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Abstract 

The objective of this work is to develop a rapid and non-
destructive machine vision sensor to predict Vibrated Bulk 
Density (VBD) of coke aggregate samples based on their surface 
textural characteristics obtained by imaging. This information 
could be useful for ultimately making real-time process 
adjustments to reduce green anode variability. Coke samples f rom 
different sources and sieved in a number of size classes were 
investigated individually and in blends. Wavelet Texture Analysis 
(WTA) was used to extract textural features of coke samples, and 
these were related to their V B D using Partial Least Squares (PLS) 
regression. It is shown that W T A captures variations in coke size 
and source and leads to good V B D predictions. 

Introduction 

Petroleum coke is a by-product of crude oil processing and is 
considered by the refineries as a waste product [1], For the 
aluminum industry, however, coke is a raw material for the 
production of baked carbon anodes and its increasing variability is 
an important issue for carbon plants [2]. Variations in coke 
physical and chemical properties through t ime and f rom one 
supplier to another have a direct impact on anode performance in 
the aluminium reduction cells in terms of energy efficiency, 
carbon consumption, emissions of greenhouse gases and metal 
purity. 

Particle size distribution, particle shape, internal porosity of the 
material and structure of petroleum coke (e.g., sponge or shot 
coke) affect the pitch penetration in the dry aggregate and in turn, 
the properties of green and bake anodes (e.g. density). The 
frequent coke supplier changes also contribute to increasing 
incoming coke variability at the carbon plant. Therefore, smelters 
need to track changes in coke properties in order to make 
appropriate and timely process adjustments to reduce anode 
density variation. 

Methods for measuring the Vibrated Bulk Density (VBD) of coke 
materials have received a lot of attention in recent years because it 
is an easy and fast way to indirectly measure coke porosity. The 
porosity of the calcined coke is one of the most important physical 
properties affecting pitch demand and anode density. Hence, 
finding the opt imum amount of pitch is necessary for optimizing 
anode performance when facing variations in coke porosity [3]. 

The V B D is typically measured off-line by collecting samples 
f rom the dry aggregate mix f rom conveyor belts just before 
adding pitch. The samples are then sent to a laboratory for testing 
using a standard procedure involving a vibration table [4], 
Measurements are typically collected a f e w times per day because 
even if the procedure is simple and quick, it requires operator 
intervention. Unfortunately, this sampling frequency may not be 

sufficient for tracking changes in V B D and making timely 
corrective actions when needed. Coke properties vary because of 
the intrinsic heterogeneity of incoming coke shipments and 
frequent supplier changes (i.e. low frequency fluctuations). In 
addition, the silo management strategy when using multiple cokes, 
segregation within silos, and operational problems with size 
reduction or sizing equipment contribute to higher frequency 
variations. A method for real-time measurement of V B D is 
required to capture the range of variations, f rom low to high 
frequencies. 

In this work, we investigate a rapid and non-destructive machine 
vision sensor for tracking VBD variations. It is proposed to 
extract textural features f rom coke sample images and to use them 
to predict the sample VBD. The rationale behind this is as 
follows. V B D is a function of the real coke density and its internal 
porosity, as well as the inter-particle porosity due to packing. The 
latter is mainly influenced by particle size and shape which can be 
measured by imaging. Inter-particle porosity variations due to 
packing most likely happen at a higher frequency (changes in 
coke particle size and shape) compared with real coke density and 
internal porosity which mainly occur when the coke supply 
changes (i.e. lower frequency). Thus, extracting coke image 
features in real-time (ultimately on conveyor belts) and combining 
them with infrequently measured coke properties could provide a 
very efficient way of tracking V B D variations automatically. This 
new measurement could be used passively to monitor VBD, but 
also actively in a feedback control loop. For example, aggregate 
size distribution could be adjusted to maintain V B D at a desired 
set-point. The measurement could also enable feedforward control 
corrections to anode paste formulation (i.e. pitch ratio) when 
deemed necessary. 

