane domain for anchoring the receptor to the cell membrane, and 
an intracellular domain for interaction with cytoplasmic signaling molecules. The receptor 
protein tyrosine kinase is localized to the cytoplasmic domain of the growth factor recep-
tor. The receptor tyrosine kinase assists the growth factor receptor in transducing signals 
that induce essential cell activities, such as proliferation, differentiation, and migration. 
There are also nonreceptor protein tyrosine kinases such as the Src family of protein 
tyrosine kinases. These kinases are discussed on page 180.

A signaling pathway mediated by a protein tyrosine kinase receptor is composed of 
several components, including the extracellular ligands, cell membrane receptors, cyto-
plasmic signaling elements, and transcriptional factors. Extracellular ligands are usually 
growth factors produced and released by cells. There are a number of growth factors that 
interact and activate protein tyrosine kinase receptors. These include epidermal growth 
factor (EGF), platelet-derived growth factors (PDGFs) A and B, nerve growth factor 
(NGF), basic fi broblast growth factor (bFGF), vascular endothelial growth factor (VEGF), 
insulin-like growth factor (ILGF), nerve growth factor (NGF), hepatocyte growth factor 
(HGF), and ephrins. Based on the type of ligand growth factors, growth factor receptors 
are classifi ed as EGF receptor, PDGF receptor, NGF receptor, FGF receptor, VEGF recep-
tor, insulin receptor, HGF receptor, and Eph receptor groups, respectively (see Fig. 5.3 for 
schematic representation of growth factor receptors). The ligand–receptor interaction is 
highly specifi c. Each growth factor only interacts with and activates a specifi c protein 
tyrosine kinase receptor.

The EGFR group is composed of several receptors, including EGFR (epidermal growth 
factor receptor), ERBB2 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 or 
neuro/glioblastoma-derived oncogene homolog), ERBB3 (v-erb-b2 erythroblastic leuke-
mia viral oncogene homolog 3), and ERBB4 (v-erb-a erythroblastic leukemia viral onco-
gene homolog 4). These receptors are expressed in various cell types, including epithelial, 
mesenchymal, and neural cells. The EGFR contains two extracellular cysteine-rich 
domains, a transmembrane domain, and a cytoplasmic tyrosine kinase domain (Fig. 5.3). 
This receptor interacts with EGF and similar ligands, regulating cell development, mor-
phogenesis, regeneration, and tumorigenesis.



The PDGFR group consists of several molecules, including PDGFRα, PDGFRβ, CSF1R, 
KIT/SCFR, FLK2, and FLT3. Each of these receptors is composed of fi ve IgD-like domains 
in the extracellular domains (Fig. 5.3). The intrinsic protein tyrosine kinase domain is split 
into two parts by an intervening segment. These receptors play a critical role in regulating 
the development of connective tissue cells and vascular smooth muscle cells.

The insulin receptor group includes three members: insulin receptor, insulin growth 
factor (IGF)1 receptor, and IRR, which are present in the form of dimers linked by disul-
fi de bonds (Fig. 5.3). These receptors regulate processes related to cell survival.

The VEGFR group includes three members, including VEGFR1, VEGFR2, and 
VEGFR3, which are characterized by the presence of seven Ig-like domains in the extra-
cellular domain (Fig. 5.3). These receptors are expressed primarily in vascular endothelial 
cells and regulate the development of endothelial cells, as well as angiogenesis and 
vasculogenesis.

The FGFR group consists of FGFR1, FGFR2, FGFR3, and FGFR4. The extracellular 
region contains three Ig-like domains (Fig. 5.3). These receptors mediate the development 
and morphogenesis of a variety of cell types in connective tissues and the cardiovascular 
system.

The nerve growth factor receptor group is composed of three members, including TrkA, 
TrkB, and TrkC. The extracellular domain of these receptors contains a LRD domain and 
two Ig-like domains, and the intracellular region contains a single protein tyrosine kinase 
domain (Fig. 5.3). These receptors are expressed in neurons and neural glial cells and 
play important roles in regulating the development and morphogenesis of nerve cells.

The HGFR group is composed of two members: Met and Ron. These receptors are 
expressed primarily in hepatocytes and also in other epithelial cells. The extracellular 
domain of the receptor is composed of a Sema (semaphorin) domain, a PSI (plexin, sema-
phorin, and integrin) domain, and four Ig-like domains and the intracellular domain con-
tains a single-protein tyrosine kinase domain (Fig. 5.3). HGF receptors regulate the 
development and regeneration of the liver and other epithelial tissues.
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Figure 5.3. Schematic representation of growth factor receptors. Sema: semaphorin domain. Ig: 
immunoglobulin domain. PSI: plexin, semaphorin, and integrin domain. SAM: sterile alpha motif 
(based on bibliography 5.2).
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The Eph receptor group includes at least 14 members, EPHA1 (8 members) and EPHB1 
(6 members), and interacts with various types of ephrin. A typical Eph receptor contains 
two fi bronectin 3 domains in the extracellular region and a tyrosine kinase domain in the 
cytoplasmic region. The cytoplasmic region also contains a SAM (sterile α motif) (Fig. 
5.3). These receptors are expressed primarily in nerve cells and vascular endothelial cells, 
and play a critical role in the regulation of cell migration and morphogenesis.

Most receptors listed above interact with intracellular signaling molecules, including 
Src homology 2 domain-containing molecules and adapter proteins, leading to activation 
of a mitogenic signaling cascade composed of mitogen-activated protein kinase kinase 
kinases (MAPKKKs), mitogen-activated protein kinase kinases (MAPKKs), and mitogen-
activated protein kinases (MAPKs). These molecules regulate cell proliferation, differen-
tiation, and migration.

Signaling Mechanisms

The activation of protein tyrosine kinase receptor signaling pathways begins with the 
binding of extracellular ligands to the protein tyrosine kinase receptors (Fig. 5.4). These 
receptors undergo a dimerization process on the interaction with ligands, a common 
mechanism for activating the protein tyrosine kinase receptor signaling pathways. For 
various groups of protein tyrosine kinase receptors, there exist different forms of dim-
erization. For example, PDGF receptors are dimerized into a symmetric structure on the 
binding of a disulfi de-bonded PDGF dimeric complex (Fig. 5.4). In contrast, EGF recep-
tors undergo conformational changes in response to EGF binding, forming receptor–
receptor complexes. The dimerization of receptors brings the intracellular domains of the 
two receptors together, a critical process for initiating autophosphorylation of the protein 
tyrosine kinase domains on tyrosine residues.

The autophosphorylation of a receptor protein tyrosine kinase activates the tyrosine 
kinase domain, leading to the activation of downstream signaling molecules, sucs as 
Src homology (SH)2 domain-containing protein tyrosine kinases and adapter proteins. 

  PDGF dimer

PDGF receptors

              Cell 
         membrane

Inactive Active

  PDGF receptor 
  tyrosine kinase

Figure 5.4. Schematic representation of the interaction of platelet-derived growth factor (PDGF) 
with PDGF receptor. A PDGF molecule forms a dimer with another PDGF molecule (e.g., PDGF-
AA and PDGF-BB). A PDGF dimer can interact with two PDGF receptors, causing crosslink 
between the two PDGF receptors and autophosphorylation of the receptor protein tyrosine kinase 
in the cytoplasmic domain (based on bibliography 5.2).



A typical example of SH2 domain-containing kinases is the Src protein tyrosine 
kinase. The molecule possesses intrinsic enzymatic kinase activities and can induce phos-
phorylation on substrate proteins. Adapter proteins are proteins that serve as linkers 
between receptor protein kinases and downstream signaling molecules. Typical examples 
of adapter proteins include Grb2/sos, Crk, Nck, and Shc (these and other examples are 
listed in Table 5.1). These molecules do not possess intrinsic enzymatic kinase 
activities.

The interaction of an autophosphorylated receptor tyrosine kinase with a SH2 domain-
containing kinase or an adapter protein is a critical process for signal transduction. A 
phosphorylated tyrosine residue in the receptor tyrosine kinase can serve as a docking 
site for the SH2 domain of signaling molecules, which is organized into a pocket-like 
structure specifi c for interaction with a phosphorylated tyrosine. Each receptor tyrosine 
kinase is capable of interacting with multiple SH2 domain-containing molecules at various 
tyrosine sites. For example, the PDGF receptor tyrosine kinase contains about 12 tyrosine 
residues that can be phosphorylated within the intracellular domain (11 are outside and 1 
is within the tyrosine kinase). Some of these phosphorylated tyrosine residues serve as 
docking sites for SH2 domain-containing tyrosine kinases, such as Src, GAP, SHP2, and 
PLCγ, and others serve as docking sites for adapter signaling proteins, such as Shc, Nck, 
and Grb2/Sos. The phosphorylated tyrosine at site 581 (pY581) can interact with Src and 
Shc, pY740 can interact with Shc and PI3-kinase, pY751 can interact with PI3-kinase and 
Nck, and pY771 can interact with GAP and Shc. The interaction of the tyrosine kinase 
domain with downstream SH2 domain-containing molecules activates downstream signal-
ing molecules, leading to activation of mitogenic cellular activities, such as cell prolifera-
tion, differentiation, and migration. (See Table 5.2.)

Although different tyrosine kinase receptors are present in the cell membrane and 
responsible for transducing distinct extracellular signals into the cell, there are common 
mechanisms of action. Here, the PDGF receptor is used as an example to demonstrate 
how the protein tyrosine kinase transduces PDGF signals into intracellular signaling 
pathways (Fig. 5.5). On the binding of PDGF ligands, PDGF receptors undergo dimeriza-
tion, inducing autophosphorylation of the PDGF receptor tyrosine kinase domain. The 
activated tyrosine kinase domain recruits the adapter protein complex Grb2/Sos to the 
pY 716 site of the protein tyrosine kinase. Grb2/Sos activates the Ras protein by stimulat-
ing the substitution of GTP for GDP in the Ras protein. Activated Ras induces the 
activation of at least two cascades of signaling molecules, including the extracellular 
signal-regulated protein kinase (ERK)1/2 cascade and the c-Jun N-terminal kinase/
stress-activated protein kinase (JNK/SAPK) cascade. Both pathways are collectively 
known as the mitogen-activated protein kinase (MAPK) pathways.

