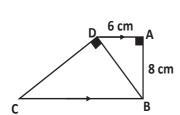


[1] Choose the correct answer from those given:

- [1] The points (-3, 0), (0, 3) and (3,0) are the vertices of
- (a) a scalene triangle.
- (b) an equilateral triangle.
- (c) an obtuse-angled triangle.
- (d) a right-angled triangle and isosceles.
- [2] The equation of the straight line whose slope is 1 and passes through the origin point is
- (a) x = 1
- (b) y = 1
- (c) y = x(d) y = -x
- [3] If $\sin 30^{\circ} = \cos \theta$, where θ is an acute angle, then m ($\angle \theta$) =°
- (a) 10 (b) 30 (c) 45 (d) 60
- [4] In \triangle ABC, if m (\angle B) = 90°, then $\sin A + \cos C = \dots$
- (a) 2 sin A
- (b) 2 sin C
- (c) 2 sin b (d) 2 cos A
- [5] The slope of the straight line which is parallel to x-axis is
- (a) -1 (b) 0 (c) 1 (d) undefined
- [6] If the origin point is a centre of a circle of radius 3 unit length, then the point belongs to it.
- (b) $(-2, \sqrt{5})$ (a) (1, 2)
- (d) $(\sqrt{2}, 1)$ (c) $(\sqrt{3}, 1)$
- [7] The straight line which passes through the two points (1, y), (3, 4)and its slope is $\tan 45^\circ$, then $y = \dots$
- (a) 1 (b) 1
- (c) 2 (d) 4
- [8] For any acute angle A, $\tan A = ...$
- $(a) \frac{\cos A}{\sin A}$
- (b) sin A cos A
- (d) $\sin A + \cos A$
- [9] $\tan 45^{\circ} \sin 30^{\circ} = \dots$
- (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) 1
- [10] If $\frac{-2}{3}$ and $\frac{k}{2}$ are the slope of two parallel straight lines, then $k = \dots$

- (a) $-\frac{4}{3}$ (b) $\frac{-3}{4}$ (c) $\frac{1}{3}$ (d) 3
- [11] If C (2, 1) is the midpoint of \overline{AB} where B (3, 0), then A is
- (a) (1, 2)
- (b) (2, 1)
- (c) (5, 1)
- (d)(1,5)
- [12] For any acute angles A and B if sin A $= \cos B$, then $m (\angle A) + m (\angle B) = ...$
- (a) 30° (b) 60° (c) 90° (d) 180°
- [13] If the two straight lines
- 3x 4y 3 = 0 and ky + 4x 8 = 0 are perpendicular, then $k = \dots$
- (a) 4 (b) 3 (c) 3 (d) 4
- [14] If $\overrightarrow{LM} \perp \overrightarrow{EO}$, E(-1, 2) and
- O (0, 0), then the slope of $\overrightarrow{LM} = ...$
- (a) -2 (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$ (d) 2
- [15] If \triangle XYZ is right-angled at Z, XY = 25 cm, YZ = 7 cm and XZ =
- 24 cm, then $\sin X + \sin Y = \dots$ (a) $\frac{31}{25}$ (b) $\frac{17}{25}$ (c) 2 (d) 1
- [16] 2 tan 45 $-\frac{1}{\cos 60^{\circ}}$ =
- (a) 0 (b) $\frac{1}{2}$ (c) $\frac{\sqrt{3}}{2}$ (d) 1
- [17] If A (x_1, y_1) and B (x_2, y_2) , then $AB = \dots$


