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Abstract 

Aluminum reduction cells performance are affected by many 
factors. In order to efficiently understand possible causes of 
performance upsets, all major sources of variations have to be 
monitored. This implies monitoring all anode and alumina 
properties, as well as pot state and manipulated variables, while 
also taking into account pot design or integrity after start-up. 
Considering the high number of variables involved in such a task, 
this is practically impossible using typical statistical process 
control tools. The problem is even worst when applied on a pot 
basis. This paper proposes the use of multiblock PLS (MBPLS) to 
build a monitoring scheme on a pot basis, simultaneously taking 
into account the influence of alumina and anode properties, of pot 
state and manipulated variables, as well as the pot state following 
its start-up. Derived from a regression model, the monitoring 
policy ensures that only variations relevant to pot performance 
variations are highlighted. 

Introduction 

Aluminum reduction smelters typically operate a hundred to a 
thousand metallurgical reactors known as reduction cells or pots. 
Although each cell process variables are followed by process 
engineers on a daily or a weekly basis, key performance indicators 
(KPI) are typically followed on a weekly or a monthly basis. 
Hence, reports on current efficiency (CE) and energy 
consumption (EC) are investigated by process engineers and 
feedback corrective actions are taken, aiming at keeping cells in 
an optimal productive state. 

However, it is generally not easy for process engineers to 
determine what might have been the cause of a process excursion 
leading to low CE or high EC. The reason is that reduction cells 
performance are simultaneously affected by the behavior of 
variables of different nature that could be grouped in different 
blocks. This is illustrated in Figure 1. 

Figure 1: Variables typically involved in reduction cells 
performance variations. 

Hence, following a pot excursion on CE or EC, engineers have to 
look at the behavior of many variables before taking corrective 
actions. Typically, this is achieved through the investigation of 
each variable using univariate statistical methods (i.e.: 
computation of variables average and standard-deviation or 
through the investigation of univariate Shewart control charts). 
This is time consuming and suboptimal as it does not account for 
the fact that reduction cells performance are resulting, from the 
simultaneous interaction of all these variables. Reduction cells are 
multivariate processes. Unfortunately, through the use of 
univariate statistical methods, it is impossible to capture the 
combined effect of these variables. 

A better approach for investigating a process upset would consist 
of looking at the pot status based on all variables at the same time. 
This is advantageous as it captures the structure or the interactions 
between process variables and pot performance. This is achieved 
through the use of multivariate statistical methods such as 
principal components analysis (PCA) or partial least squares 
(PLS). These methods enable the construction of multivariate 
monitoring charts and diagnosis tools while accounting for the 
multivariate nature of processes. 

This work proposes the use of these methods to develop a pot 
overall status or health monitoring scheme based on all available 
information aiming at explaining pot performance variations. 
Hence, the proposed monitoring strategy includes alumina and 
anode properties, pot state and manipulated variables, the pot 
initial state following its start-up and different binary variables 
arising from process knowledge. Doing so, a single monitoring 
strategy would enable to easily and efficiently monitor pot status 
based on all variables leading to its performance variations. 
Moreover, this strategy would also help diagnosing process upsets 
through the use of contribution plots. 

This paper is divided as follows. First, the drawbacks of univariate 
statistics and advantages of multivariate statistical analysis are 
illustrated. The dataset used for the model development is 
presented and the construction of the monitoring strategy is 
discussed. Finally, a case study illustrating how contributions 
plots can be used for upset investigation is presented. This is 
followed by a conclusion. 

Multivariate Process Monitoring 

Over the last decades, multivariate process monitoring has started 
to find its place in chemical and pharmaceutical industries, as well 
as within the food or the metallurgical industries. This is mainly 
due to the fact that more sensors, collecting data at a fast sampling 
rate, are now available. This resulted in the availability of massive 
databases for process monitoring and upsets diagnosis. 
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Nevertheless, the information enclosed in industrial databases 
encloses some noise and many variables are highly collinear (i.e.: 
correlated or dependent). 

