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Dynamic rearrangement of chromosomes and microtubules during mitosis. Hela cells are cultured 
and arrested by treatment with nocodazole, which results in the synchronization of the cells in 
prometaphase of mitosis. Following the removal of nocodazole, cells start to enter mitosis. Micro-
tubules (green) and chromosomes (blue) undergo dynamic rearrangement during mitosis as shown 
at 60 and 90 min after the removal of nocodazole. [Reprinted by permission from Macmillan Pub-
lishers Ltd: Yasuda S et al: Nature 428:767–71, copyright 2004.] See color insert.



The cell is capable of conducting a number of basic activities, including cell division (cell 
proliferation and differentiation), migration, adhesion, and apoptosis. These activities play 
critical roles in the development, morphogenesis, and remodeling of tissues and organs. 
Cell differentiation, proliferation, and migration are essential processes that contribute to 
the formation of specialized tissues and organs during development and to the regeneration 
of malfunctioned and lost cells in injury. Cell-to-cell and cell-to-matrix adhesion are 
critical processes for the formation of coherent tissue and organ systems. Cell apoptosis 
is a process that eliminates unnecessary cells, ensuring appropriate morphogenesis and 
development of tissues and organs. These basic activities are precisely controlled to 
achieve specialized functions for a living tissue, organ, and system. In a multicellular 
organism, various cellular activities may occur at different locations and levels. These 
activities must be precisely coordinated between different systems at the cellular, tissue, 
and organ levels, which is an essential mechanism for the survival and function of the 
entire organism. In this chapter, these fundamental cellular activities are briefl y 
reviewed.

CELL DIVISION

Cell division is a process of cell reproduction, which generates progeny with identical 
genotypes. In mammalian cells, there are two types of division: mitosis and meiosis. 
Mitosis is a cell division process for nongerm cells. This process transmits identical copies 
of all genes from parent cells to daughter cells. Meiosis is a cell division process for germ 
cells, which produces gametes with half or 23 of the chromosomes.

Mitosis [6.1]

Cell division via mitosis may result in two consequences: cell proliferation and differentia-
tion. Cell proliferation is a process of cell division, which results in the reproduction of 
progeny with identical phenotypes, that is, physical, chemical, and physiological charac-
teristics. Cell differentiation is a process of cell division, which results in the production 
of specialized cells with phenotypes different from the mother cells. These are two fun-
damental processes, which determine the morphogenesis of tissues and organs during 
embryonic development and the structure and function of tissues and organs during physi-
ological and pathological remodeling.

Cell proliferation and differentiation may coexist at a given time. The relative activity 
of cell proliferation and differentiation is dependent on the stage of development. During 
the embryonic and fetal stages, the two processes occur simultaneously. The differentia-
tion of embryonic stem cells gives rise to various types of specialized cells for various 
tissue and organ systems, whereas the proliferation of a specialized cell type contributes 
to cell multiplication and the construction of a specialized tissue and organ. After birth, 
the activity of cell differentiation is relatively reduced, while cell proliferation remains 
prominent for tissue and organ growth. After reaching maturation, both cell differentiation 
and proliferation are reduced signifi cantly. However, a basal level of cell proliferation and 
differentiation remains for the replacement of malfunctioned, lost, or aging cells. Although 
cell proliferation and differentiation result in different cell fates, both undergo a common 
cell division cycle.

CELL DIVISION  257



258  FUNDAMENTAL CELLULAR FUNCTIONS

Cycle of Mitotic Cell Division

A cell division cycle is defi ned as the period between two mitotic cell divisions. A cell 
cycle is composed of two major periods: the interphase and mitotic phase (M). The inter-
phase is defi ned as the period from the end of the prior M phase to the beginning of the 
next M phase and is traditionally divided into the G1 (gap 1), S (synthetic), and G2 (gap 
2) phases. The M phase is the period during which cells divide, whereas the interphase 
is the period during which cells prepare for cell division. These different phases are 
corresponding to highly ordered and discrete molecular processes that regulate cell 
division.

The length of a cell cycle is dependent on the stage of development. During the early 
embryonic stage, the G1 and G2 phases are short or even missing. Embryonic cells pri-
marily undergo alternations of the S and M phases. The duration of a cell cycle is <1 h. 
The short cell cycle is in coordination with the rapid growth of the early embryo. The 
length of a cell cycle increases with maturation. In a fully developed mammal, a typical 
cell cycle may last for 12–24 h with four discrete phases. Each phase of a standard cell 
cycle is briefl y discussed here.

G1 Phase. The G1 phase is the interval during which the cell is prepared for DNA syn-
thesis. It is 6–12 h in length, starting from the end of the M phase to the beginning of the 
S phase. During this phase, the cell size increases, due to the synthesis of proteins and 
lipids.

S Phase. The S phase is the period of DNA replication. It lasts for 7–8 hrs, starting from 
the end of G1 phase to the beginning of the G2 phase. The total DNA content and the 
number of chromatids are doubled by the end of the S phase. The nucleus increases in 
size apparently. In addition to DNA synthesis, other cellular components, including RNA 
and proteins, are also synthesized. However, DNA synthesis occurs only during the S 
phase, other components are synthesized continuously through the cell cycle. By the 
beginning of mitosis, the mass of the mother cell is doubled with cellular components 
equally apportioned for the two daughter cells.

G2 Phase. The G2 phase is the interval of cell preparation for cell mitosis. It is defi ned 
as the period (3–4 h) from the end of the S phase to the beginning of the M phase. During 
this phase, the cell possesses two complete diploid sets of chromosomes and is prepared 
for entering the mitotic phase. One of the major cellular activities during the G2 phase is 
the proofreading of the synthesized DNA. The detection of abnormal, damaged, or unrep-
licated DNA fragments can activate a protein kinase cascade of the G2 DNA damage 
checkpoint. The consequence of such activity is the inhibition of cyclin-dependent kinases, 
which are required for the initiation of mitosis, leading to a delay or blockade of entering 
the M phase.

M Phase. The M phase is the period of chromosome separation (∼1 h), staring from the 
end of the G2 phase to the beginning of the G1 phase. During this phase, the chromosomes 
are separated into two equal parts for the two daughter cells. The cytoplasm is separated 
via cytokinesis. Chromosome separation is accomplished through several stages, including 
the prophase, prometaphase, metaphase, anaphase, and telophase (Fig. 6.1).

During the prophase, chromatins, which are composed of DNA and associated proteins 
and are dispersed in the nucleus during the non-M phases, are condensed into discrete 



chromosomes, each containing a pair of chromatids that are connected at the centromere. 
At the same time, the cytoskeletal microtubules start to reassemble into a mitotic spindle 
between two centrosomes outside the nucleus.

During the prometaphase, the nucleus envelope is disrupted, and the spindle microtu-
bules are redistributed in the nucleus. The kinetochore protein, which forms a complex 
with the centromere of each chromatid, attaches to a selected spindle microtubule, estab-
lishing a kinetochore microtubule. Since each chromosome is composed of a pair of 
chromatids that are joined by two centromeres, each chromosome contains two kineto-
chore complexes. The kinetochore-free spindle microtubules are known as polar 
microtubules.

During the metaphase, with the help of the kinetochore microtubules, the chromosomes 
are aligned midway between the two spindle poles on a plane perpendicular to the spindle 
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Metaphase Anaphase

Telophase Cytokinesis

Centrosome
Microtubule
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Chromosome
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Newly formed 
nuclear envelope Microtubule

Cleavage furrow

Figure 6.1. Schematic representation of cell mitosis. Mitosis is a process of cell division and con-
sists of several defi ned phases, including prophase, prometaphase, metaphase, anaphase, telophase, 
and cytokinesis. Before a cell enters the prophase, the content of DNA is doubled. During the pro-
phase, the chromosomes are organized from dispersed chromatins, the nuclear envelope is disas-
sembled, the two centrosomes are deployed to the two mitotic poles, and microtubules are organized 
into a spindle-like network. During prometaphase, the chromosomes attach to the spindle micro-
tubules and move toward the cell equator. During metaphase, the chromosomes are aligned along 
the cell equator and are ready for separation. During anaphase, the two chromatids of each chromo-
some complex are separated and move toward the opposite mitotic poles. During telophase, the 
chromosomes approach the mitotic poles, the nuclear envelope of the two daughter nuclei starts to 
form, and the cell is ready for cytokinesis. Cytokinesis is a process by which the cytoplasm is 
divided into two equal parts, each with a daughter nucleus. The formation of the daughter cells 
indicates the end of the cell division cycle. Based on bibliography 6.1.
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microtubules, which are connected to the spindle poles. This chromosome plane is defi ned 
as the metaphase plate.

During the anaphase, the kinetochore–centromere complex is separated and the two 
chromatids of each chromosome are pulled toward opposite spindle poles at a speed of 
∼1 μm/min. These activities are induced by the dynamic shortening of the kinetochore 
microtubules, which connect the chromatids. At the same time, the two spindle poles move 
away from each other and the polar microtubules, which are not connected to chromo-
somes, elongate in the spindle direction.

During the telophase, separated chromatids, now referred to as chromosomes, approach 
the two spindle poles symmetrically, the kinetochore microtubules gradually disappear, 
and the nucleus envelope appears around each group of chromosomes surrounding each 
spindle pole. The chromatin is gradually dispersed in the nucleus and the typical inter-
phase nucleus starts to form, indicating the end of the M phase and beginning of the 
G1 phase.

Cytokinesis [6.2]

Cytokinesis is the process of cytoplasmic cleavage or segregation, which takes place 
immediately following chromosomal separation. During the late telophase, the cytoskel-
etal actin fi laments and myosin are deployed along the cell equator, forming a contractile 
ring or cleavage furrow. The contractile ring gradually constricts the cell until the two 
daughter nuclei are completely separated with equal cytoplasm contents. This indicates 
the completion of the cell division cycle.

The formation of the cleavage furrow has always fascinated scientists. This is a complex 
process, which involves several structures, including the microtubule spindle, actin fi la-
ments and myosin, and cell membrane. It is now understood that the assembly of the 
contractile actin–myosin ring is regulated by several types of molecule. These include 
microtubule spindle-associated molecules, the RhoA guanosine triphosphatase (GTPase), 
myosin II, actin and actin-associated factors, and molecules mediating the fusion of mem-
brane structures. The coordinated actions of all these structures and regulatory molecules 
contribute to the formation and performance of the contractile ring during cytokinesis.