مراجعة ليلة الامتحان ..وبنك أسئلة لن يخلو منه الامتحان

أقصر طريق للحصول على الدرجة النهائية

- (a) $x_1 x_2 + y_1 y_2$
- (b) $\sqrt{x_1 x_2 + y_1 y_2}$
- (c) $(x_2 x_1, y_2 y_1)$
- (d) $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
- [18] If $\tan 3x = \sqrt{3}$, where 3x is the measure of the acute angle, then $\mathbf{m} (\angle x) = \dots^{\circ}$
- (a) 10 (b) 20 (c) 30 (d) 60
- [19] If $\sin (x + 5^{\circ}) = \frac{1}{2}$ where
- $(x + 5^{\circ})$ is the measure of an acute angle, then $\tan (x + 20^\circ) = \dots$
- (a) $\frac{\sqrt{2}}{2}$ (b) $\frac{1}{2}$ (c) $\frac{\sqrt{3}}{2}$ (d) 1
- [20] If \overline{AB} is a diameter of a circle, where A (3, -5) and B (5, 1), then the centre of the circle is
- (a) (4, -2)(b) (4, 2)
- (c)(2,2)(d) (8, -2)

Answers

- [1] (d) [2] (c) [3] (d) [4] (a)
- [6] (b) [7] (c) [8] (c)
- [9] (b) [10] (a) [11] (a) [12] (c)
- [13] (c) [14] (c) [15] (a) [16] (a) [17] (d) [18] (b) [19] (d) [20] (a)
- [2] In the figure below:

- ABCD is a quadrilateral in which:
- $m (\angle A) = m (\angle BDC) = 90^{\circ}, \overline{AD} // \overline{BC},$
- AD = 6 cm and AB = 8 cm.
- Find the length of \overline{DC} .

Answer

- In \triangle ABD: \cdots m (\angle A) = 90°
- $(DB)^2 = (AB)^2 + (AD)^2$
- $= 64 + 36 = 100 \text{ cm}^2$
- \therefore DB = 10 cm
- $\therefore \overline{AD} // \overline{BC}$ and \overline{BD} is a transversal.
- \therefore m (\angle ADB) = m (\angle DBC)
- "Alternate angles"
- \therefore tan (\angle ADB) = tan (\angle DBC)
- $\therefore \frac{8}{6} = \frac{DC}{10}$ $\therefore DC = \frac{10 \times 8}{6} = 13\frac{1}{3}$ cm.

[3] Find the value of:

- $\sin 30^{\circ} \cos 60^{\circ} + \cos^2 30^{\circ} +$
 - $5 \tan 45^{\circ} 10 \cos^2 45^{\circ}$
 - **Answer**

The expression =

- $\frac{1}{2} \times \frac{1}{2} + (\frac{\sqrt{3}}{2})^2 + 5 \times 1 10 \times (\frac{1}{\sqrt{2}})^2 =$
- $\frac{1}{4} + \frac{3}{4} + 5 \frac{10}{2} = 1 + 5 5 = 1$

[4] Find the value of x which satisfies:

[a] $2 \sin x = \tan^2 60^\circ - 2 \tan 45^\circ$ (where x is a measure of an acute

أسرة الرياضيات «لغات»

نيفين حسن - أيمن حسن فكرى -محمود شحاتة

angle).

[b] $x \sin 30^{\circ} \cos^2 45^{\circ} = \cos^2 30^{\circ}$

Answers

- [a] : $2 \sin x = \tan^2 60^\circ 2 \tan 45^\circ$
- $\therefore 2 \sin x = (\sqrt{3})^2 2 \times 1 = 3 2 = 1$ $\therefore \sin x = \frac{1}{2} \qquad \therefore x = 30^{\circ}$
- [b] : $x \sin 30^{\circ} \cos^2 45^{\circ} = \cos^2 30^{\circ}$
- $\therefore \chi \times \frac{1}{2} \times \left(\frac{1}{\sqrt{2}}\right)^2 = \left(\frac{\sqrt{3}}{2}\right)^2$
- $\therefore \frac{1}{4} x = \frac{3}{4} \qquad \therefore x = 3$

[5] Without using the calculator, prove each of the following:

