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Abstract 

Carbon anodes constitute a substantial part of the cost during the 
electrolytic production of aluminum. The industry tries to 
minimize the consumption of anodes by improving their quality. 
Therefore, a clear understanding of the impact of the quality of 
raw materials as well as process parameters on anode properties is 
important. 

The plants have a large collection of data, which is complex and 
difficult to analyze using conventional methods. In this article, 
linear multivariable (LMA), partial least square regression (PLS), 
and artificial neural network (ANN) analyses are presented and 
compared as tools to predict the influence of different parameters 
on anode properties. Published laboratory data have been 
processed using Matlab software to carry out the analyses. The 
results clearly show that ANN is the best tool for prediction 
purposes. Unlike other methods, ANN can handle nonlinear 
complex relations even if a well-defined relationship is not 
available. 

Introduction 

The cost of carbon anodes make up an important part of the total 
cost of the electrolytic production of primary aluminum. 
Aluminum oxide is reduced to aluminum with the use of carbon in 
anodes, and carbon is converted to carbon dioxide gas during this 
process. The theoretical carbon consumption is 0.334 kg C/kg Al. 
However, the actual consumption is higher than the theoretical 
value due to side reactions and current efficiency [1], The quality 
of the anodes is the key to reducing the additional carbon losses. 
The materials used in anode production are dry aggregate (fresh 
petroleum coke, butts as well as recycled green and baked anodes) 
and binder coal tar pitch. The dry aggregate with a known 
granulometry is mixed under desired mixing conditions 
(temperature, power, etc.) to make a paste. The paste is then 
compacted in a vibro-compactor under predetermined operating 
conditions (amplitude, frequency, charge, temperature, and 
vacuum) to form green anodes. The green anodes are baked in a 
furnace using a given heating rate, baking time, etc. to produce 
baked anodes. Thus, there are several parameters such as raw 
material properties, granulometry, and process conditions 
(mixing, forming, and baking) which affect the quality of an 
anode. Different researchers have been working on the effect of 
different parameters on anode quality. 

When there are many parameters influencing a process, the most 
comprehensive way to study the effect of each parameter is to 
vary one parameter at a time, keeping all other parameters 
constant. However, this approach is hardly applicable in the case 

of carbon anodes. The raw materials are usually non-
homogeneous, and a large number of parameters are inter-related. 
For example, if different cokes with different porosities are used 
to study the effect of coke porosity on green anode density, not 
only the coke porosity changes, but also other coke properties 
change which, in turn, affect the green anode density. If cokes 
with different vanadium contents are used to study its effect on 
anode reactivity, usually the change in vanadium content is 
accompanied by changes in the levels of other impurities as well 
as other coke properties such as porosity, etc. It is quite 
challenging to study experimentally the effect of different 
parameters on anode quality since the variation of more than one 
parameter at the same time makes it difficult to carry out a 
comprehensive analysis of data. 

There are different tools for analysis of such data. Different types 
of graphs such as X vs. Y, bar and histograms are often used; but, 
they have constraints regarding the utilization of the number of 
variables. In addition, the graphical representations sometimes fail 
to show the trend because of the effect of other parameters. There 
are statistical tools available such as the analysis of variance 
(ANOVA), covariance matrix, and p-value matrix to study the 
effect of different input parameters on the output variables. It may 
be possible to see trends using these tools; but, sometimes it 
becomes difficult to quantify their impact. For example, when the 
p-value matrix is used, a p-value of less than 0.05 usually 
indicates that the parameter is statistically significant [2], but it 
does not quantify its effect. Also, these analyses usually require 
the assumption of linear dependency between the independent and 
dependent parameters. In addition, ANOVA constricts the 
comparison of output properties to categorical variables only. This 
limits the use of ANOVA in data analysis. 