Cell membrane fusion is an important part of cytokinesis. When the cytoplasm is sepa-
rated by the constriction of the contractile ring, the cytoplasm of each daughter cell must 
be completely covered with the cell membrane. Two mechanisms are involved in the for-
mation of the membrane of the daughter cells: (1) the daughter cells are able to generate 
additional cell membrane, which is deployed to the cleavage furrow to cover the open 
cytoplasm; and (2) membrane vesicles can be produced in the daughter cells. These vesi-
cles can be transported to the cleavage furrow to bridge the open surface of the cytoplasm. 
Membrane fusion is required for the formation of a complete cell membrane.

Control of Cell Division [6.3]

The mitotic events described above are precisely controlled in a highly coordinated 
manner. The order and completeness of these events, which are critical to successful cell 
division, are controlled by two mechanisms: constitutive and extracellular. The constitu-
tive mechanism is intrinsic in nature and ensures the initiation, progression, and comple-
tion of cell division. The extracellular mechanism is dependent on the stimulation of 
extracellular factors and ensures that cell division takes place in coordination with the 
global function and physiological status of a specialized tissue or organ. In other words, 



the extracellular mechanism controls whether, when, and to what degree cell division 
occurs. Once a cell cycle is triggered by an extracellular cue, the constitutive mechanism 
controls the progression of cell division.

Both constitutive and extracellular mechanisms are implemented via the mediation of 
cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (CDKs), and 
inhibitors of cyclin-dependent kinases (CKIs). A common feature of cell cycle regulation 
is the occurrence of oscillatory changes in the activity of regulatory factors, which deter-
mine the cyclic events of cell division. In particular, periodic phosphorylation/dephos-
phorylation of CDKs and cyclic increase and decrease in the level of cyclins play key roles 
in the initiation, progression, and cessation of cell division.

Constitutive Control of Cell Division. The constitutive control mechanism is dependent 
on several “checkpoints.” These checkpoints inspect and control the progression of cell 
division and eliminate errors, if any. Checkpoints have been identifi ed in all phases of the 
cell cycle. Several proteins, including p53, and p21, have been found to play a role in these 
checkpoints.

In the G1 phase, a major checkpoint is known as the restriction point, which controls 
the initiation of cell division. A cell can pass the G1 phase only if the prior mitosis is 
complete, DNA is undamaged, and the cell reaches a critical size. DNA damage, if any, 
must be repaired before a new cell cycle is initiated. Unrepaired DNA may result in the 
halt of the cell cycle. Also, a critical size of cell mass is required for cell division. The 
G1 phase is the longest period with the largest variation in length among all cell cycle 
phases. Thus, the G1 phase is timely fl exible to adjust the rate of cell division in response 
to various stimulations.

The S-phase checkpoints assess the integrity of DNA. The checkpoints prevent the cell 
from synthesizing DNA, if the DNA is damaged or disrupted. All DNA molecules in the 
genome must be completely replicated, which is a prerequisite for the continuation of cell 
division to the G2 phase. The cell is arrested in the S phase if damaged DNA is found. 
Once a DNA replication process is initiated, it must be completed, or the cell cycle is 
stopped.

During the G2 phase, the newly replicated DNA is examined by the G2-phase check-
points to ensure that the DNA molecules have been correctly duplicated. DNA repair 
factors can be activated to correct replication errors. These checkpoints determine whether 
the cell can move to the M phase. If the DNA molecules are not completely replicated, 
the cell is arrested before the M phase.

The M-phase checkpoints are responsible for detecting problems that potentially infl u-
ence cell division. The checkpoints assess the completeness of proceeding preparatory 
events as well as the mitotic events. For example, unattached kinetochore can be detected 
by the checkpoints, leading to the halt of cell cycle progression. The completeness of the 
entire mitosis is also assessed by the M-phase checkpoints. Any incomplete events may 
result in cell arrest.

Some cells, especially terminally differentiated cells, are not committed to cell division 
and enter a phase known as the G0 phase, which resembles the G1 phase in certain aspects. 
These calls cannot pass the restriction points and cannot proceed to the S phase. However, 
under appropriate extracellular stimulations, some of these cells can be stimulated to pass 
the restriction points, initiating cell division.

The discovery of the cell cycle checkpoints has led to a signifi cant advance in 
the understanding of the control mechanisms of cell division. All key processes of cell 
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division are assessed by the checkpoints. The presence of continuous checkpoints through 
the cell cycle ensures the initiation, progression, and completion of cell division and the 
accuracy of cell reproduction.

Extracellular Control of Cell Division. There are a variety of extracellular factors 
that regulate the initiation and progression of cell division. These include growth factors, 
nutrient supplies, cell–cell interactions, and mechanical forces. Growth factors, such as 
platelet-derived growth factor, epidermal growth factor, fi broblast growth factor, activate 
cyclins and CDKs and promote the cell to enter the S phase and reduce the length of the 
G1 phase. In contrast, a growth inhibitor, such as transforming growth factor β, activates 
cell division inhibitors, such as p21, p27, and p57, and induces cell arrest. A reduction or 
depletion of nutrient supplies may promote the cell to enter the G0 phase. An increase in 
cell density or cell–cell contact may result in cell arrest. Mechanical forces have also been 
found to mediate cell mitosis. A decrease in bloodfl ow or fl uid shear stress may activate 
the division cycle of vascular smooth muscle cells. In contrast, an increase in mechanical 
stretch or tensile stress in the wall of blood vessels induces mitosis of vascular smooth 
muscle cells. These mechanical factors may directly regulate cell mitosis or infl uence cell 
mitosis via the mediation of mitogenic factors.

Signaling Events of Cell Cycle Control. The progression of the cell cycle is regulated 
by a cascade of signaling molecules (Fig. 6.2). In the G1 phase, cells either enter the G0 
phase or are committed to enter the S phase, initiating the cell division cycle. An increase 
in growth factors stimulates the cell to enter the S phase by inducing the expression of 
cyclin D. The level of cyclin D remains high through the G1, S, and G2 phases and rapidly 
reduces during the M phase via ubiquitination-mediated degradation (see Chapter 5). 
Increased cyclin D in the G1 phase promotes the formation of the cyclin D-CDK4/6 
complex. Activated cyclin D-CDK4/6 complex stimulates cell growth, which is required 
for the passing of the G1 restriction point.

The cyclin D-CDK4/6 complex can phosphorylate retinoblastoma tumor suppressor 
(Rb), which contains the transcriptional factor E2F (elongation factor). The phosphoryla-
tion of Rb induces the release of E2F, which stimulates the expression of the cyclin E 
gene, resulting in a transient increase in cyclin E during the transition period from the G1 
to S phase. Cyclin E forms a complex with CDK2 and the cyclin E/CDK2 complex is in 
turn activated by CDC25A-mediated dephosphorylation of CDK2 on the Thr14 and Tyr15 
residues. Activated cyclin E-CDK2 complex promotes the cell to pass the G1 restriction 
point and enter the S phase. (See Table 6.1.)

During the early S phase, the transcriptional factor E2F stimulates the expression
 of cyclin A, which forms a complex with CDK2. The cyclin A-CDK2 and cyclin E-CDK2 
complexes are capable of phosphorylating critical components that initiate and regulate 
DNA replication. The cyclin E-CDK2 complex is dissociated due to the degradation of 
cyclin E by the ubiquitin–proteasome system (see Chapter 5) during the early S phase, 
whereas the cyclin A-CDK2 complex remains active through the S and G2 phases.

During the S phase, another cyclin molecule, cyclin B, is gradually accumulated and 
forms a complex with cell division cycle protein (CDC)2. The cyclin B/CDC2 complex 
is known as the M-phase-promoting factor (MPF). MPF can be activated by CDC25B/C-
mediated dephosphorylation at the G2/M transition. Activated MPF can phosphorylate a 
number of substrate proteins, including lamin, vimentin, and caldelsom, leading to cell 
mitosis. The phosphorylation of lamin is thought to induce the disruption of the cell 
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Figure 6.2. Schematic representation of the regulatory mechanisms of cell mitosis. Based on bib-
liography 6.3.
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nucleus. The phosphorylation of vimentin is responsible for dynamic changes in microtu-
bules and the formation of the spindle. The phosphorylation of caldelsom induces the 
interaction of actin fi laments with myosin molecules, leading to the formation of the cleav-
age furrow and cell cytokinesis. MPF is deactivated by ubi-quitination of cyclin B during 
the M phase, which indicates the end of cell mitosis. (See Table 6.2.)

Inhibition of Cell Division Cycle. A family of proteins, including p15(INK4B), 
p16(INK4), p18(INK4C), and p19(INK4D), exerts an inhibitory effect on the activity 
of the cyclin D/CDK4/CDK 6 complex, and induces cell arrest during the G1 phase. 
The suppression of these inhibiting molecules leads to uncontrolled cell proliferation. 
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The p15 protein may be activated in response to TGF-β, which suppresses the proliferation 
of several cell types, including epithelial cell and smooth muscle cell. Another group of 
proteins, including p21, p27, and p57, may inhibit the activity of the cyclin D/CDK4/CDK6 
and cyclin A/CDK2 complexes, and induce cell arrest in the G1 phase. The tumor sup-
pressor protein p53 induces activation of p27, leading to cell arrest. (See Table 6.3.)

Meiosis [6.4]

Meiosis is the process of gametogenesis or germ cell division. During such a process, a 
diploid germ progenitor cell undergoes DNA synthesis and two division events to produce 
four daughter cells with a haploid set of chromosomes. Each germ progenitor cell contains 
homologous pairs of chromosomes. Each homologous pair of chromosomes is composed 
of a maternal chromosome and a paternal chromosome, which can be identical or allelic 
(not completely identical). In response to the stimulation of signals for gametogenesis, the 
germ progenitor cell enters the S phase and initiates DNA synthesis, yielding two identical 
chromatids for each chromosome. The cell then enters two consecutive division processes, 
designated as meiosis I and meiosis II, to produce daughter germ cells. The meiosis I 
process is usually divided into several stages, including prophase I, metaphase I, anaphase 
I, and telophase I. The meiosis II process is divided into metaphase II, anaphase II, and 
telophase II. By the end of telophase II, four haploid daughter cells are produced from a 
single diploid germ progenitor cell (Fig. 6.3).

