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Abstract 

The alumina concentration in the bath plays a fun-
damental role on cell operation. Local depletion 
may lead to an anode effect when using carbon an-
odes. A mathematical model describing the alumina 
convection-diffusion process in the bath coupled to 
the cell magneto-hydrodynamic (MHD) in the pres-
ence of small bubbles is presented. Small bubbles 
may be assumed when slotted anodes are used. The 
relative importance of the velocity fields generated 
by the magnetic effects and/or the small bubbles on 
the alumina concentration in the bath is discussed. 

Introduction 

The aluminum industry is continuously increasing 
the productivity of electrolysis cells by increasing the 
line current. In order to keep an acceptable anode 
current density, the anode length is almost systemat-
ically increased. As a result the central channel (dis-
tance between the anodes in the center of the cell) 
and the side channels (distance between the anodes 
to the side lining) are reduced. The channel geome-
try, Lorentz force fields and bubbles have an impor-
tant impact on the bath velocity field. We will see 
that the velocity field plays a key role on the alu-
mina distribution. In order to keep an acceptable 
energy input when increasing the current, the anode 
to cathode distance (ACD) is reduced as much as 
possible before reaching the Magneto-Hydrodynamic 
constraints. This means a further bath volume re-
duction. The increase of current imposes an increase 
of alumina feeding rate simultaneously with a reduc-
tion of bath volume. Therefore, the question of dis-
solution, diffusion and alumina transport becomes an 
important element for avoiding underfeeding lead-
ing to an increase of anode effects (AE) frequency. 
Alumina dissolution is a very complex phenomena in 
which the bath chemical composition, bath temper-
ature, alumina temperature and alumina properties 
play an important role [1, 2, 3]. In this paper we as-
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sume that the dissolution is instantaneous when the 
alumina reaches the bath surface and concentrate the 
study on the diffusion and transport processes. The 
purpose of the study is to optimize the feeding quan-
tities (feeding frequency), alumina feeders location 
and the number of feeders to minimize the number 
of AE and avoid sludge. 

Bath velocity field in presence of bubbles and 
Lorentz force field: Theory 

When the number of bubbles produced, per m2 and 
per second, is too large, a numerical approach de-
scribing the motion of each bubble separately should 
be disregarded. 
There are essentially two standard ways to overcome 
this difficulty. The first consists in performing some 
kind of averaging over the equations and over the 
corresponding fields. The second bypasses the aver-
aging and directly postulates the flow equations for 
each phase. 

One of the main difficulties encountered when per-
forming an averaging process is related to the pos-
sible jumps that fields can suffer at the boundaries 
between the two phases. One way to overcome this 
problem, see for example [4], consists in extending the 
domain of definition of each motion equation to the 
domain occupied by the two phases. This is achieved 
by multiplying each equation by the characteristic 
function corresponding to its domain of definition. 
Derivatives are then performed in the sense of distri-
butions allowing to keep track of these discontinuities 
in the averaging process. 

Whatever choice we make, the resulting equations 
will contain terms which reflect the interaction be-
tween the two phases. The exact shape of these terms 
are not known; they have to be defined through con-
stitutive equations. 
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Motion equations 

Let Ω; and ilg be the domains containing the fluid 
and the gas respectively, with corresponding charac-
teristic functions χι and χβ = 1 — χ\. χι satisfies (see 
W), 

9 Î » + V - V » = 0 , ( l ) 

where v is the velocity field. < f > being the average 
of an arbitrary field / , we set 

a(io r S) = < X{uig) >, a(lorg)v(lorg) =< X ( i o r s ) v > 
(2) 

and draw from (1) the averaging equation 

dta(ioig) + div(a{loig)v{loig)) = 0. (3) 

Let Pu Pg, T, j , g, B and Μ*<* = ^ ( B ' B ' - ± B 2 < ^ ) 
be respectively the fluid and gas densities, the stress 
tensor, the electric current density, the gravitation 
force density, the magnetic induction and Maxwell 
tensor. Multiplying the MHD equations by the 
characteristic functions χχ and xg and following the 
derivation used for (3) we get for the fluid and gas 
motions the equations 

pi{dta,yi+ < V · (vi <g> v i ) ) > 

= V-(al(fl + Ml))+plalg-<(Tl+Ml)-Vxl> 

(4) 

pg(dtagvg+ < V · (v s (g) v s ) ) > = 

V ■ (agfg) +ptagg-<Tg-Vxg >, (5) 

where, for any / , a{lorg)f{lorg) = < x{loig)f >. 