For the ERK1/2 pathway, Ras activates several protein kinases including Raf-1, A-Raf, 
and B-Raf, members of the mitogen-activated protein kinase kinase kinase (MAPKKK) 
family. The Raf kinases phosphorylate MAPK/ERK kinase (MEK)1/2, members of the 
MAPKK family. MEK1/2 in turn phosphorylates the tyrosine and threonine residues of 
ERK1/2, which is a protein complex belonging to the MAPK family. Activated ERK1/2 
can translocate from the cytoplasm to the nucleus, where it activates transcriptional factors 
such as c-Fos, cAMP response element binding protein (CREB), early growth response 
(Egr)1, and Elk1, initiating the expression of mitogenic genes.

For the JNK/SAPK pathway, Ras can activate MEK kinase (MEKK) 1, 2, and 3, which 
are members of the MAPKKK family, possibly via the mediation of Rac/Cdc42 and p21-
activated protein kinase (PAK). Activated MEKK 1, 2, and 3 phosphorylate MEK4, a 
member of the MAPKK family. MEK4 in turn phosphorylates JNK/SAPKs, which belong 
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to the MAPK family. Activated JNK/SAPKs can translocate from the cytoplasm to the 
cell nucleus and activate transcriptional factors c-Jun, activating transcription factor 
(ATF)2, and Elk1. These transcriptional factors interact with corresponding cis-elements 
in target genes, initiating mitogenic mRNA transcription.

It is important to note that, in addition to the stimulatory effect on transcriptional 
factors as described above, c-Fos activated by ERK1/2 and c-Jun activated by JNK/SAPKs 

Growth factors

                 Receptors

              Cell 
         membrane

  Receptor 
  tyrosine kinase

P P

                Grb2/SOS

      GDP     GDP       GTP     GTP

           Raf-1          MAPKKK

          ERKK            JNKK

        ERK1/2            JNK

             CREB, Egr-1, or Elk-1             CREB, Egr-1, or Elk-1

5' 3'
3' 5'

  Nucleus 
membrane

Cis-elements

ATP

ADP

ATP

ATP

ADP

ADP

ADP

ATP

Figure 5.5. Schematic representation of protein tyrosine kinase receptor-mediated cell signaling 
(based on bibliography 5.2).
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can form heterodimers and homodimers, known as activating proteins (AP)1. AP1 serves 
as a transcriptional factor, which interacts with AP1-specifi c cis elements and regulates 
the expression of mitogen genes. In addition to the ERK1/2 and JNK/SAPK pathways, 
there are several other pathways, which transduce signals from protein tyrosine kinase 
receptors. These include the p38 MAPK, ERK3, ERK5, and ERK6 pathways. Although 
different signaling molecules are involved, these pathways follow hierarchical orders 
similar to the ERK1/2 and JNK/SAPK pathways. (See Table 5.3.)

After extracellular ligand signals are transduced into the cell via corresponding protein 
tyrosine kinase receptors, the ligand–receptor complexes are clustered and internalized 
via endocytosis, resulting in the formation of endosomes. Within the endosomes, the 
ligands are dissociated from the receptors. The dimeric receptors are also split into mono-
mers. The receptor tyrosine kinases are dephosphorylated by phosphatases. Monomeric 
receptors are recycled back to the cell membrane for further use.
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NONRECEPTOR TYROSINE KINASE-MEDIATED CELL SIGNALING

Structure and Function [5.3]

Nonreceptor tyrosine kinases belong to a group of cytoplasmic tyrosine kinases that are 
attached to the cell membrane but are not intrinsic kinases of any cell membrane recep-
tors. The Src family protein kinases are typical nonreceptor tyrosine kinases that have 
been well characterized. The Src protein was originally discovered in the Rous sarcoma 
retrovirus by Dr. Peyton Rous in 1911, for which Dr. Rous won the Nobel Prize in 1966. 
The viral Src is referred to as v-Src, which is responsible for the induction of mesodermal 
cancers. Further work has demonstrated that a gene similar to the v-Src gene exists in 
chickens and mammals. The protein encoded by this gene is defi ned as c-Src (cellular 
Src) in chicken and mammalian cells. In normal cells, the c-Src protein has been shown 
to regulate cell proliferation and differentiation, contributing to the control of morpho-
genesis during development. Investigations with molecular approaches have revealed a 
number of protein tyrosine kinases that are similar to Src in structure and function. These 
include Yes, Fgr, Lck, Fyn, Yrk, Hck, Lyn, and Blk, which are defi ned as members of the 
Src family. Among these proteins, Src, Fyn, Yes, and Yrk are expressed in most cell types, 
whereas others are expressed primarily in hematopoietic cells. (See list in Table 5.4.)

The Src family proteins are characterized by the presence of several distinct domains, 
including an N-terminal domain with one or more acylation sites, a Src homology (SH)3 
domain, a SH2 domain, a catalytic kinase domain, and a C-terminal regulatory domain 
with a tyrosine at location 527 (Tyr527). The N-terminal acylation sites anchor the protein 
to the cell membrane via a myristoyl group (Fig. 5.6), the SH3 and SH2 domains are 
capable of binding to praline-rich peptides and phosphorylated tyrosine residues, respec-
tively, and the C-terminal tyrosine residue regulates the activity of the Src kinases.

Signaling Mechanisms [5.4]

In the quiescent state, the activity of the Src family tyrosine kinases is suppressed mostly 
as a result of phosphorylation of the C-terminal tyrosine residue Tyr527. The phosphoryla-
tion of Tyr527 is induced by the Csk kinase. The phosphorylated tyrosine (pTyr527) 
interacts with the SH2 domain of the same molecule. This interaction renders the SH2 
domain of the Src kinase incapable of binding to a phosphorylated tyrosine from a stimu-
latory factor (Fig. 5.6).

A Src tyrosine kinase can be activated under several conditions. First, dephosphoryla-
tion of the C-terminal tyrosine (Tyr527) by a protein tyrosine phosphatase prevents the 
interaction of the C-terminal tyrosine with the SH2 domain and allows the access of a 
stimulatory factor to the SH2 domain of the Src tyrosine kinase, thus inducing Src activa-
tion. However, protein tyrosine phosphatases specifi c to the C-terminal tyrosine residue 
have not been identifi ed. Second, the presence of proteins with phosphorylated tyrosine 
residues may competitively bind the SH2 domain of the Src tyrosine kinase, thus facilitat-
ing Src activation. A number of growth factor receptors, such insulin-like growth factor 
receptor, platelet-derived growth factor receptor, and epidermal growth factor receptor, 
contain tyrosine residues in their intracellular domains. Once activated by the binding of 
growth factors, these tyrosine residues can be autophosphorylated and can serve as docking 
sites for SH2 domain-containing Src kinases, recruiting the Src kinases to the phosphory-
lated tyrosine residues. The recruitment process activates Src kinases (Fig. 5.7).
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182  CELL SIGNALING PATHWAYS AND MECHANISMS

Previous investigations have shown that a treatment of quiescent fi broblasts with PDGF 
induces the activation of the Src tyrosine kinase, suggesting that the PDGF receptor may 
stimulate the phosphorylation of the Src kinase. Further investigations have demonstrated 
that several growth factor receptors, including the PDGF receptor, EGF receptor, basic 
FGF receptor, and colony-stimulating factor 1 receptor, are capable of interacting with the 
Src family tyrosine kinases, including Src, Fyn, and Yes. A Src kinase can interact with 
a growth factor receptor at specifi c sites of phosphotyrosine residues. For example, acti-
vated PDGF receptor can recruit Fyn to phosphotyrosines 579 and 581, which are located 
in the juxtamembrane region of the receptor. It is now clear that the formation of 
receptor–Src kinase complexes is a critical process for the activation of PDGF-induced 
cellular activities. Phosphorylated Src tyrosine kinases can activate a number of substrate 
proteins, including GTPase activating protein, focal adhesion kinase (FAK) (Table 5.5), 
and the adaptor protein Shc. These Src target proteins play critical roles in the regulation 
of mitogenic cellular activities.

The Src tyrosine kinases also play a role in signal transduction initiated from the 
extracellular matrix. Cells can interact with extracellular matrix components via integrins, 
a family of heterodimeric transmembrane receptors. Integrins can cluster with a number 

         p

           N

            C

        SH3

         Kinase

Inactive Active

          SH2

          pY527

           N

            C

        SH3

         Kinase

          SH2

          Y527Y
Y

Figure 5.6. Schematic representation of the Src protein tyrosine kinase anchored to the cytoplas-
mic side of the cell membrane (based on bibliography 5.4).
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          Y527
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  tyrosine kinase

                           P        SH2

           PDGF
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Figure 5.7. Activation of the Src protein tyrosine kinase (based on bibliography 5.4).



TABLE 5.5. Characteristics of FAK*

   Molecular
  Amino Weight
Proteins Alternative Names Acids (kDa) Expression Functions

Focal adhesion  FAK, focal adhesion  1074 122 Ubiquitous Found at cell
 kinase  kinase 1 (FAK1),      focal adhesion
  protein tyrosine     contacts, interacting
  kinase 2, and     with membrane
  pp125FAK     integrins, mediating
      cell adhesion
      to extracellular
      matrix, and
      regulating cell
      polarity, motility,
      and proliferation

*Based on bibliography 5.4.

of molecules, including talin, vinculin, actinin, paxillin, and focal adhesion kinase, 
forming a cell membrane structure known as the focal adhesion contact. Among the focal 
contact molecules, focal adhesion kinase plays a key role in regulating cell adhesion, 
migration, and proliferation. On interaction of integrins with extracellular matrix, focal 
adhesion kinase becomes autophosphorylated on a tyrosine residue, establishing a docking 
site for SH2 domain-containing proteins. Src and Fyn, which contain a SH2 domain, can 
bind to the phosphorylated tyrosine residue of focal adhesion kinase. Bound Src kinases 
can phosphorylate additional tyrosine residues in the focal adhesion kinase molecule, 
further activating focal adhesion kinase and creating docking sites for other SH2 domain-
containing molecules. An important molecule that binds to focal adhesion kinase is the 
Grb2 adaptor protein. This molecule forms a complex with Sos, which activates the Ras–
MAPK signaling pathway (see page 151). Thus, the Src tyrosine kinase signaling pathway 
is linked to the MAPK signaling pathway via focal adhesion kinase. These observations 
demonstrate that, through interactions with growth factor receptors and integrins, the Src 
family tyrosine kinases participate in the regulation of cell proliferation, adhesion, and 
migration.

