* chapter 9:
\rightarrow Momentum : الزذ

$$
\begin{aligned}
& \rightarrow{\underset{m}{e}}_{-P_{i} \rightarrow \vec{Y} \rightarrow \vec{P}=m \vec{v}} \\
& \cdot P_{i}-m \vec{v}_{i} \quad \cdot P_{f}=m \vec{v}_{f}
\end{aligned}
$$

$$
F_{e x t}=\frac{d p}{d t}
$$

*Ex,:- \rightarrow If $F=4 t^{2}-2 t+1$, what is the impulse from $t=0$ to $t=2$.

$$
\begin{aligned}
I= & \left.\int_{0}^{2}\left(4 t^{2}-2 t+1\right) d t=\frac{4}{3} t^{3}-t^{2}+t\right]_{0}^{2} \\
& =\frac{32}{3}-4+2=\left(\frac{32}{3}-6\right) \text { N.S. }
\end{aligned}
$$

$$
\begin{aligned}
& P \rightarrow \text { - } \\
& \text { ? } F \rightarrow ت \\
& \text { F } \rightarrow \text { - } \\
& \text { ? } P \rightarrow \text { 㐾 }
\end{aligned}
$$

$+\sum x_{2}=$ If $p=6 t^{2}-3 t+1$ what is the force at $1=2^{2}$.

$$
\begin{aligned}
& F=\frac{d p}{d t}=121-3 \\
& \left.F\right|_{t=2}=12 \times 2-3=21 \text { Neat an. }
\end{aligned}
$$

$\times E_{-x}:$ (9) find Impulse
(b) If the time of
what is impact is 0.2 second the ball

$$
-\underline{\hat{i}}-5
$$

(9) $I=m v_{i}-m v_{i}$

$$
=2 \times 4-2 \times 6
$$

$$
=8-12=-4 \rightarrow X
$$

$$
=2 \times-4-2 \times 6
$$

(b) $I=F \Delta t$

$$
F=\frac{I}{\Delta t}=\frac{-20}{0.2}=-100 \text { Neaten. }
$$

$\rightarrow E x_{4}:$

$$
\begin{aligned}
& \text { (1) } E_{n}=E_{c} \\
& m g h_{q}=\frac{1}{2} m v_{c}^{2} \\
& H_{\times} 10 \times 10=\frac{1}{2} \times 4 \times v_{c}^{2} \\
& 200=v_{c}^{2} \\
& u_{c}=14.14 \mathrm{~m} / \mathrm{s} \quad(-\hat{j}
\end{aligned}
$$

$$
I=m v_{f}-m v_{i}
$$

$$
=4 v_{f}-4 *(-14.14)
$$

$$
=4 * 12 \cdot 7+4 * 14 \cdot 14
$$

$$
=107.36 \mathrm{~N} . \mathrm{S} .
$$

$$
\begin{aligned}
\text { (3) } c & \rightarrow b \\
E_{c} & =E b \\
\frac{1}{2} v_{c^{\prime}}^{2} b r & =m g h_{b} \\
\frac{1}{2} v_{c^{\prime}}^{2} & =10 \times 8 \\
v_{c^{\prime}}^{2} & =160 \\
v_{c}^{\prime} & =12.7 \mathrm{~m} / \mathrm{s}(+\hat{j})
\end{aligned}
$$

$$
\begin{aligned}
I & =f \Delta t \\
F & =\frac{107.36}{0.3}=357.9 \text { Newten }(\hat{j}) .
\end{aligned}
$$

$$
* E x_{5}: \| \mid I
$$

(2) If $\Delta t=0.1 \mathrm{sec}$
what is the F.
(1)

$$
\begin{aligned}
\vec{I} & =m\left(u_{f}-u_{i}\right) \\
& =1(-5 \hat{i}+806 \hat{j}-5 \hat{i}-8-6 \hat{j}) \\
& =-10 \hat{i} \text { N.S } \\
|\vec{I}| & =10 \text { N.S. }
\end{aligned}
$$

$$
\begin{aligned}
& +\vec{v}_{i}=10 \cos 60 \hat{i}+10 \sin 60 \\
& \vec{v}_{i}=5 \hat{i}+8.6 \hat{j}
\end{aligned}
$$

$$
\begin{aligned}
+\vec{v}_{f} & =-10 \cos 60 \hat{j}+10 \sin 60 \hat{j} \\
& =-5 \hat{i}+8.6 \hat{j}
\end{aligned}
$$

$$
\begin{gathered}
F_{\text {ext }}=0 \Rightarrow \frac{d P}{d t}=0 \Rightarrow p=\text { constant. } \\
\left\langle\rightarrow P=P_{i}=P_{f} \quad\langle(A) \cdots\right.
\end{gathered}
$$

\rightarrow 㷙 (
 .

$$
\begin{aligned}
& \left(\vec{P}_{i}=\vec{P}_{f}\right), ~ \\
\Rightarrow & m_{1} v_{1}+m_{2} v_{2 i}=m_{1} v_{2 f}=m_{2} U_{2 f} \\
& \left(k_{i}=k f\right) \\
\Rightarrow & \frac{1}{2} m_{1} v_{1 i}^{2}++\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2}^{2}
\end{aligned}
$$