During meiosis prophase I, the nucleus envelope is reorganized, degraded, and disap-
peared. Centrosomes and microtubule spindles start to form. Scattered chromosomes are 
organized into apparently double-chromatid structures. The chromosomes can be clearly 
recognized under an optical microscope. Crossing over of chromatid fragments may occur 
between the maternal and paternal chromosomes, resulting in homologous recombination 
(Fig. 6.4). During meiosis metaphase I, a complete spindle and centrosome system is 
established. The chromosomes are aligned in the equator region. The centromeres of the 
chromosomes are connected to the spindles. During meiosis anaphase I, the chromosomes 
remain paired and are pulled toward the poles of the cell. Note that the chromosomal 
segregation process of meiosis is different from that of mitosis. In mitosis, the pair of 
chromatids for each chromosome is separated during the anaphase. In meiosis, the paired 
chromatids of each chromosome are not separated during anaphase I. During meiosis 
telophase I, the chromosomes are moved to the poles and rearranged. The germ progenitor 
cell is divided into two cells. However, no nucleus envelope is developed.

Meiosis II is the process by which the two daughter cells are further divided to produce 
haploid germ cells. The chromosomal separation in meiosis II is similar to that in mitosis. 
During meiosis metaphase II, the chromosomes in each daughter cell are aligned in the 
equator region. The centromeres are connected to the microtubule spindles. During 
meiosis anaphase II, the two identical chromatids of each chromosome are separated and 
pulled to the cell poles in opposite directions. During meiosis telophase II, each daughter 
cell is further divided into two granddaughter cells with a haploid set of chromosomes (a 
single copy of each chromosome from either the mother or the father). The chromosomes 
are rearranged and enveloped within the nucleus.

Experimental Assessment of Cell Division [6.5]

Cell division can be assessed by detecting DNA synthesis, which occurs only during cell 
division. There are two basic approaches for the detection of DNA synthesis: measuring 
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G1 phase

Metaphase I Anaphase I 

Telophase I

Chromosome

Nuclear envelope

Prophase I

Centrosome
Microtubule
Kinetochore
Chromosome

Metaphase II

Anaphase II Telophase II

Figure 6.3. Schematic representation of cell meiosis. Meiosis is a process of germ cell division and 
is composed of two phases, including meiosis I and meiosis II. The phase meiosis I is consists of 
several stages, including prophase I, metaphase I, anaphase I, and telophase I. The phase meiosis II 
consists of metaphase II, anaphase II, and telophase II. During prophase I, the nucleus envelope is 
degraded, centrosomes and microtubule spindles start to form, and scattered chromosomes are 
organized into apparently double-chromatid structures. During metaphase I, a complete spindle 
network forms, the two centrosomes are deployed to the mitotic poles, and the chromosomes are 
aligned in the equator region. During anaphase I, the chromosomes remain paired and are pulled to 
the mitotic pole of the cell. During telophase I, the chromosomes are completely separated and rear-
ranged near the two poles. The germ progenitor cell is divided into two cells. However, no nucleus 
envelope is developed. During metaphase II, the chromosomes in each daughter cell are aligned 
along the equator. The centromeres are connected to the microtubule spindles. During anaphase II, 
the two identical chromatids for each chromosome are separated and pulled to the mitotic poles. 
During telophase II, each daughter cell is further divided into two granddaughter cells with a haploid 
set of chromosomes (a single copy of each chromosome from either the mother or the father). The 
chromosomes are rearranged and enveloped within the nucleus. Based on bibliography 6.4.

DNA content and measuring the density of cells that undergo DNA synthesis. For DNA 
content measurement, DNA can be extracted from a given volume of tissue or given area 
of cultured cells and the DNA content can be measured by DNA extraction and spectro-
photometry. Although this method is easy to use, it does not directly give the density of 
dividing cells.



Centromere

Cross over

Figure 6.4. Schematic representation of chromosomal cross over. During chromosome segrega-
tion, chromosomal segments may exchange location between two chromatids of different chromo-
some complexes. Based on bibliography 6.4.

To directly measure the density of cells that synthesize DNA, a selected type of deoxy-
nucleotides can be tagged with a marker and delivered to cells. Since only dividing cells 
take up deoxynucleotides, any cells exhibiting the tagged deoxynucleotides can be consid-
ered dividing cells. There are two types of tagging markers—radioactive isotopes and 
molecules—that can be detected by immunohistochemistry. A common radioactive mate-
rial used for detecting cell division is [3H]-thymidine. This isotope can be delivered to 
animal models or cultured cells. Tissue specimens or cultured cells can be collected after 
24 h, fi xed with 4% formaldehyde in phosphate-buffered saline (PBS), and processed for 
detecting [3H]-thymidine incorporation. Specimens are exposed to X-ray fi lms and cells 
with positive [3H]-thymidine signals are considered dividing cells. Such a method is 
referred to as autoradiography. The specimen can be counterstained with hematoxylin and 
eosin for measuring the total number of cells. The ratio of the number of [3H]-thymidine-
labeled cells to that of the total cells can be used as an index for assessing cell division.

Alternatively, 5′-bromodeoxyuridine (BrdU) can be used to detect cell division instead 
of [3H]-thymidine. BrdU can be directly injected into an animal or delivered to cultured 
cells. As [3H]-thymidine, BrdU can be taken up only by dividing cells. BrdU can be 
detected by immunohistochemistry with a BrdU-specifi c antibody (Fig. 6.5). It is impor-
tant to address several technical points for the BrdU assay. First, cultured cells or intact 
tissue specimens without histological sectioning should be treated with a detergent (e.g., 
0.5% Triton X-100) to permeabilize cell membrane so that antibody can diffuse through 
the cell membrane and reach the cell nucleus. For histological tissue sections, since cells 
are cut open and cell nuclei are exposed, it is not necessary to treat specimens with a 
detergent. Second, incorporated BrdU is embedded within the cell chromatin, which pre-
vents the anti-BrdU antibody from accessing BrdU. Thus, cultured cells or tissue speci-
mens should be treated with pepsin to digest nucleus proteins and expose DNA, so that 
the anti-BrdU antibody can access the incorporated BrdU. A DNA-binding fl uorochrome, 
e.g., Hoechst 33258, can be used to counter-staining DNA nonspecifi cally, allowing the 
measurement of the total number of cells within a selected specimen. Comparing to the 
[3H]-thymidine incorporation method, the BrdU method is more advantageous for its 
simplicity and nonradioactivity.

CELL MIGRATION [6.6]

Cell migration is a fundamental cellular activity observed during development and patho-
genic remodeling. During development, cell migration plays a critical role in the initiation 
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270  FUNDAMENTAL CELLULAR FUNCTIONS

and formation of tissues and organs, such as the nerve and cardiovascular systems. During 
pathogenic remodeling, cell migration contributes to the initiation and progression of 
pathogenic disorders, such as atherogenesis (e.g., smooth muscle cell migration from the 
arterial media to the arterial intima or arterial substitutes), tumorigenesis (e.g., cancer cell 
migration and metastasis), and infl ammation (leukocyte migration to infl ammatory sites). 
Cell migration is a mechanical event that involves a variety of molecular processes and 
is controlled by a number of known signaling pathways. In this chapter, the mechanics 
and regulatory mechanisms of cell migration are briefl y reviewed.

Mechanics of Cell Migration

Cell migration is accomplished by a number of mechanical processes at the molecular 
and subcellular levels. Theses processes include protrusion or extension of cell membrane 
at the cell leading edge, attachment of protruded cell membrane to a substrate via adhesion 
receptors, contraction and movement of the cell body, retraction at the cell trailing edge, 
and recycle of adhesion receptors (Fig. 6.6). A variety of regulatory and contractile pro-
teins are involved in the initiation and progression of cell migration. It is important to 
note that the fi ve processes outlined above are arbitrarily defi ned. All these processes take 
place simultaneously and continuously in a cyclic manner. It is diffi cult to identify the 
beginning and end of a migration cycle.

Protrusion of Cell Membrane. When a cell is stimulated by a migration-activating factor, 
such as a chemoattractant, the cell initiates directed membrane protrusion. The direction 
of membrane protrusion is often determined by the stimulus. For instance, in the presence 

Infarct 

C
ardiom

yocytes 

*

Figure 6.5. 5′-Bromodeoxyuridine (BrdU)-positive cells in injured cardiac tissue at day 5 after 
ischemic injury. In this preparation, cardiac injury was induced by ligating the left anterior descend-
ing coronary artery in a mouse model. BrdU was injected into the skeletal muscle of a mouse 24 hrs 
before observation. Cardiac specimens were fi xed in 4% formaldehyde in phosphate-buffered saline 
(PBS), cut into cryosections, treated subsequently with 0.5% pepsin and 1.5 N HCl, incubated 
subsequently with an anti-BrdU antibody and a fl uorescein-conjugated secondary antibody, and 
observed by using a fl uorescence microscope. Scale bar: 10 μm.



of a chemoattractant, the cell membrane extends toward the chemoattractant. The forces 
that drive the membrane protrusion are generated by the actin assembly. Although the 
mechanisms of actin assembly is under debate, it is thought that controlled sequential 
extension of actin fi laments toward the cell leading edge may provide a propelling force 
for membrane protrusion. In this model, actin subunits are added to the barbed end of the 
actin fi laments, which point at the leading edge of cell migration. Such a process is con-
trolled by regulatory proteins, including the Arp2/3 complex (see Chapter 3).

Attachment of Cell Membrane to Substrate Matrix at the Leading Edge. Following the 
protrusion of cell membrane due to directed actin assembly, the next step is the attachment 
of the extended membrane lamellipodia to substrate. Such a process stabilizes the leading 
edge of the migrating cell and allows the cell to exert forces on the substrate, a necessary 
condition for cell migration. The attachment of cell leading edge is mediated by integrins. 
Unstimulated integrins are freely suspended in the cell membrane. In response to the 
stimulation of extracellular matrix, integrins are activated and bind to the actin cytoskel-
eton. Cell membrane protrusion enhances the binding of integrins to extracellular matrix 
in newly formed lamellipodia. Integrin–matrix interaction further stimulates the binding 
of integrins to the actin cytoskeleton, facilitating the formation of focal adhesion contacts 
between the actin cytoskeleton and extracellular matrix. Thus, integrins play a critical 
role for the attachment of cell lamellipodia to substrate. Since focal adhesion contacts link 
the actin cytoskeleton to extracellular matrix, forces generated by the actin cytoskeleton 
can be transmitted to the extracellular matrix, which is critical to cell migration.

Cell Traction and Movement. Cell movement is propelled by traction forces generated 
by the actin cytoskeleton and exerted on the extracellular matrix substrate. In a fi broblast, 

Unstimulated cell

Protrusion 

Attachment

Movement and retraction

Stimulation

Figure 6.6. Schematic representation of cell migration. Based on bibliography 6.6.

