Important physical and mathematical bases

(1) Conversions of some units

(2) Complications and fractures

SI Prefixes	Abbreviation	Multiple ($\left.10^{\mathrm{n}}\right)$
Femto	f	10^{-15}
Pico	P	10^{-12}
Angstrom	A	10^{-10}
Nano	u	10^{-9}
Micro		10^{-6}
Milli	m	10^{-3}
Centi	c	10^{-2}
Deci	d	10^{-1}
Kilo	k	10^{3}
Mega	M	10^{6}
Giga	G	10^{9}
Tera	T	10^{12}

米***

a Ring Measurement

The arc length (S) is proportional to radius (r) when (θ) is constant where :
$\theta=\frac{s}{r} \quad \Leftrightarrow \quad \theta=s r$
b) Trigonometric functions

	$\begin{gathered} \text { a } \\ \text { opposite } \end{gathered}$	$\operatorname{Sin} \theta=\frac{a}{c}$	$\operatorname{Cos} \theta=\frac{b}{c}$	$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{a}{b}$
		$\operatorname{Sin} \theta=\cos \left(90^{\circ}-0\right)$	$\cos \theta=\operatorname{Sin}\left(90^{\circ}-0\right)$	$\operatorname{Cot} \theta=\tan \left(90^{\circ}\right.$
		$\operatorname{Sin}(-\theta)=-\sin \theta$	$\cos (-\theta)=-\cos \theta$	$\tan (-\theta)$
$\begin{gathered} \text { b } \\ \text { adjacent } \end{gathered}$		$\operatorname{Sin}^{2} \theta+\cos ^{2} \theta=1$		

** *

3 Circumferences, areas and volumes of some geometric shapes

Figure	Square	Rectangle		gle	Circle
Geometrical shape					
Circumference (C)	4ℓ	$\mathrm{N}+$	$\ell_{1}+\ell_{2}+\ell_{3}$		$2 \pi r$
Area (A)	$\ell{ }^{2}$	e_{1}	$\frac{1}{2} \ell_{1} \times h$		πr^{2}
Figure	Cube	Cuboid		Sphere	Cylinder
Geometrica hape \gg					
Arg (A)	$6 \ell^{2}$	$2\left(\ell_{1} \ell_{2}+\ell_{2}\right.$	1_{1})	$4 \pi r^{2}$	$\pi r h$
olume (V_{ol})	ℓ^{3}	$\ell_{1} \times \ell_{2} \times \ell_{3}$		$\frac{4}{3} \pi r^{3}$	$\pi r^{2} \times h$

**

4) Graphical relations between (two variables

The proportional relation between two quantities on (X) and (Y) axes is :
a- Directly relation
b- Inversely relation
c- Sine wave relation
a Directly relation cases
Case

The general equation for straight line is

$$
y=m x+c
$$

where:

- y : the variable represented on y-axis
- x : the variable represented on x -axis
- c : the intersected length from positive y-axis
- m : slope of straight line . $\quad m=\tan \theta=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

- θ : is the angle between straight line and x-axis

The same : The equation for straight line is

$$
\mathrm{y}=\mathrm{mx}-\mathrm{c}
$$

but:

- $\mathrm{c}:$ is the intersected length from negative y -axis
- m : is the slope of straight line.

$$
m=\tan \theta=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$\underline{\text { note }: \text { at point } \mathrm{B}: ~} \square \mathrm{y}=$ zero
so
$0=\mathrm{mx}-\mathrm{c} \quad \Rightarrow \mathrm{m}=\frac{c}{x} \quad \Rightarrow \mathrm{mx}=\mathrm{c}$

$$
\mathrm{y}=\mathrm{mx}
$$

- At $\mathrm{x}=$ zero $\Rightarrow \mathrm{y}=$ zero
- The straight line passes by the original point $(0,0)$
- slope $=\tan \theta=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

b Inversely relation cases

Case	Graph
$y=m-x$ The sum of the two quantities x, y at an value (m) - At $\mathrm{x}=$ zero $\Rightarrow \mathrm{y}=$ constant value $($ - At $\mathrm{y}=\mathrm{zero} \Rightarrow \mathrm{x}=\mathrm{constant}$ value	
$y=\frac{m}{x}$ The product of two quantities x, y at any constant value (m)	
c Sine wave relation	
Case	Graph
$y=a \sin x$ The value of (y) ranges from ($\mathrm{a},-\mathrm{a}$) regularly.	

Think and answer

Study there relationships?

\diamond there are two types of motion :
(1) Translation motion : it is motion that has starting point and end point.
(2) Periodic motion: it is the motion that repeats itself regularly in equal intervals time \diamond periodic motion can be classified into:

- Wave motion . Oscillatory motion.

Water wave

- The collision of the stone with water is a source of disturbance.
- This disturbance propagates on the surface of water in the form of uniform concentric circles, whose center is the position at which the stone falls.
- These circles transfer energy in the same direction of theirpropagation.
- These circles are called water wave and its propagation represents wave motion.

Wave

" it is the disturbance that propagates and transfer the energy in the direction of its propagation"

the wave is disturbance direction of its pro
opagates and transfer the energy in the direction of its pres ge on.
Because if the source was vibrated by specified way, the particles of surrounded medium will be vibrated by the same way. so the vibration transfer from the vibrating source to particles of touched medium which is forwarded and soon the disturbance is transferred as wave motion.

Types of waves Waves can beclassified into:

Waves

1 Mechanical waves

2 Electromagnetic waves

First : Mechanical Waves

Source	Vibrating source that transmits the disturbance .
Propagation medium	They propagate through materialistic media only (solid - liquid - gas)
Definition	It is a disturbance that propagates in materialistic media.
Examples	Water waves , sound waves and vibrating string .
Conditions	1 medium to transmit disturbance through it. 2 source of vibration. 3 disturbance that transfer from the source to the medium .

Conditions of Mechanical Waves

Medium to transmit disturbance through it

\diamond The mechanical waves need a materialistic medium to travel through because the medium particles vibrate to transfer the wave mechanical energy, thus :
(1) we can't hear the voice of cosmic explosions that occur in the space.
(2) The astronauts used wireless devices to communicate with each other in space.

2) Source of vibration

Some forms of the vibrating sources :

Plumb attached to a vibrating spring (yoyo)

Vibrating string

Vibrating tuning fork

When the source vibrates, it produce disturbance \diamond Simple pendulum as a source of vibration:

- It is static at point A (rest position)
- When it is pushed, it moves right and left around its rest position in equal intervals of time.

- This motion is called oscillatory motion.

Oscillatory motion

" it is the object's motion at the two sides of its original position (rest position) and represented and repeated in equal intervals of time."

Concepts related to oscillatory motion

Displacement

Complete oscillation

Phase
The position and the direction of the medium particles at a certain instant.

Complete oscillation

It is the motion of the oscillating body when it passes one point along the path of its motion twid successively in the same direction

2) Amplitude

\diamond when the pendulum moves away from its rest position, it makes a displacement (d) is a vector quantity and measured in meter (m)
\diamond The maximum displacement made by the pendulum (the distance $\mathbf{A B}$ or $\mathbf{A C}$) is called amplitude.
\diamond The amplitude represents quarter of a complete oscillation.
\diamond the amplitude is a measurable quantity and measure in meter (m).

Amplitude (A)

" it is the maximum displacement of the vibrating body away from its original position."

It is the distance between two points along the path of the vibrating object, where the velocity at one point is maximum and zero at the other.

