
4
Internet Protocols

The predecessor of today’s Internet was the ARPANET (Advance Research Project Agen-
cy Network). In autumn 1969, the first computer was connected to a node at the University
of California and by the end of the year, the ARPANET consisted of four connected
computers with different operating systems. The ARPANET grew continuously and soon
the TCP/IP suite was adopted as the official protocol suite. TCP/IP was used by other
networks to link to ARPANET since 1977, which led to a rapid growth.

In 1989, the World Wide Web (WWW) was invented. Mosaic, the first graphical Web
browser was released in 1993 and the first search engine – ‘Yahoo’ (Yet Another Hierar-
chical Officious Oracle) – went online in 1994. The WWW led to the Internet becoming
‘attractive’ for ordinary people, which led to an even higher growth rate. Today, more
than 1 billion people are connected to the Internet and this number is still rapidly growing.

The Federal Networking Council passed a resolution defining the term Internet in 1995
(see Federal Networking Council (FNC)):

Internet refers to the global information system that

1. is logically linked together by a globally unique address space based on the Internet
Protocol (IP) or its subsequent extensions/follow-ons;

2. is able to support communications using the Transmission Control Protocol/Internet
Protocol (TCP/IP) suite or its subsequent extensions/follow-ons, and/or other IP-com-
patible protocols; and

3. provides, uses or makes accessible, either publicly or privately, high-level services
layered on the communications and related infrastructure described herein.

In this chapter, we look at the TCP/IP suite. First, we discuss the Internet protocol stack
and the layer model. After that we discuss the most important Internet protocols.

4.1 The Internet Protocol Stack

Throughout this book when protocol stack layers are mentioned, the five layer reference
model of the Internet is used; it is shown in Figure 4.1. It is described for example by
Tanenbaum (2002). It is a hybrid of the OSI reference model of Zimmermann (1980) and

The Competitive Internet Service Provider: Network Architecture, Interconnection, Traffic Engineering and Network Design
Oliver Heckma nn 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01293-5

48 The Competitive Internet Service Provider

5 Application layer
4 Transport layer
3 Network layer
2 Data link layer
1 Physical layer

Figure 4.1 Hybrid 5 Layer Reference Model of the Internet

the TCP/IP reference model of Clark (1988); Leiner et al. (1985). Each layer consists
of a set of protocols for communication with another entity on the same layer and of
communication services that are offered to the next higher layer. The layers can be
distinguished as follows:

• The physical layer defines the mechanical, electrical and timing interfaces of the network.
• The data link layer’s main task is to transform the raw layer 1 transmission facility into

a line free of undetected transmission errors between two directly connected systems,
typically by using the concept of data frames.

• The network layer is concerned with forwarding and routing of packets from sender to
receiver end systems. The basic network layer protocol of the Internet is IP (Internet
Protocol); it offers a connection-less datagram forwarding service.

• The transport layer uses the network layer to provide sender to receiver application
communication. The most important transport layer protocols of the Internet are the
connection-oriented virtual error-free TCP (Transmission Control Protocol) and the
connection-less UDP (User Datagram Protocol).

• The application layer contains high-level protocols such as, for example, HTTP. It
handles issues like network transparency, resource allocation and problem partitioning
for an application. The application layer is not the application itself; it is a service layer
that provides high-level services.

We now shortly address the basic network and transport layer protocols of the Internet (IP,
TCP, UDP) and then the lower layer protocols that are relevant for ISPs. Some selected
application layer protocols are discussed in Chapter 5 in the context of the applications
that use them and the properties of the traffic they generate.

4.1.1 IP

4.1.1.1 IPv4

IP is the glue that holds the Internet together. It is a connection-less unreliable layer
3 protocol. ‘Unreliable’ in this context means that there are no guarantees that an IP
datagram will be successfully delivered. IP is the least common denominator on top of
the different layer 2 technologies that are used as infrastructure in the different autonomous
systems that form the Internet. This explains why it is a relatively simple protocol. In
fact, a basic design principle of the Internet is the end-to-end principle that is described
by Saltzer et al. (1984). The authors argue that processing by intermediate systems can be
made simpler, relying on the end-system processing to make the system work. This leads

Internet Protocols 49

to the model of the Internet as a ‘dumb network’ that has smart end systems (terminals),
a completely different model to the previous paradigm of the smart network with dumb
terminals like the traditional telephony networks.

The transport layer takes data streams and breaks them up into datagrams that are
transported with the IP to the target end system. Packets (datagrams) are transmitted
independently from each other. IP datagrams can be as large as 64 kB, but in reality they
are typically limited by a MTU (Maximum Transmission Unit) of 1500 byte1. The MTU
determines the largest possible IP datagram size that can be transmitted by an IP router
without it needing to be fragmented.