CELL MIGRATION  271



272  FUNDAMENTAL CELLULAR FUNCTIONS

for example, the actin cytoskeleton can generate traction forces about 1 nN/μm2 on a sub-
strate. The generation of traction forces is dependent on the interaction of actin fi laments 
with myosin II in mammalian cells. Actin fi laments are distributed around the cell periph-
ery. The barbed ends of the actin fi laments are oriented toward the cell periphery in 
regions near the leading and trailing edges, while those in the middle region are oriented 
more randomly. The myosin II molecules are distributed more heavily in the middle region 
than in regions near the leading and trailing edges. With such molecular distributions, the 
interaction of actin fi laments with myosin II results in predominantly peripheral move-
ments. The direction of cell migration may be dependent on the asymmetric distribution 
of actin fi laments and the relationship between actin fi laments and the extracellular 
matrix, which determine the balance of the traction forces between the cell leading and 
trailing edges. Directed migration can occur only if the traction force at the leading edge 
exceeds that at the trailing edge.

Retraction of Cell Membrane at the Trailing Edge. To initiate cell migration, the 
forward movement at the cell leading edge must be accompanied with a retraction at the 
cell trailing edge. The dynamic interaction of integrins with extracellular matrix may 
mediate the coordinated leading-edge movement and trailing-edge retraction. The distri-
bution of integrin-containing focal adhesion contacts changes dynamically from the cell 
leading edge to the trailing edge. The density of focal adhesion contacts is relatively lower 
at the trailing edge than that at the leading edge. Such a distribution of focal adhesion 
contacts results in reduced cell membrane adhesion to the extracellular matrix at the cell 
trailing edge and is in favor of the dissociation of cell membrane from the extracellular 
matrix. Furthermore, the traction forces generated at the cell leading edge are counterbal-
anced by those at the trailing edge. A reduction in the density of focal adhesion contacts 
at the trailing edge likely results in an increase in the traction force per focal adhesion 
contact, which enhances the disruption of integrin–matrix bonds and thus facilitates the 
retraction of the cell trailing edge.

In addition to the infl uence of the physical factors described above, the disruption 
of the integrin–matrix bonds at the cell trailing edge may be regulated by biochemical 
processes. For instance, the disruption of αvβ3–vitronectin interaction in migrating neu-
trophils requires the presence of calcium. The suppression of the calcium-dependent 
phosphatase calcineurin prevents the disruption of the αvβ3–vitronectin interaction. This 
observation suggests that calcineurin plays a role in regulating the detachment of cell 
membrane from matrix substrate at the trailing edage. However, the mechanisms of chemi-
cally mediated retraction remain to be investigated.

Replenishment of Integrins. Integrins play a critical role in the mediation of membrane 
attachment, cell traction, and cell retraction during cell migration. The distribution and 
activity of integrins vary from the cell leading to trailing edges. This suggests that the 
cell must replenish active integrins at the cell leading edge. There are two possible ways 
for the replenishment of integrins: integrin synthesis and recycling. New integrins are 
continuously synthesized and deployed to the cell membrane. Cells are also able to 
endocytose and reuse the integrin molecules left behind on the substrate during cell 
trailing-edge retraction. In addition, cells may actively transport membrane integrins 
from the cell trailing to leading edges. With these approaches, the cell is able to maintain 
an appropriate distribution of integrins, which is necessary for the conduction of cell 
migration.



Regulation of Cell Migration

Role of the Rho family of GTPases. As discussed above, cell migration is accomplished 
by a number of complex molecular processes. These processes are regulated by a variety 
of signaling molecules. Among the signaling molecules, the Rho family of small GTPases, 
including Rho, Rac, and Cdc42, plays a critical role in the regulation of cell 
migration.

The GTPases of the Rho family are GTP-binding proteins with molecular weight of 
∼21 kDa. These proteins belong to the Ras protein superfamily, which include, in addition 
to the Rho family GTPases, the Rab, the ADP-ribosylation factor (ARF), and the Ran 
families. The Rab proteins participate in the regulation of vesicle transport, the ARF 
proteins mediate signal transduction and vesicle transport, whereas the Ran proteins 
mediate protein transport to the cell nucleus. All proteins of the Ras superfamily are able 
to bind GTP.

For the Rho family of small GTPases, 11 different isoforms have been identifi ed in 
mammalian cells, including RhoA, RhoB, RhoC, RhoD, RhoE, RhoG, Rac1, Rac2, Cdc42, 
TC10, and TTF. Among these proteins, the role of RhoA (see Table 6.4.), Rac1, and Cdc42 
has been extensively studies (see Chapter 3 for characteristics of these molecules). RhoA 
has been shown to regulate the formation and organization of actin fi laments, Rac1 medi-
ates the formation of cell lamellipodia and membrane ruffl es, whereas Cdc42 is responsi-
ble for the formation of fi lopodia. All these processes are related to cell migration.

All GTPases of the Rho family can bind GTP or GDP. A GTPase is active when GTP 
is bound, whereas it is inactive when GDP is bound. Nucleotide exchange factors can 
stimulate the binding of GTP to GTPases, activating the GTPases. A variety of extracel-
lular signals can activate the nucleotide exchange factors and thus the GTPases. While 
the exact mechanisms of GTPase activation remains poorly understood, GTPase transloca-
tion to the cell membrane or cytoskeleton may play a role. For example, the nucleotide 
exchange factor for Cdc42 is associated with the cell membrane. Activated nucleotide 
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TABLE 6.4. Characteristics of RhoA*

  Amino Molecular
Proteins Alternative Names Acids Weight (kDa) Expression Functions

RhoA Ras homolog gene 193 22 Ubiquitous Regulating the
  family member     organization and
  A, ARHA, aplysia     remodeling of
  ras related     actin cytoskeleton
  homolog1 2     during cell
  (ARH12),     morphogenesis
  oncogene rho H12,     and migration
  RHOH12, RHO12,     and mediating
  RHOA,     cell proliferation
  transforming     and
  protein RhoA, Ras     differentiation
  homolog gene
  family member A

*Based on bibliography 6.6.
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exchange factor can induce translocation of Cdc42 from the cytoplasm to the cell mem-
brane, which facilitates the activation of Cdc42.

Activated RhoA, Rac1, and Cdc42 can interact with and stimulate downstream signal-
ing molecules, including protein kinases, adapter proteins, and phosphoinositide kinases. 
For instance, Rho can activate Rho-associated kinase, which in turn phosphorylates 
myosin II light-chain kinase in smooth muscle cells. Myosin II light-chain kinase can 
activate myosin light chain and facilitate myosin–actin interaction. The Rho family of 
small GTPases can also interact with molecules that link to the actin cytoskeleton. An 
example is the interaction of Rho with p140mDia, which induces the activation of 
p140mDia. Activated p140mDia can interact with profi lin, an actin-binding protein.

Rho, Rac1, and Cdc42 are involved in the regulation of actin polymerization and the 
formation of stress fi bers, which are myosin II-associated contractile actin fi lamentous 
bundles. In cultured Swiss 3T3 fi broblasts, cell transfection with active Rho and Rac 
mutants stimulates the formation of stress fi bers and lamellipodia, or wide cell membrane 
protrusions. Cells transfected with a Rho inhibitor C3 transferase or a dominant-negative 
mutant for Rac exhibit reduced formation of stress fi bers. In addition, Rho, Rac, and Cdc42 
promote the formation of focal adhesion contacts. Since actin polymerization, cell mem-
brane protrusion (formation of lamellipodia and fi lopodia), and formation of focal adhe-
sion contacts are essential processes of cell migration, the small GTPases Rho, Rac, and 
Cdc42 contribute to the regulation of cell migration.

Role of MAPKs. As discussed in Chapter 5, mitogen-activated protein kinases (MAPKs) 
are key elements for signaling pathways that respond to the stimulation of growth factors, 
including platelet-derived growth factor, epidermal growth factor, fi broblast growth factor, 
and vascular endothelial growth factor. The binding of these growth factors to cognate 
growth factor receptors induces autophosphorylation of the receptor tyrosine kinase 
located in the cytoplasmic domain of the receptor. Such a process leads to the activation 
of a cascade of signaling molecules, including the Ras protein, ERK kinase, and ERK1/2, 
which belongs to the MAPK family. Activated ERK1/2 can directly phosphorylate myosin 
light-chain kinase, which activates myosin light chain and promotes myosin–actin interac-
tion. These MAPK-involved processes infl uence cell migration via mediating the contrac-
tility of actin fi laments.

CELL ADHESION

Cell adhesion is a molecular process that mediates cell–cell (intercell) and cell–matrix 
interactions and is involved in the regulation of developmental morphogenesis, physiologi-
cal adaptation, and pathogenic remodeling. Cells can selectively bind to other cells and 
extracellular matrix by activating cell adhesion mechanisms. Cell adhesion is related to a 
variety of molecular and cellular processes, such as cytoskeletal reorganization, alterations 
in cell geometry, signaling activation, gene expression, and cell mitogenic responses. It is 
now understood that cell–cell adhesion and cell–matrix adhesion are regulated by several 
classes of cell adhesion molecules. These include immunoglobulin-like cell adhesion 
molecules, selectins, cadherins, cell surface heparan sulfate proteoglycans, protein tyro-
sine phosphatases, and integrins. Cell adhesion is a process that requires coordinated 
interactions between various cell adhesion molecules as well as between adhesion mole-
cules and the actin cytoskeleton. In this section, the structural and functional character-
istics of major classes of adhesion molecules are discussed.



Immunoglobulin-Like Domain-Containing Cell Adhesion Molecules [6.7]

Classifi cation and Structure. Immunoglobulin (Ig)-like domain-containing cell adhe-
sion molecules (IgCAMs) (see Table 6.5) are cell surface adhesion molecules that belong 
to the immunoglobulin superfamily, which contains about 100 members. IgCAMs mediate 
cell–cell and cell–matrix adhesion and play a role in regulating cell signaling. These 
molecules contribute to the regulation of embryonic development and pathogenic remodel-
ing. In particular, IgCAMs play a critical role in mediating polarized migration of neurons 
and the development of the nerve system.