This paper reports on a preliminary study aimed at investigating 
the use of coke image texture for predicting VBD. Coke textural 
features are extracted using Wavelet Texture Analysis (WTA), the 
efficiency and performance of which was demonstrated in several 
industrial product quality control applications [5]. Partial Least 
Squares (PLS) regression is used to model the relationship 
between coke textural features obtained by imaging and sample 
VBD. Several sources of cokes sieved in different size classes are 
used. Changes in coke particle size and source can be detected by 
W T A and used for predicting the V B D of coke samples for each 
source or in blends. 

Experimental 

Commercially available sponge cokes f rom five different sources 
(i.e. suppliers) were used in this analysis. These are identified by 
using letters A-E. These cokes were selected to span a range of 
properties. 
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Two cases were investigated to represent situations that may 
occur in practice when formulating the coke aggregates for anode 
manufacturing. First, each coke was imaged and analyzed 
separately (unmixed samples) as if anodes were made f rom a 
single coke source at a time. Then blends of two different cokes 
(mixed samples) were formulated to represent the situation where 
multiple cokes are used in anode making. 

Unmixed samples 

The coke from each source was sieved into seven size fractions as 
shown in Table I. These fractions can also be grouped into three 
categories: coarse, intermediate and fines. The sizing ranges for 
the coke fractions are approximately as follows: coarse (-4 / +30); 
intermediate (-30 / +100) and fine (-100 US Mesh) [6], A S T M 
D5709-09 standard test method [7] was followed to analyze the 
particle size distribution. 

Table I. Particle size distribution of coke samples 

commonly observed at the plant, including different proportions 
(% w/w) of coarse, intermediate and fine particles. 
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Figure 1. Multivariate distribution of coke aggregate size 
distributions historically observed at A D Q (2009-2014). 

The desired size distributions P1-P5 were formulated in the 
laboratory by mixing the appropriate proportions (% w/w) of the 
size classes presented in Table I. The targeted compositions were 
reached by combining coke A and Ε in the required (% w/w) ratio 
in each size classes. 

Fraction 
Size 
class 

Opening (mm) US Mesh (USM) 

1 - 4 . 7 5 / + 2.38 - 4 / + 8 
Coarse 2 - 2 . 3 8 / + 1.41 - 8 / + 14 

3 - 1.41 / + 0.6 - 1 6 / + 30 

Intermediate 
4 - 0 . 6 / + 0.3 - 3 0 / + 50 

Intermediate 
5 - 0.3 / + 0.15 - 5 0 / + 100 

Fine 
6 - 0 . 1 5 / + 0.074 - 100 / + 200 

Fine 
7 - 0.074 - 2 0 0 

(-) The particles pass through the sieve. 
(+) The particles are retained by the sieve. 

The Vibrated Bulk Density (VBD) was measured separately on 
the first five size fractions of each coke (i.e., f rom 4 to 100 USM) 
to evaluate the effect of coke source and particle size on VBD, 
and to assess the ability of the machine vision system to capture 
these changes. A S T M D4292-10 standard test method [4] with 
vibration time of 2 minutes was used for the V B D test. 

Mixed samples 

A set of 25 synthetic blends of two cokes (A and E) were 
produced to span a range of particle sizes and compositions. 
These blends consist of 5 different size distributions, each of them 
made with 5 distinct proportions (%w/w) of the two cokes (i.e. 
each size distribution was replicated 5 times but with different 
ratios between the two cokes). Coke A and Ε were selected 
because they have the most different V B D values amongst those 
tested in this study. 