No	What is meant by?	That means that
1	The am or a vibrating body $=$ 20 cm	The maximum displacement of the vibrating body away from its original position $=20 \mathrm{~cm}$
2	distance between two points path of vibrating object the velocity at them $=10 \mathrm{~cm}$	The amplitude $=5 \mathrm{~cm}$

Notes
(1) Complete oscillation $=4 \times$ amplitude $=4$ displacement .
(2) The total displacement that made by object during complete oscillation $=$ zero .

		Frequency	(v)	Periodic time (T)
Definition		It is the number of complete oscillation made by a vibrating body in one second.		It is the number taken by a vibrating body to make one complete oscillation. Or It is the time taken by the vibrating bod to pass by the same point along the path of its motion two successive times in the same direction.
The relation		$v=\frac{n(\text { number of oscillatio ns })}{t(\text { Time })}$		$\begin{aligned} & T=\frac{t(\text { Time })}{n(\text { number of oscillation ns })} \\ & \mathrm{T}=4 \times \text { Time of amplitude } \end{aligned}$
Measurement unit		Hertz (Hz) kHz - MHz - GHz equivalent to oscillation/sec $\underline{\text { or }}$ cycle/sec $\underline{\text { or }}$ second $^{-1}$		
No	What is meant by?			That means that
1	The frequency of a tuning fork $=50 \mathrm{~Hz}$		The fork in one seco	50 complete oscillations (vibrations)
2	The periodic time of a vibration body $=2 \mathrm{~s}$ The vibrating body takes 2 s to make one complete ascillation. Or this oscillating body $=\frac{1}{2} \mathrm{~Hz}$			
3	Vibrating complete minutes.		The frequenc	y of vibrating body $=2.5 \mathrm{~Hz}$
No	When the ?			Solution
1	Kinetic ee Cor a ibrating po dulum $=0$		At the maximum displacement for it.	
iodic time of a vibrating bou $=.02 \mathrm{~s}$			If the frequency is equal 50 Hz .	
3	$\begin{aligned} & \text { porud } \\ & y=0 \end{aligned}$	of a vibrating	Before the beginning of vibration directly.	
4	vibrating body had complete vibration.		During the period between the path of it with one point in two successive times in the same direction.	

The relation between the frequency (v) and the periodic time (T)
$\because v=\frac{n(\text { number of oscillatio } n s)}{t(\text { Time })}$
$\because T=\frac{t(\text { Time })}{n(\text { number of oscillatio } n s)}$ $\therefore v=\frac{1}{T}$
i.e. Frequency $=$ Reciprocal of the periodic time.

So, the frequency is inversely proportional to the periodic time.

Slope $=v \times T=1$

No

Give reason
Because

1
When the frequency increased, the periodic time decreased.
2
When the periodic time to half, th frequency increased to double.

The Frequency is Reciprocal of the periodic time $v=\frac{1}{T}$ and the unit of periodic time is sec so the unit of Frequency is s^{-1}

What happen when

The periodic time will be halved because $v=\frac{1}{T}$

Solved examples

1) A string vibrates to make maximum displacement at period 0.002 s , calculate the frequency of this string.

answer

$$
\mathrm{T}=4 \times \text { Time of amplitude }
$$

$\mathrm{T}=4 \times 0.002=0.008 \mathrm{~s} \Rightarrow v=\frac{1}{T}=\frac{1}{0.008}=125 \mathrm{HZ}$
\square
2) A tuning fork makes 1200 complete oscillations on 3 s , calculate the frequency of this tuning fork and it's periodical time.
answer

$$
\begin{aligned}
& \mathrm{v}=\frac{n(\text { number of oscillations })}{t(\text { Time })}=\frac{1200}{3}=400 \mathrm{HZ} \\
& \mathrm{~T}=\frac{t(\text { Time })}{n(\text { number of oscillations })}=\frac{3}{1200}=0.025 \mathrm{~S}
\end{aligned}
$$

3)In the opposite figure : if the time taken by pendulum to move from A to C is 0.8 s , calculate :
(a) The periodic time.
(b) The frequency.
(c) The number of complete oscillation through 16 s .
(d) The time required to make 50 oscillation.

answer

$$
\begin{aligned}
& T=\frac{t}{n}=\frac{0.8}{0.5}=1.6 \mathrm{~s} \\
& v=\frac{1}{T}=\frac{1}{1.6}=0.625 \mathrm{~Hz} \\
& n=\frac{t}{T}=\frac{16}{1.6}=10 \quad \text { oscillations } \\
& t=n T=50 \times 1.6=80 \mathrm{~s}
\end{aligned}
$$

4) A vibrating body makes $\frac{1}{4}$ complete oscillation in $\frac{1}{80}$ of sec, calculate (1) periodic time. (2) frequency.

answer

(1) $\because \mathrm{T}=4 \times$ Tine of amplitude $\Rightarrow \quad \therefore \mathrm{T}=4 \times \frac{1}{80}=\frac{1}{20}=0.05 \mathrm{~s}$
(2) $\mathrm{v}=\frac{1}{T}=\frac{1}{0.05}-20 \mathrm{~Hz}$
5) A simple pendulum makes 1200 oscillation in one minute and at every complete oscillation it cut 20 cm a distance calculate
(1) amplitude. (2) frequency. (3) periodic time.
answer
(1) $\because \mathrm{A}=\frac{\mathbf{1}}{\mathbf{4}} \times$ complete oscillation $\quad \Rightarrow \quad \therefore \mathrm{A}=\frac{\mathbf{1}}{\mathbf{4}} \times 20=5 \mathrm{~cm}$
(2) $v=\frac{n}{t}=\frac{1200}{60}=20 \mathrm{~Hz}$
(3) $\mathrm{T}=\frac{1}{v}=\frac{1}{20}=0.05 \mathrm{~s}$

Experience to illustrate simple harmonic motion

- The simple oscillatory motion (such as the motion of simple pendulum or spring coil) is called simple harmonic motion, which can be represented by a lateral curves as follows :
(a) Put a load on horizontal smooth plane and fix one end of spring coil to a side of the load and the other end to the wall.
(b) At pulling the load the spring elongates.
(c) When we leave the load it returns to the equilibrium position.
(d) Then it compresses.
(e) Finally it returns to the equilibrium position.

Sine wave for simple harmonic motion

Think and answer.

1- Draw a lateral curve illustrate the relation between a way of body center weigh balance and time?
2- If the time of an amplitude is (t) so the time to arrive to center of it. \qquad
**

Types of mechanical waves

aT Ex © ${ }^{2}$ maves.

(2) Longitudinal waves.
(1) transverse waves

To describe the nature of transverse waves we carry out the two following experiments: $\underline{\text { Experiment }}$

1- Bring a load (m) fixed to a vertical spring and a horizontal rope.
Fix the other end of the rope to the wall.
Pull the load downwards and leave it.
Observation :

1- The load makes a simple harmonic motion upwards and downwards.
2- The rope makes a similar motion.
3- The motion transfers along the rope in the form of a moving horizontal wave at a certain velocity while the parts of the rope move vertically by a simple harmonic motion.

Conclusion:
1- When the rope vibrates upwards and downwards, the wave transfer to the rope in the form of crests and troughs.
2- The direction of vibration of the rope is perpendicular
d (vertical displacement)
to the direction of wave propagation and this wave is called transverse wave.

CCrest

It is the position of the maximum displacement of medium particles in the positive direction .
$\int_{\text {Trough }}$
It is the position of the maximum displacement of medium particles an the negative direction.