A typical IgCAM is composed of one or more Ig-like domains, which are located in 
the extracellular region of the molecule (Fig. 6.7). Each Ig-like domain is composed of 
about 100 amino acids, which constitute two opposed β sheets linked by disulfi de bonds 
between cysteine residues. In addition, a typical IgCAM is composed of fi bronectin (FN)-
like repeats in the extracellular region. Each repeat consists of two β sheets of about 90 
amino acids. Some IgCAMs are widely distributed in almost all tissues and organs, while 
others are expressed in limited tissues and organs. The expression pattern of IgCAMs is 
regulated to suit the function of various types of tissues and organs during development 
and remodeling.

Several types of IgCAMs have been identifi ed and characterized. These include neural 
cell adhesion molecules (NCAMs), vascular cell adhesion molecules (VCAMs), intercel-
lular adhesion molecules (ICAMs), L1-like IgCAMs, and receptor protein tyrosine phos-
phatases. A typical NCAM is composed of fi ve Ig-like domains and two FN-like repeats in 
the extracellular region, a transmembrane domain, and a cytoplasmic domain. NCAMs are 
primarily expressed in neural cells and are involved in the regulation of neural cell adhesion 
and development. VCAM is composed of seven extracellular Ig-like domains, a transmem-
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NCAM

IgC2

FN3

Ig-like

VCAM ICAM

Ig-like

Tyrosine 
phosphatase

Figure 6.7. Schematic representation of the structure of immunoglobulin (Ig)-like domain-con-
taining cell adhesion molecules. IgC2: Immunoglobulin C2-type domain. FN3: fi bronectin type 3 
domain. Based on bibliography 6.7.
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brane domain, and a cytoplasmic domain and can be found in vascular endothelial cells. It 
is involved in the regulation of endothelial cell adhesion. L1-like IgCAMs consists of six 
Ig-like domains and fi ve FN-like repeats, a transmembrane domain, and a cytoplasmic 
domain. These IgCAMs can be found in the nerve tissue and play an important role in regu-
lating neuron–neuron and neuron–glial cell interactions. Several receptor protein tyrosine 
phosphatases (RPTP), including RPTPδ, RPTPκ, and RPTPμ, possess the function of 
IgCAMs. These molecules are composed of Ig-like domains and FN-like repeats in the 
extracellular region and two cytoplasmic phosphatase domains. While RPTPs catalyze 
dephosphorylation of protein tyrosine kinases, they also mediate cell–cell adhesion.

Functions

Role in Mediating Cell–Cell Adhesion. IgCAMs are cell membrane receptors and mediate 
cell adhesion via interaction between their extracellular domains and target molecules. 
Various forms of IgCAM interaction have been identifi ed. Under appropriate conditions, 
some IgCAMs, such as NCAMs and L1-like IgCAMs, can initiate homophilic binding, 
specifi cally, interaction between identical IgCAM molecules of different cells. However, 
most IgCAMs undergo heterophilic interaction between different IgCAMs or between 
IgCAMs and non-IgCAM molecules, such as laminin and tenascin.

IgCAMs are involved in the mediation of neuron–neuron interaction. For instance, 
L1-like IgCAMs mediate interaction between different neurons homophilically as well as 
heterophilically. Such a process is critical to neuron–neuron interaction, which is the basis 
for neuronal communication. L1-like IgCAM interaction also facilitates neurite extension 
and outgrowth. In addition to the regulation of neuron–neuron interaction, IgCAMs are 
also involved in mediating neuron–glial cell interaction. Neural NCAMs are capable of 
interacting with receptor protein tyrosine phosphatase β in the membrane of glial cells. 
In this process, receptor protein tyrosine phosphatase β may serve as a substrate for neuron 
migration and outgrowth. Thus, IgCAM-mediated neuron–neuron and neuron–glial cell 
interactions contribute to the development of the nerve system.

Role in Mediating Cell–Matrix Adhesion. The interaction of neurons and extracellular 
matrix is a process that regulates neurite outgrowth and the morphogenesis of the nerve 
system. IgCAMs are involved in the mediation of neuron–matrix interaction. For instance, 
L1-like IgCAMs can interact with extracellular matrix-derived tenascin R. Such a process 
plays an important role in regulating neurite outgrowth. IgCAMs interact not only with 
extracellular matrix components but also with intracellular actin cytoskeleton. The intra-
cellular interaction is mediated by an actin-binding molecule known as ankyrin. L1-like 
IgCAMs are capable of binding to ankyrin, which links IgCAMs to actin fi laments via 
interaction with spectrin. The IgCAM linkage with actin cytoskeleton may enhance the 
interaction of the cell with extracellular matrix.

Role in Cell Signaling. IgCAMs are involved in the regulation of cell signal transduction. 
IgCAMs have been shown to interact with a number of signaling molecules, including the 
Src family nonreceptor tyrosine kinases, growth factor receptor tyrosine kinases, receptor 
protein tyrosine phosphatases, and serine/threonine protein kinases. For instance, IgCAM-
dependent neurite outgrowth is reduced in the absence of Src and Fyn, suggesting that 
these nonreceptor tyrosine kinases may relay signals from IgCAMs.

CELL ADHESION  277



278  FUNDAMENTAL CELLULAR FUNCTIONS

As described above, certain types of receptor protein tyrosine phosphatases (RPTPs) 
are also IgCAMs. These RPTPs possess dual functions; the extracellular Ig-like region 
mediates cell adhesion, while the cytoplasmic phosphatase domain transmits adhesion-
related signals to intracellular signaling pathways. Although the signaling mechanisms of 
the cytoplasmic domain remain poorly understood, it is possible that phosphatase-induced 
dephosphorylation of substrate proteins may play a role.

IgCAMs are also involved in fi broblast growth factor (FGF)-related cell signaling. L1-
like IgCAMs and NCAMs can induce phosphorylation of the FGF receptor protein tyro-
sine kinase, which is independent of FGF ligand stimulation. The phosphorylation of the 
FGF protein receptor tyrosine kinase induces the activation of a cascade of signaling 
molecules, leading to mitogenic cellular activities.
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Selectins

Classifi cation and Structure [6.8]. Selectins (Table 6.6) are lectin-type adhesion mole-
cules expressed in the membrane of several cell types, including vascular endothelial cells, 
leukocytes, and platelets. Selectins are classifi ed into several groups: E-selectin, L-
selectin, and P-selectin. E-selectin is found in endothelial cells, and its function is to 
mediate the interaction of endothelial cells with leukocytes via binding to corresponding 
ligands. L-selectin is expressed in leukocytes and is responsible for binding to ligands on 
endothelial cells and other leukocytes. P-selectin is expressed in platelets and endothelial 
cells, and is responsible for binding to ligands on leukocytes and endothelial cells. Selec-
tins are involved in the regulation of several basic leukocyte activities, including leukocyte 
adhesion to, rolling on, and migration through the endothelium.

A typical selectin is composed of several domains: an N-terminal lectin-like domain, 
an epidermal growth factor (EGF)-like domain, several consensus repeats, a transmem-
brane domain, and a cytoplasmic domain (Fig. 6.8). The lectin-like and EGF-like domains 
are similar in amino acid sequence among different selectins, while other domains differ 
between different selectins. The N-terminal lectin domain is responsible for the adhesion 
properties of selectins in a Ca2+-dependent manner.

Function [6.9]. The primary function of selectins is to mediate interaction between leu-
kocytes, platelets, and endothelial cells. Selectins can selectively bind to the oligosaccha-
rides of glycoproteins in the membrane of a target cell. Endothelial cells express various 
selectin ligands, including glycosylation cell adhesion molecule-1, CD34, mucosal 
addressin cell adhesion molecule-1, and podocalyxin. Leukocytes express primarily 
E-selectin glycoprotein ligand-1 and P-selectin glycoprotein ligand-1. E-selectin and 
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Figure 6.8. Schematic representation of the structure of selectins. Based on bibliography 6.8.

P-selectin of endothelial cells can bind to E-selectin glycoprotein ligand-1 and P-selectin 
glycoprotein ligand-1 of leukocytes, respectively. L-selectin of leukocytes can bind to 
glycosylation cell adhesion molecule-1, CD34, mucosal addressin cell adhesion molecule-
1, and podocalyxin of endothelial cells. When leukocyte-leukocyte interaction takes place, 
the L-selectin of one cell can bind to the P-selectin glycoprotein ligand-1 of another cell. 
Similarly, the P-selectin of platelets can bind to the P-selectin glycoprotein ligand-1 of 
leukocytes and to the glycosylation cell adhesion molecule-1, CD34, and mucosal addressin 
cell adhesion molecule-1 of endothelial cells. The binding of selectins with corresponding 
ligands is the basis for leukocyte adhesion to and rolling on the endothelium.

Under physiological conditions, the constitutive level of selectins in the cell membrane 
is considerably low, and thus leukocytes and platelets rarely adhere to endothelial cells. 
Endothelial cells and platelets can synthesize and maintain a constitutive pool of selectins 
(primarily P-selectin). The synthesized selectin molecules are not deployed to the cell 
membrane, but stored in the α-granules of platelets and the Weibel–Palade bodies of endo-
thelial cells. These selectin molecules can be redistributed to the cell membrane rapidly in 
response to infl ammatory stimulation. The expression of selectins and ligands are also 
upregulated in infl ammatory reactions. Increased selectin level enhances selectin–ligand 
interaction and thus facilitates leukocyte and platelet adhesion to the endothelium.

Since leukocytes and endothelial cells are subject to bloodfl ow, the formation of selec-
tin and ligand bonds must be rapid and the bonds must be suffi ciently strong to resist 
shearing forces imposed by the bloodfl ow. Under certain shearing conditions, adhered 
leukocytes may roll on the endothelium. Such a process requires coordination between 
shear stress and the adhesion bond dynamics, so that the formation of adhesion bonds at 
the cell leading edge due to selectin–ligand interaction is associated with an equal level 
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of disruption of adhesion bonds at the cell trailing edge due to shear stress. Leukocyte 
adhesion to and rolling on the endothelium are critical processes in infl ammatory responses. 
These processes prepare leukocytes for transmigration into the interstitial space, where 
infl ammatory reactions take place.

Selectin–ligand interaction may contribute to signal transduction in leukocytes and 
endothelial cells. Although a complete mechanism is not yet demonstrated, preliminary 
studies have shown that leukocyte adhesion to L-selectin ligands induces calcium redis-
tribution and activation of mitogen-activated protein kinases. The level of activation is 
related to the density of the selectin ligands. There is also evidence that selectin–ligand 
interaction induces activation of integrins. Further investigations are needed to clarify 
selectin-related signaling pathways.