- [a] $\tan 60^\circ = \frac{2 \tan 30^\circ}{1 \tan^2 30^\circ}$
- [b] $\sin^2 60^\circ + \sin^2 45^\circ + \sin^2 30^\circ = \cos^2$
- $30^{\circ} + \frac{1}{3} \tan^2 60^{\circ} \cos^2 60^{\circ}$
- [c] $\cos^2 60^\circ = 5 \sin^2 30^\circ \tan^2 45^\circ$
- [d] $\cos 60^{\circ} = 2 \cos^2 30^{\circ} 1$

Answers

- [a] The left side = $\tan 60^{\circ} = \sqrt{3}$
- The right side = $\frac{2 \tan 30^{\circ}}{1-\tan^2 30^{\circ}}$

$$=\frac{2\times\frac{1}{\sqrt{3}}}{1-(\frac{1}{\sqrt{3}})^2}=\frac{\frac{2}{\sqrt{3}}}{1-\frac{1}{3}}=\sqrt{3}$$

- : The two sides are equal.
- [b] The left side =
- $\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{4} + \frac{1}{2} + \frac{1}{4} = \frac{3}{2}$
- The right side =
- $\left(\frac{\sqrt{3}}{2}\right)^2 + \frac{1}{3}\left(\sqrt{3}\right)^2 \left(\frac{1}{2}\right)^2 = \frac{3}{4} + 1 \frac{1}{4}$
- : The two sides are equal.
- [c] The left side = $\cos^2 60^\circ = (\frac{1}{2})^2 = \frac{1}{4}$
- The right side = $5 \sin^2 30^\circ \tan^2 45^\circ$
- $=5\left(\frac{1}{2}\right)^2-1^2=5\times\frac{1}{4}-1=\frac{1}{4}$
- : The two sides are equal.
- [d] The left side = $\cos 60^\circ = \frac{1}{3}$

The right side = $2 \cos^2 30^\circ - 1$

- $=2\left(\frac{\sqrt{3}}{2}\right)^2-1=2\times\frac{3}{4}-1=\frac{1}{2}$
- ∴ The two sides are equal.

perimeter of \triangle ABC.

[6] If ABC is a triangle where A(0, 0), B(3, 4) and C(-4, 3), find the

Answer

- $AB = \sqrt{(3-0)^2 + (4-0)^2}$
- $=\sqrt{3^2+4^2}=\sqrt{9+16}=\sqrt{25}$
- = 5 length unit.
- BC = $\sqrt{(-4-3)^2 + (3-4)^2}$
- $=\sqrt{(-7)^2+(-1)^2}=\sqrt{49+11}=\sqrt{50}$
- $=5\sqrt{2}$ length unit.
- $CA = \sqrt{(-4-0)^2 + (3-0)^2}$
- $=\sqrt{(-4)^2+(3)^2}=\sqrt{16+9}=\sqrt{25}$
- = 5 length unit.
- ∴ The perimeter of \triangle ABC

- $=5+5\sqrt{2}+5$
- $= (10 + 5\sqrt{2})$ length unit.
- [7] If the points A(3, 2), B(4, -3), C(-1, -2) and D(-2, 3) are vertices of the rhombus, find:
- (1) the coordinates of the point intersection of the two diagonals.
- (2) the area of the rhombus ABCD.

Answer

- (1) Let M be the point of intersection of the two diagonals.
- \therefore The coordinates of M = $(\frac{3-1}{2}, \frac{2-2}{2})$
- (2) AC = $\sqrt{(-1-3)^2 + (-2-2)^2}$
- $=\sqrt{16+16}=\sqrt{32}=4\sqrt{2}$ length unit.
- $=\sqrt{36+36}=\sqrt{72}=6\sqrt{2}$ length unit.

BD = $\sqrt{(-2-4)^2 + (3+3)^2}$

- : The area of the rhombus ABCD $= \frac{1}{2} \times 4\sqrt{2} \times 6\sqrt{2} = 24 \text{ square unit.}$
- [8] If A(5, -6), B(3, 7) and C(1, -3), find the equation of the straight line
- which passes through the point A and the midpoint of \overline{BC} .