* Lost energy throw the collision $=\Delta K=k_{C}-k_{i}=O \mathrm{~J}$

\rightarrow ibsi 3 ——
- Lost energy $=\Delta K$.

$$
\begin{aligned}
& =k_{f}-k_{i} \\
& =\left(\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2}^{2} f\right)-\left(\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}\right) \\
& \rightarrow \frac{i_{-}^{\prime}-v_{1}: \quad\left(p_{i}=p_{f}\right)}{} \quad m_{i} v_{1}+m_{2} v_{2 i}=m_{1} v_{f}+m_{2} v_{2 f}
\end{aligned}
$$

 $\Delta K \leftarrow$ ها

$$
\left(P_{i}=P_{f}\right)
$$

$$
\rightarrow m_{1} v_{i}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v_{f} \leftarrow
$$

$\rightarrow \underbrace{- \text { Ex: }}$. Two object : of mass $4 \mathrm{~kg}, 6 \mathrm{~kg}$, m_{1} is moving. (To the right with speed $10 \mathrm{~m} / \mathrm{s}$ while me is moving 1.0 the left with speed $2 \mathrm{~m} / \mathrm{s}$. They collides elastically find velocity of each one of them after collision. Sol -:

$$
\begin{equation*}
P_{i}=P_{f} \tag{1}
\end{equation*}
$$

$m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{11}+m_{2} v_{26}$

$4 \times 10+6 \times-2=4 u_{1} f+6 v_{2} f$. $28=4 u v_{1}+6 v_{2} f$

$$
v_{1 i}+v_{1 p}=v_{2 i}+v_{2} \text { - - (2) }
$$

$$
v_{1 i}-v_{2 i}=v_{2 f}-v_{1 f}
$$

$$
10+2=v_{2} f-v_{1} f
$$

$$
12=v_{2} f-v_{1} f
$$

$\Rightarrow \quad U_{\text {if }}=-4.4 \mathrm{~m} / \mathrm{s} \quad U_{2 f}=7.6 \mathrm{~m} / \mathrm{s}$
\rightarrow Lost energy $=\mathrm{O}_{5} \leftarrow$
\rightarrow Ext:- (1) find v_{f}

$$
\begin{gathered}
p_{i}=p_{f} \\
m_{1} v_{1 i}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v_{f} \\
9 \times 0+!\times 100=(1+9) v_{f} \\
\frac{100}{10}=v_{f} \rightarrow 10 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

(2) find (h) :
$E_{a}=E_{b}$
$m g h_{a}+\frac{1}{2} m v_{a}^{2}=m g h_{b}+\frac{1}{2}-v_{0}^{2}$
$\frac{1}{2} \times 10 \times 106=10 \times 10 . h$

2
$n=5 \mathrm{~m}$
\rightarrow
(1) \rightarrow find lost energ due to fruction
(2) \Rightarrow coffetiout of kinatic friction

Sol.
(1) $E a=E b$

$$
\begin{aligned}
& \omega_{f_{k}}+\operatorname{mgh}+\frac{1}{2} m v_{n}^{2}=m g h+1-\operatorname{mov} v_{6}^{2} \\
& W \text { f.k }+\frac{1}{2} \times 10 \times 10^{2}=0 \\
& \omega f=-5005
\end{aligned}
$$

(2)

$$
\begin{aligned}
\omega_{f} & =-f k d \\
-500 & =-f k 100 \\
f k & =5 \mathrm{Naw} \\
f_{k} & =H_{k} \mathrm{~N} \\
5 & =H_{k} 100 \Rightarrow M_{k}=0.05
\end{aligned}
$$

$\rightarrow E x_{8} 0_{0}$ - what is \% $v_{2 f}, \theta$

$$
\begin{aligned}
& \text { Sol: } \vec{p}_{i}=\vec{p}_{f} \\
& v_{1}=20 \\
& \xrightarrow[m_{1}=2 m]{m_{2}=m} \\
& \Rightarrow m_{1} \vec{u}_{1 i}+m_{2} \vec{v}_{2 i}=m_{1}+\vec{v}_{1}+m_{2} \vec{u}_{2 i} \\
& 2 m+20 \hat{i}+1 \cdots \times 0=2(10 \cos 30 \hat{i}+10 \sin 30 \hat{j})+m \vec{v}_{2 f} \\
& 40 \operatorname{kx~} \hat{i}=20 \not \cos 30 \hat{i}+20 x \sin 30 \hat{j}+y \rightarrow \vec{u}_{2} f \\
& \vec{u}_{2 f}=40 \hat{i}-17.3 \hat{i}-10 \hat{j} \\
& =22.7 \hat{i}-10 \hat{j} \\
& \Rightarrow \tan \theta=\frac{10}{22.7} \rightarrow \theta=\operatorname{lann}^{-1}\left(\frac{10}{22.7}\right)=23.8 \\
& \theta=-23.8^{\circ} \\
& \text { i } \theta=336.2^{\circ}
\end{aligned}
$$