The IP version 4 (IPv4) header is depicted in Figure 4.2. It has a size of 20 bytes if
no options are used. IPv4 options should be avoided because IP packets with options
are often processed on the slow path of an IP router and this can lead to additional
delay and performance problems. The source and destination address fields contain the
sender’s and receiver’s IP address. Information about the sender/receiver port is transport
layer information and is therefore not contained in the IP header but in the TCP/UDP
header instead.

In practice, the time to live field is used as a hop counter used to limit packet lifetimes.
It is decreased at each intermediate router, and the packet is discarded if it reaches zero.
The default start value for the time to live is 64 according to RFC 1700. Some operating
systems, for example, older versions of Microsoft Windows, use a value of 32, which is
widely considered too small today.

The protocol field contains information about the transport layer protocol that generated
the packet. For UDP, the field is 17 and for TCP, it is 6; see RFC 1700 for other protocols.
The header checksum verifies the IP header only. It has to be recomputed at each hop
because of the changing time to live field.

In Diffserv networks, the type of service field is redefined as the Diffserv byte, see
Section 6.2.4. For best-effort networks, the Type of Service (ToS) field was intended to be
used for selecting different types of service. However, as there was, for example, no way

32 bits

Version IHL Type of service Total length

Identification D
F

M
F Fragment offset

Time to live Protocol Header checksum

Source address

Destination address

Options (0 or more words)

0 31

Figure 4.2 IPv4 Header

1 This value comes from the maximum frame size of most Ethernet links on layer 2.

50 The Competitive Internet Service Provider

to stop end systems from always requesting the best possible service for all its packets,
the type of service field is typically ignored by routers.

IP routers forward IP datagrams towards their destination. We discuss the different
forwarding architectures in Section 6.3.

4.1.1.2 IPv6

IP version 6 (IPv6), also sometimes called IPng (IP next generation), is based on recom-
mendations in RFC 1752. The core set of IPv6 protocols form an IETF Draft Standard
since 1998. The protocol is described in Deering and Hinden (1998). Many other RFCs
describe further details of IPv6 architectures and the transition from IPv4 to IPv6.

The main motivation behind the development of IPv6 was the predicted shortage of
IPv4 addresses in the near future. IPv6 is therefore designed to ‘never’ run out of ad-
dresses. IPv6 addresses are 16-byte addresses which increase the address space drastically
compared to the 4-byte IPv4 addresses. Multicasting is improved by a scope field as part
of the multicast addresses and a new address type called anycast is introduced. Any-
cast addresses are group addresses where only one member of the group responds, for
example, the member of the group that is closest to the source. Anycast addresses are
potentially very interesting because the closest router or, for example, the closest name or
time server can be accessed with that concept. For more details about the IPv6 addresses
see Hinden and Deering (1998).

Besides this, IPv6 contains other improvements over IPv4. The most important ones
are as follows:

• Simplification of the IP header. By comparing the IPv4 header in Figure 4.2 with the
IPv6 header in Figure 4.3, one immediately recognises the streamlined header layout.
Many IPv4 fields are dropped or made optional. This allows routers to process packets
faster and can thus improve throughput.

• IPv6 header options are encoded differently compared to those of IPv4. This results in
less stringent limits on the length of options and greater flexibility in introducing new
options in the future.

• The IPv6 header contains a 20-bit flow label that can be used for marking packets
belonging to certain flows to give them preferential treatment. The 8-bit traffic class
field can be used as Diffserv byte similar to the type of service field in IPv4.

• Authentication, data integrity and data confidentiality are other important features of
IPv6.

IPv6 maintains the good features of IPv4 and discards some of the bad ones. Owing
to the increasing number of IP addresses needed in rapidly developing countries like
China, internetworking with IPv6 networks will drastically increase in importance in the
next years.

For more details on IPv6 see Loshin (2004) and Hinden and Deering (1998).

4.1.2 UDP

UDP (User Datagram Protocol) is the Internet’s connection-less transport layer protocol.
It is specified in RFC 768 (see Postel (1980)). UDP is a minimalistic protocol, its 8-byte

Internet Protocols 51

32 bits

Version Class Flow label

Payload length Next header

Source address
(16 bytes)

Hop limit

Destination address
(16 bytes)

0 31

Figure 4.3 IPv6 Header

32 bits
0 31

Source port Destination port

UDP length UDP checksum

Figure 4.4 UDP Header

header is depicted in Figure 4.4. Source and destination ports identify the applications
on the end systems (the source and destination IP addresses are in the IP and not the in
UDP header). Calculating the UDP checksum is optional.