Cadherins

Classifi cation and Structure [6.10]. Cadherins (Table 6.7) are a family of calcium-
dependent cell adhesion molecules, which are characterized by the presence of cadherin-
specifi c repeats in the extracellular region of the molecule. Cadherins are traditionally 
classifi ed into several subfamilies: classical cadherins, protocadherins, and desmosomal 
cadherins. Cadherins are usually associated with a class of molecules known as catenins. 
These adhesion molecules are involved in the regulation cell–cell interaction, tissue mor-
phogenesis, as well as mitogenic activities such as cell proliferation and migration.

The classical cadherin subfamily includes E-, P-, and N-cadherins (Fig. 6.9). These 
molecules are localized to the zonula adherens or adherens junctions, which are intercel-
lular contacts required for cell adhesion, cell–cell communication, and tissue formation 
and organization. These cadherins share similar amino acid sequences and mediate Ca2+-
dependent cell–cell interaction and connection. A typical classical cadherin is composed 
of an N-terminal precursor sequence, which contains a proteolytic processing signal 
sequence K/RRXKR, four characteristic cadherin repeats immediately following the N-
terminal precursor sequence, a transmembrane domain, and a well-conserved cytoplasmic 
domain. Cleavage of the N-terminal precursor sequence is required for the activation of 
cadherin. Each cadherin repeat in the extracellular region contains consensus Ca2+-
binding sites. The binding of Ca2+ induces dimerization of cadherins and protection of 
the molecule from degradation. The cytoplasmic domain of cadherins interacts with the 
actin cytoskeleton via cadherin-associated proteins known as catenins.

Protocadherins constitute another cadherin subfamily. Compared with the classical 
cadherins, these adhesion molecules are characterized by the lack of the proteolytic pre-
cursor sequence and the presence of more than four cadherin repeats in the extracellular 
region (Fig. 6.10). In addition, unlike the classical cadherins, the cytoplasmic domain of 
protocadherins is considerably heterogeneous in structure. The structural difference sug-
gests different mechanisms in regulating cell adhesion between protocadherins and clas-
sical cadherins. It appears that cell adhesion mediated by protocadherins is not as strong 
as that mediated by classical cadherins.

The third subfamily of cadherins is found in desmosomes and is defi ned as desmosomal 
cadherins. Desmosomes are intercellular structures identifi ed in epithelial and cardiac 
muscular cells (Fig. 6.11) and are responsible for cell–cell interaction and connection, 
which play a critical role in regulating the formation and integrity of tissues and organs. 
A typical desmosome appears under an electron microscope as a complex with two paral-
lel plaques (one from each cell) and a narrow gap (∼30 nm in width) between two cell 
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Figure 6.9. Schematic representation of the structure of cadherins. Based on bibliography 6.10.
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Figure 6.10. Schematic representation of the structure of Protocadherins. Based on bibliography 
6.10.

membranes. Such a structure contains several components, including desmosomal cad-
herins, plakoglobin, plakins, and plakophilins.

There are two types of desmosomal cadherin in desmosomes: desmogleins and des-
mocollins. These are glycoproteins containing amino acid sequences that are similar to 



the classical cadherins described above. However, desmogleins contain three additional 
domains in their cytoplasmic tail, including a proline-rich linker, a repeating unit domain, 
and a terminal domain (Fig. 6.12). Each type of desmosomal cadherin exists in three iso-
forms. The isoforms for desmogleins are desmoglein-1,2,3, and those for desmocollins are 

Desmogleins
Keratin filamentsAttachment plaque

Epithelial cell Epithelial cell

Figure 6.11. Schematic representation of the structure of desmosomes. Based on bibliography 
6.10.

Cadherin
repeats

Cadherin
repeats

Cadherin
repeats

Desmoglein 1 Desmoglein 2 Desmocollin 1

Figure 6.12. Schematic representation of the structure of desmogleins. Based on bibliography 
6.10.
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desmocollin-1,2,3. The distribution of each desmosomal cadherin varies among tissues 
and organs. For instance, desmoglein-2 and desmocollin-2 are ubiquitously expressed in 
tissues with desmosomes, whereas desmoglein-3 and desmocollin-3 are found mostly in 
the basal layer of stratifi ed epithelia.

Function [6.11]. Cadherin-mediated cell adhesion plays an important role in the regula-
tion of tissue and organ morphogenesis and development. A change in the expression 
pattern of major cadherins is often associated with altered morphogenetic processes. For 
instance, E-cadherin is highly expressed and activated in the oocyte after fertilization, 
while N-cadherin is not. At gastrulation, the expression and activation pattern of the E- 
and N-cadherins is switched; specifi cally, the E-cadherin is downregulated whereas the 
N-cadherin is upregulated. Such a switch is associated with epithelial–mesenchymal 
transition. Furthermore, the overexpression of N-cadherins blocks the segregation of 
neural crest cells from the neural tube. These observations suggest that the expression and 
activation of appropriate cadherins are critical to the regulation of tissue and organ mor-
phogenesis during embryonic development.

Cadherins are involved in the regulation of cell differentiation. This function has been 
demonstrated in E-cadherin-null embryonic stem cells. While wildtype embryonic stem 
cells can differentiate into well-organized forms of specialized tissues, E-cadherin-null 
stem cells develop only into tissues without specialized forms. The transfer of E-cadherin 
gene into E-cadherin-null stem cells restores the differentiation function of the embryonic 
stem cells. These observations suggest that E-cadherins play a critical role in regulating 
the differentiation of embryonic stem cells.

Cell adhesion mediated by cadherins plays a role in the regulation of cell survival. This 
is supported by several lines of evidence. The lack of E-cadherins is associated with the 
induction of endothelial cell apoptosis. Caspases can cleave cadherins and induce cell 
dissociation, contributing to cell apoptosis. Thus, the presence of cadherins is essential to 
cell survival.

Cell Surface Heparan Sulfate Proteoglycans

Classifi cation and Structure [6.12]. Cell surface heparan sulfate proteoglycans are com-
posed of heparan sulfate glycosaminoglycan (GAG) chains, which are attached to core 
proteins in the extracellular region. These proteoglycans serve as adhesion receptors and 
participate in the regulation of cell–cell and cell–matrix interactions. Heparan sulfate can 
form various types of heparan sulfate proteoglycan, including perlecan and agrin in extra-
cellular matrix, serglycin in the cytoplasm, and syndecans and glypicans in the cell 
membrane. The function of heparan sulfate proteoglycans is determined by the heparan 
sulfate glycosaminoglycan group.

A heparan sulfate molecule is composed of highly sulfated heparin-like domains and 
poorly sulfated domains with rich glucuronic acids. These domains alternate with inter-
mediate sulfated domains. The total length and the number of each domain of a heparan 
sulfate vary considerably between different cell types. The differences between cell types 
may be due to the existence of multiple isoforms of modifi cation enzymes. A major func-
tion of the heparan sulfate chains in a cell surface heparan sulfate proteoglycan is to bind 
ligands. A large number of proteins can bind to heparan sulfate. Although the amino acid 
sequences of these binding proteins vary widely, the binding proteins are rich in basic 
amino acids such as lysine and arginine.



Syndecans and glypicans (see Table 6.8) are the most abundant heparan sulfate pro-
teoglycans at the cell surface. Syndecans are transmembrane receptors with heparan 
sulfate chains attached to the extracellular region at the N-terminus (Fig. 6.13). Syndecans 
are a family of several heparan sulfate proteoglycans, including syndecan-1,2,3,4 with 
molecular weights 33, 22, 46, and 22 kDa, respectively. The extracellular domain of the 
four syndecan molecules differs considerably. Syndecan-2,-3 contain in their extracellular 
region primarily heparan sulfate chains, whereas syndecan-1,-4 contain chondroitin sul-
fates in addition to heparan sulfates. The extracellular domain of syndecans is composed 
of heparan sulfate attachment sites, signal peptide sites, and proteolytic cleavage sites. 
Syndecans can be shed from the cell membrane via protein cleavage at sites near the cell 
membrane. Such a process converts receptor-type to soluble syndecans. Both receptor and 
soluble syndecans can bind to the same type of ligands.

The transmembrane domain of syndecans is well conserved among different types of 
syndecan. This domain plays a role in mediating the dimerization of the syndecan mole-
cules and localizing syndecans to appropriate membrane compartments. The cytoplasmic 
tail of all syndecans is highly conserved. This tail is composed of phosphorylation sites 
and binding sites for cytoskeletal proteins and signaling molecules.

Glypicans are globular molecules with molecular weight ∼60 kDa. Six types of glypican 
have been identifi ed. Each glypican is composed of an N-terminal cysteine-rich domain 
and heparan sulfate attachment motifs. Glypicans are attached to the external surface of 
the cell membrane via a glycosyl phosphatidylinositol anchor, which is localized to the 
membrane microdomains with rich glycosphingolipids. The heparan sulfate chains are 
attached to the C-terminus of the core proteins near the cell membrane. Glypicans do not 
pass through the cell membrane.

TABLE 6.8. Characteristics of Selected Heparan Sulfate Proteoglycans*

 Alternative Amino Molecular
Proteins Names Acids Weight (kDa) Expression Functions

Syndecan Syndecan, 310 32 Skin, kidney, A transmembrane
 1  SYND1,    placenta,  heparan sulfate that
  SDC1,    lymphocytes  mediates cell
  CD138     binding, cell
  antigen,     signaling, cytoskeletal
  CD138.     organization, cell
      proliferation, cell
      differentiation, and
      HIV transmission to
      lymphocytes
Glypican GPC1 558 62 Pancreas, A heparan sulfate
 1     intestine,  proteoglycan that
     bone  attaches to external
     marrow,  surface of cell
     placenta  membrane and
      regulates cell–cell
      interaction

*Based on bibliography 6.12.
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Syndecan 1 Glypican 4

Heparan 
sulfate

Band 4.1

Figure 6.13. Schematic representation of the structure of syndecans. Based on bibliography 
6.12.

Function [6.13]. Cell surface heparan sulfate proteoglycans participate in the regulation 
of cell–cell adhesion and interaction. Syndecans are localized to adherens junctions and 
can interact with several adhesion molecules, such as L-selectin, N-CAM, and PE-CAM. 
The lack of syndecan-1 is associated with reduced cell aggregation, and the transfection 
of the syndecan-1 gene restores cell aggregation. These observations suggest that the pres-
ence of syndecans is essential to cell–cell adhesion. However, the exact mechanisms 
remain to be investigated.