Answer

- Let D be the midpoint of \overline{BC} . \therefore The coordinates of D = $(\frac{3+1}{2}, \frac{7-3}{2})$

=(2,2)

- \therefore The slope of $\overrightarrow{AD} = \frac{-6-2}{5-2} = -\frac{8}{3}$
- \therefore The equation of \overrightarrow{AD} is $y = -\frac{8}{3}x + c$
- $: D \in \overrightarrow{AD}$
- \therefore (2, 2) satisfies its equation.
- $\therefore 2 = \frac{8}{3} \times 2 + c \qquad \therefore c = \frac{-10}{3}$ \therefore The equation of \overrightarrow{AD} is $y = -\frac{8}{3}x - \frac{10}{3}$
- [9] If the straight line \overrightarrow{AB} // the y-axis, where A(x, 7) and B(3, 5), then find

the value of x. **Answer**

 $m = \frac{7-5}{x-3}$: m is undefined.

 $\therefore x = 3$

[10] Prove that: the straight line which passes through the two points (2,3)and (-1, 6) is parallel to the straight line which makes with the positive

measure 135°. **Answer**

direction of x-axis a positive angle of

- The slope of the 1^{st} straight line $m_1 =$ $\frac{6-3}{-1-2} = \frac{3}{-3} = -1$
- The slope of the 2nd straight line m_2 = $\tan 135^{\circ} = -1$
- $m_1 = m_2$

 $\therefore x - 3 = 0$

- ∴ The two straight lines are parallel.
- [11] In the Cartesian coordinates

plane, if the points A(1, 7), B(2, 4) and C(5, y) represent the vertices of a right-angled triangle at B, find the value of y.

Answer

- : The slope of $\overrightarrow{AB} = \frac{4-7}{2-1} = -3$ and the
- slope of $\overrightarrow{BC} = \frac{y-4}{5-2} = \frac{y-4}{3}$

الثلاثاء ٢٢ يناير ٢٠١٩

- $: \overrightarrow{AB} \perp \overrightarrow{BC}$
- \therefore The slope of $\overrightarrow{AB} \times$ the slope of $\overrightarrow{BC} =$
- $\therefore -3 \times \frac{y-4}{3} = -1$ $\therefore y-4=1$
- $\therefore y = 5$

[12] In the figure below:

where AB = 8cm and BC = 10 cm. Find the value of: sin B cos C + cos B

ABC is right-angled triangle at A

Answer

 \therefore AC = 6 cm.

sin C.

- $: m (\angle A) = 90^{\circ}$ $\therefore (AC)^2 = (10)^2 - (8)^2 = 36$
- \therefore sin B cos C + cos B sin C =

 $\frac{6}{10} \times \frac{6}{10} + \frac{8}{10} \times \frac{8}{10} = \frac{36}{100} + \frac{64}{100} = 1$

- [13] If the length between the point (x,5) and the point (6,1) equals $2\sqrt{5}$
- length units.

Find the value of x.

<u>Answer</u>

 $\sqrt{(x-6)^2+(5-1)^2}=2\sqrt{5}$ (By

squaring both sides)

 $(x-6)^2+16=20$

- $\therefore x^2 12x + 36 + 16 20 = 0$
- $x^2 12x + 32 = 0$

 $\therefore (x-8)(x-4)=0$

 $\therefore x = 8 \text{ or } x = 4$

[14] Find the equation of the straight line passing through point (-3, 2) and

parallel to the straight line 3y = x - 1

Answer

- : The slope of the given straight line
- : The slope of the required straight line = $\frac{1}{2}$

: The equation of the required straight

- : (-3, 2) satisfies the equation:
- $\therefore 2 = \frac{1}{3} \times (-3) + c \qquad \therefore c = 3$

line is $y = \frac{1}{2}x + c$

∴ The equation of the straight line is $y = \frac{1}{2}x + 3$