UDP does not support flow control or the reliable or even-ordered delivery of datagrams.
UDP is mostly used for multimedia application protocols such as VoIP or video streaming.
At the time of writing, a promising alternative to UDP for these applications is currently
under development in the IETF. The Datagram Congestion Control Protocol (DCCP)
(DCCP, see Kohler et al. (2005)) is a message-oriented transport layer protocol like
UDP but has congestion control built in, like TCP, but without the TCP’s in-order and
retransmission features.

4.1.3 TCP

4.1.3.1 Introduction

TCP (Transmission Control Protocol) was designed to transmit a byte stream reliably using
the unreliable IP datagram service. TCP is the most commonly used transport protocol
today. It is best suited for application protocols such as SMTP, FTP or the HTTP that need

52 The Competitive Internet Service Provider

a reliable connection-oriented service. It is less suited for real-time streaming applications
that do not need the retransmission of lost packets and that prefer to have more influence
on the transmission rate. The main features of TCP are the following:

• TCP is a connection-oriented protocol. A TCP connection is a byte stream, not a
message stream. This means that the TCP stack and not the application splits the byte
stream into packets (called TCP segments) that are transmitted through the network.2

• TCP connections are full duplex (traffic can go in both directions) and point to point
(no multicast or broadcast).

• TCP takes care of the reliable in-sequence delivery of the TCP segments. Lost packets
are retransmitted and out-of-sequence segments are reordered at the end system.

• TCP’s window-based flow control mechanisms allow a slow receiver to slow down a
fast sending sender.

• TCP has congestion control mechanism that tries to detect congestion in the network
and adapt the window size accordingly.

TCP was first formally described in RFC 793 and then clarified, extended and changed
in several other RFCs; see Table 4.1 for a selection of important TCP-related RFCs.

The 20-byte TCP header is depicted in Figure 4.5. Besides the ports, one notices the
sequence number of the transmitted data (measured in bytes) and with the acknowl-
edgement number the next expected byte in the opposite directions. The SYN bit is
used for the three-way handshake at connection setup and the FIN bit for closing a
connection. The window size contains the receiver window that tells the opposite end
system how many bytes it may maximally send starting with the byte indicated by the

Table 4.1 Selected RFCs Related to TCP

Name Title

RFC 793 Transmission Control Protocol
RFC 1122 Requirements for Internet hosts – communication layers (contain

TCP clarifications and bug fixes)
RFC 3782 The NewReno modification to TCP’s fast recovery algorithm
RFC 2018 TCP Selective Acknowledgement (SACK) Options
RFC 2883 An extension to the Selective Acknowledgement (SACK) Option

for TCP
RFC 2581 TCP congestion control
RFC 2988 Computing TCP’s retransmission timer
RFC 3042 Enhancing TCP’s loss recovery using limited transmit
RFC 3390 Increasing TCP’s initial window
RFC 2861 TCP congestion window validation
RFC 3168 The addition of Explicit Congestion Notification (ECN) to IP

(this also influences TCP)
RFC 1323 TCP extensions for high performance
BCP 28 Enhancing TCP over satellite channels using standard mechanisms

2 There are, however, means for an application programmer to influence how the byte stream is split into
segments.

Internet Protocols 53

32 bits

Source port Destination port

Sequence number

Acknowledgement number

Window size

Options (0 or more 32-bit words)

Urgent pointerChecksum

Data (optional)

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

TCP
header
length

0 31

Figure 4.5 TCP Header

acknowledgement number. The window size is used for flow control. The 16-bit field
for the window size is too small for high-bandwidth high-latency connections. Therefore,
in RFC 1323 a window scale option was proposed, which is now widely supported by
different TCP implementations. It allows shifting the window size field by up to 14 bits
to the left, thus allowing windows of up to 230 bytes. The original congestion control
algorithm is also problematic for high-speed connections; there are several modifications
for this under discussion, see for example, High-Speed TCP (HS-TCP) (see Floyd (2003))
or FAST TCP (see Jin et al. (2005)).

4.1.3.2 Flow and Congestion Control

TCP interprets packet loss as an indication for congestion in the network and reacts
by decreasing its window size and, therefore, the number of packets it can have in the
network at one point in time3. A TCP sender keeps track of two windows for sending data.
The advertised window of the receiver (for flow control) and the congestion window (for
congestion control). The maximum amount of data that can be sent unacknowledged at one
point in time is given by the minimum of the receiver window and the congestion window.