* Center of mass :-

$$
\underbrace{E x_{q}:} \rightarrow F_{\text {ind }} x_{c m}, y_{c m}:-
$$

$$
y_{\mathrm{cm}}=\frac{4 * 0+5 * 1+3 * 1+2+1++70+4+-3+2+-2+2+-1}{23}
$$

$$
y_{c r}=\frac{5+3+2-12-4-2}{23}
$$

$$
=\left[\frac{-8}{23}\right] m=-0.35
$$

$$
\vec{r}=0.78 \hat{i}-0.35 \hat{j}
$$

$$
\begin{aligned}
& \rightarrow x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}+\cdots}{\sum_{m}} \\
& \rightarrow y_{c m}=\frac{m_{1} y_{1}+m_{2} y_{1}+\cdots}{r_{2} m} \\
& \rightarrow \underset{c_{m}}{\vec{r}}=\underset{c m}{x} \hat{i}+\underset{c m}{y} \hat{i} \quad\left(x_{c m}^{x}, y_{c m}\right) \\
& \rightarrow|\vec{r}|=\sqrt{x_{c m}^{2}+y_{c}^{2}} \quad \rightarrow \quad \tan \theta=\frac{y \operatorname{com}}{x+m}
\end{aligned}
$$

＊Chapter $10:-$
＂Rotational motion．＂

＊$s \longrightarrow \Delta \theta$

θ－angular position．
$+V \longrightarrow w$
场
$\Delta \theta$－angular displasment．
$+a \longrightarrow \alpha$
\rightarrow がぶとい
w－angular velocity
α－angular acceleration．
$\rightarrow \Delta x=s=\Delta \theta \underline{\underline{r}}$

$$
-v=r w
$$

$$
\rightarrow a=r \underline{=} \alpha
$$

$$
\begin{aligned}
\cdot \theta & \rightarrow \mathrm{rad} \\
\cdot \mathrm{w} & \rightarrow \mathrm{rad} / \mathrm{sec} \\
\cdot q & \rightarrow \mathrm{rad} / \mathrm{sec}^{2}
\end{aligned}
$$

$\rightarrow x=f(t)$

$$
\begin{aligned}
& L_{\Delta v} \longrightarrow v_{a v}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}} \\
& \rightarrow a v_{\text {ins }}=\frac{d x}{d p} \\
& \longrightarrow a_{a v}=\frac{\Delta v}{\Delta t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}} \\
& a_{\text {ins }}=\frac{d u}{d t}
\end{aligned}
$$

$\rightarrow \theta=f(t)$

$$
\begin{aligned}
& \begin{aligned}
& L \\
& \longrightarrow w_{a v}=\frac{\Delta \theta}{\Delta t} \cdot \frac{\theta_{2}-\theta_{1}}{t_{2}-1_{1}} \\
& w_{i_{n s}}=\frac{d \theta}{d t}
\end{aligned} \\
& \alpha \\
& \underset{\sim}{\longrightarrow \alpha_{\text {in }}}=\frac{\Delta w}{\Delta t}=\frac{w_{2}-w_{1}}{d t}
\end{aligned}
$$

$\rightarrow E_{x,}: \quad \theta=L^{2}-51.6$, find:
(1) angular displasment. From $t=0-t=2$.
(2) average angular vilosil-y
(3) instantanious angular velocity. at. $t=1 \mathrm{sec}$.
(4) avarege angular accelaration between $t=2-5$
(5) inst, angular accekeration ol $t=4.5 \mathrm{sec}$.

- Solvolion:

$$
-\theta=t^{2}-5 t-6
$$

$$
w_{\text {ins }}=2 t-5
$$

$$
\alpha_{i n s}=2
$$

(1)

$$
\begin{align*}
& \Delta \theta=4-10-6-0 \tag{2}\\
& \Delta \theta=-12 \mathrm{rad}
\end{align*}
$$

$$
\begin{aligned}
& \text { 2) } \omega=\frac{\Delta \theta}{\Delta t} \\
& \omega=\frac{-12}{2}=-6 \mathrm{rad} / \mathrm{scc}
\end{aligned}
$$

(4)

$$
\alpha=\frac{5+1}{3}=\frac{6}{3}=:
$$

(3)

$$
w_{L=1}=2-5=-3
$$

(5) $\alpha=2 \mathrm{rad} / \mathrm{sec}^{2}$
rad/sec

$\rightarrow \underbrace{\rightarrow \text { motion with constant angular qeceleration }} \rightarrow$

$$
\Delta \theta=w L
$$

(1) $w_{2}=w_{1}+\alpha t$

$$
\because \quad \frac{d}{-} \longrightarrow
$$

(2) $w_{2}^{2}=w_{1}^{2}+2 \alpha \Delta \theta$
(3) $\Delta \theta=w_{1} t+\frac{1}{2} \alpha t^{2}$
(4) $\Delta \theta=\underbrace{\frac{2}{2}}_{\frac{w_{1}+w_{2}}{2}}+$.

$$
\begin{aligned}
a t & =\alpha r \\
\therefore a_{c} & =r w^{2} \\
\therefore a L_{0 L} & =r \sqrt{\alpha^{2}+w^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow a_{\text {hot }}=\sqrt{a_{c}^{2}+4 t^{2}} \\
& \rightarrow a_{t}=\frac{d v}{d t} \\
\text { varus vegas) } & \rightarrow a_{c=}=\frac{v^{2}}{r}
\end{aligned}
$$

- circular motion -
$\rightarrow F \rightarrow \tau:$ Tourque.