The size distributions were selected according to a multivariate 
design of experiments in order to represent the range of aggregate 
size distributions observed at the Alcoa Deschambault smelter in 
Quebec (ADQ) f rom 2009 to 2014. Basically, historical data on 7 
size fractions collected on 2000 samples was retrieved f rom the 
data historian at ADQ. Principal Component Analysis (PCA) was 
applied to reduce the dimensionality of the data and visualize the 
clustering patterns in the size distributions. More details on PCA 
can be found in [8], Figure 1 shows the multivariate distribution 
of aggregate sizes by plotting the first two Principal Components 
(ti vs t2) against each other. A color map was applied to show the 
density of points in the various regions of the plot, f rom blue (low 
density) to red (high density). The 5 distributions identified as P I -
PS were selected to represent the range of size distributions 

The V B D of each blend was measured on the -30+50 U S M size 
fraction according to the standard procedure described previously. 
This size fraction was used because it is the dominant component 
of the blend (by weight). 

Imaging set-up 

All coke samples (both unmixed and mixed) were imaged using 
the set-up shown in Figure 2. The apparatus consists of a high-
resolution (6 megapixels) C C D camera (Prosilica GX2750C, 
Allied Vision Technologies) taking digital color (RGB) images. A 
50 mm Kowa lens (LM50HC) was used in front of the camera. 
Uniform lighting of the material was obtained by using two 4.5 W 
L E D light bulbs and Fresnel Lenses. The lighting incident angle 
and the camera height can be adjusted between some limits in 
order to optimize the imaging conditions. Lighting the coke 
samples at an angle is important to enhance its surface texture, 
and hence it size and shape. 

Each coke sample was first poured into an aluminium container 
until it overflowed and a pile of coke was formed on top of the 
container. The excess material was removed carefully using the 
edge of a spatula before the image was collected. The coke sample 
was then put back in the mixing bowl, given a small hand mixing 
and poured again in the container for imaging a second time. This 
procedure was repeated a third time in such a way that three 
replicate images were collected for each coke sample to account 
for sampling variability in coke visual appearance. Note that the 
R G B images were converted to grey levels prior to applying 
texture analysis. 
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Figure 2. Imaging set-up [9], 

Machine vision approach for texture analysis 

Wavelet Texture Analysis (WTA) 

A grey level image is defined as a two-dimensional func t ion / fx , 
y), where χ and y correspond to the spatial coordinates of a pixel 
in the image. The amplitude of that function is the light intensity 
at that point [10]. The light intensity values range f rom 0 to 255 
(i.e., image quantized with 8-bits of resolution in this case). 
Hence, grey levels vary from black (0) to white (255). 

Image texture can be defined as a function of the spatial variation 
in pixel intensities (i.e., grey levels) [11], Texture is a property 
that represents the surface and structure of an image. It can be 
defined as a regular repetition of an element or pattern on a 
surface [12]. Textural descriptors (i.e., statistics) are used to 
measure properties such as smoothness, coarseness and surface 
roughness in an image, which can be used to characterize the 
aggregate size and shape. 

Image texture is highly scale dependent, therefore a texture can be 
described in multiple resolutions and an appropriate scale within 
the image can be chosen to achieve the maximum texture 
discrimination. For example, high frequency variations f rom 
pixel-to-pixel produce a fine texture while lower frequency 
variations lead to coarser textures. Petroleum coke images are 
good candidates for texture analysis because aggregates are 
composed of a mixture of solid particles of different sizes and 
shapes creating a variety of textures (from fine to coarse) 
depending on the coke source. 

Transform-based texture analysis techniques are used to represent 
the image information in a new space whose coordinates are 
related to the texture (such as frequency, scale or size). Whereas 
the two-dimensional Fast Fourier Transform (2D-FFT) performs a 
frequency decomposition only, the 2 D Discrete Wavelet 
Transform (2D-DWT) enables a space-frequency decomposition 
of an image, which is more suitable for texture analysis because 
the wavelet transform maintain good space and frequency 
localization when discretized [13]. For this reason the Wavelet 

Texture Analysis (WTA) is considered to be the current state-of-
the-art multi-resolution textural method in process industries. 

The W T A is used to decompose greyscale images into the space-
frequency domain, and converts the textural information of an 
image into a series of so-called wavelet coefficients at each 
resolution. Different textural descriptors (i.e., statistic) are 
extracted f rom these coefficients to characterize the texture 
contained within an image (e.g., mean, variance, energy and 
entropy) [14-15], The W T A method allows analysis of fine 
texture at high frequency and coarse textures at low frequency. 