TCP is a self-clocked algorithm. This means that the window size is adapted in intervals
proportional to the round-trip time. TCP starts in a phase called slow start. The initial
value of the congestion window cwnd is one maximum segment size (MSS). Each time an
ACK is received while in slow start, the congestion window is increased by one segment
size. Therefore, if the sender receives its full window’s worth of ACKs per RTT, cwnd

is doubled per RTT.
Another variable, the slow-start threshold ssthresh, is used at the sender to keep track

of when to end the slow-start phase and enter the congestion avoidance phase. The names
are misleading as the slow-start phase is actually the phase in which cwnd is increased

3 This behaviour creates problems for wireless networks, where a packet drop is not necessarily a sign of
congestion.

54 The Competitive Internet Service Provider

faster. The default value of ssthresh is 64 kB (which corresponds to 42–44 segments).
Short-lived connections that only transmit little information might therefore never leave
the slow-start phase.

When cwnd is less than or equal to ssthresh, TCP is in slow start. Otherwise, it enters
congestion avoidance and cwnd is modified the following way: Each time an ACK is
received, cwnd is increased by MSS · MSS

cwnd
. This means that if a full window’s worth of

ACKs are received per RTT, cwnd is increased linearly by one MSS and not exponentially
as in slow start.

There are two indications of congestion: a retransmission timeout4 occurring and the
receipt of three duplicate ACKs in a row. TCP can generate an immediate acknowledge-
ment (a duplicate ACK) when an out-of-order segment is received as that is a sign that
the previous segment could be lost. When three duplicate ACKs are received in a row,
TCP performs an immediate retransmission of the missing segment without waiting for
the retransmission timer to expire. This mechanism is called fast retransmit .

When congestion occurs, ssthresh is set to one-half of the current window size5.
Additionally, if the congestion is indicated by a timeout, cwnd is set to one MSS and
slow start is re-entered. If the congestion is indicated by duplicate ACKs, no slow start is
performed. This is called fast recovery . It is an improvement that allows high throughput
under moderate congestion, especially for large windows. The reason for not performing
slow start in this case is that the receipt of the duplicate ACKs tells TCP that there is only
moderate congestion, as one packet got lost but a later packet (and the ACK) got through.

To summarise, slow start continues until the window is halfway to where it was when
congestion occurred. The behaviour of TCP is visualised in Figure 4.6. When analysing
long-lived TCP connections with losses of 5% and lower, the slow-start phase is often

W
in

do
w

 S
iz

e
[M

SS
]

Time [RTT]

cwnd
ssthresh

Loss and timeout

Congestion avoidance

Congestion avoidance

Slow start

Slow start

1

1

2

2

4

6

10

8

84

10

Figure 4.6 TCP Example

4 The retransmission timeout is a function of the estimated round-trip time RTT. It is measured with
Jacobson’s and Karn’s algorithm (Jacobson (1988); Karn and Partridge (1991)). In practice, the retransmission
timeout is much greater than the actual RTT. Retransmissions based on the timer may therefore be slow. This
is the reason for the duplicate ACKs as second congestion indicators.

5 Precisely, that is, the minimum of cwnd and the receiver’s advertised window, but at least two segments.

Internet Protocols 55

abstracted from and the TCP window assumed to move in a sawtooth behaviour (see
Figure 4.7). Therefore, TCP congestion control is also called additive increase/multiplica-
tive decrease (AIMD).

For an excellent source of more information on TCP, we recommend Stevens (1994).

4.1.3.3 TCP Flavours

There are different ‘official’ TCP versions plus countless slightly different implemen-
tations of TCP stacks in the different operation systems. The original TCP version is
specified in RFC 1122. TCP Tahoe was developed later and distributed with the 4.3 BSD
Unix in 1988. Its main advantage is that it includes the fast retransmit mechanism that
was discussed above. In the 1990 BSD Unix, TCP Reno was developed and implemented.
It includes all mechanisms of Tahoe plus the fast recovery mechanism explained above.
TCP Reno has problems with multiple losses, because it does not see duplicate ACKs
and times out. This led to the development of TCP NewReno in RFC 3782. It contains
an improved fast recovery algorithm that deals better with multiple losses.

A basic problem of the all these TCP flavours is that they use cumulative ACK: one
ACK acknowledges the correct reception of the indicated byte plus all previous bytes. If in
a sequence of segments (1, 2, 3, 4) segment 2 gets lost but the other segments arrive, only
segment 1 but not segments 3 and 4 can be acknowledged with cumulative ACKs. In the
SACK TCP flavour of RFC 2018, selective acknowledgements are supported that allow
acknowledging out-of-sequence segments. In combination with a selective retransmission
policy, this can lead to considerable performance improvements.