$\rightarrow m \rightarrow I:$ moment. ofinertici.

$$
+ \text { Torque }- \text { õselpin } \rightarrow
$$

$$
\begin{aligned}
& \rightarrow \vec{l}=\vec{r} \times \vec{F} \\
& \rightarrow 1 \vec{L}=r F \sin \theta_{r f}
\end{aligned}
$$

. امـتور_ الد,

(
$0+i$

Ex: \rightarrow Find the ret Torque acting on the object.
\rightarrow Sol.

$$
\begin{aligned}
\tau_{1} & =r_{1} F_{1} \sin \theta_{1} \\
& =4 * 50 \cdot \sin 0=0 \\
\tau_{2} & =r_{2} F_{2} \sin \theta_{2} \\
& =4 * 30 \sin 90 \\
& =120 \mathrm{~N} \cdot \mathrm{~m} \\
\tau_{3} & =r_{3} F_{3} \sin \theta_{3} \\
& =\Theta^{3} 10 \sin 143^{\circ} \\
& =18 \mathrm{~N} \cdot \mathrm{~m} \\
\tau_{4} & =r_{4} F_{4} \sin \theta_{4} \\
& =22 \cdot 20 \sin 53^{\circ} \\
& =32 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
T_{5} & =r_{5} F_{5} \sin \theta_{3} \\
& =5 \times 1 \times \sin 37^{\circ} \\
& =\Theta 3 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
T_{6} & =r_{6} F_{6} \sin \theta_{6} \\
& =0+F \\
& =0 \\
\bar{l}_{\text {net }} & =-120-18+32-3 \\
& =0109 \text { Nom }
\end{aligned}
$$

Scanned by CamScanner

$$
\begin{aligned}
& \rightarrow \text { Ex: } \rightarrow \text { Find net Torque: } \\
& T_{1}=r_{1} I_{1} \sin \theta_{1} \\
& =3 * 50 \cdot \sin 90 \\
& { }^{-}{ }_{150} \mathrm{~N} \cdot \mathrm{~m} \\
& T_{2}=r_{2} F_{2} \sin \theta_{2} \\
& =1 * 30 \sin 90 \\
& =\oplus 30 \mathrm{~N} \cdot \mathrm{~m} \\
& T_{\text {net }}=-150+30=-120 \mathrm{~N} \cdot \mathrm{~m} \text { (clock wisc). } \\
& \rightarrow \underbrace{E x:} \vec{r}=4 \hat{i}-3 \hat{j}+5 \hat{k} \quad, \quad \vec{F}=10 \hat{j}+2 \hat{j}+3 \hat{k} \quad: \\
& \rightarrow \text { Find: (1) The Torque. } \\
& \text { (2) The magnitude of torque. } \\
& \text { (3) The angle between } \vec{r} \text { and } \vec{f} \\
& \text { Sol:- } \\
& \text { (1) } \rightarrow \vec{T}=\vec{r} \times \vec{F} \\
& =\hat{i}(-9-10)-\hat{j}(12-50)+\hat{k}(8+30) \\
& \vec{\tau}=-19 \hat{i}+38 \hat{j}+38 \hat{k} \\
& \text { (2) } \rightarrow|\vec{\tau}|=\sqrt{19^{2}+38^{2}+38^{2}} \\
& \text { (3) }|\vec{L}|=|\vec{r}||\vec{F}| \sin \theta \\
& \left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
4 & -3 & 5 \\
10 & 2 & 3
\end{array}\right| \\
& \sqrt{19^{2}+38^{2}+38^{2}}=\sqrt{50} \sqrt{113} \sin \theta \\
& \sin \theta=\frac{\sqrt{19^{2}+38^{2}+38^{2}}}{\sqrt{50} \sqrt{113}}
\end{aligned}
$$

\rightarrow moment of inertia:

$$
I=\sum_{i} m_{i} r_{i}^{2}
$$

$$
\begin{aligned}
* I= & m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2} \ldots \\
= & 1+2+2+18+3+4+4+4+5+5 \\
& +6 * 1+7 \rightarrow 10+8+4+9+25 \\
= & (2+36+16+12+25+6+70+ \\
& 32+225) \mathrm{kg}_{2}+\mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{gathered}
r_{1}=\sqrt{1^{2}+1^{2}}=\sqrt{2} \\
r_{1}^{2}=2
\end{gathered}
$$

(I)

$$
I=\frac{1}{12} m L^{2}
$$

(rod)
$\sqrt{2}$

$I=\frac{2}{5} m r^{2}$
(solid sphere).
\square
(3)

$$
I=\frac{2}{3} m r^{2}
$$

(spherical shell)

ज) θ^{2}

$$
I=\frac{1}{2} m r^{2}
$$

.
(solid cylinder).
(disk).