The first step of this approach consists of choosing a wavelet 
function, also called mother wavelet, in which its shape coincides 
with the image signals (i.e. pixel-to-pixel intensity variations in a 
given direction). Various wavelet families can be found in 
literature in different texture analysis applications. The 
Daubechies wavelet [16] was selected due to its orthonormal 
characteristic and similarity with the image signals. Also, it has 
continuous derivatives that respond well to signal discontinuities. 

The mother wavelet can be dilated in order to capture textural 
information at lower spatial frequency. This is modulated by a 
scaling function which is an integral part of the wavelet equation. 
The wavelet at a given scale is then convoluted with the image 
signal in the horizontal, vertical and diagonal directions. Having a 
finite duration, the wavelet is translated across the image in all 
three directions to capture the spatial information through the 
correlation between the wavelet and the image signal. Then, the 
wavelet coefficients or so-called detail coefficients are computed 
for each pixel. Therefore, the 2D-DWT extracts the horizontal 
(H), vertical (V) and diagonal (D) textural features respectively, 
which are represented by a set of three detail sub-images dj1, d j 
and df at the f 1 decomposition level of a greyscale image as 
shown in Figure 3. 

Figure 3. Schematic of D W T decomposition. Adapted from [13]. 

The 2D-DWT can be viewed as a filtering approach where the 
detail sub-images contain most texture information at different 
frequency scales or resolutions. Successive low-pass (H0) and 
high-pass (Hi) filters allows the extraction of textural features 
simultaneously at each scale (see Figure 3). For instance, the 
detail sub-images at the first scale will capture high frequency 
information (fine texture), whereas higher scales will contain 
lower frequency information (coarser texture). Af ter filtering the 
image at a selected number of scales Q=1,2,..,J), the residual 
image is called the approximation sub-image (aj), which contains 

1 0 5 7 



the information of all the lower frequency textures (e.g. due to 
uneven lighting). 

The physical appearance of the material is affected by the imaging 
conditions (e.g., working distance and lighting) since the images 
may contain noise during acquisition. Therefore, texture 
information to the higher frequency (i.e., first decomposition level 
j = l ) can be removed in subsequent analyses. 

To analyze and compare the texture of a set of images, it is a 
common practice to compute a row vector of textural descriptors 
f rom the detail sub-images (dj1, d j and d f ) of each original image. 
These vectors are then collected row-wise in a feature matrix X 
for further analyses, such as classification or regression modelling 
[5,15]. 

The energy of each detail sub-image was used as the textural 
descriptor (i.e. feature) in this analysis. The energy is a measure of 
the variance of the detail coefficients at each decomposition level. 
On the other hand, it can be interpreted as the amount of signal 
contained in an image in a given frequency band which is useful 
for tracking changes in size distributions of aggregates. For 
example, a coarser size distribution should have more energy at 
higher scales (lower frequencies) compared to a finer distribution. 
The energy of detail sub-image is defined by: 

Λ 1 x=l y= 1 

Where df 
is the detail sub-image of size (x,y) at decomposit ion 

level j, and k = h,v,d direction (see Figure 3). The energy of each 
detail coefficients is normalized by the number of pixels in the 
original image of size (X,Y). When these energies are used as 
elements of the textural feature vector, it is called the -wavelet 
energy signature, which is one of the most commonly textural 
features used in W T A [15]. 
Multivariate analysis of image textural features 