Transverse wave

It is the wave in which the vibration of the medium particles is perpendicular to the direction of the wave propagation and consists of crests and troughs
Γ^{W} Wavelength of transverse wave $(\lambda)=\sim$
It is the distance between two successive crests or two successive troughs .
Experiment to generate a train of travelling waves on a tensile rope
(1) fix one side of a rope to a wall and fix the other side by your hand.
(2) move your hand once vertically upwards to make one pulse, after that move your hand once vertically downwards to make another pulse.
(3) you will observe a wave propagates along the rope in form of a pulse upwards anid apulse downwards is called travelling wave.
(4) if you stilk meveryour hand upwards and downward, a continuous wave produced in the rope as a result of simple harmonic motion. is Called train of wave.

trains of wave

A continurous wave produced in the result of simple harmonic otion.

Travelling wave

It is odd or even disturbance move from a point to other.

Or

It is a wave distributes as only pulse

Because the work done by the vibrating source (vibration generator or the hand) on the string transfer in the form of :

- Potential energy represented in pulling the string.
- Kinetic energy represented in the vibration of the string.

Graphical representation of transverse waves

Fig (2)

Fig (1)
\leqslant The relation between the displacement and the horizontal distance or between the displacement and time is represented by a curve in the form of sine wave.

\diamond From the two graphs :

- Wave amplitude $(\mathrm{A})=$ The maximum displacement of the medium particles from its rest position.
- The maximum displacement for a transverse wave will be in crest.
- Points \mathbf{A} and \mathbf{B} have the same phase (moye in the same manner and in the same direction) and successive.
\therefore In figure (1): The distance between A and $\mathrm{B}=$ Wavelength.
In figure (2) : The time between A and $\mathrm{B}=$ Periodic time.
- The horizontal distance between crest and trough $=\frac{\lambda}{2}$
- The vertical distance between crest and trough $=2 \times$ Amplitude $=2 \mathrm{~A}$
- The wavelength (λ) can be determined from the relation:
frequency (v) can be determined from the relation:

$$
\lambda=\frac{X(\text { Total distance })}{n(\text { Number of waves }}
$$

$v=\frac{n \text { (Number of waves) }}{t \text { (Time) }}$

We can calculate the numbers of transverse waves can be determined from the relation :
$\mathrm{n}=$ the difference between two crests $=$ the difference between two troughs.

Wavelength (λ)

It is the distance between any two successive points having the same phase (have the same displacement and direction) Or
It is the distance covered by the wave during one period time.

Frequency (v)
It is the number of waves that passes a certain point along the wave motion in a time of 1 s .

It is the number of wavelengths covered by th propagated wave in a certain direction in

No	What is meant by?	That means that
$\mathbf{1}$	The wavelength of a transverse wave $=20 \mathrm{~cm}$	The distance between two successive crests or two successive troughs for this wave $=20 \mathrm{~cm}$
$\mathbf{2}$	The distance between center of successive crest and troughs for transverse wave $=0.5 \mathrm{~m}$	The wavelength for this wave $=0.25 \mathrm{~m}$
$\mathbf{3}$	The distance between the first crest and third crest for transverse wave $=18 \mathrm{~cm}$	The wayelength for this wave $=9 \mathrm{~cm}$

Solved examples

1) A transverse wave which the distance between the first crest and sixteenth crest $=\mathbf{1 0 5} \mathbf{~ m}$, and the time elapsed between the pass of the first crest and sixteenth crest $=0.37 \mathrm{~s}$, find: (1) wavelength.

3 periodic time.
Answer
Numbers of waves $=16-1=15$ wave
(1) $\lambda=\frac{X}{n}=\frac{105}{15}=7 \mathrm{~m} \quad\left(2 v=\frac{n}{t}=\frac{15}{0.375}=40 H z \quad, \quad\right.$ 3 $T=\frac{1}{v}=\frac{1}{40}=0.025 \mathrm{~s}$
**

(3 $\mathrm{T}=\frac{1}{v}=\frac{1}{10^{4}}=10^{-4} \mathrm{~s}$
(4) $\lambda=\frac{X}{n}=\frac{5 \times 10^{-2}}{2}=0.25 \mathrm{~m}$
$* *$

(2) longitudinal waves

To describe the nature of longitudinal waves we carry out the following experiment:
Experiment
Steps:
1- put a load (m) on a smooth horizontal plane.
2- Fix one end of the load to a spring and the other end to another spring attached to a wall.(fig. a)
3- Pull the load distance (x) to the right side then leave it to return to the equilibrium position (fig. b)
4- Pull the load distance (x) to the left side then leave it to return to the equilibrium position (fig. c)
Observation :
(1) The distance between the turns of the spring increase making a rarefaction, which transfers consecutively through the spring.
(2) The distance between the turns of the spring decrease making a compression, which transfers consecutively through the spring.
Conclusion :
1- During the vibration of the spring, a group of compressions and rarefactions transfers along the spring.
2- The group of the compressions and the rarefactions represents a
 wave propagates in the same difection
of the vibration of the medium particles which is called longitudinal wave.

R Rarefaction

It is the area in which the medium particles are far from each other.

Longitudinal wave

It is the wave in which the medium particles vibrate along the direction of the wave propagation around their equilibrium position and consists of compressions and rarefactions.

Wavelength of longitudinal wave=

It is the distance between the centers of two successive compressions or the centers of two suecessive rarefactions.
Or
It is the sum of successive compression and rarefaction.
$\mathrm{N}_{\text {otes }}$
The one longitudinal wave consists of successive compression and rarefaction.
\therefore the distance of one compression or one rarefaction $=\frac{\mathbf{1}}{\mathbf{2}} \lambda$
Number of waves $=$ the difference between number of two compressions $=$ the difference between two rarefactions

No	What is meant by?	That means that
$\mathbf{1}$	The wavelength of a longitudinal wave $=20 \mathrm{~cm}$	The distance between the centers of two successive compressions or the centers of two successive rarefactions for this wave $=20 \mathrm{~cm}$
$\mathbf{2}$	The distance between center of compression and successive rarefaction for longitudinal wave $=1.2 \mathrm{~m}$	The wavelength for this wave $=0.6 \mathrm{~m}$
$\mathbf{3}$	The distance between center of the first compression and fourth compression for longitudinal wave $=15 \mathrm{~cm}$	

Graphical representation of transverse waves

\diamond the relation between the displacement and the distance or between the displacement and the time is represented by a curve in form of sine waye. So, all the concepts and laws of the transverse wave are the same for this curve.

Graphical representation of transverse waves

ng a spring coil as follows:
1- Moving the coil upwards and downwards while fixing the other end, a transverse wave is formed.
2- Moving the coil inwards and outwards while fixing the other end, a longitudinal wave is formed.

Sound propagates in gases in the form of longitudinal waves.
Because when sound is produced, the particles of the gas (medium) vibrate in the same direction of wave propagation in the form of compression and rarefactions due to its weak intermolecular forces.