Approximations and modeling 

In order to have a tractable model we make the fol-
lowing assumptions. 
P2 = 0; the Reynolds tensor is included in the vis-
cous term aif\ with a change of the viscous constant 
which then becomes a diffusivity, (the notation will 
not be changed); we assume tha t (in TJ, Tg, T\ and 
Tg) Pi =Pl=Pg =Pg-

In order to handle the averaging appearing in the 
equations we consider the different terms separately 
(without the indices). We also assume tha t Maxwell 
tensor is not affected by the averaging process. Set-
ting 

v = v + w, so tha t < xiw > = 0, (6) 

one gets 

< » v <g> v > = ay (g) v - aiTRe, (7) 

where cx]TRe = — < x;W(g>w > . Setting T = (—pl + 
iyr(v)), where r ( v ) = V v + (Vv)* we finally note 
tha t 

<XiT > = < χι{-ρΙ + ητ(ν)) > = -αφΐ+ ηαιτ(ν). 

(8) 
Taking these approximations into account the equa-
tions (4) and (5) become 

pi{dt{ai\i) + V · ( a ;v i <g> v i ) ) 

= -aiVpi + V · ( a ; f i ) + a,SI ■ M i + piaig 

- < r 1 - V » > , (9) 

-agVpg + V · agfg =< Tg ■ VXg > . (10) 

Neglecting the surface tension effect and handling the 
j ump conditions between the two phases in the set-
ting used for the equations we get 

v s - v ; = vsUp and < ( n - r s ) · V » > = 0, (11) 

where \sup is a new field which takes into account 
for the averaging on the jump conditions. 

Second approximation 

We now make the following assumptions 

V - K f 2 ) = 0 (12) 

and 
div(aiVsHp) = 0. (13) 

We moreover introduce the new field f j n t defined by 

fini = < T 2 · VXg > = < Ti · VXg > (14) 

With this assumption (10) becomes 

-a.gVp~2 + lint = 0, (15) 

Prom (3) and (13) one draws 

div\\ = 0, (16) 

dtctg + div(agVg) = 0. (17) 

Constitutive equations 

We will now make the assumption tha t the field (14), 
i.e. fint, is a function of \sup only. 

Following [5] we assume that 

fini = ^CtgVsUp, (18) 

where λ is a constant. Introducing this expression 
into (15) yields, since by assumption p\ =pi, 

-agVpi =\ag vsiiP, (19) 
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so tha t 

Jslip 
Vpi 

λ ' 
(20) 

The current j = (ji,J2,33) is then computed in the 
following way to avoid rough approximations. 

The coefficient λ has to be determined experimen-
tally. 

The model 

ji φάχ = a(c)—— ψάχ 
Ω àxi 

(29) 

With the above results we are now ready to give the 
equations on which our model is leaning. Fluid aver-
aged equations 

divv1=0, (21) 

pi(dt(alv1) + V · ( a ;v i <8>vi)) 

= - V p ! + V · ( α , τ ι ) + a,V ■ M j + Plalg. (22) 

Gas averaged equations 

dtag +div(agv2) = 0, 

a s V p i + ag\vslip = 0. 

J u m p averaged conditions 

V2 = Vi + VsHp, 

Oil + Ctg = 1 . 

(23) 

(24) 

(25) 

(26) 

Boundary conditions on the different fields have to 
be added. 

A l u m i n a diffusion a n d convec t ion: T h e o r y 

Let Ω C R 3 be the domain representing the cell, ilf, 
be the bath, and Ωα the anodes. 