5

$$
I=\frac{1}{12} \times m \times\left(a^{2}+b^{2}\right)
$$

(retangular plate)
\Rightarrow Example o.

$$
I_{"}=I_{C \cdot \mu}+M d^{2}
$$

$$
\Rightarrow\left(d=\frac{L}{2}\right)
$$

2,31 ب
c. H -

$$
C_{0}
$$

$$
\begin{aligned}
& I_{1 \prime}=\frac{1}{12} M L^{2}+M\left(\frac{L}{2}\right)^{2}=\frac{1}{12} M L^{2}+M \frac{L^{2}}{4} \\
&=\frac{1}{3} M L^{2}
\end{aligned}
$$

parallel axis theorem

$$
* \sum F=m a \Rightarrow \sum T=I \alpha
$$

$$
\left\{\begin{array}{l}
m \rightarrow I \\
F \rightarrow \tau \\
\theta \rightarrow x \\
w \rightarrow v \\
\alpha \rightarrow a t
\end{array}\right.
$$

$+E x_{1}$: Find the:

1) a
2) T
3) α
\Rightarrow mass :
(1)

$$
\text { (1) } \begin{align*}
\sum F & =m a \\
40-T & =4 * a+\alpha \\
\text { (2) pu\|y } & :- \\
\sum T & =I \alpha \\
R T & =\left(\frac{1}{2} m R^{2}\right) \alpha \\
T & =\frac{1}{2} m R \alpha \\
T & =\frac{1}{2} m R \frac{a}{R} \\
T & =\frac{1}{2} M a+\frac{1}{2}
\end{align*}
$$

$$
\begin{aligned}
\bar{\sigma} \rightarrow \vec{L} & =r F \sin \theta \\
T & =R T \\
I & =\frac{1}{2} m r^{2}(+) \\
& \left(\alpha=\frac{a}{r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad 40-T=49 \\
& T=\frac{1}{2} M_{a} \rightarrow \frac{1}{2}+0.5 * 9 \\
& 40=4.259 \\
& q=\frac{40}{4 \cdot 25} \\
& \Rightarrow 4_{0} T=4 * \frac{40}{4.25} \\
& T=-\frac{4 \times 40}{4.25}+40 . \\
& \rightarrow \infty=\frac{9}{R}=\frac{40}{\frac{4.25}{0.4}}\left(\operatorname{rad} / s^{2}\right)
\end{aligned}
$$

$\Rightarrow \underbrace{E x_{2}:} \cdot F$ ind $: 11 \alpha$
2) a (and of the rod)

-Sol. :-

$$
\begin{aligned}
\cdot \sum T & =I \alpha \\
r F \sin \theta & =I \alpha \\
1+100 & =1 \\
\alpha & =\frac{40}{3} \alpha \\
4 & =7.5 \operatorname{rad} 1 \mathrm{~s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
I & =\frac{1}{3} m L^{2} \\
\dot{\partial} \mu, y^{\prime}, y^{2} & =\frac{1}{3} \times 10+4 \\
\text { Dp }^{\prime}>d s & =\frac{40}{3}
\end{aligned}
$$

Cf
$\rightleftarrows \stackrel{\rightharpoonup}{\bullet} \cdot q=r \alpha$

$$
a=2 * 7.5=15 \mathrm{~m} / \mathrm{s}^{2}
$$

- Ex, \underbrace{E} Find $T_{1}, T_{2}, a, \alpha:$

$$
\begin{align*}
& \rightarrow \sum F_{y}=m_{1} 9 \\
& 80-F_{1}=8+9 \tag{1}\\
& \rightarrow \sum F_{x}=m_{2} 9 \\
& T_{2}-10=2+9 \tag{2}
\end{align*}
$$

polly

$$
\begin{gathered}
10+\left(0.1\left(T_{1}-T_{2}\right)=0.5(.109)\right) \\
T_{1}-X_{1}^{\prime}=59
\end{gathered}
$$

$$
\begin{array}{rlrl}
70 & =159 \\
9 & =\frac{70}{15} \approx 5 & & T_{2}=20 \\
\alpha & =10 * 9 \\
& =50
\end{array}
$$