Multivariable analysis is an important tool to study the effect of a 
number of variables on an output parameter. There are different 
multivariable analysis methods such as linear multivariable 
analysis (LMA), regression, partial least square (PLS) regression, 
regression trees, artificial neural network (ANN), and genetic 
algorithms. These are all useful tools, but they also have 
limitations. At times, they may lead to a false interpretation of the 
data [3,4], 

LMA or regression analysis works well if there is some definite 
mathematical relationship between the independent and dependent 
variables. The predictor variables also need to be linearly 
independent. It is difficult to have such a relation in the case of 
anodes because the dependency is often complex or unknown. 
The models using the regression and linear multivariable analyses 
usually take shorter time to develop compared with ANN and 
genetic algorithms. The regression and linear multivariable 
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analyses require the assumption of a definite mathematical model 
before prediction, which is not required for ANN and genetic 
algorithms [5]. Once a mathematical model is assumed, the 
regression analysis can be carried out readily. On the other hand, 
the development of a mathematical model for ANN and genetic 
algorithms is based on trial and error and thus usually takes longer 
time compared to that for the regression and linear multivariable 
analyses. 

The PLS regression method is a combination of the principal 
component analysis and the linear multivariable analysis. It uses a 
linear regression method to find a correlation between predicted 
and experimental values and simultaneously identifies the 
components which are significant. The PLS regression method is 
particularly suited for cases when there are more variables than 
observations [6]; these cases are difficult to solve with any other 
tool. Regression tree is another approach for solving a regression 
problem. The threshold value for dividing a dataset to two or more 
subsets is determined based on the minimization of the least-
square regression error. A tree is a hierarchical representation of 
the data. It does not need any well-defined mathematical 
relationship, but its drawback is that the threshold does not 
usually correspond to the optimal boundary for dividing the input 
parameters at different hierarchical levels [7], Thus, most of the 
time, its predictions are not very accurate. 

The artificial neural network and genetic algorithms are tools 
often used in artificial intelligence. The principle for ANN is 
similar to the functioning of a human brain and is based on pattern 
recognition and identification. Genetic algorithms use the process 
of natural selection. They generate solutions for optimization 
problems using techniques inspired by natural or biological 
evolution, such as inheritance, mutation, selection, and crossover. 
[8]. However, the genetic algorithms may not be efficient if the 
complexity is too high. If the number of variables increases, then 
there is often an exponential increase in the search space size [9], 
ANN is a powerful predictive tool and finds application in various 
fields where it is difficult to have any definite mathematical 
relationship between the input and the output variables. A feed-
forward ANN model with sigmoidal transfer function and back-
propagation training algorithm is considered as a universal 
function approximator [10]. The limitations for ANN are the 
requirement of a large diversity of training data on the problem at 
hand and the unavailability of any defined rule to develop the 
model. As anode plants usually maintain a large amount of data 
over a long period of time, ANN can become a useful tool for the 
prediction of anode quality. 

In this work, three different techniques of the multivariable 
analysis, namely, LMA, PLS, and ANN, have been applied to the 
published data of Tkac [11], The effects of input parameters such 
as vacuum, vibro-compaction time, green anode density, and 
heating rate on the baked anode density were studied using the 
three methods, and the results were compared. 

Methodology 

In this study, data published in the literature [11] on the impact of 
vibro-forming and vibration time on baked anode porosity 
development have been used. In the reported study, twenty pilot 
scale anodes with similar composition were made using an 
industrial paste produced in the paste plant of Hydro-Aluminium. 
The recipe contained 30 % butts. The aggregate was preheated 

and mixed with pitch in an industrial kneader at 174 °C. The paste 
was then transferred to an Eirich mixer. After cooling in the Eirich 
mixer to 154 °C, the paste was taken out and transported to the 
laboratory. In the laboratory, the paste was then mixed again in an 
intensive Eirich laboratory mixer (RV 08 W) for 5 minutes at 165 
°C. Then, the paste was compacted at 165 °C and 50 Hz using 
four different vibration times (0.5, 1, 2, 3 min) and two different 
pressures (one with 4 kPa vacuum and the other at 100 kPa 
atmospheric pressure without vacuum) above the mold. The green 
anodes were baked at four different heating rates; 10, 35, 60, and 
80 °C/h followed by 5-hour soaking time. The densities of the 
green and baked anodes were measured for all 20 cases. Table I 
summarizes the results of this study. 