SERINE/THREONINE KINASE-MEDIATED CELL SIGNALING

Serine/threonine protein kinases are enzymes that catalyze the transfer of the γ-phosphate 
of an ATP molecule to the OH group of the serine and threonine residues of substrate 
proteins. Protein serine/threonine kinases exist in inactive and active forms. In unstimu-
lated cells, most protein kinases are inactive. On stimulation by specifi c signals, protein 
kinases can be activated by several mechanisms. These include activator binding, phos-
phorylation of activation sites, and dephosphorylation of inhibitory phosphates. There are 
a large number of serine/threonine protein kinases, among which receptor serine/threo-
nine kinases, protein kinase A (cAMP-dependent protein kinase or PKA), and protein 
kinase C (Ca2+-dependent protein kinase or PKC) have been extensively studied and well 
characterized. These kinases are used as examples in this section to demonstrate the 
mechanisms of serine/threonine kinase-mediated cell signaling.
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Serine/Threonine Kinase Receptors [5.5]

Serine/threonine kinase receptors are transmembrane receptors that contain an intrinsic 
serine/threonine-specifi c kinase, which is located in the cytoplasmic domain of the recep-
tors. These receptors can interact with several growth factors, including transforming 
growth factor (TGF)β, bone morphogenetic proteins, and activins. A typical serine/threo-
nine receptor contains two subunits: receptor type I and type II. Both subunits are required 
for the activation of the receptor. An activated receptor serine/threonine kinase can lead 
to activation of a cascade of intracellular signaling molecules, including Smad 2, 3, and 
4, and adaptor proteins. Smads are a family of proteins homologous to the products of the 
Drosophila gene mothers against decapentaplegic (Mad) and the C. elegans gene Sma. 
These proteins form complexes and serve as transcriptional factors and regulate the 
expression of target genes.

The signaling mechanisms of serine/threonine kinase receptors are similar among 
transforming growth factor (TGF)β, bone morphogenetic proteins, and activins. Here, the 
signal transduction pathway for TGFβ is used to demonstrate the signaling mechanisms 
(Fig. 5.8). TGFβ is capable of binding to the TGFβ receptor type II (serine/threonine 

 PS  PS

    Smad2/Smad3

               P

               P

        SARA

Smad2/Smad3
SARA complex

SS

                 P
               P

 P

        Smad4          Smad4      Smad2/Smad3/
    Smad4 complex      

        TGF β

TFG β 
receptor
type II

TGF β 
receptor
type I

           SARA

3'

5'

  Nucleus 
membrane

Cis-elements
         5'

            3'

Figure 5.8. Schematic representation of transforming growth factor (TGF)-β-induced cell signal-
ing (based on bibliography 5.5).



kinase receptor type II). The binding of TGFβ induces the association of the TGFβ recep-
tor type I (serine/threonine kinase receptor type I) with the type II receptor, allowing the 
phosphorylation of the type I receptor by the type II receptor kinase. A complex of Smads, 
including Smad2 and Smad3, is activated in response to the activation of the TGFβ recep-
tors and initiate interaction with an adapter protein, known as SMAD anchor for receptor 
activation (SARA), forming a protein complex. The complex of Smad2, Smad3, and 
SARA is recruited to TGFβ receptor type I, which in turn phosphorylates the Smad 
complex. Phosphorylated Smad complex then dissociates from the type I receptor and 
SARA, and binds to another Smad molecule, known as Smad4, which is a critical molecule 
mediating the translocation of the Smad complex. The Smad2/Smad3/Smad4 complex 
serves as a transcriptional factor, translocates from the cytoplasm to the cell nucleus, 
interacts with target genes, and induces gene expression. The TGFβ-activated Smad sig-
naling pathways (see list in Table 5.6) negatively regulate cell proliferation and differentia-
tion by activating inhibitors of cyclin-dependent kinases, in resulting cell cycle arrest in 
the G1 phase. Activation of the Smad signaling pathways also induces cell apoptosis.

Protein Kinase A [5.6]

Protein kinase A (PKA) (see list of isoforms in Table 5.7) is the primary target of cAMP 
and is involved in the regulation of sugar and lipid metabolism, ion channel activities, and 
nerve synaptic transduction. In unstimulated cells, protein kinase A exists in the form of 
tetramer, composed of two regulatory R subunits and two catalytic C subunits. The cata-
lytic C subunits are masked by the R subunits. In response to stimulation, activated cAMP 
can bind to the R subunits, resulting in the dissociation of the tetramer into an R—R 
dimer, which is bound to four cAMP molecules, and two free C monomers. The C mono-
mers are catalytically active and can phosphorylate transcription factors, such as CREB 
(cyclic AMP response element-binding protein). Phosphorylated transcriptional factors 
can translocate from the cytoplasm to the cell nucleus, bind to target gene promoters, and 
stimulate the transcription of target genes (Fig. 5.9).

In mammalian cells, there are four types of R-subunit isoforms, including RIα, RIβ, 
RIIα, and RIIβ, and three types of C isoforms, including Cα, Cβ, and Cγ. These isoforms 
mediate distinct biochemical activities, contributing to cell- and tissue-specifi c functions. 
The C isoforms contain serine/threonine phosphorylation sites. These sites can be auto-
phosphorylated on stimulation. For all protein kinase A isoforms, there exist a consensus 
sequence, RRXSX, which catalyzes the phosphorylation of substrate proteins.

The activity of protein kinase A is regulated by several mechanisms. These include 
alterations in cAMP concentration, phosphorylation on the serine/threonine residues of 
protein kinase A, and binding of inhibitor proteins. It is important to note that the cAMP 
concentration is a primary factor that controls the activity of protein kinase A. An increase 
in cAMP concentration induces activation of protein kinase A. Phosphorylation of protein 
kinase A enhances the activity of the kinase, whereas the binding of inhibitor proteins 
exerts an opposite effect.

Protein Kinase C [5.7]

Protein kinase C (calcium-dependent protein kinase or PKC) (see list of isoforms in Table 
5.8) is a critical signaling molecule, which is involved in the regulation of cellular activi-
ties, including cell proliferation, migration, apoptosis, and secretion. Protein kinase C can 
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188  CELL SIGNALING PATHWAYS AND MECHANISMS

be activated by signals from the receptor protein tyrosine kinase pathways and the G-
protein-linked receptor pathways. Protein kinase C represents a family of at least 12 sub-
types of protein kinase, including PKCα, βI, βII, γ, δ, ε, η, θ, ζ, ι, μ, and ν. These subtypes 
exhibit different distributions in tissues. The α, δ, and ζ subtypes are widely distributed 
among almost all tissues, whereas others are found in specialized tissues.

Various subtypes of protein kinase C exhibit different characteristics in regulatory 
mechanisms. Some subtypes, such as PKCα, βI, βII, and γ, can be activated by diacylglyc-
erol and Ca2+, whereas others such as PKCζ and PKCι cannot be activated by these factors. 
A common feature for most PKC subtypes is the affi nity and responsiveness to phorbol 
esters, which induce PKC activation. It is thought that tumor promoting esters, such as tet-
radecanoyl phorbol acetate (TPA), stimulate cell proliferation via the activation of PKC.
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Figure 5.9. Schematic representation of activation of protein kinase A (PKA). Based on bibliog-
raphy 5.6.
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190  CELL SIGNALING PATHWAYS AND MECHANISMS

The activity of PKC is mediated by several mechanisms, including phosphorylation, 
cell membrane association, and Ca2+ and diacylglycerol binding (see page 217). Protein 
kinase C can be phosphorylated on the serine/threonine and tyrosine residues, a critical 
process inducing PKC activation. Such a process can be catalyzed by phosphoinositide-
dependent protein kinases. PKC association with cell membrane is another approach for 
inducing PKC activation. Such a process is mediated by Ca2+ and diacylglycerol. Binding 
of Ca2+ and diacylglycerol to PKC promotes PKC association to cell membrane and thus 
activates PKC.
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PROTEIN PHOSPHATASE-MEDIATED CELL SIGNALING

Cellular activities are often regulated by counterbalanced stimulatory and inhibitory 
mechanisms. Protein phosphorylation and dephosphorylation are two typical mechanisms 
that control the activation and suppression of signaling molecules. These two processes 
are regulated by protein kinases and protein phosphatases, respectively. As discussed on 
page 151–190, the phosphorylation of mitogenic signaling proteins by protein kinases 
initiates and enhances cellular activities such as proliferation and migration. In contrast, 
the dephosphorylation of mitogenic signaling proteins by protein phosphatases elicits 
inhibitory effects on cellular activities. The stimulatory effects mediated by protein kinases 
and the inhibitory effect mediated by protein phosphatases coordinately control the mito-
genic activities of cells.

Protein phosphatases are classifi ed into three groups based on the type and specifi city 
of substrates: protein serine/threonine phosphatases, protein tyrosine phosphatases, and 
dual-specifi city protein phosphatases. All these enzymes reverse the action of protein 
kinases. Protein serine/threonine phosphatases induce hydrolysis of phosphate esters or 
dephosphorylation on the serine/threonine residues of substrate proteins. Protein tyrosine 
phosphatases hydrolyze phosphate esters or dephosphorylation on tyrosine residues. The 
dual-specifi city phosphatases catalyze phosphate ester hydrolysis on the serine/threonine 
as well as tyrosine residues. These protein phosphatases are briefl y discussed here.

Protein Serine/Threonine Phosphatase-Mediated Cell Signaling [5.8]

Structure and Function. Protein serine/threonine phosphatases (see Table 5.9) are 
enzymes that remove the phosphate esters from the serine and threonine residues of sub-
strate proteins via hydrolysis. Several families of protein serine/threonine phosphatases 
have been identifi ed in mammalian cells. Among these families, four have been exten-
sively studied and well characterized. These include protein phosphatases (PP) 1, 2A, 2B, 
and 2C. In structure, a typical protein serine/threonine phosphatase is composed of one 
or more regulatory domains and a catalytic domain. The phosphatase 1, 2A, and 2B fami-
lies possess a similar structure in the catalytic domain, which contains several unique 
motifs, including the -GDxHG-, -GDxVDRG-, and -GNHE- motifs, in the N-terminal 
half of the molecule. The activity of these phosphatases is dependent on two metal ions: 
Fe2+ and Zn2+. The unique motifs listed above play a critical role in the binding of these 
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metal ions. The PP2C family is characterized by the presence of several motifs, including 
the ED- and DG-rich motifs. The action of this phosphatase family is dependent on the 
metal ions Mg2+ and Mn2+.