Points of comparison	Transverse wave	Longitudinal wave
Wave form		
Direction of vibration of medium particles	Perpendicular to the direction of wave propagation.	Alons the direction of wave propagation.
Composition	Crests and troughs.	Compressions and rarefactions.
Wavelength	The distance between two successive crests or successive troughs.	The distance between the centers of successive compressions or the centers of two successive rarefactions.
Examples	- Waves on water surface - Propagating wayes in strings.	- Sound waves in gases. - Waves inside water

Second : Electromagnetic Waves

Source	Originated from the vibration of two fields; one of them is electric field and the other is magnetic field, where both are perpendicular to each other and to the direction of wave propagation.			eld
Propagation medium	They p media a (space	propagate through materialistic and non-materialistic media e or volume)		
Electromagnetic waves definition		They are waves originated from vibrating electric and magnetic field having the same phase with frequency (v), perpendicular to each othe and to the direction of wave propagation and ean spread in materialistic media and in space.		
Examples		(1) light waves. (2) X-ray waves. (3) Gamma rays. (4) wireless waves (radio TV and cell phones), where: - Sound or image are converted into waves received by the antenna. - These waves are converted into electric signals then to sound or image.		
Types of electromagnetic waves				
Points of comparison		Mechanical waves	Electromagnetic waves	
Source	ignated from the vibration of medium particles either perpendicular to the direction of wave propagation or in the same direction of wave propagation.		Originated from the vibration of two perpendicular fields one of them is electric field and the other is magnetic and both are perpendicular to the direction of wave propagation.	
Propagation medium		Need medium to propagate.	Propagate in materialistic or non-materialistic media (space)	
Types		Transverse and longitudinal waves	Transverse waves only	
Vision		We can see some of them.	We can't see them but we fell their effect.	
Examples		(1)water waves. ©sound waves. (3) waves propagate in string.	©light waves. (3) Radio rays.	2X-ray waves

	Give reason	Answer
1	Mechanical waves need materialistic to propagate and can't propagate in the space.	Because it Originated from the vibration of medium particles but in space there isn't a materialistic.
2	Electromagnetic waves Propagate in space and materialistic media	Because it consist of two fields electric magnetic perpendicular to each other where both of them don't need medium to propagate through
3	Mechanical waves can be Transverse or longitudinal waves	Because when the medium particles are vibrates in the same direction of wave propagation; a longitudinal wave will originates. And when the medium particles are vibrates perpendicular to the direction of wave propagation; a transverse wave will originates .
4	All electromagnetic waves are transverse waves only.	Because both of electric and magnetic fields are perpendicular to each other and the direction of wave propagation
5	We can't hear the voices of cosmic explosions that occur in the space.	Because light is an electromagnetic wave that can propagate through the space while the sound is a mechanical wave need a medium to propagate and can't propagate through space.
6	The astronauts used wireless devices to communicate with each other in space.	Because sound is a mechanical wave need a materialistic medium to travel through and the space don't contain air, but wireless waves is an electromagnetic waves can be propagates in space

Deduction of the velocity of propagation of the waves

 The relation between wavelength, frequency and the velocity of propagation of the waves\diamond If a wave transfers at velocity (v) from a place to another at distance (λ), the wave takes time equals the periodic time (T)

Wave velocity (V)

the distance covered by the wave in one second in a certain direction"
The wave velocity $=20 \mathrm{~m} / \mathrm{s}$
This means that the covered distance by the wave in one second $=20 \mathrm{~m}$

Complete

 If the light waves propagates in air, the air particles(vibrates longitudinal - vibrates transverse - vibrate longitudinal and transverse

- don't vibrate)
$\mathbf{N}_{\text {otes }}$
\diamond This relation is applied to all types of waves (longitudinal and transverse).
- When two waves propagate (for example two sound waves) in the same medium, with different frequencies and their velocities are the same.

$$
\begin{aligned}
& V_{1}=V_{2} \\
& \lambda_{1} v_{1}=\lambda_{2} v_{2}
\end{aligned}
$$

- Where λ_{1} and v_{1} are the wavelength and the frequency for the first wave, λ_{2} and v_{2} are the wavelength and the frequency for the second wave.

$$
\therefore \frac{\lambda_{1}}{\lambda_{2}}=\frac{v_{2}}{v_{1}}
$$

- The wave length is inversely proportional to the frequency at constant wave velocity, which can be
-When a wave (sound or light) transfers from

- The wave velocity is directly proportional to the wavelength at constant frequency, which can be represented graphically .

$$
\text { slope }=\frac{V}{\lambda}=v
$$ represented graphically .

$$
\text { slope }=\lambda v=V
$$

one medium to another medium, its velocity and wavelength changes while its frequency remains constant because it depends on the source.

$$
\begin{aligned}
& v_{1}=v_{2} \\
& \frac{v_{1}}{\lambda_{1}}=\frac{v_{2}}{\lambda_{2}}
\end{aligned}
$$

- Where λ_{1} and v_{1} are the wavelength and the velocity for the first medium, λ_{2} and v_{2} are the wavelength and the velocity for the second medium.
$\left\{\begin{array}{l}-------V_{1} \\ \therefore \frac{\lambda_{1}}{\lambda_{2}}\end{array}\right.$ medium.
2i

Give Reason

The wavelength of a wave propagation in a medium increases to the double concerning the velocity of propagation.
Increasing the frequency of a wave propagates in a medium concerning the velocity of propagation.

The wave velocity will not change because the wave velocity is constant for a certain medium.

Solved Examples

1) A student was counted the number of waves passing by a certain point in water sea and he found them were 15 waves during 3 second and the wavelength is 0.7 m . calculate the speed of propagation.

Answer

$$
v=\frac{\mathbf{n}}{\mathrm{t}}=\frac{15}{3}=5 \mathrm{~Hz}, \quad V=v \times \lambda=0.7 \times 5=3.5 \mathrm{~m} / \mathrm{s}
$$

2) Light wave propagate in space at speed $300000 \mathrm{~km} / \mathrm{s}\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$ and the wavelength of light is $6000 \AA$. what is the frequency of this light? (given that 1 Angstrom $(\AA)=10^{-10} \mathrm{~m}$

Answer

$$
v=\frac{\mathrm{V}}{\lambda}=\frac{3 \times 10^{8}}{6 \times 10^{3} \times 10^{-10}}=0.5 \times 10^{15} \mathrm{~Hz}
$$

$* *$

Abstract

3) Two tones, their frequencies 425 Hz and 680 Hz if the wavelength of one of them is greater than the other by 30 cm , calculate the velocity of sound in air.

Answer

\because the two waves in the same medium so the velocity is constant.
\therefore the frequency is inversely proportional to the wavelength ($v \alpha \frac{1}{\lambda}$).
So the wave has greater frequency will has shorter wavelength. and

$$
\begin{aligned}
\because \frac{v_{1}}{v_{2}}=\frac{\lambda_{2}}{\lambda_{1}} \Rightarrow . \frac{680}{425}=\frac{\lambda_{1}+0.3}{\lambda_{1}} & \Rightarrow \therefore 680 \lambda_{1}=425 \lambda_{1}+127.5 \Rightarrow \therefore \lambda_{1}=0.5 \mathrm{~m} \\
& \because V=v \times \lambda=680 \times 0.5=340 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$* *$
4) A tuning fork of frequency 480 Hz was knocked, then was approached to a tube opened from both sides of length 12 m . so, the beginning of the first wave reached the end of the tube when the tuning almost sending the wave number thirteen, calculate the sound velocity in air.

Answer

Number of waves in the tube $=12$ waves

$$
\lambda=\frac{\mathbf{X}}{\mathrm{n}}=\frac{\mathbf{1 2}}{12}=1 \mathrm{~m}, V=v \times \lambda=1 \times 480=480 \mathrm{~m} / \mathrm{s}
$$

**
5) A student was threw a stone in a lake. So, 30 waves were formed after 3 seconds from the colliding of the stone with the water, where the radius of the outer circle is $\mathbf{2} \mathbf{~ m}$. find:
(1) The Wavelength. (2) The Frequency. (3) The wave velocity. (4) The Periodic time.