Multivariate statistical methods such as PCA or PLS become 
handy as they are well suited to the analysis of thousands of 
correlated noisy variables, even possibly enclosing some missing 
values arising from different sampling rate or defective sensors. 
These methods have been used for different Multivariate 
Statistical Process Control (MSPC) applications [1, 2, 3]. 

Recently, multivariate statistics have been used to develop 
different monitoring strategies for reduction cells. Majid et al. [4] 
used PCA on 5 minutes pot data for early detection of anode 
spikes and anode effect. Tessier et al. [5] also used PCA to 
develop a daily multivariate monitoring tool for reduction cells 
based on 65 variables. This later approach was used for detecting 
cells behaving abnormally as well as for troubleshooting. 

Limitation of Univariate Process Monitoring 

cell behaviour with respect to its bivariate nature, assuming that 
only bath temperature and excess of A1F3 are of importance. 
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Figure 3: Univariate SPC for bath temperature. 

A limitation of univariate process monitoring can easily be 
illustrated using a simple case study. Daily bath temperature and 
excess of A1F3 were gathered for a pot over two years. These are 
presented in Figure 2 and 3 with their respective +/- 1, 2 and 3 
standard-deviations limits (std). 
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Figure 2. Univariate SPC for bath excess A1F3. 

An engineer can inspect these two graphs on a daily basis to 
determine if a pot is in control, based on bath temperature and 
excess A1F3. Engineers would flag observations based on some 
SPC rules [6]. However, this would not account for the fact that 
these two variables have a correlation coefficient -0.71. Hence, 
the underlying assumption for univariate SPC that variables must 
be independent is not met. This consequence is well illustrated in 
Figure 4. This figure presents bath temperature as a function of 
excess A1F3. The +/- 2 standard-deviations limits are illustrated by 
dotted lines for both variables. Independent variables would have 
filled the gray square formed by the dotted lines and univariate 
SPC would have been an efficient tool for process improvement. 
However, it is evident that these observations only move along a 
defined axis. Monitoring the behaviour of a cell based on the joint 
confidence interval of these two variables would be much more 
appropriated. This is highlighted in Figure 4 through the +/-2 
standard-deviation joint confidence interval marked by the ellipse. 
It is seen that the joint confidence interval captures the correlation 
structure between the two variables and thus enable monitoring 
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Figure 4. Bivariate SPC chart for bath excess A1F3 and 
temperature. 

This procedure is easily extended to more than two variables and 
allows the computation of a single metric indicating how far a pot 
daily observation is from the control space. This is computed 
using the Hotelling's T2 statistics, which is χ2 distributed. 

Ti
2 = (x i-x)S-1(x i-x)T [1] 

where Xi is a row vector enclosing process measurements, x is a 
row vector enclosing process variables means or target, S is the 
process variables variance-covariance matrix and Tj2, a scalar, is 
the Hotelling's T2 statistics for the ith observation. However, due 
to correlations among process variables, S is often ill-conditioned 
and leads to poor monitoring tools. 

PCA/PLS Based Monitoring 

In a way to overcome the ill-conditioned problem, it is 
advantageous to use PCA or PLS to compute the Hotelling's T2 

metric. PCA and PLS methods simply project process data into a 
sub-space (i.e.: the latent space) consisting of less variables that 
the original process data space. PCA aims at finding A latent 
variables P (JxA), each one explaining the greatest amount of 
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variance of the original data X (IxJ) that is unexplained by the 
previous latent variables. On the other hand, PLS aims at finding 
A latent variables (P), each one explaining the greatest amount of 
the covariance between X and a response matrix Y (IxH). The 
latent variables are computed in such a way that they are 
independent, or uncorrelated, of each other, ensuring that each 
latent variable captures new information unexplained by the 
previous latent variables. Mathematical details of PCA and PLS 
are presented in the literature [1, 2, 3, 7]. 

The structure of the PLS model is given by: 
X = TPT + E 
Y = T QT + E 
T = XW* 
W* = W(PT W)"1 

(2) 
(3) 
(4) 
(5) 

where T (IxA) is the common latent variable space defined by the 
weight matrix W* (JxA) and capturing the information in X that 
is the most highly correlated with Y. The P (JxA) and Q (HxA) 
matrices contain the orthogonal loading vectors mapping the 
common latent variable space in the space of X and Y (models of 
these blocks). The PLS model residuals for X and Y are stored in 
E (IxJ) and F (IxH), respectively. 