Protein phosphatases exert inhibitory effects on cellular activities induced by protein 
kinases. When a protein kinase initiates a mitogenic stimulatory effect, which promotes 
cell proliferation and migration, the activation of a corresponding protein phosphatase 
results in the suppression of the mitogenic effect. On the other hand, when protein phos-
phorylation elicits an inhibitory effect on a cellular activity, dephosphorylation by a protein 
phosphatase exerts an opposite effect. Thus, protein phosphatases and protein kinases 
coordinately regulate cellular activities, ensuring appropriate initiation and termination of 
cellular activities.

Signaling Mechanisms. The activity of protein serine/threonine phosphatases is gener-
ally regulated via several processes, including phosphorylation, activator binding, and 
inhibitor binding. The phosphorylation of phosphatases is a major mechanism of phos-
phatase activation. The regulatory and catalytic domains of a phosphatase can be phos-
phorylated by specifi c protein kinases. Such a process induces changes in the localization 
and catalytic activity of the phosphatase. The binding of activators to a phosphatase 
induces phosphatase activation, whereas the binding of inhibitors elicits an opposite effect. 
The phosphorylation and binding of activators and inhibitors are common regulatory 
mechanisms for protein serine/threonine phosphatases. Each phosphatase may possess 
distinct features in action and regulation.

Protein Tyrosine Phosphatase-Mediated Cell Signaling

Structure and Function [5.9]. Protein tyrosine phosphatases (PTPs) (see Table 5.10) 
are enzymes that catalyze dephosphorylation on the tyrosine residues of substrate proteins. 
The effect of PTPs counterbalances that of protein tyrosine kinases, which induces tyro-
sine phosphorylation. Tyrosine phosphorylation and dephosphorylation are two critical 
processes that coordinately regulate cell survival, proliferation, differentiation, migration, 
and adhesion. In human cells, there exists a family of about 100 protein tyrosine phos-
phatases. These phosphatases are characterized by the presence of a signature motif, 
HCxxGxxR[S/T], where H, C, G, R, S, and T are histidine, cysteine, glycine, arginine, 
serine, and threonine, respectively, and x represents any amino acids. This signature motif 
constitutes the center of the catalytic domain of PTPs. The cysteine residues play a critical 
role in the catalytic activity of PTPs. The arginine residues are responsible for interaction 
with phosphate groups. Both cysteine and arginine residues are well preserved among 
PTPs and are essential for the function of the enzymes. In addition to these two amino 
acids, there is another invariant amino acid, aspartic acid, which is located in a confor-
mationally fl exible loop and plays a critical role in regulating the catalytic activity of 
PTPs.

Protein tyrosine phosphatases possess distinct molecular structures and can act on a 
variety of substrate proteins. Based on target amino acid residues, PTPs can be classifi ed 
into two subfamilies: classical tyrosine-specifi c PTPs, which recognize and act on phos-
photyrosine residues in substrate proteins, and dual-specifi city phosphatases (DSPs), 
which recognize and act on phosphotyrosine as well as phosphoserine and phosphothreo-
nine residues.
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204  CELL SIGNALING PATHWAYS AND MECHANISMS

The subfamily of classical tyrosine-specifi c PTPs is composed of 17 known members. 
Within this subfamily, 9 PTPs are present in the cytoplasm, which are defi ned as 
nontransmembrane PTP subtypes, whereas the remaining 8 PTPs are transmembrane 
molecules that are similar in structure to cell membrane receptors. Most classical non-
transmembrane PTPs contain the signature motif as described above within the cataly-
tic domain located near the C-terminus, whereas two PTP subtypes, including PTP1B 
and BDP1, possess the signature motif in the catalytic domain near the N-terminus. In 
addition to the signature motif, each subtype of PTP contains a characteristic domain. For 
instance, SH2 domain-containing protein tyrosine phosphatase-1 (SHP1) and SH2 domain-
containing protein tyrosine phosphatase-2 (SHP2) contain two Src homology 2 domains. 
The type 9 nonreceptor protein tyrosine phosphatase (MEG2) contains a cellular retinal-
dehyde binding protein-like domain. For the transmembrane receptor-like PTPs, the cata-
lytic domain is located near the C-terminus on the intracellular side. The extracellular 
region of the transmembrane PTPs contain various domains such as fi bronectin III-like 
repeats, carbonic anhydrase-like domains, RGDS adhesion recognition motifs, and gly-
cosylated domains, depending on the subtypes of PTPs.

All nontransmembrane and transmembrane PTPs can specifi cally recognize phospho-
tyrosine residues in substrate proteins. The specifi city of PTPs is determined by the 
structure and conformation of the active-site cleft and the signature motif of the enzyme. 
Tyrosine-specifi c PTPs possess a ∼9Χ deep active-site cleft. Such a structure allows only 
a substrate phosphotyrosine to reach the cysteine nucleophile at the base of the active-site 
cleft of a PTP, initiating dephosphorylation of the substrate phosphotyrosine, while phos-
phoserine/phosphothreonine cannot reach the cysteine nucleophile because of a structural 
mismatch and thus cannot be dephosphorylated. These observations demonstrate how 
PTPs selectively dephosphorylate substrate proteins.

The subfamily of dual-specifi city phosphatases is composed of a large number of 
members, which exhibit a greater level of structural diversity compared with the classi-
cal PTPs. While the signature motif is similar between the two subfamilies of PTPs, 
other structures are signifi cantly different. In particular, the active-site cleft of the dual-
specifi city phosphatases is more widely open and shallower than that of the classical PTPS, 
rendering dual-specifi city phosphatases accessible by not only phosphotyrosine but also 
phosphserine/threonine residues. This feature suggests a mechanism for the selection of 
both phosphserine/threonine and phosphotyrosine by dual-specifi city phosphatases. 
According to their molecular structure, dual-specifi city phosphatases can be divided into 
three groups: VH1-like dual-specifi city phosphatases, myotubularins and cdc25 phospha-
tases. These phosphatases recognize specifi c target proteins. For instance, mitogen-
activated protein kinase phosphatases (MKPs), which belong to the group of VH1-like 
dual-specifi city phosphatases, dephosphorylate mitogen-activated protein kinases, which 
are critical signaling molecules regulating cell survival, proliferation, and migration. The 
cdc25 phosphatases induce dephosphorylation of cyclin-dependent kinases, which regu-
late cell mitosis.

As discussed above, PTPs exhibit high specifi city to substrate proteins. A “substrate 
trapping” approach has been developed and used for identifying individual substrate pro-
teins for PTPs. A mutant form of a PTP can be generated to suppress the catalytic activity 
of the enzyme, but keep the substrate-binding domain functional. When expressed in the 
cell, the mutant PTP can still bind to a specifi c phosphotyrosine-containing substrate, but 
cannot initiate dephosphorylation. The complex of the mutant PTP and substrate can be 
immunoprecipitated, and the associated substrate can be identifi ed by immunoblotting or 



amino acid sequence analysis. The activity of the substrate can be assessed by immunob-
lotting with an antiphosphotyrosine antibody. A number of PTP substrates have been 
identifi ed by the “substrate trapping” approach. Examples include p130cas and VCP (p97/
CDC48) as substrates for PTP-PEST and PTPH1, respectively.

Signaling Mechanisms [5.10]. Structural studies have suggested potential mechanisms 
for the action of PTPs. Once a PTP is engaged with a protein substrate, the cysteine residue 
(serving as a nucleophile) in the active site of the enzyme interacts with the phosphate 
group of a substrate phosphotyrosine, forming an intermediate complex of cysteine and 
phosphate. The ester bond between the phosphate group and the substrate tyrosine residue 
is cleaved and an aspartic acid residue donates a proton (H) to the cleaved substrate tyro-
sine residue, resulting in tyrosine dephosphorylation. At the same time, the aspartic acid 
residue in the conformationally fl exible loop, together with a glutamine residue, activates 
a water molecule and initiates hydrolysis of the cysteine–phosphate intermediate, resulting 
in the dissociation of the phosphate group from the enzyme. This is a general mechanism 
of catalytic action for most members of the PTP family.

The catalytic activity of PTPs is regulated by a variety of factors, depending on 
the structure of PTPs and signaling context. Transmembrane PTPs, which are similar to 
cell membrane receptors in structure, may be directly activated by extracellular ligand 
binding. For example, soluble pleiotrophin can interact with and activate the transmem-
brane protein tyrosine phosphatase PTPζ/β, and heparan sulfate proteoglycans can acti-
vate PTPσ. Some of the transmembrane PTPs are similar in structure to cell membrane 
adhesion molecules, suggesting that these PTPs may be activated via cell–cell interactions. 
In contrast to transmembrane PTPs, nontransmembrane PTPs are activated through the 
mediation of cell membrane receptors and intracellular signaling molecules. In general, 
there are three known mechanisms for the regulation of PTP activities: (1) phosphorylation 
of PTPs, (2) conformational changes in the three-dimensional (3D) structure of PTPs, 
and (3) oxidation of the catalytic cysteine residue of PTPs. These mechanisms are briefl y 
described here.

Phosphorylation is an essential process that induces PTP activation. A typical exam-
ple is the activation of the protein tyrosine phosphatase Src homology (SH)2 domain-
containing tyrosine phosphatase (SHP)1 (Fig. 5.10). SHP1 can interact with the inhibitory 
receptor signal regulatory protein (SIRP)α, also classifi ed as Src homology 2 domain-
containing tyrosine phosphatase substrate (SHPS)1, which is expressed primarily in 
myeloid cells. SIRP α is a transmembrane glycoprotein that transmits inhibitory signals 
through tyrosine phosphorylation of its intracellular immunoreceptor tyrosine-based 
inhibitory motif (ITIM). The phosphorylation of the ITIM, on ligand binding to SIRPα, 
initiates the recruitment of SHP1 to SIRPα, which is known as a substrate of SHP1. The 
recruitment of SHP1 induces phosphorylation of SHP1, which in turn dephosphorylates 
protein kinases, possibly including receptor tyrosine kinases, Src family protein tyrosine 
kinases, phosphatidylinositol 3-kinase, and the Janus family tyrosine kinases. These 
activities potentially suppress infl ammatory and mitogenic cellular activities.