Answer

$\begin{array}{ll}\text { (1) } \lambda=\frac{X}{n}=\frac{2.1}{30}=0.07 \mathrm{~m} & \text { (2 } v=\frac{\mathrm{n}}{\mathrm{t}}=\frac{30}{3}=10 \mathrm{~Hz} \\ \text { (3 T }=\frac{1}{v}=\frac{1}{10}=0.1 \mathrm{~s} & \text { (4) } \mathrm{V}=v \times \lambda=10 \times 0.07=0.7 \mathrm{~m} / \mathrm{s}\end{array}$
6) from the opposite figure

Calculate :
(1) Wavelength.
(2) Amplitude.
(3) Periodic time.
(4) Frequency.
(5) wave velocity.

6 what is the distance AB ?
(7) The wavelength if the frequency is doubled.

Answer
(1) $\lambda=\frac{\mathrm{X}}{\mathrm{n}}=\frac{15 \times 10^{-2}}{3}=5 \times 10^{-2}=0.05 \mathrm{~m}$
(2) Amplitude $=$ Maximum displacement $=\frac{6 \times 10^{-2}}{2}=0.03 \mathrm{~m}$
(3) $\mathrm{T}=\frac{\mathrm{t}}{\mathrm{n}}=\frac{0.06}{3}=0.02 \mathrm{~s}$,
(4) $v=\frac{1}{T}=\frac{1}{0.02}=50 \mathrm{~Hz}$
(5) The distance $\mathrm{AB}=$ Wavelength.
(6) $\frac{\lambda_{1}}{\lambda_{2}}=\frac{v_{2}}{v_{1}} \Rightarrow \frac{0.05}{\lambda_{2}}=\frac{2 v_{1}}{v_{1}} \Rightarrow$
$\lambda_{2}=0.025 \mathrm{~m}$
7) A sound source produces a sound wave its frequency was 170 Hz propagate in air with velocity $340 \mathrm{~m} / \mathrm{s}$, calculate the wavelength of this wave. And if you know that when the temperature was increased by a ratio of 10%, calculate the sound velocity in air .
Answer

$$
\because \mathbf{V}=v \times \lambda \Rightarrow \therefore 340=170 \lambda \Rightarrow \therefore \lambda=\frac{\mathbf{3 4 0}}{\mathbf{1 7 0}}=\mathbf{2 m}
$$

\because The increase in wavelength $=2 \times \frac{\mathbf{1 0}}{\mathbf{1 0 0}}=0.2 \mathrm{~m}$

$$
\begin{gathered}
\therefore \lambda_{2}=\mathbf{2}+\mathbf{0 . 2}=\mathbf{2 . 2 m} \\
\therefore \mathbf{V}_{2}=v \times \lambda_{2}=\mathbf{1 7 0} \times \mathbf{2 . 2}=\mathbf{3 7 4 m} / \mathrm{s}
\end{gathered}
$$

[^0]8) Two waves, their frequencies 512 Hz and 256 Hz were propagated in certain medium by the same velocity, calculate the ratio between the wavelengths of them.

Answer

$$
\frac{\lambda_{1}}{\lambda_{2}}=\frac{v_{2}}{v_{1}}=\frac{256}{512}=\frac{1}{2}=0.5
$$

)the following table shows the relation between the wavelength (λ) and the frequency (v) for a wave propagates in a medium

$\lambda(\mathbf{m})$	1	2	4	5	8	10
$v(H z)$	$\mathbf{5 0 0}$	$\mathbf{2 5 0}$	X	$\mathbf{1 0 0}$	$\mathbf{6 2 . 5}$	$\mathbf{5 0}$

(a) draw the graph between (v) on the vertical axis and ($\frac{1}{\lambda}$) on the horizontal axis
(b) from the graph find:
(1) the value of x .
(2) the wave velocity through the medium.

(1) $\mathrm{X}=125 \mathrm{~Hz}$
(2) slope $=\frac{\Delta v}{\Delta\left(\frac{1}{\lambda}\right)}=\frac{450-250}{0.9-0.5}=500 \mathrm{~m} / \mathrm{s}$

[^1]
Wave Motion

Questions signed by:

(Lad) have been taken from the school book.
(es) have been taken from the previous exams.
(瑯) have been taken from student assessment guide.

write down the specific term for each statement of the following :

1) Disturbance that propagate and transfers the energy in the same direction of the propagation.
2) Disturbance propagate in a materialistic only.
3) Waves originated from vibrating electric and magnetic fields having the same phase with frequency (v), perpendicular to each other and to the direction of wave propagation and can spread in materialistic media and space.
4) Object's motion at the two sides of its original position and repeated inequal intervals of time.
5) The motion of the oscillating body when it passes one pein along the path of its motion twice successively in the same direction.
6) The distance of the vibrating body at any instant from its restyosition or equilibrium position and it is a vector quantity.
7) • The maximum displacement of the vibrating body away from its original position.

- \& The distance between two points along the path of the vibrating object, where the velocity at one point is maximum and zero at th

8) Two points on the wave have the same position and direction at a certain instant.
9) $\&$ The number of complete oselllations done by the vibrating body in one second.

- The number of waves which pass by the same point along the path of the wave motion in one second.
- The number of wavelengths coyered by the propagated wave in a certain direction in one second.

10) - The time taken by the vibrating body to make one complete oscillation.

- The time taken by the wave to cover a distance of one wavelength.

11) Wave in which the vibration of the medium particles is perpendicular to the direction of wave propagation.
12) Wave in which the vibration of the medium particles is around their equilibrium position along the direction of wave propagation.
13) The area in which the medium particles are far from each other.
14) The area in which the medium particles are close from each other.
15) The position of the maximum displacement in the positive direction.
16) The position of the maximum displacement in the negative direction.
17) The distance between two successive crests or two successive troughs.
18) - The distance between the centers of two successive compressions or the centers of two successive rarefactions.

- The sum of successive compression and rarefaction.

19) \approx The distance between any two successive points having the same phase (have the same displacement and direction)

- The distance covered by the wave during one periodic time.

20) The distance covered by the wave in one second in a certain direction

- The product of the frequency and the wavelength.
**

2 Choose the correct answer of the given answer:

1) Waves transfer the \qquad (matter - particles - energy - water)
2) Waves that need medium to propagate through are (electromagnetic waves - radio waves - mechanical waves - all
3) All the following waves propagate in space except
(light waves - x-ray waves - sound waves - wireless vany
4) Which of the following waves are longitudinal waves?
(infrared waves - sound waves in air - light w
5) Transverse waves are waves consisting of
a) Compression and rarefactions.
b) Crests and troughs.
c) Crests and troughs where the particles of the move short distances about their equilibrium position in a direction perpen cl to rne direction of propagation.
d) Compression and rarefactions wher les of the medium move short distances about their equilibrium position ale thection of propagation of the wave.
6) The electromagnetic waves differ from the mechanical waves that they can propagate in \qquad
7) 氲 The sound waves is waves
8) Half the vertical distance between the crest and trough of a transverse wave is called \qquad quency - wavelength - amplitude - displacement)
9) The time taken for vibrating body to arrive the maximum displacement equal to \qquad (periodic time - half periodic time - quarter periodic time)
10) The distance of a wave transfers during periodic time T second equal to \qquad
(wavelength - half wavelength - double wavelength)

(1) the opposite figure :