A radically different TCP flavour is TCP Vegas. Vegas tries to use packet delay rather
than packet loss as a congestion indicator. It uses the difference between the expected
and the actual flow rate to estimate the available bandwidth in the network. When the
network is not congested, the expected and the actual rates will be very similar. If the
network is congested, however, the actually achieved rate will be significantly smaller than
the expected rate. The difference between the rates can be expressed with the difference
between the window size and the actual acknowledged packets. The sending rate in
Vegas is adapted according to this measured difference. For details, we refer to Brakmo
and Peterson (1995). A problem of TCP Vegas is that when competing with other TCP
versions, it does receive less than a fair share of the bandwidth.

4.1.3.4 TCP Rate Estimation

For many practical purposes, it is important to get a feeling for the rate or the throughput of
a single TCP connection. The TCP rate depends on several parameters. The most important
ones are the round-trip time and the loss probability. We next discuss and present three
different approaches to estimating the throughput or the rate of a TCP connection. We
start with the famous square root formula, then give a better approximation formula and
finally end with discussing a formula for short-lived flows.

The Square Root TCP Rate Formula The so-called square root TCP rate formula can
be easily derived, see Floyd (1991) and Lakshman and Madhow (1997). Assuming a
long-lived TCP connection that is dominated by TCP’s congestion avoidance phase, the

56 The Competitive Internet Service Provider

W
in

do
w

 S
iz

e
[p

kt
s]

Time [s]

Wl

Wav

T

Wl /2

Figure 4.7 Square Root TCP Rate Formula

connection setup and the slow-start algorithm can be neglected. Assuming that losses
occur with probability p in regular intervals every 1/p packets when the congestion
window size has reached Wl , the window size over time will show the sawtooth behaviour
depicted in Figure 4.7. If one ACK per packet is sent, the window size increases linearly
by one per round-trip time RTT. Therefore, T = Wl

2 RTT. The average window size Wav

is Wav = 3
4 · Wl as follows from Figure 4.7. The average rate rav in packets/second is

therefore rav = Wav/RTT = 3·Wl

4·RTT . The area marked in Figure 4.7 equals the number of
packets N sent in one cycle T . Therefore,

N = ravT = 1/p (4.1)

From this it follows that 3
8W 2

l = 1/p and Wl =
√

8
3p

. The average TCP rate is therefore

rav = 1

RTT
√

2
3 p

measured in packets/second or if expressed as r ′
av in bytes/second r ′

av =
MTU

RTT
√

2
3 p

with the packet size MTU. The MTU of TCP connections is typically 1500 bytes

with and 1460 bytes without TCP/IP headers.
Measurements of packet traces have shown that the introduction of a proportional

factor of 1.22 leads to a better approximation. This results in the well-known square root
TCP formula

r = 1.22
MTU

RTT
√

2
3p

(4.2)

Measurements have also shown that the assumptions in this formula are not valid for
loss rates of p = 5% and higher.

A Better Approximation The square root formula (4.2) is a simple model of the con-
gestion avoidance phase of a long-lived TCP connection. Padhye et al. (1998) derive
a better steady-state model for the TCP rate which takes timeouts as well as duplicate
ACKs as loss indication into account. A good approximation of their model is given
with Model 4.1. It is based on the Reno flavour of TCP. The rate of a long-lived TCP
connection can be limited by congestion avoidance algorithm and also by the maximal

Internet Protocols 57

Model 4.1 Advanced TCP Rate Approximation Model

Parameters

Wmax Maximum receiver window size [pkts]

b Number of packets acknowledged by a received ACK

(typically b = 2)

p Loss probability

T0 Retransmission timeout [s]

(initially T0 = 3s, adapted according to RFC 793)

RT T Round-trip time [s]

rav TCP rate [pkts/s]

Equation

rav = min

Wmax

RT T
,

1

RT T

√
2bp

3 + T0 min

(
1, 3

√
3bp

8

)
p(1 + 32p2)

 (4.3)

congestion window size as advertised by the receiver. This maximal window size Wm

is given by the buffer limit set aside for the connection on the receiver side. It is taken
into account in the first part of the main min term in (4.3). The assumptions made for
the derivation of the formula are that the effect of the fast recovery algorithm can be
neglected and that the time spent in the slow-start phase is negligible. The latter holds
true only for long-lived TCP connections. Among other assumptions, it is assumed that
the round-trip time RTT is not affected by the window size. This assumption is acceptable
for most connections except when the connections go through an extreme bottleneck such
as a low-bandwidth modem line with a large buffer. The rate rav is specified in pack-
ets/second. To obtain the rate in bytes/second, rav has to be multiplied with the average
packet size, which is typically around 1500 bytes.