Table I. Baked anode densities corresponding to different input 
parameters [11] 

Vacuum 
(Yes=l; 
No =0) 

Vibration 
time 
(min) 

Heating 
rate 

(°C/h) 

Green 
anode 

density 
(g/cc) 

Baked 
anode 

density 
(g/cc) 

1 3.0 10 1.700 1.619 

0 3.0 10 1.674 1.594 

0 2.0 10 1.686 1.588 

0 1.0 10 1.660 1.586 

0 0.5 10 1.653 1.579 

1 3.0 35 1.685 1.581 

0 3.0 35 1.673 1.550 

0 2.0 35 1.683 1.580 

0 1.0 35 1.659 1.560 

0 0.5 35 1.650 1.545 

1 3.0 60 1.653 1.559 

0 3.0 60 1.665 1.537 

0 2.0 60 1.677 1.554 

0 1.0 60 1.658 1.537 

0 0.5 60 1.646 1.534 

1 3.0 80 1.641 1.546 

0 3.0 80 1.664 1.527 

0 2.0 80 1.677 1.523 

0 1.0 80 1.655 1.528 

0 0.5 80 1.645 1.527 

To prevent the false representation of the impact of different 
parameters due to large differences in their values (for example, 
the heating rate varied between 10 and 80 °C/h but the green 
anode density between 1.641 and 1.700 g/cc), all the parameters 
were normalized as follows: 

Normalized value — Value to be Normalized - Minimum Value 
Maximum Value - Minimum Value (1) 
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Then, the effects of different parameters on the baked anode 
density were studied using LMA, PLS, and ANN; and the results 
were compared. 

Linear multivariable analysis was done using the method 
described by Bhattacharyay et al. [12]. If the input parameters are 
XI, X2, ..., Xn and Y is the output parameter; then, Y can be 
expressed as: 

γ= ΣΓ=0(Αί*Χί) ί2) 
where, Ai represents the weighting factor for the input parameter 
Xi. If the value of Ai is positive, then an increase in Xi will 
increase Y; and if the value of Ai is negative, then an increase in 
Xi will decrease Y. If the value of the weighting factor for a 
parameter is greater compared to that for another parameter, then 
the parameter with the greater value of weighting factor will have 
more influence on the output parameter. A model was developed 
using Matlab to calculate the coefficients. 

PLS analysis was first developed by Wold [13]. It has been 
applied for data analysis by many researchers [14-16], In this 
technique, linear combinations of several predictors on an output 
variable are analyzed. Associations between the predictor and the 
output parameters are established by extracting coefficients using 
the predictor variables that can successfully explain the 
significance of the output variable most of the time. PLS analysis 
can be a useful tool when the number of predictor variables is the 
same or more than the number of observations [6], and there 
exists a strong correlation between the predictors and the output 
property. It is also applicable to the cases with more than one 
output variable. It identifies the weighting factors for each of the 
variables. The sign and the relative magnitude of the weighting 
factors indicate the tendencies similar to ones explained above for 
the linear multivariable analysis. The PLS analysis was carried out 
using the plsregress function available in the statistical toolbox of 
Matlab. This function returns the weighting factors for different 
input parameters for a given set of values of a number of 
predictors and an output parameter. In the case of LMA and PLS, 
all 20 data sets (see Table 1 ) were used. 

The concept of ANN was first introduced by McCulloch and Pitts 
in 1943 [17]. It started gaining importance with the advent of 
back-propagation training algorithm. There are different ANN 
models. Some of the important ANN models are perceptron [17], 
feed- forward [18], recurrent [19] and radial basis function neural 
networks [20-21], Out of these different models, feed-forward 
ANN with back-propagation training is the most widely used one. 
The ANN models are being used in anode plants to analyze the 
industrial data [22] and to predict the problems and their possible 
sources [23], 

In this work, a feed-forward neural network was developed using 
the neural network toolbox in Matlab. The network had one input 
and one output layer. The input and the output layers were 
connected by a hidden layer. The hidden layer can have one or 
more sub-layers. Usually transfer functions are associated to each 
of the hidden sub-layers. The role of the transfer function is to 
convert the input to a hidden layer into values ranging between 0 
and 1. This helps identify the pattern between the input and output 
variables. In this model, a combination of sigmoidal and linear 
transfer functions was associated to the hidden layer. The number 
of neurons associated to the hidden layer was determined based on 
trial and error. In the ANN model, the weights and bias values are 

