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ABSTRACT 

Finite element (FE) method is presented for the analysis of thin rectangular laminated composite plates under the 

biaxial action of in – plane compressive loading. The analysis uses the classical laminated plate theory (CLPT) which 

does not account for shear deformations. In this theory it is assumed that the laminate is in a state of plane stress, the 

individual lamina is linearly elastic, and there is perfect bonding between layers. The classical laminated plate theory 

(CLPT), which is an extension of the classical plate theory (CPT) assumes that normal to the mid – surface before 

deformation remains straight and normal to the mid – surface after deformation. Therefore, this theory is only 

adequate for buckling analysis of thin laminates. A Fortran program has been compiled. The convergence and 

accuracy of the FE solutions for biaxial buckling of thin laminated rectangular plates are established by comparison 

with various theoretical and experimental solutions. The good agreement of comparisons demonstrates the reliability 

of finite element methods used.   

Keywords: Validation of finite element method, Classical laminated plate theory, Buckling, Thin plates, Laminated 

Composites. 
 

1. INTRODUCTION 

 

From the point of view of solid mechanics, the deformation of a plate subjected to transverse and / or in plane loading consists of 

two components: flexural deformation due to rotation of cross – sections, and shear deformation due to sliding of section or layers. 

The resulting deformation depends on two parameters: the thickness to length ratio and the ratio of elastic to shear moduli. When 

the thickness to length ratio is small, the plate is considered thin, and it deforms mainly by flexure or bending; whereas when the 

thickness to length and the modular ratios are both large, the plate deforms mainly through shear. Due to the high ratio of in – 

plane modulus to transverse shear modulus, the shear deformation effects are more pronounced in the composite laminates 

subjected to transverse and / or in – plane loads than in the isotropic plates under similar loading conditions. 

 

In the present work, the analysis uses the classical laminated plate theory (CLPT) which does not account for transverse shear 

deformations. This theory is applicable to homogeneous thin plates (i.e. the length to thickness ratio                  ). The 

classical laminated plate theory (CLPT), which is an extension of the classical plate theory (CPT) applied to laminated plates was 

the first theory formulated for the analysis of laminated plates by Reissner and Stavsky [1] in 1961, in which the Kirchhoff and 
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Love assumption that normal to the mid – surface before deformation remain straight and normal to the mid – surface after 

deformation is used, but it is not adequate for the flexural analysis of moderately thick laminates. However, it gives reasonably 

accurate results for many engineering problems i.e. thin composite plates, as stated by Srinivas and Rao [2], Reissner and Stavsky 

[1]. 

The finite element method is formulated by the energy method. The numerical method can be summarized in the following 

procedures: 

1. The choice of the element and its shape functions. 

2. Formulation of finite element model by the energy approach to develop both element stiffness and differential matrices. 

3. Employment of the principles of non – dimensionality to convert the element matrices to their non – dimensional forms. 

4. Assembly of both element stiffness and differential matrices to obtain the corresponding global matrices. 

5. Introduction of boundary conditions as required for the plate edges. 

6. Suitable software can be used to solve the problem (here two software were utilized, FORTRAN and ANSYS). 

 

2. MATHEMATICAL FORMULATION 

 

Consider a thin plate of length a, breadth b, and thickness h as shown in Figure 2.1a, subjected to in – plane loads    ,    and      

as shown in Figure 2.1b. The in – plane displacements           and           , can be expressed in terms of  the out – of – 

plane displacement        as shown below. 

     
   
   

 
                

                                                                             

     
   

   
                  

 

 

                              (a)                                                                                                      (b)   

Figure 2.1 

 

The strain – displacement relations according to the large deformation theory are: 
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These can be written as: 

         

Where,   [         ]
 
  and      and      represent the linear and non – linear parts of the strain, i.e.  
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The virtual linear strains can be written as: 
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The virtual linear strains energy 

    ∫    
     

 

                                                   

Where     denotes volume 

The stress – strain relations,  

       

Where     are the material properties given in Appendix (A). 

Substitute the above equation in equation (5). 

    ∫    
     

   
 

                          

Now express     in terms of the shape functions N (given in Appendix (B)) and nodal displacements     , equation (2) can be 

written as: 
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Hence equation (6) can be written in the form,  
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Hence, the virtual strain energy,  

           
                   

Where      is the element stiffness matrix, 

                  ∫                           

Now equation (3) can be written in the form, 

    
 

 

[
 
 
 
 
 
 
   

   
 

 
   

   
   

   

   

   ]
 
 
 
 
 
 

 

[
 
 
 
   

   
   

   ]
 
 
 

 

The virtual strain, 
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The virtual work, 
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Where, 

[           ]  ∫ [           ]
   

    

   

And    ,    , and      are the in – plane stresses. 

The previous equation can be written as:  
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Introducing the shape functions and nodal displacements, we get: 
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     is the element differential matrix. 