Dataset 

The dataset for this work comes from the Alcoa Deschambault 
smelter, operating 264 AP-30 reduction cells above its nominal 
capacity. Data were collected over the complete life cycle of 31 
cells. For each cell, a total of 209 preheating, start-up and early 
operation data, as well as alumina and anode properties and pot 
operating data were retrieved for complete pot life cycles. The pot 
related variables were retrieved on a daily basis, from the plant 
database while the other variables were stored as available. These 
data, the process descriptor data, are enclosed in the X matrix. 

Developing the Monitoring Strategy 

A PLS based monitoring strategy was selected for this application. 
On this basis, it is possible to link variations enclosed in the 
process descriptor matrix X with different response variables (Y). 
Here, the objective is mainly to track reduction cells production 
metrics. Hence, CE and EC are used as response variables. 
Therefore, these metrics were computed on a daily basis from 
daily tap metal weights, line current and pots volts. 

The assumption is that, if a good statistical model can be built, it 
would be possible to assess pot status by simultaneously taking 
into account alumina and anode properties, of pot state and 
manipulated variables and also based on some pot specific 
parameters. 

Time Basis Considerations 

However, it is known that CE and EC computed through metal 
production, on a daily basis, are noisy metrics. One reason for that 
is coming from the use of metal tapping tables. This particular 
smelter uses a tapping table, similar to the one presented in Figure 
5, to determine the amount of metal that should be tapped from a 
pot. As an operator measures the metal pad level, the metal height 
indicating the quantity of metal in the pot is converted into a tap 

weight that will be used for the next tapping operation. As seen in 
Figure 5, small differences in metal height may lead to large 
differences in CE. Another source of perturbation arises from bath 
carryover. As an operator taps metal, a variable quantity of molten 
bath is tapped from the pot. As this bath is tapped instead of 
metal, some metal is left in the pot. Hence, this artificially boosts 
the metal height and affects CE. Unfortunately, it is not possible 
to quantify the amount of bath that is carried over through the 
metal tapping operation on a pot basis. At best, it is possible to 
determine the amount of bath that has frozen on the crucible 
lining for some group of pots. Finally, sideledge freezing and 
thawing also induce some artificial variations on CE. For a 
defined quantity of metal inventory, sideledge freezing will boost 
the metal height and hence artificially increase CE as the metal 
level will be higher. Conversely, sideledge thawing will 
negatively affect daily CE. These sources of noise or error will 
also affect EC as it is a function of CE. 

Hence, daily CE and EC computed from metal tap weights, on a 
pot basis are irrelevant for performance assessment. Typically, 
plant operator will average CE and EC on a monthly basis in order 
to smooth out variations created by the tapping table, bath 
carryover and sideledge freezing/thawing. 
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Figure 5: One of the metal tapping tables used at Alcoa 
Deschambault. 

Hence, data gathered over the life cycle of the 31 cells were 
averaged on a monthly basis, leading to 2271 observations. 
Therefore, X contains 2271 observations and 209 variables and Y 
encloses 2271 observations and 2 variables. A schematic of the 
data structure is presented in Figure 6. The A1203 and Anodes 
blocks enclose alumina and anode properties, respectively. The 
MV and the SV blocks encloses pot manipulated and state 
variables, while the PSE encloses pots start-up and early operation 
information. Finally, the PLV block encloses some logical (i.e.: 
binary) information with respect to the pot location within the 
potrooms. 

Process Lag and Dynamics Considerations 

In order to cope with process dynamics, lagged version of data 
blocks were used. The idea was that a pot processing bad alumina 
or anodes, for example, for an extended period of time may be 
more negatively affected than a pot processing such raw materials 
for a short period of time. 

409 



AI203 Anodes PLV MV PSE SV 

ί 
X 

Figure 6: Schematic of the available data structure. 