associated to the neurons and the layers. The values are initialized 
using a random number generator available in Matlab. The seed of 
the random number generator was chosen based on trial and error. 
During the training process, the weights and biases are adjusted 
using a training algorithm. Training is usually done using a certain 
number of sets of data. In this case, 14 sets of data were used for 
training. Out of those 14 sets of data, one was used for testing and 
one was used for validation during the training phase. The testing 
and validation data sets help prevent the over-training of the ANN 
model. Due to the small number of data sets available, the choice 
of data sets for validation and testing was limited. The data sets 
for training were chosen on a random basis. A Levenberg-
Marquardt training algorithm (LMTA) was used as the back-
propagation training algorithm [12]. The advantage of LMTA is 
that it combines the steepest descent method and the Gauss-
Newton algorithm and therefore inherits the speed advantage of 
the Gauss-Newton algorithm and the stability of the steepest 
descent method. 

The aim of an ANN model is to understand the pattern in the sets 
of data used for training and classify them into groups. This 
process is called learning. Gradient descent learning algorithm 
was used in the model. The remaining six sets of data were not 
used for training. They were used to verify the prediction ability 
of the final model. The final ANN model was verified using two 
approaches. The first one is based on the R2 value of the predicted 
and experimental values using a linear fit, and the second one 
measures the range of error. First, the baked anode density was 
predicted for all 20 cases using the input parameters. Then, the 
predicted values were plotted against the experimental values, and 
the regression coefficient R2 was calculated for a linear trend line. 
If the value of R2 is close to 1, then, it is considered that the model 
can predict well. In this case, the sets of data which were earlier 
used for training can improve the R2 value. Therefore, another 
plot was prepared for the predicted vs. experimental values for 
only six sets of data which were not used during training. This 
approach eliminates the effect of the sets of data used earlier for 
training on the accuracy of the predictions. The R2 value was 
again calculated. If the value of R2 is close to 1, then the model is 
deemed to predict the results well. A good R2 value does not 
necessarily indicate the error in each of the predictions. The 
second approach involves the measurement of error between the 
predicted and experimental values of the output parameter. For the 
20 sets of data, if most of the predicted values fall within ± 0.01 
g/cc, then the model is expected to predict well the unknown 
cases. The percentage of correct prediction within the specified 
limit should be ideally close to 100 %. If all the verifications are 
successful for a particular ANN model, that model can be used to 
predict cases for which no experimental result is available. The 
developed ANN model was used to study the effect of each 
parameter on the baked anode density varying only one parameter 
at a time keeping all other parameters constant. 

Results and Discussions 

Figure 1 shows the ANN model used for the analysis. R2 value for 
the plots of predicted vs. experimental values using 20 points (all) 
and six points (sets of data not used during training) are 0.93 and 
0.94, respectively. Of the predicted values, 90 % were within a 
range of ±0.01 g/cc, and 100 % were within a range of ±0.02 g/cc 
with respect to the experimental baked anode densities. Thus, the 
model seems capable of predicting the baked anode density for 
cases for which the experimental results are not available. 
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Figure 1. ANN model used (w and b represent the weights and 
biases associated with different layers) 

To study the effect of different parameters, a set of default values 
were used. The default values were chosen arbitrarily within the 
range of experimental values. If the input values were chosen 
outside the range of training data, then the prediction ability of the 
model decreases due to extrapolation. The chosen default values 
are shown in Table II. 

Table II. Parameters used for the prediction by ANN. 

Value oi Vacuum Vibration Heating Green 
^JJarametei (Yes=l/ time rate anode 

Parameter^. No=0) (min) (°C/h) density 
studied (g/cc) 
Vacuum 1 orO 1 15 1.65,1.69 
Vibration time 1 Varied 15 1.65,1.69 
Heating rate 1 1 Varied 1.65,1.69 
Green anode 1 0.5,1 15 Varied 
density 

The interpretation of the results obtained by the different methods 
should be done keeping in mind that whenever the effect of one 
parameter was studied, all other parameters were kept constant. 

Vacuum Vibr! 
time 

ïea ting 

Parameters 

Green 
anode 

density 

Figure 2. Effect of different parameters on baked anode density 
using LMA and PLS analyses. 