A conformational change in the 3D structure of PTP molecule is another effective 
mechanism that regulates the activity of PTPs. Here, SHP2 is used to demonstrate this 
mechanism (Fig. 5.11). A SHP2 molecule contains two SH2 domains. The N-terminal 
SH2 domain serves as a switch. In the absence of a substrate protein with phosphotyrosine 
residues, the N-terminal SH2 domain blocks the active site of SHP2, inhibiting the activity 
of the enzyme. The binding of SHP2 to a substrate protein induces a conformational 
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Figure 5.10. Signal regulatory protein (SIRP) α-mediated activation of SH2 domain-containing 
protein tyrosine phosphatase (SHP)-1 (based on bibliography 5.10).
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Figure 5.11. Mechanisms of the activation of SH2 domain-containing protein tyrosine phospha-
tase (SHP)-2. (Reprinted from Hof P et al: Crystal structure of the tyrosine phosphatase, Cell 
92:441–50, copyright 1998, with permission from Elsevier.)

change, which removes the inhibitory effect of the N-terminal SH2 domain. This mecha-
nism also applies to SHP1.

Oxidation of cysteine is a mechanism involved in the inhibition of PTPs. The activity of 
PTPs is rapidly suppressed when the mission of the PTPs is accomplished. As discussed 
above, the invariant cysteine residue at the catalytic site of PTPs is critical for the catalytic 
activity. Cysteine is present as a thiolate anion, which renders the residue susceptible to 
oxidation, and can be oxidized to a sulfenic acid form (Cys-SOH) or a disulfi de form 
(Cys-S—S—), which inhibit the catalytic activity of PTPs. This process is reversible and is 
an effective mechanism for temporarily inhibiting the activity of PTPs. Oxidation of PTPs 
can be initiated in response to the binding of growth factors and hormones, such as epider-
mal growth factor and insulin, to corresponding receptors, which activate tyrosine phos-
phorylation-dependent signaling pathways. The suppression of PTP activities further 
enhances the activation of protein tyrosine kinases. These observations suggest that the 
activity of PTPs is controlled in coordination with the activity of protein tyrosine kinases.



CYTOKINE-JAK-STAT-MEDIATED CELL SIGNALING [5.11]

Structure and Function

The JAK–STAT, or Janus tyrosine kinase–signal transducers and activators of transduc-
tion, signaling pathways are molecular cascades that transduce cytokine signals from the 
extracellular space to the cell nucleus. This type of signaling pathway is composed of cell 
membrane and intracellular components, including cytokine receptors, JAKs, and STATs. 
Cytokines are small proteins (15–30 kDa), including interleukins, interferons (α, β, and γ), 
erythropoietin, thrombopoietin, leukemia inhibitor factor, cardiotrophin, oncostatin, gran-
ulocyte colony-stimulating factors, granulocyte macrophage colony-stimulating factors, 
and macrophage colony-stimulating factors. Cytokines are produced and secreted primar-
ily by leukocytes. These molecules participate in the regulation of blood cell differentiation 
and proliferation as well as immune reactions. A cytokine molecule can interact with a 
specifi c cytokine receptor, inducing the activation of the JAK-STAT signaling pathways.

Cytokine receptors are classifi ed into three types based on molecular structure: 
(1) cytokine receptors containing a glycoprotein (gp) 130, such as the interleukin 
(IL) 6 receptor; (2) cytokine receptors containing a β subunit, such as the receptor for 
granulocyte-macrophage colony-stimulating factor; and (3) cytokine receptors containing 
a γ subunit, such as the IL2 receptor. There are four common features for cytokine 
receptors:

1. The extracellular region is similar for most cytokine receptors.

2. There are no intracellular catalytic domains.

3. Most receptors are arranged into complexes from dimers to tetramers.

4. The intracellular region of a cytokine receptor is associated with JAKs, which relay 
signals from cytokine receptors and elicit catalytic activities.

The binding of cytokine to cytokine receptor induces the activation of JAKs, which in 
turn phosphorylate STATs. Phosphorylated STATs serve as transcriptional factors and can 
translocate to the nucleus, inducing gene expression.

There are four types of JAKs in mammalian cells, including JAK1, JAK2, JAK3, and 
Tyk2. The molecular weights of these molecules range from 120 to 140-kDa. Each JAK 
molecule contains 7 functional regions, defi ned as JAK homology (JH) domains 1–7 start-
ing from the C-terminus. The fi rst JAK homology domain, JH1, is a kinase and is able to 
phosphorylate substrates. JH2 is located upstream to JH1. Although JH2 is similar to a 
kinase in structure, it does not possess catalytic function because of the lack of several 
critical amino acid residues. JH2 is thus referred to as a pseudo-kinase domain. JH3 and 
JH4, located upstream to JH2, are similar in structure to the Src homology (SH) 2 domain, 
which can bind to phosphotyrosine residues. Thus, these domains are defi ned as SH2 
domains. All remaining domains, including the N-terminal part of the JH4 domain and 
domains JH5 to JH7, are referred to as four-point-one, ezrin, radixin, moesin homology 
(FERM) domains. These domains mediate the attachment of JAKs to cytokine receptors 
in the cell membrane.

Signaling Mechanisms

JAKs are constitutively associated with cytokine receptors. These molecules are arranged 
in different confi gurations between an inactive (unliganded) state and active (liganded) 
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state. As shown by crystallography, the receptor of the cytokine erythropoietin is com-
posed of two identical molecules, each of which is associated with a JAK2 molecule. In 
an unliganded state, the two erythropoietin receptors of each homodimer are separated 
by approximately 70 Å. In response to the binding of an erythropoietin molecule, the two 
receptors undergo a conformational change, reducing the gap between the two receptors 
from 70 to ∼30 Å. This change also brings together the two JAK2 molecules associated 
with the erythropoietin receptor homodimer, allowing reciprocal phosphorylation between 
the two JAK2 molecules. Phosphorylated JAK2 further activates STATs, leading to tran-
scriptional activities.

STATs are a group of molecules that serve as transcriptional (trans-acting) factors 
for the JAK-STAT signaling pathways. Each STAT molecule contains several domains, 
including a C-terminal transcriptional activation domain, a SH2 domain, a linker domain, 
a DNA-binding domain, a coiled-coil domain, and an N-terminal domain. The SH2 
domain can be recruited to the phosphotyrosine docking site of a phosphorylated JAK 
and can be phosphorylated by the JAK on a tyrosine residue, inducing STAT activation. 

p pp p

Eryth R

JAK2 JAK2

STAT1 STAT1

Nucleus 
membrane

5' 3'

3' 5'
Cis-elements

Eryth

pp

Figure 5.12. Schematic representation of the erythropoietin-mediated JAK-STAT signaling 
pathway (based on bibliography 5.11).
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Two activated STATs then interact between each other at the phosphotyrosine sites of the 
SH2 domains, inducing the formation of a STAT dimer, which serves as a trans-acting 
factor and translocates to the cell nucleus. A STAT dimer can bind to the promoter region 
of a target gene together with other transcription–regulatory factors, initiating gene tran-
scription. An example of STAT activation is shown in Fig. 5.12.

Following gene transcription, the JAK-STAT signaling pathways are deactivated by 
several types of protein, including protein tyrosine phosphatases, suppressors of cytokine 
signaling family proteins, and inhibitors of STAT family proteins. Protein tyrosine phos-
phatases induce dephosphorylation of JAKs, diminishing their activities. A typical 
example of this class is the SH2 domain-containing protein tyrosine phosphatase (SHP)1, 
which can bind and dephosphorylate JAK2. In addition, protein tyrosine phosphatases 
may directly act on STATs, inducing STAT dephosphorylation and deactivation. The sup-
pressors of cytokine signaling family proteins are able to bind to JAKs and block ATP 
binding to the kinases, inhibiting kinase activities. Some proteins of this family, such as 
cytokine-inducible SH2 domain-containing proteins, can directly bind to phosphorylated 
tyrosine residues of JAKs, inhibiting the recruitment and phosphorylation of STATs. The 
third type of JAK-STAT inhibitors, inhibitors of STAT family proteins, can bind to phos-
phorylated STATs and block their interaction with gene promoters, thereby inhibiting 
STAT-induced gene expression. These inhibitory mechanisms counterbalance the cyto-
kine-induced activation of the JAK-STAT signaling pathways, ensuring rapid deactivation 
of these pathways on the accomplishment of the signaling events. (See Table 5.11.)
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G-PROTEIN RECEPTOR-MEDIATED CELL SIGNALING

Structure and Function [5.12]

Cell signaling events regulated by G proteins and G-protein-coupled receptors are referred 
to as G-protein receptor-mediated cell signaling (Table 5.12). G-proteins are guanine 
nucleotide-binding proteins, each composed of three subunits: α, β, and γ (see below). G 
proteins are localized to the cytoplasmic side of the cell membrane and coupled to a class 
of cell membrane receptors, defi ned as G-protein-coupled receptors. These receptors pass 
through the cell membrane back and forth for 7 times, and are thereby called 7-pass trans-
membrane receptors (Fig. 5.13). Several types of extracellular ligands, including hormones, 
growth-related factors, small peptides, and neurotransmitters, can bind to G-protein recep-
tors, initiating activation of the receptors as well as G proteins. In addition, photons and 
odorants can activate G-protein receptors in vision and olfactory cells, respectively.

G proteins exist in two states, inactive and active, and serve as switches for the regula-
tion of several intracellular signaling pathways. Among the three subunits of the G protein, 
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220  CELL SIGNALING PATHWAYS AND MECHANISMS

the α subunit is responsible primarily for regulating the activity of the G-protein. Each α 
subunit is composed of a GTPase, which hydrolyses GTP, and a helical domain, which 
holds a guanine nucleotide, also known as a guanine nucleotide pocket. In an inactive 
state, a GDP molecule is bound to the guanine nucleotide pocket of the α subunit. When 
a G-protein is activated in response to the binding of a ligand to the G-protein receptor, 
the GDP molecule is released, and a GTP is bound to the α subunit (Fig. 5.14). Simultane-
ously, the GTP-bound α subunit is dissociated from the trimeric G protein, forming two 
distinct modules: the GTP-bound α subunit and βγ complex. These modules are able to 
activate downstream signaling pathways. On the completion of signal transduction, the 
GTP molecule with the α subunit is rapidly hydrolyzed by the GTPase associated with 
the α subunit, diminishing the activity of signaling pathways regulated by G proteins.
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Figure 5.13. Schematic representation of the types of G-protein-coupled receptors. (Based on 
Gether U: Endocr Rev 21:90–113, 2000.)
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Figure 5.14. Schematic representation of G-protein activation and deactivation. (Based on bibli-
ography 5.12).