\rightarrow (1) $80-T_{1}=40$

$$
T_{1}=40
$$

$$
\rightarrow w_{0} N \Delta_{م}
$$

$\rightarrow w_{0} N \nu_{\text {م沙 }}$

$$
\begin{aligned}
* T_{1} & =r F \sin \theta^{90} \\
T_{1} & =\left(0.1 T_{1}\right)+
\end{aligned}
$$

$$
\frac{+T_{2}=\left(0.1 T_{2}\right)-}{c \tau=0.1\left(T_{1} \cdot T_{2}\right)}
$$

$$
* a=r \alpha
$$

($9=0.1 \alpha$) . 10 $\alpha=109$

* The work and energy:

$$
\begin{aligned}
& k_{2} m v^{2} \longleftrightarrow k_{w}=\frac{1}{2} I w^{2} . \\
& \Delta k=\frac{1}{2} I \omega_{2}^{2}-\frac{1}{2} I \omega_{1}^{2}
\end{aligned}
$$

$\rightarrow \underbrace{E x_{1}: T}=5 \theta^{2}-3 \theta+1$, what is the rotational works from $\theta=10^{\circ}$ to $\theta=30^{\circ}$

$$
\begin{aligned}
\omega=\int \tau d \theta & =\int_{\frac{\pi}{18}}^{\pi / 6}\left(5 \theta^{2}-3 \theta+1\right) d \theta \\
\rightarrow \pi & =\frac{5}{3} \theta^{3}-\frac{3}{2} \theta^{2}+\left.\theta\right|^{\circ} \\
x_{1} \leftrightarrow 10 & =\frac{10 \pi}{180}=\frac{\pi}{18} \\
\rightarrow \pi & \frac{\pi}{18} \\
x_{2} & \longleftrightarrow 30^{\circ} \\
x_{2} & =\frac{30 \pi}{180}=\frac{\pi}{6}
\end{aligned}
$$

$$
\begin{aligned}
\rightarrow w_{\text {total }}= & \Delta k \\
w_{\text {t. }}= & \frac{1}{2} I\left(w_{2}^{2}-w_{1}^{2}\right) \\
\rightarrow[& =m g h+\frac{1}{2} m u^{2}+\frac{1}{2} I w^{2} \\
& +\frac{1}{2} k x^{2} \\
& b i L_{1}+1-1
\end{aligned}
$$

$m g h_{i}+\frac{1}{2} k x_{i}^{2}+\frac{1}{2} m v_{i}^{2}+\frac{1}{2} I w_{i}^{2}=m g h_{f}+\frac{1}{2} k x_{f}^{2}+\frac{1}{2} m v_{f}^{2}+\frac{1}{2} I w_{f}^{2}$

of

2

$$
\text { a) } \begin{aligned}
\therefore I & =M a^{2}+M a^{2}+m b^{2}+m b^{2} \\
& =2\left(M a^{2}+m b^{2}\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
0 K & =\frac{1}{2} I w^{2} \\
& =\frac{1}{2}\left(2\left(M a^{2}+m b^{2}\right)\right) w^{2} \\
& =M a^{2}+m b^{2}+w^{2}
\end{aligned}
$$

b
گُر الريرنغ

(2) $v_{C \cdot m}$

$$
\begin{aligned}
& \frac{m g h}{}+\frac{1}{2} m v_{a}^{2}+\frac{1}{2} I w_{4}^{2}=m g h+\frac{1}{2} m v_{L}+\frac{1}{2} I w_{b}^{2} \\
& 0=M g\left(\frac{L}{2}\right)+\frac{1}{2} I w^{2} \\
& \frac{M g Y}{x}=\frac{1}{2} \frac{1}{3} M L^{2} \omega^{2} \\
& 9=\frac{L}{3} w^{2} \\
& w=\sqrt{\frac{3 g}{L}}
\end{aligned}
$$

\rightarrow following $=$)

$$
\begin{aligned}
& \text { 9) } I \\
& \text { b) } k_{w} \\
& \therefore \text { 列 } \\
& 2 \rightarrow k=\frac{1}{2} I \omega^{2} \\
& =\frac{1}{2}\left(2 M a^{2}\right) w^{2} \\
& =M a^{2} w^{2}
\end{aligned}
$$

1
(M-M) $\underset{\sim}{i p}$
$: p$

- Ex3:

h .50 cm
\times Solu

$$
\begin{aligned}
E_{a} & =E b \\
m_{1} g h+\frac{1}{2} m w_{n}^{2} & =
\end{aligned}
$$

* Chapter 11: \rightarrow Angular Momentum \leftarrow

$$
\text { (污立) }|\vec{C}|=\sqrt{c_{x}^{2}+c_{y}^{2}+c_{z}^{2}}
$$

$$
\Rightarrow\left\{\begin{array} { l }
{ \hat { i } \times \hat { i } = 0 } \\
{ \dot { j } \times \hat { j } = 0 } \\
{ \hat { k } \times \hat { k } = 0 }
\end{array} \quad \left\{\begin{array}{l}
\hat{i} \times \hat{j}=\hat{k}+ \\
\hat{j} \times \hat{k}=\hat{i}+ \\
\hat{k} \times \hat{i}=\hat{j}+
\end{array}\right.\right.
$$

$$
\left\{\begin{array}{l}
\hat{j} \times \hat{i}=-\hat{k} \\
\hat{k} \times \hat{j}=-\hat{i} \\
i \times \hat{k}=-\hat{j}
\end{array}\right.
$$