Data classification using the latent variable space of multivariate 
statistical methods like Principal Component Analysis (PCA) and 
Partial Least Squares (PLS) has been widely used in 
chemometrics literature [8], In this work, PLS regression was 
used to correlate the coke image textural features collected in the 
X matrix with the corresponding V B D data stored in response 
matrix Y. PLS was selected because it is designed to handle the 
high level of collinearity between the columns of X (i.e., textural 
features are highly correlated). The PLS model relates the two 
groups of variables (i.e., X and Y) through a set of new 
orthogonal latent variables Τ (i.e., score vectors) while also 
explaining variations in both data blocks. The number of score 
vectors or the so-called components of the PLS model is typically 
selected in such a way to maximize the predictive ability of the 
model via some cross-validation procedure [8], Since the number 
of components is typically much smaller than the number of X 
and Y variables, a dimensionality reduction is also achieved. The 
structure of the PLS model is as follows: 

X = ΤΡτ + Ε (2) 
Y = TCT + F (3) 

Τ = XW* (4) 

Where the Ρ and C matrices contain the loading vectors that best 
represent the X and Y spaces, respectively. W * contains the 
weight vectors that define the relationship between the X and Y 
spaces. The Ε and F matrices contain the residuals of each space. 
PLS is of ten seen as a regression extension of PCA for the 
analysis of two groups of variables having a lower dimensional 
structure (i.e., collinearity between the columns of X and Y). 

The PLS weight vectors W* (linear combinations of the X-
variables) are chosen to maximize the covariance between X and 
Y instead of maximizing the explained variance of each space 
separately as PCA does. The loading and score vectors of each 
latent dimension (or PCs) are orthogonal and independent f rom 
each other. They are usually calculated sequentially using the non-
linear iterative partial least squares (NIPALS) algorithm. 

The components of the PLS model are ordered in such a way that 
the first component is the one that explains the greatest amount of 
covariance between X and Y, the second explains the greatest 
amount of covariance orthogonal to the first component, and so 
on. More details on PLS can be found in reference [8], 

Results and discussion 

Unmixed samples 

This section presents the results of the impact of coke source and 
size on VBD. In particular, the ability of the proposed machine 
vision approach to detect changes in coke source and size and to 
predict their impact on V B D is investigated. The different size 
classes of each coke source were imaged separately in this 
analysis (i.e. size classes and coke sources were not mixed). 
Texture analysis of grey level images collected for each coke 
source and size class was performed by applying W T A using the 
orthogonal Daubechies wavelet ( d b l ) at 8 decomposition levels 
(J=8) and three directions (K=3 or H,V,D). This yielded 3x8=24 
detail sub-images f rom which the energy signatures were 
calculated. Hence, the feature matrix X had 24 columns (energies 
at each scale j and direction k) and 25 rows corresponding to each 
coke image (5 sources χ 5 size classes). 

Note that the textural features calculated for the 3 replicate images 
of each sample were averaged because the mean standard error 
(MSE) of the predictions made f rom the image replicates was 
smaller than the M S E of the measured VBD. The V B D measured 
on each of these 25 coke samples was collected in Y. PLS 
regression was applied on X and Y. Two PLS components (PC's ) 
were found to be statistically significant by a cross-validation 
procedure. The model explains 7 4 % of the total variation in V B D 
(PC 1 =69% and PC2=5%). The PLS model results are presented in 
Figure 4 and 5. 

The ti-t2 score plot shown in Figure 4 is used to visualize the 
clustering patterns of the coke images based on their textural 
features. Each point on this plot represents a single coke image 
f rom a given source and size class ( f rom 4 to 100 USM). They are 
identified by a letter fol lowed by a number. The former 
correspond to the coke source and the latter to the size class listed 
in Table I (e.g. C2 means coke source C and size class 2 or - 8 / + 
14 USM). Coke samples having similar textural features cluster 
together (i.e. have similar values of ti and t2) in the score plot but 
in a different location to those coke samples having distinct 
textural characteristics. The 1st PC mainly explains the variations 
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related with coke particle size (i.e. each size class is indicated 
using black ellipses) whereas the 2n d PC mainly explains 
variations associated with coke sources. Interpretation of the 
model using the PLS loadings and weights (not shown) reveals 
that the latter PC captures differences in the light reflection 
intensity from the surface of the materials and will be explored 
further as a mean to detect changes in coke supply in real-time. 
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Figure 4. PLS t r t 2 score plot of unmixed coke images. 