Current density 

The current density distribution in the ba th is a func-
tion of alumina concentration, and is given by 

j = -a(c)V</> (27) 

where φ is the potential, and σ is the electrical con-
ductivity, which depends on the alumina concentra-
tion c. 

Since div j = 0, we get 

-div(a(c)V<i>) = 0 

with following the boundary conditions (j\n) = jo on 
the anodic rod, φ = 0 on the bath-metal interface, 

and a(c)—— = 0 elsewhere. 
on 

for suitable functions ψ, and I = 1, 2, 3. 
The model will take into account the analysis of the 

parameter σ as a function of the ba th composition. 

Alumina distribution 

In this study, it is assumed tha t the alumina feeding 
is known, and tha t the dissolution is instantaneous. 
The alumina distribution in the ba th Ωβ is given by 
the following partial differential equation 

dc{x, t) 

dt 
div(a(x,t)'Vc(x,t))-\-

(v (x , i ) |Vc (x , i ) ) = 0 (30) 

where 

• c is the alumina concentration in mol/m3, 

• a is the anisotropic diffusion coefficient. A value 
of 0.5m2/s was determining the Reynolds mean 
tensor. It also leads to an average alumina con-
centration reflecting industrial cells. 

• v is the velocity field in Ωβ induced by the bubble 
motion, and the MHD, 

The boundary and initial conditions have the follow-
ing form. 

• The concentration c is given on the feeder. 

• The concentration flux on the anode and the 
dc 

bath-aluminum interface is a— \- ß(j\n) = 0; 
on 

the coefficient ß verify ß = — if [c] = mol/m3, 
zF 

with z is the valence, and F is the Faraday con-
stant, in our case z = 6. 

dc , , 
• a — = 0 elsewhere, 

On 

• c is given at t ime t = 0. 

(28) Weak formulation 

Let us use the following notations. 

• Tb is the bo t tom of the cell (the metal-bath in-
terface), 
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• Γα is the top of the anodic rod (the entrance of 
the current), 

• Γ/ is the feeder domain, 

• Γα6 is the interface between the anode and the 
bath. 

With these notations, set 

V= {ψεΗ\Ω), ν> = 0 ο η Γ 6 } , (31) 

equipped with the norm \φ\ = \φ\ν = \\^Ψ\\^(Ω)> 

\¥={φ&Η1{Ω1}), φ = 0οηΓί}, (32) 

equipped with the norm \φ\ = \φ\\ν = W^^WL2^)-

The weak formulation of problem (28) is: 
Find <f>eV such that, \ΛΑ G V, 

(a(c)V<i>\Vip)dx= / όοφάσ. (33) 
Ω JTa 

Then the computation of the current density j = 
(31,32,33) is obtained from equation (29) \/ψ G 
Ζν2(Ω). Finally, the weak formulation for the alu-
mina concentration is: Find c G L2(0,T; H1^!^)) 
with c = Cf on Γ/, such that, \/ψ G W, 

c) The electric current j h = (jh,i,3h,2,3hß) is 
obtained as, VZ = 1, 2, 3, and \/ψ G Zh, 

Q.b 

dc 
+ (v|Vc) ) φ dx + / (aVc|VV>) dx = 

Jnb 

-β ί \(3\η)\φάσ. (34) 
JTabUrb 

Numerical methods 

Let us decompose the domains Ω, and Ωβ into classi-
cal tetrahedral finite element mesh. For the numeri-
cal simulations of problems (33), (29), and (34), the 
following algorithm is used. 

• Initialization 

An initial alumina concentration distribution CQ 
is given at time t = 0. Let τ be the time step. 

• Iterations 

For time tm = m ■ τ, if c™ is the concentration 
at time tm 

a) Compute the electrical conductivity σ = 

b) Find 4>h G Vh such that, \/φ eVh, 

(σνψ-Η\νφ)άχ= / όοφάσ. (35) 
Ω JTa 

3η,ιΦ a(c)——φάχ. (36) 
Ω άχι 

d) A BDF scheme of order 2 [6] is used for the 
time discretization of the concentration equation 
(34). Moreover a Petrov-Galerkin streamline dif-
fusion method is applied for the advection term 
[7, 8]. We get the following equation (δ small 
parameter). 