(i) The amplitude of this wave is \qquad

$$
(2 \mathrm{~cm}-3 \mathrm{~cm}-4 \mathrm{~cm}-6 \mathrm{~cm})
$$

(ii) The frequency of the wave is \qquad Hz

$$
(100-125-250-500)
$$

12) The ratio between the time of the amplitude and the time of the complete oscillation is \qquad

$$
\left(\frac{2}{1}-\frac{1}{2}-\frac{4}{1}-\frac{1}{4}\right)
$$

13) in the opposite figure :

A wave of frequency 50 Hz , the time interval between the two points (A) and (B) is

$$
\left(\frac{2}{25}-\frac{1}{50}-\frac{1}{200}-\frac{1}{25}\right)
$$

14) The number of waves that pass a certain point in the direction of wave propagation in one second is
(the frequency - the wavelength - the amplitude - wave
15) If the time interval between the first crest and the tenth crest in a wave motion is 0.2 s , then the frequency is \qquad
16) \& If the time taken by the oscillating body to make a complete oscillation is 0.1 s , then the number of the oscillations done by the oscillating body in 100 s is Oscillation.
17) in the opposite figure :
the pendulum moves freely. If the time taken to move between (X) and (Y) is 1 s , then the frequency of the vibrational motion of the pendulum is \qquad

18) 氰 A floating body on the water surface of a lake; if the lake waves cause the vibration of the body up and down 90 times in a minute, then the frequency of these waves equals \qquad

$$
(9) \circ 08 \mathrm{~Hz}-1.5 \mathrm{~Hz}-0.6 \mathrm{~Hz})
$$

19) In the longitudinal wave, the direction of the medium particles is wave propagation
(along - perpendicular to - inclined to - opposite to)
20) In the oppositefigure
a longitudinal wave propagate in a spring coil from (X) to (Y) the wavelength of this wave is the distance \qquad

$$
\left.P Q-X Y-\frac{X Y}{2}\right)
$$

In the opposite figure :

Points Have the same phase.

(a,b,c $)-(a, b)-(b, c)-(b, d)]$

22) The wavelength is the distance between two successive points have the same \qquad (direction - velocity - phase - amplitude)
23) If the distance between two successive points in phase for a wave equals 50 cm , then the wavelength for this wave equals
($12.5 \mathrm{~cm}-25 \mathrm{~cm}-50 \mathrm{~cm}-100 \mathrm{~cm}$)
24) The relation between the velocity of propagation of the waves " v " in a medium, the frequency and the wavelength is \qquad

$$
\left(\mathbf{V}=\lambda v / \mathbf{V}=\frac{\lambda}{v} / \mathbf{V}=\frac{v}{\lambda} / \mathbf{V}=\frac{\mathbf{1}}{\lambda v}\right)
$$

25) If the velocity of sound in air is $340 \mathrm{~m} / \mathrm{s}$ for a sound of frequency (tone) 255 Hz , the wavelength (m) is \qquad
26) The velocity of wave propagation equals \qquad

27) Light of wavelength $6000 \AA\left(1 \AA=10^{-10} \mathrm{~m}\right)$ propagate in space at velocity 300×10^{3} km / s, its frequency is $\quad\left(4 \times 10^{10} \mathrm{~Hz}-4 \times 10^{14} \mathrm{~Hz}-\right.$
28) When the frequency of wave motion in a medium decreases
a) Its wavelength increases.
b) Its wavelength decreases.
c) Its velocity increases
d) Its velocity increases and its wavelength decre?
29) When frequency of wave motion decrease in a certain medium then
(wavelength increase - wavelength decrease wave decrease - velocity of wave increase - wavelength decre e advelocity of wave increase)
30) The result of multiplying frequency \times periodic time equal \qquad
31) A dolphin made a sound with frequency 150 kHz , and the velocity of sound in water is 1500 m / s then the wavelength for this sound is \qquad

$$
0 \mathrm{n}-1 \mathrm{~m}-0.1 \mathrm{~m}-0.01 \mathrm{~m}-0.001 \mathrm{~m})
$$

32) When a frequency of a
periodic time
vibrating body increase to double in the same medium then the ease to double - decrease to half - remain constant)
33) When the amplitude of a body is 10 cm then the displacement at any moment may be equal ...cm1 12-20-5-15)
34) Two sound waves whose frequencies 512 Hz and 256 Hz propagate in a certain medium, then
a) The ratio between their wavelengths respectively is \qquad $\left(\frac{2}{1}-\frac{1}{2}-\frac{3}{1}-\frac{1}{3}\right)$
b) The ratio between their velocities respectively is

$$
\left(\frac{2}{1}-\frac{1}{2}-\frac{1}{1}-\frac{1}{3}\right)
$$

35) If the wavelength of a sound wave produced by an audio (sound producing) source is 0.5 m , the frequency is 666 Hz , then the velocity of propagation of sound in air is \qquad

$$
(338 \mathrm{~m} / \mathrm{s}-333 \mathrm{~m} / \mathrm{s}-330 \mathrm{~m} / \mathrm{s}-346 \mathrm{~m} / \mathrm{s})
$$

36) a girl stood on the beach to watch the waves. She observed that every two seconds, four waves pass in front of her and each wave its length is 0.5 m . so, the wave velocity is \qquad

$$
(0.2 \mathrm{~m} / \mathrm{s}-0.25 \mathrm{~m} / \mathrm{s}-0.5 \mathrm{~m} / \mathrm{s}-1 \mathrm{~m} / \mathrm{s})
$$

37）Wave of frequency v_{1} ，wavelength λ_{1} and its velocity in a medium v_{1} if this wave transfers from the medium to another medium where in it becomes $\frac{2}{3} \mathrm{v}_{1}$ ，then ． \qquad
a）The frequency v_{1} and wavelength λ_{1} remain constant．
b）The wavelength λ_{1} remain constant and frequency becomes $\frac{2}{3} v_{1}$
c）The wavelength λ_{1} remain constant and frequency becomes $\frac{3}{2} v_{1}$
d）The frequency v_{1} remain constant and wavelength becomes $\frac{2}{3} \lambda_{1}$

1－$\&$ The maximum displacement for an oscillating body $=5 \mathrm{~cm}$
2－廪 The amplitude of an oscillating body $=2 \mathrm{~cm}$
3－ 2 Number of oscillations for body in one second $=256$ oscillations
4－The frequency of a tuning fork $=50 \mathrm{~Hz}$
5－島 An oscillating body makes 1200 complete oscillations in one minute．
6－貫 The periodic time of an oscillating body $=$
7－氨 es The wavelength of a longitudinal wave氦 A sound wave of wavelength $=30 \mathrm{~cm}$
8－贯 The wavelength of a transverse wave
贯 The wavelength of sea waves $=20 \mathrm{~cm}$
9－The distance between the centers of a compression and the rarefaction $=5 \mathrm{~m}$
10－氨 The distance between the first crest and third crest of a transverse wave $=0.25 \mathrm{~cm}$
11－2 The distance between suecessive crest and tough in a wave $=15 \mathrm{~cm}$
12－氨 wave velocity $=20 \mathrm{~m} / \mathrm{s}$ ．
$* *$
$* *$

Give reasons for ：

1－We see the light produced from the cosmic explosions and we don＇t hear the sound produced from them．
2－Astronauts use wirless devices on the Moon surface．
3－The electromagnetic waves propagate in space．
As the frequency of a wave in a medium increase，its wavelength decreases．
5－The sound propagates in gases in the form of longitudinal waves．
6－The sound propagate in solid material faster than the gases．
Water wave is a transverse waves．
8．The sound need materialistic media but light don＇t need materialistic media

5 Define：

1）Wave．
2）Oscillatory motion．
3）暈 Electromagenetic waves．
4）Displacement

5)	1×1 Amplitude of oscillation	6)	20
7)	1 Prequency.	8)	$1 \square 1)$ Periodic time.
9)	Phase	10)	$1]^{\text {L }}$ Longitudinal wave.
11)	1 Transverse wave.	12)	Crest of transverse wave.
13)	Ttough of a transvere wave.	14)	Compression of longitudinal wave
15)	Rarefaction of a longitudinal wave.	16)	The wave length of a longitudinal wav
17)	The wavelength of a transverse wave.	18)	Wave velocity
19)	[】 Wavelength	20)	Mechanical waves.