Therefore, PLS models using different lags were developed and 
assessed. Table 1 presents statistical details of three PLS models 
developed for different lags. The first model (No Lag) includes 
only present month data, while the One Month and Two Months 
models include present monthly values as well as one and two 
months lagged versions, respectively, of the data for the A1203, 
the Anodes, the MV and SV. The PSE and the PLV blocks are not 
lagged as they do not evolve over time. This table includes; the 
number of variables included in X, the number of principal 
components used in the different PLS models, the amount of 
variance of X accounted by the model (R2X), the root mean 
squared error in calibration (RMSEC) for CE and EC and the 
amount of variance explained for CE and EC (R2Y). 

Table 1: Statistical details of PLS models. 

Nbr.X Variables 
A 
R2X (%) 
RMSEC CE (%) 
RMSEC EC (kWh/kg) 
R2Y CE (%) 
R2Y EC (%) 

No 
Lag 
209 
5 
23 

2.21 
0.38 
51 
51 

One 
Month 

345 
4 
19 

2.21 
0.37 
51 
50 

Two 
Months 

481 
5 
24 

2.14 
0.38 
54 
51 

From these results, it could be said that 19 to 24% of the variance 
of X (R2X) explains about 50% of the CE and EC variance (R2Y), 
indicating that most of the variance enclosed in X is not used for 
explaining variations in CE and EC. As seen from these results, 
including three months (present month and last two months) of 
data slightly improves the model performance as opposed to only 
using the present month data. The R2Y CE slightly improves from 
0.51 to 0.54, while it stays constant for EC. On the other hand, the 
RMSEC diminishes from 2.21 to 2.14 for CE and stays unchanged 
for EC. Hence, it was decided to use the Two Months model. Even 
if this model includes more variables, while leading to slightly 
better prediction performances, these are data collected in the 
present and last two months of the pot operations and are easy to 
extract from the plant historian while not causing any problems 
for the PLS algorithm. Still, it has the advantage of highlighting 
recurrent problems leading to CE or EC drifts while 
troubleshooting. 

A considerable amount of efforts were made to improve 
predictive ability (R2Y and RMSEC) using other ways to pre-
process the data, but with no significant gain. Data quality may 
help explain some of the difficulties in capturing a greater 
percentage of variations (R2Y) in CE and EC. Alumina and anode 
quality variables are not measured on a pot-to-pot basis. Alumina 
properties are rather estimated from suppliers COA and blending 

data, and weekly population averages are used to describe anode 
quality based on a limited number of analyzed core samples. A 
better traceability of these raw materials would certainly help 
explain additional variance. Furthermore, the uncertainties 
involved in computing, the CE and EC values due to the tapping 
tables and errors, as discussed earlier, may very well limit the 
theoretically explainable performance fluctuations. 

Figure 7 presents predicted against measured autoscaled CE 
values for the 2271 observations. This figure demonstrates that 
most of the predictions follow the prefect prediction line and that 
the prediction errors are distributed along the complete scale of 
measured CE. The reader should keep in mind that 2271 
observations are plotted on this figure and that most of the 
observations are close to the prefect diagonal prediction line. 
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Figure 7: Predicted autoscaled CE as a function of measured CE. 

Figure 8 presents the actual and predicted autoscaled CE values 
over the complete life cycle of four pots. From these plots, it is 
possible to conclude that the model can follow or describe most of 
the CE variations over the four pots life cycles. For example, the 
model almost perfectly matches some CE peaks for pot B102 at 
months 13, 50 to 53 and 63 to 66, demonstrating good predictive 
performance, but also indicating that the model structure (P, W, 
W* and Q) reproduces typical pot behaviour. However, the model 
does not capture all peaks as seen for pot A003 at months 6, 12, 
17 to 19 and 25, for example. This indicates that either not enough 
information was included in the data to capture these peaks and 
that they are driven by different behaviour not accounted using the 
analyzed variables or they are arising from noise (i.e. tapping 
tables or measurement errors). 

Case Study 

As a statistical model enclosing most of the systematic 
interactions between pot process variables and performance is 
available, it is possible to use this model for process monitoring 
and diagnosis. The methodology is illustrated here using a case 
study. 
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Figure 8: Actual (solid line) and predicted (dots) autoscaled CE 
over the complete life cycle of four pots. 