Effect of vacuum on baked anode density 

Figure 2 presents LMA and PLS predictions and shows the effect 
of different parameters on the baked anode density. The results 
show that both models indicate increasing baked anode density 
with vacuum. The value of the coefficient shows, for both cases, 
that vacuum can help increase the baked anode density. LMA 
results imply that vacuum is the most important parameter 
compared to all other parameters. PLS results show that vacuum 
is less important compared to the other parameters. 

The effect of vacuum on the baked anode density predicted by 
ANN is presented in Figure 3 for two green anodes with different 
densities. As can be seen from this figure, ANN demonstrates 
that the baked anode densities are higher in the presence of 
vacuum during formation with all other parameters constant. 

Published articles describe the importance of vacuum for 
obtaining good baked anode density. Hülse [24] reported that the 
presence of vacuum increased the baked anode density by 0.015 
g/cc. Application of vacuum helps remove entrapped gas and 
volatiles from the paste during compaction, which reduces the 
chances of pore/crack formation during baking [11] resulting in 
denser anodes. Thus, from Figures 2 and 3, it can be concluded 
that LMA, PLS, and ANN identified the expected trend regarding 
the effect of vacuum on the baked anode density. 

a 
β « 4} 

u £ 

1.68 
" BGAD 1.65 g/cc 

1.64 Η EGAD 1.69 g/cc 

'S ^ 
β S -03 β. -α u-
8 i i « M 
n 

1.56 -

1.52 
Without vacuum With vacuum 

Figure 3. Effect of vacuum on baked anode density 
(GAD: Green Anode Density) 

Effect of vibration time on baked anode density 

Figure 2 shows that both LMA and PLS predict a decrease in the 
baked anode density with increasing vibration time. The vibration 
time is found to be the least important parameter for LMA 
whereas it has a significant impact on the baked anode density 
according to the prediction of PLS. Similarly, the ANN model 
also predicts a decrease in the baked anode density with 
increasing vibration time as shown in Figure 4 when the green 
anode densities and other process parameters are kept constant. 

Published articles describe the importance of vibration time on the 
green anode density. Azari et al. [25] reported that increase in 
vibration time causes the densification of green anodes. Vibration 
improves the rearrangement of particles in the mold. When a 
dense green anode is baked, the volatile evolution causes stress 
leading to the formation of cracks inside the baked anode. Thus, 
as can be seen from figures 2 and 4, LMA, PLS, and ANN 
identified the anticipated trend regarding the effect of vibration 
time on the baked anode density. 

Figure 4 also shows that at lower vibration times, the effect of the 
green anode density on the baked anode density is more 
prominent compared to the same effect at longer vibration times. 
A variation in the green anode density by 0.04 g/cc results in a 
change in the baked anode density by 0.04 g/cc at lower vibration 
times and by only 0.012 g/cc at longer vibration times. Thus, 
ANN shows that the effect of vibration time on baked anode 
density is more important if the vibration time is low. It is difficult 
to get such additional information in the case of LMA or PLS. 

Effect of heating rate on baked anode density 

As shown in Figure 2, LMA predicts that increasing the heating 
rate decreases the baked anode density. The effect is quite 
significant. On the other hand, PLS predicts the opposite trend. 
ANN predictions are given in Figure 5 for green anodes with two 
different densities. The results show that an increase in heating 
rate decreases the baked anode density. Published articles describe 
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the importance of heating rate on baked anode density. When a 
green anode is baked, the volatiles are released from the binder 

1.68 
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« .a z 
"2 ^ ζ ο ω a c <J 03 ο. 
•a u-
a « 
« Μ 
η 

1.66 -

1.64 -< 
1.62 -

1.6 -

1.58 

• GAD 1.65 g/cc 
A GAD 1.69 g/cc 

• • • • • • • • • • • 

0.5 
-i -

2.5 Vibration time, min 
Figure 4. Effect of vibration time on baked anode density. 

pitch. Higher heating rate causes faster release of volatiles and 
likely to produce more stress and cracks during baking [26], 
thereby reducing the baked anode density. Thus, from Figures 2 
and 5, it can be concluded that LMA and ANN could identify the 
expected trend regarding the effect of heating rate on the baked 
anode density. The trend found by PLS is not the right one when 
compared with the published results. 

anodes facilitates the removal of volatiles and allows the release 
of stress during baking due to the presence of pores. Denser green 
anodes do not permit the release of volatiles during baking due to 
their compactness, resulting in relatively more cracking and 
thereby reducing the density. When green anode is much denser, 
the baked anode density is less than expected because of the 
build-up of the high internal pressure due to the devolatilization of 
binder pitch during the baking process [11] and the consequent 
formation of cracks which reduce the baked anode density. Hence, 
it can be concluded from Figures 2 and 6 that LMA, PLS, and 
ANN could identify the expected trend concerning the effect of 
green anode density on the baked anode density. 