For a derivation of the formula and more details, see Padhye et al. (1998).

Short-lived TCP Flows The aforementioned models predict the rate of long-lived TCP
connections. Many HTTP transfers of web pages, however, are short-lived TCP connec-
tions that spend little or no time in the congestion avoidance phase of TCP. For these
connections, the slow-start phase has to be taken into account. A detailed model for
short-lived TCP flows is presented in Cardwell et al. (2000). Here we present a simplified
version of that model assuming that no losses occur until the transfer is finished. The
results are summarised in Model 4.2.

If only a few packets are transmitted, the initial handshake for TCP connection setup
cannot be neglected. The total duration D of the short-lived TCP transfer consists of the

58 The Competitive Internet Service Provider

Model 4.2 TCP Latency Model

Parameters

D Total duration of the TCP transfer [s]

rav Average TCP rate [pkts/s]

L Duration of the TCP connection establishment [s]

T Duration of the data transfer itself [s]

d Number of data segments to be transferred [pkts]

RTT Round-trip time [s]

W Unconstrained window size at end of transfer [pkts]

γ Slow-start growth rate

(γ = 1.5 if one ACK per two data segments is sent)

w1 Initial congestion window size [pkts] (typically w1 = 2)

Wmax Maximum receiver window size [pkts]

Equations

D = L + T (4.4)

L = RTT (4.5)

W = d(γ − 1)

γ
+ w1

γ
(4.6)

T =

RTT ·
(

logγ

(
Wmax

w1

)
+ 1+

1
Wmax

(
d − γWmax−w1

γ−1

))
when W > Wmax

RTT ·
(

logγ

(
d(γ−1)

w1

)
+ 1

)
otherwise

(4.7)

rav = d

D
(4.8)

connection setup time L and the time T for the data transfer itself. The connection setup
consists of a three-way handshake; (4.5) shows the expected duration of the handshake,
taking into account that the last ACK of the handshake already carries data (and is
therefore part of T).

It is assumed that in total d segments are to be transmitted (d is approximately the
number of bytes to be transmitted divided by the MSS which again is 1460 bytes in most
cases). During slow start, there are two possibilities: If the maximum congestion window
Wmax is very large, the window size will be W at the end of the transfer. Duration T

is then given by the second part of (4.7). Otherwise, the maximum congestion window
Wmax is reached during the transfer and T is expressed by the first part of (4.7).

Internet Protocols 59

4.1.3.5 TCP Root Cause Analysis

While the previous section described the theoretical throughput of a TCP connection
as a function of the network parameter’s loss and delay, TCP root cause analysis is
concerned with determining reasons that limit the throughput of an actually measured
TCP connection. This is important for end users as well as INSPs, as the network is
not necessarily always the limiting factor for TCP connections. The possible rate-limiting
factors as described in Zhang et al. (2002) are as follows:

• Opportunity (lifetime): Many short-lived flows do not transmit long enough to reach a
high throughput.

• Bandwidth and Congestion: Packet loss limits the TCP throughput owing to TCP’s
congestion control as discussed above. Packet loss can be caused by the TCP rate
approaching the total bottleneck bandwidth (e.g. the upload bandwidth of a ADSL
connection) or by other flows competing for bandwidth in the network.

• Transport: The sender might be in congestion avoidance without experiencing loss.
• Receiver window: The sending rate can be limited by the advertised receiver window.

This is called flow control and is used by slow receivers to throttle fast senders.
• Sender window: The sender window is constrained by the buffer space at the sender.

It limits the amount of unacknowledged data outstanding at any time.
• Application: The rate with which an application produces data can of course also be

an important limit of the actual throughput.

Zhang et al. (2002) introduce the tool T-RAT. On the basis of the backbone packet level
traces and summary flow level statistics, they conclude that the dominant rate-limiting
factors are congestion and receiver window limits. Siekkinen et al. (2005) discuss some
drawbacks of the tool T-RAT and provide some new root cause analysis algorithms based
on certain time series, for example, of the interarrival time of acknowledgements or of the
number of unacknowledged bytes. These time series can be extracted from bidirectional
packet header traces.

4.1.4 Lower Layer Protocols

INSPs connect their POPs (points-of-presence) typically by leasing lines from carriers.
There are several layer 2 technologies available for carriers that can be employed by
INSPs to run their IP overlay network over. In this section, we focus on the high-speed
layer 2 technologies currently favoured by carriers.