The PLS regression model was also used to predict the Vibrated 
Bulk Density (VBD) f rom textural characteristics of each coke 
fraction. The V B D is strongly related with particle size 
distribution and coke source as shown in Figure 5. The V B D 
increases with decreasing particle size, in agreement with 
previous studies on the effect of particle size on V B D [17]. Cokes 
f rom different sources also have a different VBD. This difference 
is also captured by the model. Overall, the predicted V B D shows 
a good agreement with the observed values 
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Figure 5. Predicted V B D of unmixed cokes images (R =0.74). 

Mixed samples 

Based on the above results, it was decided to investigate whether 
the imaging sensor would provide as good results on blends of 
cokes f rom different sources as typically occur in anode 
manufacturing plants. Blends of coke A and Ε were formulated as 
described in the experimental section. Each blend was imaged (in 
triplicate then averaged) and textural features were calculated 
f rom each image using the same procedure as described 

previously. A new PLS model was built to relate the textural 
features of the blends (i.e. introduced by changes in size 
distribution and composition) and their VBD. 
Figure 6 shows again the trt2 latent variable score space for the 
first two components PLS model built on coke blends. Note that 
each blend is identified by its size distribution (e.g. P l ) and the 
proportions of both cokes (e.g. M4) as listed in the legend of 
Figure 6. In this case, the two arrows indicate the two main effects 
studied, that is the effect of aggregate size distribution and blend 
composition on VBD. A total of 4 PLS components were found 
significant and together explain 93% of the total variation in 
VBD, but only the first two are shown and interpreted. The 1st PC 
mainly represents the variation related with the proportion of coke 
sponge (A and E) in the mix, whereas the 2n d PC explains the 
variation according to the particle size distribution. 

Coke [% w/w) 
A E Mixed 
0 100 M l φ 
30 70 M2 0 
50 50 M3 0 
70 30 M4 φ 

100 0 MS f 

T [ l ] 
Figure 6. PLS t r t 2 score plot of mixed coke images. 

Figure 7 shows the PLS model predictions against measured 
VBD. In this case, only the energies f rom decomposition levels (J 
= 2, 3 and 4) were kept in the feature matrix X. Each scale or 
decomposition level in W T A captures a certain frequency band 
f rom the image signals which in turn can be related to size of 
objects in the spatial domain. It was calculated that decomposition 
levels 2-4 extracted information about objects of sizes closely 
matching the size fraction used to measure V B D (i.e. the 30-50 
U S M fraction or around 0.3-0.6 mm). Thus, by using more 
specific image features, the PLS model showed excellent 
prediction of V B D and very small mean squared prediction errors 
(MSE = 6 χ 10"5). The effect of aggregate size and composition on 
V B D was very well captured by the image texture analysis. 

Conclusions 

This work investigated a new machine vision sensor for 
estimating the Vibrated Bulk Density (VBD) of coke aggregate 
samples based on their surface texture. Wavelet Texture Analysis 
(WTA) was shown to detect changes in coke particle size and 
source (i.e. different suppliers) f rom images of aggregates. This is 
due to its ability to analyze textures at different frequencies or 
resolutions. Partial Least Squares (PLS) regression was used to 
correlate the V B D measured on various coke samples (from a 
single source or in blends) to the sample image textural features. 
Very good prediction results were obtained (R2 values of 0.74 and 

1 0 5 9 



0.93 for unmixed and mixed coke samples). Future work will 
concentrate on validating the robustness of this approach for 
estimating the dry aggregate VBD from industrial carbon plant 
samples. Ultimately, the proposed analysis would be performed 
directly on the dry aggregate mix conveyor belt. The real-time 
VBD measurement could be used passively to monitor the mix or 
actively in feedback/feedforward control schemes. 
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Figure 7. Predicted VBD of mixed cokes images (R = 0.93). 
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