[^2]
6 Compare between:

1- The mechanical waves and electomagnetic waves . (in terms of : the medium of propagation - type - examples)
2- $\&$ Transverse waves and logitudinal waves .
(in terms of : the wave form - direction of particles vibration - composition wavelength - examples)
$* *$

7 What happen when
 ? Mention the reason

1- The frequency of an oscillatory motion is doubled concerning its periodic time.
2- The frequency of a propagation wave in a medium increases concerning its wavelength.
3- The wavelength of a propagation wave in amedium is doubled concerning the velocity of propagation.
4- The wave velocity for a medium increases more than its velocity in another medium concerning the wavelength.

8 Miscellaneous questions

1- Mention the conditions of occurrence of mechanical wave.
2- A stretched string connected from one end with a vibrated tuning fork. Illustrate by drawing 4 propagate of pulse (crest) (2 propagate of pulse (tought) 3 propagate of a transverse wave
the direction of wave propagation indicating the wavelength and ampliyude)
Mention the physical quantity that is measured by the unit (cycle/second) and write the quivalent unit for it.

4- Mention the unit of measurment of each of the following :
(1) periodic time.
(2) Amplitude.
(3) Wavelength.
(4) Wave velocity.
**
5- Deduce the relation between frequency, wavelength and velocity of wave propagation. $* *$

6- Draw a longitudinal wave and transverse wave of the same frequency and the wavelength.

7- Represent the following relations graphically, mentioning the mathematical relation:
(1) The frequency and the periodic time.
(2) The wavelength and the frequency for waves propagate in the same medium.
(3) The wavelength and the periodic time for waves propagate in the same medium.
(4) The wavelength and the wave velocity for a wave propagates in the different media.

8- Write the mathematic relation and the slope for each of the following graphs:

9- The opposite figure illustratws the change of frequency with the reciprocal of the wavelength for a propagated wave in tyo different media (A) and (B) . in which medium the wave is faster? why?

Problems:

1- A vibrating string takes 0.01 s to make its maximum displacement. What is its frequency?

4- In the opposite figure :

An oscillating body takes 0.01 s to move from (A) to (B). Calculate:
The periodic time.
b) The frequency.
(4. The amplitude .

5- In the opposite figure :

A vibrated simple pendulum made 120 oscillations in 6 s calculate :
(a) The periodic time.
(b) The frequency.
(c) The amplitude .

6－The time between passing of the first crest and the fifth one by a certain point is 0.8 sec ， calculate the number of waves which pass by this point through quarter sn hour．（ 4500 waves ） ＊＊

7－閏 An oscillating body produce 1200 complete oscillations in one minute，where each oscillation cover a distance 20 m ．calculate ：（1）the amplitude．
（2）the frequenc （3）the periodic time．

8－A wave was generated in a string，where its frequency was 10 Hz and its wavelength was 0.5 calculate：（1）The wave velocity through the string．
（2）The wavelength if its frequency is increased to 30 Hz ．
＊＊＊
9－氨 A sound wave its frequency is 1.1 kHz ，if you know that the velocity of sound in airvs 340 m / s calculate the wavelength of this wave in air．
＊＊
10－㦴 If the average of wavelength for visable light is approximitly $5000 \AA$ an
the velocity of sound in air is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ calculate the average frequency of visiable light．$\quad\left(\mathbf{6 \times 1 0}{ }^{14} \mathrm{~Hz}\right)$ $* \quad *$
11－The human ear can hear frequencies between 20 Hz and 20000 Hz．Calculate the least and the highest wavelength can be heared by the human ear． （ $0.017 \mathrm{~m}, 17 \mathrm{~m}$ ）

12－If the sound wave length which The human Calculate the least and the highest frequencies．（knowing that the velocity of sound in air is $340 \mathrm{~m} / \mathrm{s}$ ）．
$* *$
13－A wave of frequency 640 Hz propagates at velocity $320 \mathrm{~m} / \mathrm{s}$ ．calculate
（1）The periodic time．
（2）The wavelength．
$\left(1.56 \times 10^{-3} \mathrm{~s}, 0.5 \mathrm{~m}\right)$

14－贯 Transverse waves propagate through thin thread at velocity $300 \mathrm{~m} / \mathrm{s}$ ．if the distance between two successive crests is 3 m ．calculate ：the frequency of the wave．
（ 100 Hz ）
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊rr＊＊
15－calculate the velocity of a propagated transverse wave its frequency is 15 Hz along thread， if the distance between every successive crest and tough is 1.5 m ．
（ $45 \mathrm{~m} / \mathrm{s}$ ）
＊＊＊
16－A transverse wave propagate through thread at velocity $12 \mathrm{~m} / \mathrm{s}$ ．and its frequency is 4 Hz ， calculate the distance between every successive crests and tough and the distance between the first crest and eight crest
（ $21 \mathrm{~m}, 1.5 \mathrm{~m}$ ）
17－A tank full of water and at the bottom of the tank there is a vibrateing source its frequency is 500 Hz ，if the number of waves which reaches the surface of the tank is 10 waves and the velocity of the sound in water is $1400 \mathrm{~m} / \mathrm{s}$ ，find the deepth of the tank．
（ 28 m ）

If the number of waves which pass by a certain point is 50 waves in 5 sec and the distance between the first and fourth ctest is 120 cm ．calculate the velocity of wave propagation．
＊＊
19－If the number of waves which pass by a certain point is 32 waves in 40 sec and the distance between the beging of first wave and the end of seventh wave is 63 cm ．calculate （1）the wavelength 2 the periodic time 3 the frequency． $9 \mathrm{~m}, 1.25 \mathrm{~s}, 0.8 \mathrm{~Hz})$

20－if the velocity of water waves that pass by a certain point is $1.5 \mathrm{~m} / \mathrm{s}$ and there are 30 waves pass by this point in 1 s ，calculate the number of waves in a distance 60 m ．（ $\mathbf{1 2 0 0}$ waves ） ＊＊