There exist various types of α, β, and γ subunits. To date, about 20 α, 5 β, and 12 γ 
subunits have been found. These subunits can be assembled into a variety of G-protein 
isoforms. Based on the structure of the α subunits, G proteins have been classifi ed into 
four groups: Gs, Gq, Gi/o, and G12/13. Among these G proteins, the fi rst three types have 
been well studied and characterized. The Gs group includes the Gs-proteins and olfactory 
specifi c Golf proteins. These G proteins are referred to as stimulatory G proteins for their 
role in the activation of adenylyl cyclase. The Gq group is composed of Gq, G11, G14, and 
G15 proteins. These proteins activate phospholipase Cβ, a key enzyme that induces the 
activation of protein kinase C (PKC) and phosphatidyl inositol triphosphate signaling 
pathways (described later in this section). The Gi/o group includes a number of members, 
including Gi1, Gi2, Gi3, GoA, GoB, Gz, Gt-rod, Gt-cone, and Ggust. These Gi/o members elicit dif-
ferent effects. Activated Gi1, Gi2, Gi3, GoA, GoB, and Gz inhibit the activity of adenylyl 
cyclase. For such a function, these G proteins are referred to as inhibitory G proteins. 
However, Gi1, Gi2, Gi3 can stimulate the activation of phosphatidylinositol 3-OH kinase γ 
(PI3Kγ). Gt-rod and Gt-cone can activate cGMP-phosphodiesterase (PDE) and are responsible 
for regulating the function of rod and cone photoreceptors, respectively, in retinal vision 
cells. Ggust can activate cGMP-phosphodiesterase and regulate the function of gustatory 
cells. Gi/o proteins are usually sensitive to pertussis toxin, a substance possessing the 
activity of ADP-ribosyl transferase and inducing ADP-ribosylation in Gi/o proteins. Such 
a process suppresses the activity of the Gi/o proteins. 

Signaling Mechanisms [5.13]

The discussion above indicates that each type of G protein mediates distinct signaling 
pathway(s). While it is beyond the scope of this book to cover all G-protein-related 
mechanisms, examples from three major G-protein signaling pathways, including the Gs, 
Gi, and Gq pathways, are discussed briefl y.

Gs proteins are often found in cells undergoing metabolic processes for the breakdown 
of energy-storing molecules, such as triglyceride and glycogen. A typical example is the 
Gs protein coupled to the β-adrenergic receptor (Fig. 5.9). The binding of ligands, such 
as epinephrine and norepinephrine, to the β-adrenergic receptor induces the ejection of 
the bound GDP molecule from the Gs α subunit and the recruitment of a GTP molecule 
to the guanine nucleotide pocket, while the α subunit dissociates from the βγ subunits. 
The free α subunit–GTP complex binds to and activates adenylyl cyclase. Activated adeny-
lyl cyclase acts on an ATP molecule, inducing the formation cyclic AMP or cAMP. cAMP 
serves as a second messenger and interacts with cAMP-dependent protein kinase, or PKA, 
inducing the activation of this kinase. PKA is a serine/threonine kinase and can transfer 
the terminal phosphate group from an ATP molecule to serine and threonine residues of 
substrate proteins, a process known as serine/threonine phosphorylation. A typical sub-
strate of PKA is phosphorylase kinase. Phosphorylated phosphorylase kinase induces the 
phosphorylation of glycogen phosphorylase, which catalyzes the breakdown of glycogen 
into glucose 1-phosphates, a process referred to as glycolysis. At the same time, activated 
PKA phosphorylates another enzyme called glycogen synthase, which catalyzes the syn-
thesis of glycogen from glucose. The phosphorylation of glycogen synthase negatively 
regulates the activity of the enzyme, inducing suppression of glycogen synthesis. Thus, 
the activation of Gs-protein signaling pathway leads to the release of glucose, increasing 
the blood concentration of glucose and enhancing energy production.
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In contrast to the Gs proteins, the Gi proteins elicit an inhibitory effect on the activity 
of adenylyl cyclase. Gi proteins are coupled to α2-adrenergic receptors. Among the three 
subunits of a G protein, the β and γ subunits are identical between the Gi and Gs proteins, 
but the α subunit is different, which determines the distinct functions of the Gi protein. 
The binding of epinephrine or norepinephrine to α2-adrenergic receptors activates the Gi 
proteins, resulting in the substitution of GTP for GDP in the α subunit and the dissociation 
of the α subunit from the βγ subunits. The free α subunit acts to suppress the activity of 
adenylyl cyclase, resulting in inhibition of glucose metabolism. This signaling mechanism 
counterbalances that of the Gs proteins.

The Gq-proteins belong to another group of stimulatory signaling pathways. These G 
proteins regulate the transport of Ca2+ and the activity of several intracellular molecules 
via the mediation of cell membrane lipids. Gq proteins are coupled to cell membrane 
receptors, which interact with several extracellular ligands, including vasopressin, acetyl-
choline, thrombin, and angiotensins I and II. The binding of a ligand to a Gq-protein-
coupled receptor stimulates the Gq protein, which activates phospholipase Cβ, a 
phosphoinositol-specifi c enzyme. Activated phospholipase Cβ hydrolyzes phosphati-
dylinositol 4,5-biphosphate (PIP2) into inositol 1,4,5-triphosphate (IP3) and diacylglycerol. 
These lipid molecules excert distinct functions. The IP3 molecule can diffuse through the 
cytoplasm and acts on Ca2+ channels in the endoplasmic reticulum (ER), resulting in the 
opening of these channels and Ca2+ release from the ER to the cytoplasm (Fig. 5.15). Ca2+ 
mediates many cellular processes, including actin–myosin interaction in muscular cells, 
secretion of neurotransmitters, and signal transduction. The other molecule, diacylglyc-
erol, can activate Ca2+-dependent protein kinase, or protein kinase C (PKC), a serine/
threonine protein kinase. Activated PKC can phosphorylate two known substrate proteins: 
mitogen-activated protein kinase (MAPK) and IκB. The phosphorylation of MAPK initi-
ates a cascade of mitogenic activities, which is discussed on page 151. IκB forms a 
complex with NFκB, a trans-acting factor that regulates the expression of mitogenic genes. 
The phosphorylation of IκB induces the release of NFκB, which translocates to the cell 
nucleus and induces gene expression.

The G-protein signaling pathways can communicate by crosstalk with other signaling 
pathways, resulting in diverse biological consequences. For example, the Gq protein α 
subunit can interact with various molecules of the Ras-MAPK signaling pathways, activat-
ing mitogenic cellular activities. Recent studies has suggest that both Gαi and Gαs may be 
able to interact with and activate Src, which in turn activate STAT3, a key transcription 
factor that can be activated by cytokines (see page 207). Thus, the G-protein signaling 
pathways can impose effects on diverse cellular activities via interactions with various 
signaling pathways.

NFkB-MEDIATED CELL SIGNALING

Structure and Function [5.14]

Nuclear factor κB (NFκB) belongs to a family of trans-acting factors, which stimulate 
the expression of genes encoding proteins for regulating cell survival and proliferation as 
well as infl ammatory and immune processes. There are fi ve known members of the NFκB 
family in mammalian cells, including RelA (p65), RelB, c-Rel, NFκB1 (p50), and NFκB2 
(p52). These proteins possess a highly conserved domain near the N-terminus, known as 



the Rel homology domain (RHD). This domain is responsible for NFκB binding to target 
DNA, dimerization, and association with inhibitory κB (IκB), which binds to NFκB and 
inhibits the activity of NFκB in unstimulated cells. The NFκB family proteins usually 
exist in the form of homodimer or heterodimer, such as NFκB1/RelA, NFκB1/ NFκB1, 
and NFκB2/ NFκB2. These NFκB dimeric complexes may impose apparently different 
effects on target genes. For instance, the NFκB1/RelA heterodimer induces the expression 
of target genes, whereas the NFκB1/ NFκB1 and NFκB2/ NFκB2 homodimers elicit an 
opposite effect.

In unstimulated cells, the NFκB family proteins, existing as heterodimers or homodi-
mers, are associated with a protein of the IκB family, which is composed of seven 
members, including IκBα, IκBβ, IκBε, IκBγ, Bcl3, NFκB1 precursor (p105), and NFκB2 
precursor (p100). These IκB family members can bind to and mask the nuclear localiza-
tion signals of a NFκB molecule. This action renders the NFκB molecule incapable of 
binding to and interacting with target DNA, thus inhibiting the transcriptional activity of 
NFκB. The NFκB family proteins can only be activated when the inhibitory IκB protein 
is degraded or removed. (See Table 5.13.)
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Figure 5.15. Schematic representation of the mechanisms of Gq-protein signaling (based on bib-
liography 5.13).
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Signaling Mechanisms [5.15]

The NFκB signaling pathway can be activated by several factors, including physical stress, 
oxidative stress, chemical toxins, and bacterial and viral infection. These factors can 
interact with cells and activate NFκB, which in turn stimulates the expression of many 
infl ammatory cytokines, chemokines, immune receptors, and cell surface adhesion mol-
ecules. Thus, NFκB has been considered as a central mediator for immune responses as 
well as stress responses induced by physical stress, oxidative stress, and chemical sub-
stances. For instance, NFκB can be activated in response to the stimulation of IL1. The 
binding of IL1 to the IL1 receptor activates a molecule known as NFκB-inducing kinase 
(NIK or serine/threonine protein kinase NIK), which in turn phosphorylates the IκB 
kinase. Activated IκB kinase can phosphorylate the IκB module of the IκB-NFκB complex, 
inducing the separation of NFκB from IκB. NFκB is a complex of p50 and p65 proetins, 
which serves as a transcriptional factor and regulates gene transcription. Figure 5.16 shows 
the mechanisms of NFκB activation in response to the stimulation of cytokines.

In addition, extracellular mitogens and growth factors can activate NFκB, which in 
turn regulates cell survival and proliferation. The activation of NFκB is mediated by a 
protein kinase known as IκB kinase (IKK), which is composed of at least three subunits: 
two catalytic subunits (IKKα and IKKβ) and a regulatory subunit (IKKγ). Extracellular 
mitogens and growth factors can activate IKK via various signaling pathways. For instance, 
protein kinases MEKK1, MEKK2, and MEKK3, which are activated through receptor 
protein tyrosine kinase signaling pathways, are capable of phosphorylating IKK. Activated 
IKK in turn phosphorylates two specifi c serine residuals on IκB. The phosphorylation of 
IκB leads to the ubiquitination and degradation of IκB by proteasome. The degradation 
of IκB liberates NFκB, which translocates to the cell nucleus, binds to target genes, and 
regulates gene transcription, resulting in the activation of infl ammatory and mitogenic 
activities.