$$
\rightarrow r^{n}+\cdots<
$$

$$
{ }_{0}^{*}
$$

$$
\begin{aligned}
& \text { * } \vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \\
& \text { + } \vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k} \\
& -\vec{A} \times \vec{B} \longrightarrow \vec{C} \\
& \rightarrow|\vec{C}|=|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta_{A B} \\
& \Rightarrow \vec{C}=\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{i} & -\hat{j} & \hat{k} \\
A x & A y & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \\
& \underset{(\vec{A} \times \vec{B})}{\vec{C}=} \frac{\hat{i}((A y \times B z)-(A z \times B y))-j((A x+B z)-(A z+B x)}{C x}+\hat{k}((A x+B y)-(A y+B x)) \text { Cy }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{T}=\vec{r} \times \vec{F} \\
& \therefore|\vec{T}|=r F \sin \theta
\end{aligned}
$$

$$
\vec{\tau}_{\text {ret }}=\sum_{i=1}^{n} \vec{\tau}_{i}=\sum_{i=1}^{n} \vec{r}_{i} \times F_{i}
$$

比 osuquivi,R

$$
-\Sigma \vec{L}=I \alpha
$$

$$
I=\sum_{i} m_{i} r_{i}^{2}
$$

F

$$
\begin{aligned}
& P=m v \Rightarrow \frac{d p}{d t}=\frac{\dot{d(\hat{\imath}} v)}{d t}=m \frac{d u}{d t}=m a=\sum \Gamma \\
& \sum F=\frac{d p}{d f}
\end{aligned}
$$

$$
\begin{aligned}
-\Sigma \tau=\sum r \times F & \\
-\Sigma T=\sum r \times \because \frac{d p}{d r} & =\frac{d}{d t} \sum \vec{r} \times \vec{p} \\
-\Sigma T & =\sum \frac{d l}{d t}
\end{aligned}
$$

L: Anguiar momentum

Lemiok $\vec{p}=m \vec{v} \longleftrightarrow \vec{L}=\vec{r} \times \vec{p}$

$$
\begin{aligned}
\Sigma L & =\Sigma \frac{\partial L}{d t} \\
\mid \vec{L}_{\mid} & =r \times \rho \times \sin \theta_{r p} \\
& =r m u \sin \theta_{r u}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \Delta P=P_{t}-P_{i}=m_{v_{t}}-m v_{i}=\left[\Delta t=\int F d t\right. \\
& \rightarrow \Delta \vec{L}=L_{i}-L_{i}=I w_{f}-I w_{i}=T \Delta t=\int \tau d t
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Delta p & =m\left(u_{L}-u_{i}\right) & & \vec{L} \\
& =F_{\text {ext }} \Delta t & \Delta L & =\frac{d L}{d t} \\
p & =\int_{F d f}\left(w_{C}-w_{i}\right) \\
& =\tau \Delta t \\
\vec{L} & =\int_{L_{i}}^{L_{e x t}} T_{e x t}
\end{array}
$$

$$
\vec{L}_{\text {total }}=\vec{L}_{1}+\vec{L}_{2}+\vec{L}_{3}+\cdots \cdot=\vec{L}_{i}
$$

(system of many particles)

$$
\begin{gathered}
\left(0.5 T_{1}-0.5 T_{2}=0.25(2 a)\right) \times 2 \\
T_{1}-T_{2}=0 .
\end{gathered}
$$

$$
\begin{aligned}
(1) T & =(m g) \times r \times \sin \theta \\
C \text { ext } & =40 * 0.5 \\
& =20 \times \operatorname{mon} \cdot m \\
\rightarrow L_{1} & =r_{1} m_{1} \sin \theta=0.5 \times 4\left(\omega_{1}\right) \\
\rightarrow L_{2} & =0 . r
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow L_{2}=0.5 \times 6\left(v_{2}\right) \sin 90^{\circ}=3 v_{2} \\
& \rightarrow L_{3}=R
\end{aligned}
$$

$$
\rightarrow L_{3}=R M U \sin 90^{\circ}=0.5 \times 1 \cup
$$

$$
=0.5 \mathrm{~V}
$$

$$
\begin{aligned}
& \underbrace{E x_{1}:} \text { Find } 9: \\
& \sum F_{y}=m, a \\
& 40-T=4 \mathrm{al} \\
& \sum F_{2}=m_{29} \\
& T_{2}=6 a \\
& \Sigma \tau=I \alpha
\end{aligned}
$$

(1)

$$
\begin{aligned}
>T_{1} & =r f \sin \theta \\
& =0.5 T_{1} \sin 90 \\
& =0.5 T . \oplus
\end{aligned}
$$

$$
\begin{aligned}
{ }^{*} T_{2} & =0.5 T_{2} \sin 90 \\
& =0.5 T_{2} \theta
\end{aligned}
$$

$$
0.5 T_{1}-T_{2} 0.5
$$

$$
\begin{aligned}
I & =m r^{2} \\
& =1(0.5)^{2} \\
& =0.25
\end{aligned}
$$

$$
\alpha=\frac{a}{r}=2 a
$$

$$
\begin{aligned}
& \Sigma \tau=\frac{d L}{d t} \\
& 20=(5.5 u) \frac{d}{d t} \\
& 20=5.5 \\
& \frac{20}{5.5}=a
\end{aligned}
$$