Cell surface heparan sulfate proteoglycans play a role in the regulation of cell–matrix 
adhesion. Extracellular matrix contains a number of components, including collagen, 
elastin, fi bronectin, laminin, tenascin, vitronectin, and thrombospondin, which are capable 
of interacting with syndecans. During development, syndecans are colocalized with extra-
cellular matrix components. Certain types of syndecans, such as syndecan-1 and -4 are 
localized to the focal adhesion contacts. In heparan sulfate-defi cient cells, the formation 
of focal adhesion contacts is impaired. These observations demonstrate the importance 
of cell surface heparan sulfate proteoglycans in the control of cell–matrix interaction. The 
role of glypicans in regulating cell–matrix adhesion remains to be determined, although 
glypicans have been found to bind to collagen and fi bronectin.

Integrins

Classifi cation and Structure [6.14]. Integrins are transmembrane glycoproteins that 
mediate cell–matrix adhesion, providing a linkage between the cytoskeleton and extracel-
lular matrix (Fig. 6.14). Integrins also mediate cell–cell interactions. Each integrin is a 
heterodimer composed of a variable α subunit and a relatively conserved β subunit. To 
date, at least 18 α subunits and 8 β subunits have been identifi ed. The binding ligands of 



integrins are determined by the combination of specifi c α and β subunits. Several α inte-
grins and a common β integrin are presented in Table 6.9; some of these molecules are 
used for treatment of muscular dystrophy.

Both integrin α and β subunits contain an extracellular domain, a transmembrane 
domain, and a cytoplasmic tail. The α and β subunits contain distinct amino acid sequences. 
The β subunit is about 760–790 amino acids in length, whereas the α subunit is about 
1000–1200 amino acids. The majority of amino acids are distributed in the extracellular 
region for both α and β subunits. The extracellular region of the β subunit is composed 
of an I-domain, which is responsible for ligand binding, and several cysteine-rich repeats. 
The extracellular region of the α subunit is composed of an I-domain (in at least 9 α sub-
units) and several repeats with a consensus sequence DxDxDGxxD (x = any amino acid). 
These repeats are responsible for integrin binding.

Although the cytoplasmic tail of integrins is considerably short, this region plays an 
important role in mediating interactions between integrins and intracellular signaling 
molecules, between integrins and cytoskeletal components, and between the integrin α 
and β subunits. The cytoplasmic tail is composed of a large number of binding sites for 
these interactions. The binding of integrins to the actin cytoskeleton is the basis for the 
formation of cell focal adhesion contacts, essential structures for the control of cell attach-
ment to extracellular matrix and cell migration.

Each cell contains a number of different types of integrins. The β1 subunit forms a 
dominant subfamily of integrins with the α subunits. The β1-containing integrins are 
defi ned as β1 integrins. The ligands of β1 integrins are determined primarily by the 
specifi cities of the α subunits. For example, α1β1 and α2β1 bind to collagen and laminin, 
α4β1 and α5β1 bind to fi bronectin, whereas α6β1 binds to laminin.

Integrin α1

Integrin α 
repeats

von Willebrand 
factor A domain

Integrin α2 Integrin β2

von Willebrand 
factor A domain

PSI

Figure 6.14. Schematic representation of the structure of integrins. PSI: domain found in plexins, 
semaphorins, and integrins. Based on bibliography 6.14.
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Function [6.15]. Integrins play a critical role in the regulation of cell migration. As dis-
cussed on page 270 of this chapter, in order to induce migration, a cell must attach to a 
matrix substrate at the leading edge while detaching from the substrate at the trailing edge 
at a given time. Although the exact mechanisms are poorly understood, integrins are likely 
involved in the regulation of these processes. During cell migration, integrins at the 
leading edge must be engaged to form strong adhesion bonds between focal adhesion 
contacts and the matrix substrate (Fig. 6.15), whereas integrins at the trailing edge must 
dissociate from the matrix substrate. The location-dependent integrin activation and deac-
tivation within a single cell remains a subject of research.

In addition to the regulation of cell membrane attachment to matrix substrate, integrins 
are involved in regulating the contractile activity of the actin cytoskeleton. Integrins can 
be activated by exposure to extracellular matrix. Activated integrins can lead to phos-
phorylation of the mitogen-activated protein kinases (MAPKs) via the mediation of focal 
adhesion kinase and adaptor proteins. MAPKs can directly phosphorylate the myosin 
light-chain kinase (MLCK), which in turn activates myosin light chain, inducing and 
enhancing actin–myosin interaction. Actin–myosin interaction generates forces necessary 
for cell protrusion and traction during migration.

Integrins are involved in regulating the assembly of extracellular matrix. One example 
is the control of basement membrane formation by β1 integrins in epithelial tissues. 
Embryonic stem cells derived from β1 integrin-null mice are not able to form a basement 
membrane in epidermal tissue. Another example is integrin-related fi bronectin fi brillo-
genesis. The assembly of fi bronectin fi brils can be initiated on the binding of fi bronectin 
to the α5β1 integrin. The loss of this type of integrin is associated with impairment of 
fi bronectin fi brillogenesis. Other types of integrin, such as α4β1 and αvβ3, also contribute 
to the regulation of fi bronectin fi brillogenesis.

Integrins play a critical role in the regulation of cell differentiation and proliferation. 
In several experimental models, integrins have been shown to mediate the pattern of gene 
expression and cell differentiation. For instance, salivary gland cells can differentiate into 
duct and acinar epithelial cells in response to the interaction of integrins and extracellular 
matrix, whereas these cells cannot differentiate in the absence of extracellular matrix. 
Furthermore, a treatment with antibodies specifi c to collagen IV and integrin α6 and β1 

Integrin α Integrin β

Fibronectin

Figure 6.15. Schematic demonstration of interaction of integrins with fi bronectin. Based on bibli-
ography 6.15.



reduces the capability of cell differentiation. The attachment of cells to fi bronectin- and 
collagen-containing matrix is often associated with extensive changes in gene expression. 
Altered gene activities may likely contribute to integrin-initiated cell differentiation and 
proliferation. The loss of β1 integrins in keratinocytes is associated with a reduction 
in cell differentiation and proliferation. These observations suggest a critical role for 
integrin-matrix interaction in the regulation of cell differentiation and proliferation.

Mechanisms of Integrin-Related Activities [6.15]. The primary function of integrins is 
to regulate the adhesion of cells to extracellular matrix. Integrins can be activated by 
exposure to extracellular matrix, which induces conformational changes and clustering of 
integrins. The activation of integrins is associated with an increase in integrin binding 
affi nity. Integrins are major constituents of focal adhesion contacts, structures regulating 
cell adhesion to extracellular matrix. Focal adhesion contacts were original identifi ed in 
cultured fi broblasts by electron microscopy, which demonstrates the presence of electron 
dense plaques with fi lamentous structures. These plaques were later found to contain a 
number of molecules, including integrins, actin fi laments, talin, fi lamin, α-actinin, vin-
culin, profi lin, paxillin, tensin, focal adhesion kinase, the Src family kinases, protein 
tyrosine phosphatases, the Grb2 adaptor protein, and phosphoinositide 3-kinase. Integrins 
serve as links between the intracellular actin cytoskeleton and extracellular matrix, and 
transmit signals from the extracellular matrix to the actin cytoskeleton and intracellular 
signaling pathways.

Integrins do not possess intrinsic catalytic activity. However, the β subunit of integrins 
can transmit a variety of extracellular signals via their connection with intracellular sig-
naling molecules and actin cytoskeleton-associated molecules as described above. The 
importance of the β subunit can be tested by selected sequence deletion and restoration. 
The deletion of the β subunit is associated with diminished interaction of integrins with 
intracellular signaling molecules. Compared with the β subunit, the α subunit binds to 
fewer molecules. Identifi ed molecules that bind to the α subunit include calreticulin, 
guanine nucleotide exchange factor Mss4, and calcium-binding protein. The physiological 
function of the α subunit-binding proteins remains to be determined.

The interaction of extracellular matrix with integrins often initiates intracellular signal-
ing events, leading to molecular activities such as phosphorylation of protein tyrosine 
kinases, changes in the level of cAMP and calcium, and expression of mitogenic genes. 
In particular, integrins can transmit signals to two nonreceptor protein tyrosine kinases: 
focal adhesion kinase (FAK) and Src protein tyrosine kinase. These protein tyrosine 
kinases are localized to focal adhesion contacts. FAK can be phosphorylated in response 
to interaction of integrins with fi bronectin, although the mechanisms of FAK activation 
remain poorly understood. Phosphorylated FAK induces the recruitment of Src to FAK. 
Recruited Src in turn phosphorylates FAK at various sites, enhancing the activity of FAK. 
These activities lead to the recruitment of adaptor proteins, including Grb2 and pp130Cas, 
to the focal adhesion contacts. These adapter proteins link the integrin-FAK pathway to 
other signaling pathways, including the PI3-kinase, Ras, and MAPK pathways, which play 
critical roles in regulating cell proliferation and migration.

Integrin-related signaling molecules can communicate with the Rho family of small 
GTPases, including Rho, Cdc42, and Rac, which regulate the assembly and function of 
the actin cytoskeleton. The interaction of integrins with extracellular matrix can induce 
activation of Rho, Cdc42, and Rac. Activated Rho, Cdc42, and Rac enhance the assembly 
of focal adhesion contacts and the activity of related signaling molecules, including FAK. 
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However, the exact regulatory mechanisms remain to be investigated. These investigations 
suggest that integrin-dependent signaling pathways can “crosstalk” to other signaling 
pathways. Such interaction provides a synergistic mechanism for the regulation of cell 
adhesion, migration, proliferation, and differentiation.

APOPTOSIS [6.16]

Apoptosis is a process of naturally occurring cell death, which eliminates malfunctioned 
and undesired cells during development and remodeling. During development, apoptosis 
and cell division together contribute to the morphogenesis of tissues and organs. While 
cell division contributes to the growth of cell and tissue mass, apoptosis contributes to the 
removal of excessive cells. These processes are unnecessary for the formation of tissues 
and organs. After reaching maturity, apoptosis continues to play an important role in the 
maintenance of the homeostasis. Cells with damaged or mutant DNA are eliminated by 
apoptosis. Without apoptotic elimination, these cells may develop into tumor cells. Under 
a physiological condition, the cell density is kept at a relatively constant level through 
coordinated cell proliferation and apoptosis. An increase in apoptotic activity results in 
tissue degeneration, whereas a decrease in apoptotic activity results in hyperplasia, both 
of which contribute to pathogenic disorders of tissues and organs. Thus, it is important to 
maintain a physiological level of apoptotic activity.