4.1.4.1 Synchronous Optical Networking (SONET) / Synchronous Digital
Hierarchy (SDH)

SONET (Synchronous Optical Networking) and SDH have replaced the Plesiochronous
Digital Hierarchy (PDH) and are the most common link-layer technologies for today’s
high-speed wide area networks (WAN). SONET is a standard for optical communication,

60 The Competitive Internet Service Provider

providing framing, as well as a rate hierarchy and optical parameters for interfaces ranging
from 51 Mbps (OC-1) up to 9.8 Gbps (OC-192) and higher6; see ANSI T1.105 (1995);
ANSI T1.119 (1995). SONET has been adopted as a standard for North America by
the American National Standards Institute (ANSI), while a slightly advanced version –
SDH, see ITU Recommendation G.707 (1996) – has been adopted by the International
Telecommunication Union/Telecommunication Standardisation Sector (ITU-T) and is used
in the other parts of the world.

SONET/SDH use time division multiplexing with a scan time interval of 125 µs, indi-
cating the background of SONET/SDH, the telecommunication market where the standard
sampling rate is 8000 samples/second for voice. SONET/SDH needs a tightly synchronised
clocking environment for the synchronous transmission of the data streams.

Table 4.2 lists the line and payload rates of the optical SONET/SDH circuit hierarchy.
The overhead carries information that provides ‘Operations, Administration, Maintenance
and Provisioning’ capabilities such as framing, multiplexing, status, trace and performance
monitoring. Higher-speed circuits are formed by successively time multiplexing multiples
of slower circuits; for example, four OC-3 circuits can be aggregated to form a single
OC-12 circuit.

For the transport of IP packets over SONET/SDH, the IP datagrams are typically
encapsulated into Point-to-Point Protocol (PPP) packets. PPP provides link error control
and initialisation. The PPP-encapsulated datagrams are then framed using high-level data
link control (HDLC) and sent over a SONET/SDH circuit to the next hop. RFC 2615
describes this process, see Malis and Simpson (1999).

Simplified Data Link (SDL) is a very low overhead alternative to the HDLC-like
encapsulation that avoids HDLC’s byte-stuffing expansion and is designed for rates at
OC-192 and above. It is described in RFC 2823, see Carlson et al. (2000).

4.1.4.2 10-Gigabit Ethernet (10GE)

Beginning with the 1-Gigabit Ethernet standard IEEE 802.3z, Ethernet is deployed not
only in local area networks (LAN), the traditional domain of Ethernet, but also in
metropolitan area networks (MAN). With the 10-Gigabit Ethernet (10GE) standard IEEE

Table 4.2 SONET/SDH Data Rates

SONET SDH Line Rate Payload Rate Overhead Rate

OC-1 – 51.840 Mbps 50.112 1.728
OC-3 STM-1 155.520 Mbps 150.336 5.184
OC-12 STM-4 622.080 Mbps 601.344 20.736
OC-48 STM-16 2488.320 Mbps 2405.376 82.944
OC-192 STM-64 9953.280 Mbps 9621.504 331.776
OC-768 STM-256 39813.120 Mbps 38486.016 1327.104

6 SONET is also specified for non-optical digital circuits but because high data rates usually require fibre
optic cable, we concentrate on OC (optical carrier) circuits here.

Internet Protocols 61

802.3ae, Ethernet can now be expanded also into wide area networks (WAN), the tra-
ditional domain of SONET/SDH. 10GE can work over SONET links and also without
SONET as end-to-end Ethernet.

10GE is based entirely on the use of optical fibre and only full-duplex mode is sup-
ported. Two end systems can be connected directly; for more end systems, a switch has
to be used. 10GE still shares the MAC (Media Access Control) protocol and the frame
format with the slower Ethernet standards. But because there are only point-to-point con-
nections rather than the multipoint connections that were used in the classic Ethernet
networks (IEEE standard 802.3 before 802.3ae), the classic Ethernet collision detection
mechanism CSMA/CD (Carrier Sense Multiple Access with Collision Detection) is no
longer necessary.

10GE is, in contrast to SONET/SDH, an asynchronous protocol and differently clocked
domains are interlinked by switches and bridges that buffer and re-synchronise the data.
Therefore, 10GE requires less complexity and is generally cheaper than the SONET/SDH
equipment. This was in fact one of the design goals of 10GE; see IEEE 802.3 High
Speed Study Group (2002). Another cost-saving factor is that 10GE is capable of using
lower-cost uncooled optics and multimode fibre for short-distance connections.