Find c™+1, solution of 

cm+l 
1.5-^—(φ + δ(νφ\ν)) dx+ 

nb
 T 

(aVc™+L\V^)dx+ 

nb 

(v|Vc™+1)(V> + δ(νψ\ν)) dx = 

- β ί \(3\η)\φάσ+ 
JTabUrb 

2 r m — 0 5 r m ~ 1 

—* '—* (ψ + δ(νψ\ν))άχ. (37) 

for all φ G Wh 

Alumina diffusion and convection: Industrial 
cell 

In this section some numerical result for the com-
putation of the alumina distribution in the bath are 
presented. On the feeders, the alumina concentration 
is set to 5% of the bath weight. As a stationary solu-
tion is presented, continuous feeding is assumed. The 
impact of dump feeding could easily be analysed. 

Figure 1 correspond to the stationary alumina dis-
tribution, when the velocity is neglected. The con-
centration is shown under the anodes. The two feed-
ers locations appear clearly in the figure. The asym-
metry of the diffusion pattern reflects the larger chan-
nel width at the feeders. Figure 2 shows the alumina 
concentration under the same conditions at metal-
bath interface level. Away from the feeders, at a 
distance larger than about one anode width, the con-
centration is close to 2.55%. The vertical variation of 
the alumina concentration is 0.5% under the feeders. 
It is negligible away from the feeders. 
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Figure 1: Alumina concentration in the bath when 
the velocity is zero, under the anodes 

Figure 2: Alumina concentration in the bath when 
the velocity is zero, bath-metal interface 

In figure 3, the velocity streamlines induced by the 
MHD are presented. 

Figure 3: MHD velocity in the bath (streamlines) 

The impact of this velocity field is shown in figure 
4. 

Figure 4: Alumina concentration in the bath when 
the velocity is induced by the MHD 

The previous cases did not take the bubbles into 
account. It is well known that they have an impor-
tant effect on the velocity field. Moreover the consid-
ered cell has slotted anodes. This also has an impact 
on the velocity. Figure 5 considers the case when the 
velocity field consists of the effects of the MDH, the 
bubbles, and the slots in the anodes. 

Figure 5: Alumina concentration in the bath, velocity 
induced by MHD, bubbles, and slots 

From the different figures, the alumina concentra-
tion field appears as slightly modified by the velocity 
field. However, when considering the concentration 
evolution, the time needed for reaching the stationary 
state is reduced by a factor 2 in any situation when 
the velocity field is acting. Therefore the velocity 
field plays an important role in the feeding process 
(alumina dumps). 

To highlight the role of the velocity field, figures 6 
and 7 show the difference between the alumina con-
centration field due to the diffusion only and in pres-
ence of MHD velocity, resp. total velocity field. 
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■0.080 
0.083 

Figure 6: Alumina concentration variation due to 
MHD \%] 

Figure 7: Alumina concentration variation due to 
MHD, bubbles, and slots \%] 

The highest differences are observed at the ends 
of the cell, due essentially to the MHD effects. High 
negative values relate to high alumina concentration 
difference. The effect of bubbles and slots generate 
turbulence, homogenizing the concentration distribu-
tion. 

Conclusions 

A new model for the velocity field in presence of 
MHD, and small bubbles is developed. This ve-
locity field is used to determine the evolution of 
the alumina concentration using a non-stationary 
convection-diffusion equation. This equation takes 
into account the feeding, and the Faraday law at the 
anodes and cathode. 

The application to an existing cell with two point 
feeders demonstrate the following: 

• The alumina concentration can vary up to 2.5%. 
Typically a variation 1% can be expected be-
tween anodes. 

• The time needed to reach the stationary state 
due to the diffusion process only is twice the one 
for the case with MHD and bubbles effects ve-
locity fields. It was found around two minutes. 

• The velocity field has an important effect for the 
alumina distribution under the anodes. It helps 
to homogenize the alumina concentration. 

• Bubbles and slots modify the velocity field which 
generate turbulences leading to increased ho-
mogenizing effects. 
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