21－If the distance between the second crest and the seventh one of a transverse wave is 20 m and the time between passing of the first crest and the fifth one by a certain point in the path of wave motion is 0.1 s ．calculate ：（1）The wavelength of the wave motion．
（2）The frequency of the source of the disturbance．
（3）The wave velocity．
（ $4 \mathrm{~m}, 40 \mathrm{~Hz}, 16$
22－島 If 15 waves pass by a man standing at the end of a rock in the sea in 1 minuit and he observed that every 10 waves occupy 9 m ．find ：（1）The perodic time．
（2）The frequency．（3）The wavelength．（4）The wave velocity．
＊＊
23－A stone was thrown in a lake．So， 50 waves were formed after 5 seconds from the colliding of the stone with the water，where the radius of the outer circle is 2 m ．find ：
（1）The perodic time．（2 The frequency．（3 The wayelength．The wave velocity．
$10 \mathrm{~Hz}, 0.4 \mathrm{~m} / \mathrm{s}, 0.1 \mathrm{~s}$ ）
＊＊＊
24－邦 An oscillating body produce 960 oscillations in one second．What is the number of the produced waves by this body until the sound reaches a person at a distance 100 m from the oscillating body？（knowing that ：the speed of sound in air $=320 \mathrm{~m} / \mathrm{s}$ ）
（ 300 osc．）
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊$\quad *$
25－Calculate the number of complete waves which happen by a tuning fork from the beging lf its vibration until the sound reach to a person at a distance 5 m if the frequency of tuning fork is 512 Hz and the speed of sound in air $=320 \mathrm{~m} / \mathrm{s}$
（ 8 waves ）
＊＊＊
26－贯 A train stands in a station and produce a beep of frequency 300 Hz ．If there was a man standing at distance 0.99 km from the train and heared the sound after 3 s from its production． Find the wavelength of the sound in meters．
（ 1.1 m ）
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ヶ＊＊
27－\＆A ship at distance 3.6 km from the beach and produce a beep of frequency 300 Hz if there was a manat the beach hered the sound after 12 sec from its production find the wavelength of the sound which produce from the beep．
（ 1 m ）
$* * * * * * * * * * * *, *$
28－A perodic time of a vibrating source is $\frac{\mathbf{1}}{\mathbf{1 4 0}} \mathbf{s}$ ，If there was a person standing at distance 1.96 km from the source and heared the sound after 7 s from its production．Find：
1 the wavelength of the waves which produce by the source．
distance which occupried by every compression or rarefaction for this wave．
（3）the distance between the first compression and the tenth compression．（ $\mathbf{2} \mathbf{~ m}, \mathbf{1} \mathbf{~ m}, \mathbf{1 8} \mathbf{~ m}$ ） $* *$
29－An oscillating body produces a complete oscillation every 0.02 s ．so，the sound reaches a person at distance 170 m from the body after 0.5 s ．calculate the distance between the first compression and the second rarefaction．
（ $\mathbf{1 0 . 2}$ m ）
＊＊

30- A tuning fork of frequency 200 Hz was knocked, then was approched to a tube opened from both sides of length 8 m . so, the beging of the first wave reached the end of the tube when the sixth wave was entering the tube. Calculate the sound velocity in air.
($320 \mathrm{~m} / \mathrm{s}$)
$* *$
31- A tuning fork of frequency 412 Hz was knocked, then was approched to a tube opened from both sides of length 14 m . so, the beging of the first wave reached the end of the tube when the $21^{\text {th }}$ wave was entering the tube. Calculate the sound velocity in air.
(288.4
32-2 A spring coil its length 6 cm was fixed vertically by a load and was tensile by a force unt its length reached 9 cm after that let the spring vibrated then he made 100 compelet oscillations in 20 sec , find the length of this wave and the velocity of propagated
C. $0.0 \mathrm{~m} / \mathrm{s}$)

33- Two waves of frequencies 128 Hz and 320 Hz propagate in air at velocity $320 \mathrm{~m} / \mathrm{s}$. calculate the difference in wavelength for them.

34- Two tones have frequencies 680 Hz and 425 Hz . If the wayelength of one of them exceeds the wavelength of the other wave by 30 cm , calculate the velocity of sound in air. ($\mathbf{3 4 0} \mathbf{~ m} / \mathrm{s}$) ** ***********************
35- A wave motion propagate with constant frequency in different two medium, if the wavelength of it in the first medium is 6 cm , and 4 cm in the other medium, calclulate the ratio of velocity of propagate in each medium.
(3:2)

36- A sound wave of frequency 900 Hz , its wavelength in air is 0.4 m and its wavelength in water is 1.6 m . calculate :
(a) The ratio between the velocity of sound in the air to the velocity of sound in the water.
(b) The sound velocity in each medium.
($\frac{1}{4}, 360 \mathrm{~m} / \mathrm{s}, 1440 \mathrm{~m} / \mathrm{s}$)
*********************** **
37- A wireless transmission station sends waves to a satellite at velocity $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and after 0.03 s the waves are received by the same rader. Calculate the distance between the Earth and the satellite.
$\left(4.5 \times 10^{3} \mathrm{~km}\right)$

$* *$
38- Earthquake produce two kinds of waves, the velocity of the first wave is $6000 \mathrm{~m} / \mathrm{s}$ and the velocity of the second wave is $5000 \mathrm{~m} / \mathrm{s}$. what is the distance between the center of eathquake and a monitoring station was recorded the two waves which the period time between them is one minuit.
($18 \times 10^{5} \mathrm{~m}$)

3 In the opposite figure find:
1The amplitude.
(2) The perodic time.
© The frequency. (4) The wavelength
(5 The wave velocity.(in two different ways).
(6) The number of waves.
(7) The distance AB and what is represent?

[$0.4 \mathrm{~m}, 4 \mathrm{~m}, 25 \mathrm{~Hz}, 0.04 \mathrm{~s}, 4.5$ waves, $100 \mathrm{~m} / \mathrm{s}, \mathbf{0 . 0 2} \mathrm{sec}$, half periodic time]
**

40- In the opposite figure find:
(1) The amplitude.
(2) The frequency.
(3) The wavelength
(4) The wave velocity.
($25 \mathrm{~cm}, 25 \mathrm{~Hz}, 3 \mathrm{~cm}, 62.5 \mathrm{~m} / \mathrm{s}$)

41- In the opposite figure find:

(1) The amplitude.
(2The wavelength
(3)The wave velocity if the frequency is 8 Hz
[$4 \mathrm{~cm}, 40 \mathrm{~cm}, 3.2 \mathrm{~m} / \mathrm{s}$]
?* *************
42- In the opposite figure find:
(1) The wavelength (2) The perodic time.
(3) The frequency. (4)The amplitude.
(5) The distance X represent \qquad
© The distance between crest and succesive tougth.
[$20 \mathrm{~cm}, 0.1 \mathrm{~s}, 7.5 \mathrm{~cm}, \frac{5}{4} \lambda, 10 \mathrm{~cm}$]

43- the opposite figure find:
(1) The points A, B represent
(2) The horizontal distance between $A, B=$
cm
(3) The perodic time =
(4) The amplitude =

5 wave velocity =

[crest, tous is, quelength $=10 \mathrm{~cm}, 0.2 \mathrm{sec} \quad 4 \mathrm{~cm} \quad 25 \mathrm{~m} / \mathrm{s}$)
************ ***
44- The following table shows the relation between the wavelength (λ) and the frequency (v) for waye propagate in a medium:

0

$\lambda(\mathbf{m})$	1		4	5	10
$\mathbf{v}(\mathbf{H z})$	500	250	X	100	50

a) Draw the graph between (v) on the vertical axis and $\left(\frac{1}{\lambda}\right)$ on the horizontal axis.
b) From the graph find :
(1) The value of X .
(2) The wave velocity through the medium.
($\mathbf{1 2 5 ~ H z}$, 500 m/s)

45- The following table shows the relation between the wavelength (d) and the frequency (t) for a wave propagate in a medium:

$\mathbf{d}(\mathbf{m})$	0	3	4	0	-4	b	0
$\mathbf{t} \times \mathbf{1 0}^{-\mathbf{2}}(\mathbf{s})$	0	a	10	20	30	35	40

a) Draw the graph between (d) on the vertical axis and (t) on the horizontal axis.
b) From the graph find :
(1) The value of a, b.
(2) The amplitude of a wave.
(3) The perodic time.
(4) Frequency.

[^0]: **

[^1]: **

[^2]: **