Over single-mode fibre, 10GE can bridge distances of 40 km and can therefore be used
to build a pure Ethernet WAN. For compatibility with the existing SONET/SDH network,
10GE can also be operated on top of SONET OC-192/SDH STM-64 connections that only
have a slightly slower transmission rate (see Table 4.2). This operation is described by
the 10 GE WAN PHY (physical layer) specification. 1-Gigabit Ethernet (1GE) is already
quite commonly found as the foundation for MAN7.

Both Ethernet and SONET/SDH have their individual advantages, which are sum-
marised in Table 4.3.

4.1.4.3 Wavelength-division Multiplexing (WDM)

Wavelength-division Multiplexing (WDM) is the generic name for frequency-division
multiplexing in the optical domain. It is best understood as a fibre-multiplication technol-
ogy: it allows multiple optical circuits to share a single physical fibre strand without in-
terfering with each other as their signals use different carriers occupying non-overlapping
parts of the frequency spectrum (virtual fibres).

The number of optical signals multiplexed within a window is limited only by the
precision of the optical equipment. WDM can therefore increase the optical fibre band-
width many folds without expensive re-cabling. However, electronic switching gear is
commonly used at the ends of the optical circuits and forms the bottleneck in today’s
backbones. Optical switching technology promises to also remove this bottleneck and
decrease the costs for bandwidth even further.

Because WDM operates at the photonic level, it allows different framing and transmis-
sion technologies to be used on each wavelength. Considering the vast investment carriers
have made in SONET and SDH equipment and their experience with it, the integration
of SONET/SDH and WDM seems a reasonable and likely step on the way to all optical

7 See, for example, the services of Yipes (www.yipes.com), Cogent Communications (www.cogentco.com)
and OnFibre (www.onfibre.com).

62 The Competitive Internet Service Provider

Table 4.3 Comparison of SONET and Long-distance Ethernet

SONET/SDH Ethernet

Historical traffic Voice traffic Data traffic
Historical network type WAN LAN
Standardisation gremium ANSI/ITU-T IEEE
Supported network types MAN, WAN LAN, MAN, WAN (10GE)
Link protocol Synchronous Asynchronous
Bandwidth scalability 52 Mbps to 40 Gbps 1 Mbps to 10 Gbps
Advantages Survivable (50 ms

restoration time with APS
(automatic protection
switching, 99.999%
reliability; see Goralski
(2002))

Lower equipment costs

Optimised for voice traffic Optimised for data traffic
Widely deployed in WANs Widely deployed in LANs;

MANs/WANs can be
connected to LANs
without reframing

Annotations Solutions exist for running
Ethernet over existing
SONET/SDH
infrastructure

transport networks; see Cavendish (2000). Thus, one solution for IP over WDM is running
IP over PPP/SDL over SONET/SDH over a WDM link.

It is possible to simplify the protocol stack by removing the complexity of SONET/SDH
and send IP directly over WDM links using Multi-Protocol Lambda Switching (MPλS),
a variation of the Multi-Protocol Label Switching (MPLS)(for MPLS, see Section 6.3.2)
approach that uses wavelengths instead of labels. Packet-switching MPLS and wavelength-
switching MPλS are subsumed8 under the GMPLS (Generalised MPLS) framework that
provides a generalised signalling control protocol standard for multiple types of switching.
More information can be found in Banerjee et al. (2001); Berger (2003); Durresi et al.
(2001).

With a set of tests over four testbeds in Finland, France, Sweden and Switzerland,
Rodellar (2003) compares and evaluates three approaches for IP over WDM: (1) IP –
Packet over SONET/SDH – WDM, (2) IP – native 1GE – WDM, (3) IP – DPT (Dynamic
Packet Transport9) – WDM.

Among other things, the study shows that none of these solutions has a clear technical
advantage over the other. The feasibility of real-time applications such as IP telephony
or video across a 1GE link over a WDM network has been verified. The study, however,

8 In the literature, MPλS and GMPLS are sometimes used as synonyms. This is not technically correct
as GMPLS explicitly also addresses other kinds of switching besides wavelength switching, as for example
switching in the time domain (time division multiplexing).

9 DPT is a proprietary layer 2 switching solution from Cisco for transporting IP packets over ring networks.

Internet Protocols 63

also found that it is still necessary to separate the traffic of these real-time applications
from other low-priority traffic. We investigate methods for doing this in Part II.

4.2 Summary and Conclusions

In this chapter, we discussed the basic network and transport layer protocols of the
Internet: IP, TCP and UDP. TCP is the most commonly used transport protocol in the
Internet and uses a complex congestion and flow control mechanism that was discussed
in this chapter. Methods for estimating the throughput of a TCP connection for different
network conditions were discussed as well. Finally, different lower layer technologies for
ISPs and carriers were shortly discussed towards the end of this chapter.