After the first three months of operation, the monitoring strategy 
was applied to pot A003. Over time, on a monthly basis, process 
engineers follow predicted and computed autoscaled CE as 
presented in Figure 9. It is seen that the predicted CE does not 
exactly match the computed values, mainly arising from the 
different points discussed in the previous section. However, 
predictions follow the major trends and at least indicate if CE is 
improving or degrading. This figure illustrates a CE drop from 
observations (months) 26 and 27. The computed CE indicates a 
CE drop of 10%, probably greater than what the pot experienced 
as the computed CE were suspiciously high for months 24 and 25, 
while the predicted values indicate a drop of 4.5%, which is about 
twice the magnitude of the RMSECV. At -350 kA, a 4.5 % CE 
drop equals ~4 tons of metal and is a significant drop. After 
highlighting this drop, the engineer can interrogate the variables 
contributions [3] in order to determine which variables played a 
role in this significant CE drop. 
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Figure 9: Actual (solid line) and predicted (dots) autoscaled CE 
over the complete life cycle of four pots. 

The contribution of variable j , to the overall movement between 
two consecutive observations, i and i-7, within the latent space of 
A dimensions is computed using the following expression: 

where xitj and x,.;̂  are values of the / h variable for observations i 
and 1-7; w*aj· is the weight associated to the/1 variable in the 0th 

latent space and 52
ta is the variance of the αΛ score. It basically 

consists of the difference between two observations of variable j , 
weighted by its importance in the model (w*). Dividing by the 
score variance gives an equal chance to each latent variable to 
influence the variable contribution. Note that the weights and 
variances in the above expression are taken from the regular PLS 
model with block scaling. To obtain the contribution of the 
variables in a particular block, one only needs to use the 
appropriate variables within that block (x,,/s). Variables 
contribution to the difference in predicted CE from observations 
26 to 27 are presented in Figure 10. 
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Figure 10: Variables contribution to the CE drop between 
observations 26 and 27 for pot A003 

Following the inspection of this plot, smelter operators found that 
various alumina properties and pot state variables were strong 
contributors to the CE drift. Furthermore, bath height level and its 
target as well as the number of anode effects were flagged using 
the contribution plot. These correspond to variables 18, 22, 420, 
462 and 464, respectively. During this period, the bath level 
dropped by more than 2.2cm, further reducing alumina dissolution 
capacity due to a smaller bath volume. This, in turn, increased the 
frequency of anode effects since less alumina was dissolved in the 
bath. Hence, it is easier to deplete alumina below the 
concentration leading to an anode effect. As a matter of fact, the 
anode effect frequency was three times greater than usual for pot 
A003 at observation 27 (i.e. monthly average corresponding to 
observation 27). Finally, the CE drop was most probably the result 
of degrading alumina quality and low bath level. Together, these 
variables increased anode effect frequency which, in turn, had a 
negative impact on current efficiency. 

Conclusion 

In this paper, an efficient monitoring tool based on all variables 
collected around reduction cells has been proposed. This 
methodology, based on multiblock PLS can efficiently cope with 

411 



hundreds or thousands of correlated and noisy variables as it 
projects the pot information into a latent variable space of much 
lower dimensions than the original data space, while capturing 
most of the systematic variations. 

Such a model was developed based on data collected over the 
complete life cycle of 31 reduction cells. Information on alumina 
and anode properties, on pot state and manipulated variables, on 
pot integrity after start-up and some logical information indicating 
pot position in the potroom was included. The resulting model 
accounts for 54% of the CE variance and 51% of the EC variance. 
Since different sources of variations may create added noise to 
computed CE and EC values, the model is judged useful and 
enables to predict CE and EC monthly values, on a pot basis, 
based on process data. 

Following a drop of CE, or an increase of EC, for two consecutive 
months, it is possible to compute variables contributions and 
investigate what may have caused the performance upset. The 
reader should keep in mind that the model was built upon 
happenstance data (correlations) and not from a design of 
experiment. Hence, the model can not indicate causation. 
However, the lack of correlation indicates no causation. 
Therefore, process engineers have to use their knowledge and 
judgements, combined with the information arising from 
contribution plots, to identify possible root causes. 
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