Figure 6 also shows that the effect of vibration time on baked 
anode density is less important at low green anode densities 
compared to the effect at high green anode densities. At low green 
anode density, when the vibration time increased from 0.5 to 1 
min., the baked anode density did not practically vary; however, 
the baked density varied by 0.008 g/cc for the same change in 
vibration time at high green anode density. Consequently, ANN 
results show that the effect of green anode density and vibration 
time on the baked anode density is more significant if the green 
anode density is high. 

1.68 
1.66 
1.64 

3 1 £ 1.62 
1.6 

1.58 
1.56 

• GAD 1.65 g/cc 
A GAD 1.69 g/cc 

10 30 50 70 
Heating rate, °C/h 

Figure 5. Effect of heating rate on baked anode density. 
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1.64 1.66 1.68 1.7 

Green anode density, g/cc 
Figure 6. Effect of green anode density on baked anode density. 

It can also be seen from Figure 5 that the effect of the green anode 
density on the baked anode density is more prominent at lower 
heating rates compared to the effect at higher heating rates. At a 
low heating rate of 10°C/h, a difference of 0.04 g/cc in the green 
anode density resulted in an increase of 0.035 g/cc in the baked 
anode density whereas the same variation in the green anode 
density at a high heating rate of 80°C/h gave only an increase of 
0.004 g/cc in the baked anode density. Thus, ANN shows that the 
effect of heating rate is more significant on the baked anode 
density if the heating rate is low. 

Effect of green anode density on baked anode density 

LMA and PLS both show (see Figure 2) that increase in green 
anode density increases the baked anode density. PLS shows that 
the green anode density is the most significant influencing factor 
whereas LMA shows that it has much less importance. The 
predictions of ANN at two different vibration times are presented 
in Figure 6. The ANN model predictions are in line with LMA 
and PLS and show that increase in green anode density increases 
the baked anode density. As seen in Figure 6, the increase is 
significant up to a certain green anode density. Above that, the 
change in baked anode density is much less pronounced. 

Published articles describe the importance of green anode density 
on baked anode density. Low to medium density of the green 

Conclusions 

Analysis of data using different methods and the comparison of 
results have always been a challenging task. In this work, 
published data have been analyzed using three different 
multivariable analysis techniques, namely LMA, PLS, and ANN. 
The artificial neural network appears to be a better tool to study 
the effect of different parameters on anode properties. It can serve 
as a useful tool to ensure the quality of anodes. The major 
advantage of ANN over the other methods is that it can efficiently 
handle highly nonlinear data with noises where there is no 
existing mathematical relationship, which is usually the case with 
industrial data. The development of an efficient ANN model is 
time consuming because it needs lots of trial and error; but once it 
is developed, it can predict results for the cases for which there is 
no experimental data available. ANN, with its power of artificial 
intelligence, can reduce the number of costly trials necessary to 
identify the best value for a given parameter in order to improve 
the anode quality in the aluminum industry. 

LMA and PLS are standard tools for multivariable analysis. 
Although their predictions were in line with those of ANN for 
most parameters (vacuum, vibration time, and green anode 
density), the trend found with PLS for the effect of heating rate 
was not in agreement with the ANN predictions as well as with 
those published in the literature. This is most probably due the 
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complex relationship between the anode production parameters 
and the anode properties. 

Even though LMA, PLS, and ANN showed similar trends in many 
cases, there is a distinct advantage of ANN compared to LMA and 
PLS. LMA and PLS suggest the impact of different parameters on 
an output parameter assuming that they are linearly dependent, 
which may not be the actual case. ANN, on the other hand, can 
identify the complex relationships between the input and output 
parameters and can also quantify the magnitude of the impact of 
different parameters at different conditions. The predictions of 
ANN are always closer to the real situation compared to those of 
LMA and PLS. 
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