* Angular Momentum of a rigid body:-

$$
\begin{aligned}
\vec{p} & =m \vec{v} \\
\vec{L} & =r+\vec{p} \\
& =r p=r m v
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& L_{i}=L_{f} \rightarrow I_{\text {solated }} \\
& I_{2} w_{2}=I_{1} w_{1}^{\prime}+I_{2} w_{2}^{\prime}
\end{aligned}
$$

$$
\begin{array}{r}
\underset{\substack{\text { Torave. }}}{\substack{\text { no extrad }}} I_{1} w_{1}+I_{2} w_{2}=I_{1} w_{1}^{\prime}+I_{2} w_{2}^{\prime} \\
\end{array}
$$

$$
\left(L_{i}=L_{F}\right)
$$

$$
\begin{aligned}
& \vec{L}=r+\vec{p} \\
& =r p=r m v \\
& \rightarrow L=I \omega \rightarrow \text { L }
\end{aligned}
$$

$$
\begin{aligned}
& * L_{3}=I_{w} \\
& \text { N, } \text { g }^{2}=M R^{2} \frac{V}{R}=M R V
\end{aligned}
$$

$\rightarrow \underbrace{E x_{0}}$

$$
\begin{aligned}
L=? \quad & V
\end{aligned}=10 \mathrm{rev} / \mathrm{s}, ~=10(2 \pi \mathrm{R}) \mathrm{m} / \mathrm{s}
$$

$$
m=7 \mathrm{~kg}
$$

$$
R=12 \mathrm{~cm}
$$

$$
=0.12 \mathrm{~m}
$$

(Z)

$$
\begin{aligned}
& I=\frac{2}{5} m R^{2}=\frac{2}{5} 7 *(0.12)^{2}=0.04 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& L_{I}=I_{W}=0.04 * 20 \pi=2.531 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

$\underbrace{+E_{x_{2}}: \text { Find } L:-}$

$$
* L=I w
$$

$$
I=I_{m_{1}}+I_{m_{2}}+I_{\mathrm{rad}}
$$

$$
=m_{1} r^{2}+m r^{2}+\frac{1}{12} m L^{2}
$$

$$
* L=386.7 * 0.5
$$

$$
=20 * 4+50 * 4+\frac{1}{12} \times 80 * 16
$$

$$
=193.3 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
$$

$$
=80+200+\frac{320}{3}
$$

$$
=386.7 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$\stackrel{E x_{3}}{ }:-L_{i}=L_{f}$

$$
I_{1} w_{1}=I_{2} w_{2}
$$

$$
\begin{aligned}
& \frac{2}{5}=R_{1}^{2} w_{1}=\frac{2}{5} M R_{2}^{2} w_{2} \\
& (0.5)^{2} 2 \pi
\end{aligned}
$$

$$
(0.5)^{2} \frac{2 \pi}{T_{P_{1}}}=(0.1)^{2} \frac{2 \pi}{T_{P_{2}}}
$$

$$
\begin{aligned}
& \frac{0.25}{T_{p_{1}}}=\frac{0.01}{T_{p_{2}}} \\
& \frac{0.25}{5}=\frac{0.01}{T_{p_{2}}}
\end{aligned} \Rightarrow
$$

$*$ Ex4: . Find wiem $\quad(r=0.5)_{m}$

$$
\begin{aligned}
L_{i} & =L_{f} \\
I_{p} \omega_{p}+I_{g} \omega_{s} & =I_{p} \omega_{p}^{\prime}+I_{g} \omega_{g}^{\prime} \\
200 * 2+240 * 2 & =200 \omega^{\prime}+15 * 4 \\
400+480 & =215 \mathrm{w}^{\prime} \\
\omega^{\prime} & =\frac{880}{215} \mathrm{rad} / \mathrm{sec} \\
& =4.1
\end{aligned}
$$

$$
M=\frac{100 \mathrm{~kg}}{\pi / 1,1 /}
$$

(k is):

$$
\begin{aligned}
\rightarrow k_{i} & =\frac{1}{2} I_{w^{2}}\left(I_{p}+I_{g}\right) \\
& =\frac{1}{2}(440)(4)=880 \mathrm{Jol} \\
& =001,
\end{aligned}
$$

$$
\begin{aligned}
K_{c} & =\frac{1}{2} T^{\prime} w_{3}^{\prime 2} \\
& =\frac{1}{2}(215)(4.1)^{2}=1807 \mathrm{J01}
\end{aligned}
$$

$$
\begin{aligned}
k_{f}>k_{i} \Rightarrow w=k_{f}-k_{i} & =1807-880 \\
& =927 \mathrm{~J} 01
\end{aligned}
$$