Morphological Characteristics of Apoptosis [6.16]

In biological research, it is important to identify apoptotic cells, which helps to understand 
the mechanisms of apoptosis. Apoptotic cells undergo several stages of morphological 
change. On the stimulation of apoptotic signals, a cell usually starts to round up and 
becomes spherical in shape. These morphological changes are usually associated with cell 
membrane budding. The next noticeable change is DNA condensation, resulting in an 
increase in the nucleus density and reduction in the nucleus size, which can be seen under 
an optical and electron microscope (Fig. 6.16). DNA condensation is followed by DNA 
fragmentation and nucleus disruption. The entire cell eventually disintegrates into small 
pieces, which are phagocytosed by macrophages or neighboring cells. These morphologi-
cal features can be used to identify apoptotic cells.

Apoptosis-Inducing Factors [6.16]. Apoptosis can be induced by a variety of extracel-
lular factors, such as depletion of growth factors and nutrients, hypoxia, UV irradiation, 
mechanical stress, and binding of apoptotic ligands. Intrinsic changes, such as DNA 
damage and disruption, and immunoreactions, such as T-lymphocyte activation, can also 
trigger apoptosis. In addition, cancer cells can initiate apoptosis, an important mechanism 
for the elimination of cancer cells. Suppression of the apoptotic function increases the 
possibility of tumorigenesis.

Regulation of Apoptosis [6.16]. Apoptosis can be induced and regulated by two known 
signaling pathways: Fas ligand (FasL)- and tumor necrosis factor (TNF)-activated path-
ways. FasL and TNF are apoptosis-inducing proteins. These proteins are generated in 
the ER, deployed to the cell membrane, and cleaved from the cell membrane to form 
soluble ligands. The forms of the ligands determine the effectiveness of the ligands. For 
the Fas ligand, the membrane-bound form is more effective than the soluble form. In 



contrast, soluble TNF is more active than the membrane-bound form of TNF. The mech-
anism of Fas ligand-induced apoptosis is similar to that induced by TNF. Here, the FasL 
signaling pathway is used as an example to demonstrate the mechanisms of apoptosis 
(Fig. 6.17).

A Fas ligand can interact with the Fas ligand receptor, resulting in oligomerization 
(often trimerization) and activation of the receptor. Activated Fas ligand receptor in turn 
stimulates the Fas ligand-associated death domain or FADD (note that TNF can interact 
with and activate TNF receptor, which stimulates the TNFR-associated death domain or 
TRADD). Activated FADD (or TRADD) binds to a downstream protein known as caspase 
8 (cysteine aspartate protease 8), which belongs to the caspase family and possesses pro-
tease catalytic activity. In unstimulated cells, caspase 8 exists in an inactive form known 
as procaspase 8. In response to the stimulation of FADD (or TRADD), caspase 8 can be 

Figure 6.16. Electron micrographs of apoptotic human fi broblasts. (A) A control cell and (B) cells 
exposed to 0.5-μM naphthazarin (5,8-dihydroxy-1,4-naphthoquinone), an apoptosis inducer, for 8 h 
are shown. Different stages of apoptosis can be discerned in the treated cells: reduced cell size, 
condensed chromatin (stars), fragmented nuclei (arrow), and apoptotic bodies (arrow heads). 
Reprinted from Roberg K et al., Lysosomal release of cathepsin D precedes relocation of cyto-
chrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative 
stress, Free Radical Biol Med 27:1228–37, 1999, with permission from Elsevier.
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activated via autocatalytic cleavage. Caspase 8 can further activate a downstream protein 
known as Bid, a member of the Bcl2 family, by cleaving the C-terminal domain of the 
substrate. Following the cleavage by caspase 8, Bid can be translocated to the mitochon-
drial membrane. A major action of Bid is to release mitochondrial cytochrome c into the 
cytoplasm. Cytochrome c in turn activates a downstream protein named apoptosis protein-
activating factor-1 (Apaf-1), which binds ATP and interacts with procaspase 9, resulting 
in the formation of the active form of caspase 9 via autocatalytic cleavage. Caspase 9 can 
cleave procaspase 3, releasing the active form caspase 3. Caspase 3 is a terminal-stage 
protease, which cleaves and degrades a variety of signaling and structural proteins, includ-
ing protein kinases, poly[A]polymerse, and actin fi laments. Caspase 3 can also cleave 
DNA fragmentation factor (DFF), releasing a DFF subunit. This subunit can activate 
nucleases, which induces DNA degradation. These activities eventually lead to DNA 
fragmentation and cell degeneration. (See Table 6.10.)

Assessment of Cell Apoptosis [6.17]

There are several methods that can be used for assessing cell apoptosis. These methods 
have been developed on the basis of cell morphological and molecular changes in apoptotic 
cells and are classifi ed into several groups: (1) methods based on changes in the structure 
of cell membrane, (2) methods based on changes in cell morphology, (3) methods based 
on DNA fragmentation, (4) methods based on cytochrome c translocation, and (5) methods 
based on caspase activities. These methods are briefl y discussed here.

Assessing Changes in Cell Membrane Structure. A cell membrane contains asymmetri-
cally distributed phospholipid species in the membrane bilayer. The cytoplasmic layer of 
the cell membrane is composed of phosphatidylserine, phosphatidylinositol, phosphatidyl-
ethanolamine, and phosphatidylcholine. The extracellular layer is composed of sphingo-
myelin, phosphatidylcholine, and phosphatidylethanolamine, but not phosphatidylserine. 
The asymmetrical distribution of phosphatidylserine is created and maintained by the 
activity of aminophospholipid translocase, which transports phosphatidylserine from the 
extracellular layer to the cytoplasmic layer of the cell membrane. In apoptosis, the activity 
of the aminophospholipid translocase is inhibited, and the content of phosphatidylserine 
in the extracellular layer of the cell membrane increases, even though the integrity of the 
cell membrane is uncompromised. Thus, the appearance of phosphatidylserine in the 
extracellular layer of the cell membrane is indicative of early cell apoptosis. Phosphati-
dylserine in the extracellular layer can be detected by using an assay for Annexin A5, 
which is a phosphatidylserine-binding protein. To detect phosphatidylserine, Annexin A5 
can be tagged with a marker (e.g., biotin or fl uorochrome) and incubated with cell samples. 
Positive labeling of cells with Annexin A5 suggests the translocation of phosphatidylserine 
to the extracellular layer of the cell membrane, which indicates the occurrence of apoptosis 
in the labeled cells.

In addition, the permeability of cell membrane is often increased in cell apoptosis 
because of the disorganization of phospholipids. In such a case, the cell membrane is 
permeable to certain types of fl uorescent dyes, such as merocyanine (MC) 540 and 7-
aminoactinomycin D (7-AAD), which can not pass through the plasma membrane of 
normal cells. These dyes can be incubated with cell samples and detected by fl uorescence 
microscopy. The appearance of the dye within the cell suggests the occurrence of cell 
apoptosis. However, these fl uorescent dyes are not specifi c to cell apoptosis. Any factors 
that cause an increase in cell membrane permeability can induce positive cell labeling.
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Assessing Changes in Cell Morphology. Apoptotic cells are associated with morphologi-
cal changes, including cell membrane blebbing, DNA condensation with increased nucleus 
density, and nucleus disruption. The entire cell is eventually disintegrated into small 
pieces. Optical and electron microscopic approaches can be used to examine these mor-
phological features. At the optical level, hematoxylin can be used to examine the morphol-
ogy of cell nuclei. In addition, cell nucleus-binding fl uorescent dyes, such as DAPI and 
Hoechst 33258, can be used for the same purpose. Usually, the fl uorescent approach pro-
vides better images. At the electron microscopic level, cell membrane blebbing and DNA 
condensation (Fig. 6.16) can be observed with a much better resolution compared with the 
optical approach. Morphological examination is a key method for the identifi cation of cell 
apoptosis and is often used as a standard for the confi rmation of cell apoptosis detected 
by using other methods.

Assessing DNA Fragmentation. DNA fragmentation is a hallmark of cell apoptosis. 
Thus, apoptotic cells can be identifi ed by assessing DNA fragmentation. Two approaches 
can be used for such purpose: DNA electrophoresis and terminal deoxynucleotidyl 
transferase-mediated dUTP nick end-labeling (TUNEL). For the DNA electrophoresis 
method, the pattern of DNA bands can be analyzed by comparing to DNA samples from 
normal control cells. An increase in the number of DNA bands in a large range of molecu-
lar size suggests the occurrence of cell apoptosis.

TUNEL is a method used for visualizing DNA fragments in situ. A key enzyme used 
for this assay is the terminal deoxynucleotidyl transferase, which catalyzes DNA synthesis 
at the ends of DNA fragments in the presence of deoxynucleotides (dNUPs). When a 
dNTP is tagged with a marker, such as a fl uorescent molecule, the DNA fragments with 
the added dNTP can be visualized by fl uorescence microscopy. This method can be used 
at the single cell level. However, the method is not apoptosis-specifi c. DNA fragmentation 
induced by other factors, such as cell injury, can be detected. Thus, the identifi cation of 
morphological changes in apoptotic cells is often conducted together with the TUNEL 
method to confi rm the results by TUNEL.

Assessing the Translocation of Cytochrome c. Cytochrome c is a protein component of 
the respiratory chain in the mitochondria. It is localized to the surface of the internal 
membrane of the mitochondria. Cytochrome c can be translocated from the mitochondria 
to the cytoplasm and contributes to the activation of apoptotic signaling pathways. The 
translocation of cytochrome c is a critical step in apoptosis. Thus, the detection of cyto-
chrome c translocation from the mitochondria to the cytoplasm is indicative of apoptosis. 
An antibody can be used for examining the distribution of cytochrome c. Typical images 
of cytochrome c translocation are shown in Fig. 6.18.

Assessing the Activity of Caspases. Caspases are a group of proteinases that degrade 
proteins, ranging from signaling protein kinases to structural proteins, and play critical 
roles for the induction of cell apoptosis. The activation of caspases indicates the occur-
rence of apoptosis. Caspases are expressed in the form of inactive precursors, which can 
be activated by proteolytic cleavage at specifi c sites induced by proteinases. Thus, caspases 
cleavage is a sign of caspase activation. Immunoblotting is an effective method for the 
detection of caspase cleavage. The presence of reduced caspase subunits is indicative of 
caspase activation and the occurrence of apoptosis.
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