In addition to the degradation and removal of IκB, serine phosphorylation of NFκB 
may be required for certain NFκB family members for effi cient binding to transcriptional 
activators and interaction with target genes. For instance, the catalytic domain of protein 
kinase A can bind to an inactive NFκB p65 protein in unstimulated cells. On IκB degra-
dation, protein kinase A phosphorylates p65 on serine 276, resulting in a conformational 
change in the p65 protein and consequent interaction with a transcriptional activator, 
namely CBP (CREB-binding protein or cAMP response element-binding protein-binding 
protein), which increases the transcriptional activity of NFκB. Another example involves 
the activation of protein kinases PI3K and Atk (agammaglobulinemia tyrosine kinase), 
which mediate IL1- and TNFα-initiated NFκB activation. In cultured cells, IL1 and TNFα 
induce the activation of PI3K and Atk. These protein kinases in turn phosphorylate NFκB 
p65, enhancing the DNA-binding capacity of NFκB.

UBIQUITIN AND PROTEASOME-MEDIATED CELL SIGNALING

Structure and Function [5.16]

Ubiquitin (see Table 5.14) and proteasome are two critical protein structures of a protease 
system that recognizes and degrades damaged, unfolded, and nonfunctional proteins. 
Ubiquitin is a 76-amino acid protein that can attach to a target protein via an isopeptide 
bond linking the terminal carboxyl group of the ubiquitin molecule to a ε-amino group 



    NIK

       +

         IκB

         p50         p65

          p65         p50            IκB

       p

       p
      NFκB

      NFκB

5' 3'
3' 5'

  Nucleus 
membrane

Cis-elements

Ubiquitination-
medaited 
degradation

        IL-1

  IL-1 receptor

Figure 5.16. Mechanisms of nuclear factor (NF)κB activation in response to the stimulation of 
cytokines IL6 and tumor necrosis factor (TNF)α (based on bibliography 5.15).

of a lysine of the target protein. Additional ubiquitins can be added to the linked ubiquitin, 
forming a polyubiquitin chain. Such a process is known as ubiquitination. The poly-
ubiquitin chain serves as a tag for the recognition of the targeted protein by a proteasome, 
a multicatalytic protease that destroys the ubiquitin-tagged protein. Ubiquitination and 
proteasome activation are an effective means for the destruction of useless proteins, an 
important process for protein metabolism and recycling.

In addition to ubiquitins and proteasomes, several mediating factors are required for 
ubiquitination. These include an ubiquitin-activating enzyme, an ubiquitin-conjugating 
enzyme, and an ubiquitin/protein ligase. The ubiquitin-activating enzyme can bind to 
and activate ubiquitin via a thiolester bond, a process that requires ATP. The ubiquitin-
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228  CELL SIGNALING PATHWAYS AND MECHANISMS

conjugating enzyme can transfer an activated ubiquitin to a target protein with the help 
of the ubiquitin/protein ligase, which recognizes target proteins and promotes ubiquitin 
transfer and ubiquitination (Fig. 5.17). Thus, these factors play a critical role in the initia-
tion and regulation of ubiquitination.

TABLE 5.14. Characteristics of Selected Ubiquitin Molecules*

 Alternative Amino Molecular
Proteins Names Acids Weight (kDa) Expression Functions

Ubiquitin B Polyubiquitin 229 26 Brain,  Regulating ATP-
  B, UBA52    dependent  degradation of 
     pancreas  abnormal and 
      nonfunctional 
      proteins; also
      mediating gente 
      expression by
      binding to histone
      H2A (note that
      ubiquitins do not
      cause histone H2A
      degradation)
Ubiquitin C Polyubiquitin, 685 77 Kidney Similar to functions of
  PolyUB     ubiquitin B

*Based on bibliography 5.16.

Ubiquitin

Ubiquitin-
activating
enzyme

Ubiquitin-
conjugating
enzyme

Ubiquitin/
protein ligase

   Target
   protein

    Proteasome

   Target
   protein

    Proteasome

         Ubiquitins    Degraded
      protein

Figure 5.17. Schematic representation of the components of the ubiquitination system. (From 
Nakayama KI et al: Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E 
and p27Kip1, Biochem Biophys Res Commun 282:853–60, copyright 2001, with permission from 
Elsevier.)



Signaling Mechanisms [5.17]

Protein ubiquitination is regulated at the level of substrate proteins. Two processes are 
often involved in the regulation of ubiquitination: substrate phosphorylation and hydrox-
ylation. Substrate phosphorylation may induce activation or inhibition of ubiquitination, 
depending on the nature of substrate proteins and ubiquitin ligases, whereas substrate 
hydroxylation activates ubiquitination. Several examples are given here, to demonstrate 
these regulatory mechanisms.

Stimulation of Ubiquitination by Substrate Phosphorylation. Substrate phosphoryla-
tion is required for the activation of several ubiquitin ligases, including S-phase kinase-
associated protein 1 (Skp1), Cdc53, and F-box protein, which are designated as SCF 
ubiquitin ligases. These ubiquitin ligases form complexes with an identical Skp1 and 
Cdc53 protein, but a varying F-box protein. A specifi ed F-box protein is responsible for 
the recognition of a specifi c substrate protein and the affi nity of the ligase complex to the 
substrate. The phosphorylation of a substrate protein can activate a SCF ligase complex, 
inducing ubiquitination and destruction of the substrate. Several transcriptional factors, 
including IκB and β-catenin, are known substrates for the SCF ligase complex.

IκB is an inhibitory molecule that binds to and sequesters NFκB in unstimulated cells. 
On the stimulation of NFκB-related signaling pathways, the IκB molecule becomes phos-
phorylated at two serine residues, which stimulate the activation of a SCF ubiquitin ligase 
complex, namely, SCFβ-TrCP, where β-TrCP is a specifi c F-box protein. Activated SCFβ-TrCP 
induces ubiquitination and degradation of IκB, a necessary step for the release and activa-
tion of NFκB. Activated NFκB serves as a transcriptional factor, migrates to target genes, 
and initiates gene transcription. In this case, ubiquitination is not only responsible for the 
degradation of IκB, but also contributes to the activation of NFκB.

β-Catenin is a coactivator of transcriptional factors, participating in the regulation of 
gene transcription. β-Catenin can be phosphorylated by glycogen synthase kinase 3β. The 
phosphorylation of β-catenin activates SCFβ-TrCP, which in turn induces β-catenin ubiqui-
tination and destruction. This is an effective approach for reducing transcriptional activi-
ties mediated by β-catenin. (See Table 5.15.)

Inhibition of Ubiquitination by Substrate Phosphorylation. The phosphorylation of 
certain proteins may reduce the activity of ubiquitin ligases, thus suppressing ubiquitina-
tion of the substrate proteins. A typical example is p53, a tumor suppressor protein (see 
Table 5.18, later in this chapter for p53). Toxic stress can lead to p53 phosphorylation. 
Phosphorylated p53 in turn induces cell arrest during cell mitosis. Excessive p53 is usually 
degraded by ubiquitination, which is mediated by an ubiquitin ligase mdm2. Phosphoryla-
tion of p53 on the serine residues has been shown to prevent interaction of p53 with the 
ubiquitin ligase mdm2, suppressing ubiquitination. Such a process stabilizes p53 and 
enhances the function of p53.

Stimulation of Ubiquitination by Substrate Hydroxylation. In addition to substrate 
phosphorylation, substrate hydroxylation plays a role in regulating substrate ubiquitination. 
An example is the ubiquitination of the hypoxic response transcriptional regulator hypoxia 
inducible factor 1 α (HIF1α) (see Table 5.16). This factor is stabilized and activated under 
a hypoxic condition but degraded under a normoxic condition. Ubiquitination of HIF1α 
is a critical step in the degradation of the HIF1α protein. Following recovery from a 
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hypoxic condition, increased oxygen concentration stimulates the activation of a proline 
hydroxylase, which catalyzes the hydroxylation of a proline residue in the HIF1α protein. 
The hydroxylated proline mediates the interaction of HIF1α with an ubiquitin ligase 
complex known as the VBC complex (Von Hippel–lindau protein–elongin B–Elongin C), 
which is similar to the SCF complex in assembly and function. Activated VBC complex 
in turn induces HIF1α ubiquitination and degradation. 

NUCLEAR RECEPTOR-MEDIATED CELL SIGNALING

Structure and Function [5.18]

Nuclear receptors are a family of intracellular proteins that interact with steroid, thyroid, 
and retinoid hormones, which are lipid-soluble molecules and can diffuse through the cell 
membrane. These receptors are found in the cytoplasm and cell nucleus. Among the 
nuclear receptors, the steroid hormone receptor subfamily has been studied extensively. 
Common nuclear receptors include estrogen receptor (ER) α and β, gluco corticoid recep-
tor (GR), mineralocorticoid receptor (MR), progesterone receptor (PR), androgen receptor 
(AR), and vitamin D receptor (VDR). These receptors interact with corresponding steroid 
hormones (Fig. 5.18). In addition, there are several nuclear receptors that are similar to 
estrogen receptors in function. These are defi ned as estrogen-related receptors α, β, and 
γ, which are also referred to as “orphan” nuclear receptors.

A typical nuclear receptor is composed of several functional domains, including a 
DNA-binding domain (DBD), a ligand-binding domain (LBD), an activation function 1 
(AF1) domain, and an activation function 2 (AF2) domain. The DNA-binding domain is 
located in the central region of the receptor and composed of two zinc fi nger motifs that 
are responsible for protein–DNA interaction. The DNA-binding domain is well reserved 
among different nuclear receptors. The ligand-binding domain is located at the C-
terminus and is composed of sequences responsible for ligand interactions, activation 
of nuclear transcription, binding to chaperone proteins, and dimerization with other 

TABLE 5.16. Characteristics of Hypoxia Inducible Factor 1a Subunit*

 Alternative Amino Molecular
Proteins Names Acids Weight (kDa) Expression Functions

Hypoxia inducible  HIF1α 826 93 Ubiquitous Acting as a
 factor 1α subunit      transcriptional
      factor, regulating
      cellular responses
      to reduced oxygen
      concentration or
      hypoxia, mediating
      infl ammatory
      reactions,
      enhancing
      angiogenesis, 
      and mediating 
      neural development

*Based on bibliography 5.17.
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232  CELL SIGNALING PATHWAYS AND MECHANISMS

receptors. The ligand-binding domain is moderately conserved compared with the DNA-
binding domain. The AF1 and AF2 domains regulate the activation of the receptor. The 
difference between these two domains is that the activity of the AF1 domain is indepen-
dent of ligand binding, whereas the activity of the AF2 domain is dependent on ligand 
binding. On the interaction with hormone ligands, the hormone–receptor complexes are 
activated, serve as transcriptional factors, and directly bind to corresponding cis elements 
in target genes, initiating gene transcription. The nuclear receptors participate in the regu-
lation of several physiological processes, including salt balance, glucose metabolism, 
reproduction, and responses to environmental stress impacts. (See Table 5.17.)

Signaling Mechanisms [5.18]

In unstimulated cells, nuclear receptors are associated with “chaperones,” which suppress 
the activity of the receptors. On the binding of ligands to the nuclear receptors, the chap-
erones are dissociated from the receptors, resulting in receptor conformational changes 
and the exposure of the nuclear localization signals. The ligand–receptor complexes often 
form homodimers or heterodimers and are translocated from the cytoplasm to the nucleus, 
initiating gene transcription (Fig. 5.19). The activation of the nuclear receptor transcrip-
tional factors is regulated to a large degree by the AF1 and AF2 domains of the nuclear 
receptor. These domains recruit and activate nuclear receptor cofactors, which are enzymes 
including acetylases, deacetylases, methylases, kinases, and ubiquitinases. These cofactors 
play a critical role in regulating the formation of the transcription-initiating complexes, 
the conformation of target DNA cis-acting elements, and the degradation and recycling 
of the nuclear receptors.

   HO

  OH

Estrogen

   O

C = O

     CH  OH  2

   O

  OH

Testosterone

Cortisol

HO

   HO OH

OH

1,25-Dihydroxycholecalciferol
         (derived from Vit D3)

Figure 5.18. Steroid hormones for nuclear receptors. (Based on bibliography 5.18).
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When activated, the nuclear receptor transcriptional factors interact with specifi c DNA 
cis-acting elements defi ned as hormone response elements (HREs) with the assistance of 
cofactors. The HREs are located within the promoter and enhancer regions of target genes 
and are composed of unique sequences for different steroid ligands. For instance, the 
hormone response element for estrogen receptors and estrogen-related receptors contains 
repeating AGGTCA sequences, whereas that for glucocorticoid receptor, mineralocorti-
coid receptor, progesterone receptor, and androgen receptor contains AGAACA. Thus, the 
structure of these cis elements determines the specifi city of the binding of nuclear receptor 
transcriptional factors to DNA. These transcriptional factors bind DNA in the form of 
homodimers or heterodimer.

In addition to steroid hormones, other types of molecule can activate nuclear receptors. 
A typical example is the activation of nuclear receptors by protein kinases, including 
protein kinase A, mitogen-activated protein kinases, cyclin-dependent kinases, and gly-
cogen synthase kinases. While the exact mechanisms remain poorly understood, it appears 
that growth factor-induced activation of intracellular protein kinases play a role in the 
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Figure 5.19. Mechanisms of nuclear receptor activation (based on bibliography 5.18).
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236  CELL SIGNALING PATHWAYS AND MECHANISMS

activation of nuclear receptors. Several ligands, including epidermal growth factor and 
insulin growth factor, can induce activation of protein kinases, leading to the phosphoryla-
tion of serine residues within the AF1 domain of the nuclear receptors. Such an action 
facilitates the recruitment of coactivators to nuclear receptors, enhancing the activity 
of the nuclear receptor. These activities have been demonstrated in estrogen receptor-
mediated signaling events.

p53-MEDIATED CELL SIGNALING

Structure and Function [5.19]

p53 (Table 5.18) is a 393-amino acid protein that serves as a transcriptional factor. The 
activation of p53 leads to cell-cycle arrest, growth inhibition, and cell apoptosis. During 
the period of cell arrest, p53 often repairs impaired genes. These functions are imple-
mented by regulating the expression of specifi c genes. These genes encode proteins that 
control cell cycle progression and cell apoptosis. Because of its inhibitory effect on cell 
growth and stimulatory effect on cell apoptosis, p53 is considered a tumor suppressor 
protein.

Based on the amino acid sequence and function, the p53 protein is divided into several 
domains, including the N-terminal domain from amino acids 1–101, a central DNA-
binding domain from 102 to 292, and a C-terminal domain from 293 to 393. The N-
terminal domain is capable of interacting with regulatory proteins, which activate or 
suppress the activity of the p53 protein. Several proteins, including TFIID, TFIIH, TAFs, 
PCAF, and the MDM2 ubiquitin ligase, have been shown to interact with the N-terminal 
domain. In this region, amino acid residues 1–31 and 80–101 are highly reserved among 
mammals. The central domain of the p53 protein contains DNA-specifi c binding sites. A 
consensus DNA-binding site includes two identical segments, each composed of a sequence 
of RRRCWWGYYY. The C-terminal domain contains several sequences, including a 
nuclear localization signal, a tetramerization sequence, and DNA-binding sequence. Tet-
ramerization of the p53 protein is required for the activation of the protein as a transcrip-
tional factor. 

TABLE 5.18. Characteristics of p53*

  Amino Molecular
Proteins Alternative Names Acids Weight (kDa) Expression Functions

p53 Tumor protein p53, 393 44 Ubiquitous A transcriptional
  transformation-     factor that binds to
  related protein     target genes,
  53, TRP53     regulates gene
      transcription,
      inhibits cell
      proliferation and
      differentiation, and
      suppresses tumor
      growth

*Based on bibliography 5.19.



Signaling Mechanisms [5.20]

The p53 protein exists in a latent form and does not induce gene expression in unstimulated 
cells. It can be activated in response to stimulations induced by ionizing radiation, UV 
light, chemicals, hypoxia, ribonucleotide depletion, microtubule disruption, and oncogene 
activation. The activation of p53 requires two conditions: a critical concentration of the 
p53 protein and posttranscriptional modifi cation.

The level of p53 is determined by the relative activity of protein production and deg-
radation. In unstimulated cells, p53 degradation is more predominant than p53 production, 
resulting in a relatively low level of stable p53. Thus, the p53 activity is suppressed in 
unstimulated cells. p53 can be rapidly degraded by the ubiquitin–proteasome system (see 
page 226). Several mechanisms have been discovered for the ubiquitination and degrada-
tion of the p53 protein. In the G0 phase of a cell cycle, the c-JUN N-terminal kinase can 
bind to p53, forming a complex. This complex serves as a target for an ubiquitin ligase, 
which induces p53 ubiquitination. Similarly, the COP9 signalosome can binds to p53, 
inducing p53 ubiquitination and degradation. The p53 protein can also be degraded 
directly by ubiquitination. One of the ubiquitin ligases, MDM2, can bind to p53 and induce 
p53 ubiquitination. In response to various stimulations as outlined above, the p53 produc-
tion system can be activated, resulting in an increase in the level of p53. To activate p53, 
it is necessary to suppress p53 ubiquitination. The expression and activation of p53 are 
regulated by several processes as discussed below.

Posttranscriptional modifi cation is a process that modulates the structure and function 
of a protein after mRNA translation. Several types of modifi cation have been found for 
p53, including p53 phosphorylation and acetylation. These modifi cations are required for 
p53 activation. p53 phosphorylation occurs on the serine and threonine residues, whereas 
acetylation occurs on the lysine residues. Stimulating factors, such ionizing radiation, UV 
light, chemicals, hypoxia, microtubule disruption, and oncogene activation, may induce 
p53 phosphorylation and/or acetylation, although each factor may activate distinct signal-
ing pathways. Here, the mechanisms of p53 activation in response to the stimulation of 
several common factors are briefl y discussed.

Stimulatory factors for p53 can be divided into two groups, based on the infl uence on 
gene expression: genotoxic and nongenotoxic. Typical genotoxic factors include ionizing 
radiation, UV light, anticancer drugs (e.g., adriamycin, camptothecin, actinomycin D, and 
mitomycin C), and toxic chemicals (e.g., arsenite, cadmium, and chromate). These factors 
often induce gene damage. Nongenotoxic factors include hypoxia, ribonucleotide deple-
tion, microtubule disruption, oncogene activation, and senescence. These factors may not 
induce signifi cant gene damage.

A treatment with ionizing radiation induces DNA disruption and activation of protein 
kinase ATM (ataxia–telangiectasia M), a member of the phosphatidylinositol-3-kinase 
(PI3K) family. Activated ATM can phosphorylate p53 on serine 15 and activates other 
protein kinases such as Chk1 and Chk2, which further phosphorylate p53. Other protein 
kinases, such as PKA, PKC, and CDK, can also phosphorylate p53. Phosphorylated p53 
serves as a transcriptional factor, stimulates the expression of selected genes, and induces 
apoptosis and the arrest of cell cycle (Fig. 5.20). Although DNA disruption is considered 
a factor for activating the protein kinases that phosphorylate p53, the exact mechanisms 
of protein kinase activation remains poorly understood.

A treatment with UV light induces DNA damage. Damaged DNA triggers the binding 
of a protein kinase ATR (ataxia–telangiectasia Rad3-related) to the damaged site, leading 
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Figure 5.20. Mechanisms of p53 activation (based on bibliography 5.20).

to the activation of ATR. Activated ATR in turn phosphorylates p53 on serine 15 and 
serine 37. UV exposure can also activate other protein kinases, such as p38 MAPK, 
HIPK2, JNK, and cdc2/Cdk2 via DNA damage. These protein kinases are capable of 
phosphorylating p53 on multiple serine residues, leading to cell cycle arrest and 
apoptosis.

Both ionizing radiation and UV light can induce p53 acetylation on multiple lysine 
residues at the C-terminus, including lysines 320, 373, and 382. It is interesting to note 
that the C-terminal lysine acetylation is enhanced by N-terminal serine/threonine phos-
phorylation. p53 acetylation enhances the stability of the molecule, activates p53, and 
facilitates p53 binding to target genes, thus enhancing apoptosis and cell cycle arrest.
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