Now,   

            

                                                                                   
            

    
        

Now since        
  is arbitrary and cannot be equal to zero, it follows that, 

[       
  ]     

When the plate is divided into a number of elements, the global equation is: 

[      
 ]                    

Where, 

  ∑          ∑       ∑   

Since,        then the determinant, 

|     
 |                       

Hence, the buckling loads      and the buckling modes can be evaluated. 

The elements of the stiffness matrix are obtained from equation (8) which can be expanded as follows: 
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The elements of the differential matrix are obtained from equation (10) which when expanded becomes: 
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The integrals in equations (13) and (14) are given in Appendix (C). We use a 4 – noded element as shown in Figure 2.2 below. 

 
Figure 2.2 

From the shape functions for the 4 – noded element expressed in global coordinates     .  We take: 

                                          

                                  

                   
   

   
                      

   

   
 

The shape functions in local coordinates         are as follows: 

                         
              

       
   

      
         

        
        

          
  

Where               

The coefficients                 are given in Appendix (B). 

In the analysis, the following nondimensional quantities are used: 
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3. BOUNDARY CONDITIONS 

All of the analyses described in the present paper have been undertaken assuming the plate to be subjected to identical and/ or 

different support conditions on the four edges of the plate. The three sets of the of the edge conditions used here are designated as 

clamped – clamped (CC), simply – simply supported (SS), clamped – simply supported (CS), are shown in table 3.1 below. 

 

Table 3.1 Boundary conditions 

Boundary 

Conditions 

Plate dimensions in y – coordinate  

          

Plate dimensions in x – coordinate 

         

CC                 

SS             

CS               
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4. VALIDATION OF THE FINITE ELEMENT (FE) PROGRAM 

In order to check the validity, applicability and accuracy of the present FE method, many comparisons were performed. The 

comparisons include theoretical, ANSYS simulation and experimental results. 

 

4.1 Comparisons with Theoretical Results 

In table 4.2 the non – dimensional critical buckling load is presented in order to compare with References [3], [4] and [5] for an 

isotropic plate of material 1 with different aspect ratios. As the table shows, the present results have a good agreement with 

References [3], [4] and [5]. 

 

Table 4.2 Comparison of the non – dimensional critical buckling load  ̅        for an isotropic plate (material 1) 

Aspect Ratio 

a/b 

References 

Ref. [3] Ref. [4] Ref. [5] Present Study 

0.5 12.33 12.3370 12.3370 12.3 

1.0 19.74 19.7392 19.7392 19.7 

 

Table 4.3 below shows the effect of plate aspect ratio and modulus ratio on non – dimensional critical loads  ̅              of 

rectangular laminates under biaxial compression. The following material properties were used: material 2:            

                                                         . It is observed that the non – dimensional buckling load 

increases for symmetric laminates as the modular ratio increases. The present results were compared with Osman [6] and Reddy 

[7]. The verification process showed good agreement especially as the aspect ratio increases and the modulus ratio decreases.   

 

Table 4.3 Buckling load for (0/ 90/ 90/ 0) simply supported (SS) plate for different aspect and moduli ratios under biaxial 

compression (material 2) 

Aspect Ratio 

a/b 

Modular Ratio Biaxial Compression 

       5 10 20 25 40 

 Present 10.864 12.122 13.215 13.726 14.000 

0.5 Ref. [6] - 12.307 - 13.689 -  

 Ref. [7] 11.120 12.694 13.922 14.248 14.766 

 Present 2.790 3.130 3.430 3.510 3.645 

1.0 Ref. [6] - 3.137 - 3.502 - 

 Ref. [7] 2.825 3.174 3.481 3.562 3.702 

 Present 1.591 1.602 1.611 1.613 1.617 

1.5 Ref. [6] - 1.605 - 1.606 - 

 Ref. [7] 1.610 1.624 1.634 1.636 1.641 

              

Table 4.4 shows the effect of plate aspect ratio, and modulus ratio on non – dimensional critical buckling loads  ̅              

of simply supported (SS) antisymmetric cross – ply rectangular laminates under biaxial compression. The properties of material 2 

were used. It is observed that the non – dimensional buckling load decreases for antisymmetric laminates as the modulus ratio 

increases. The present results were compared with Reddy [7]. The validation process showed good agreement especially as the 

aspect ratio increases and the modulus ratio decreases. 

 

Table 4.4 Buckling load for (0/ 90/ 90/ 0) simply supported (SS) plate for different aspect and moduli ratios under biaxial 

compression (material 2) 

Aspect Ratio 

a/b 

Modular Ratio Biaxial Compression 

       5 10 20 25 40 

0.5 Present 4.000 3.706 3.535 3.498 3.442 

Ref. [7] 3.764 3.325 3.062 3.005 2.917 

1.0 Present 1.395 1.209 1.102 1.079 1.045 

Ref. [7] 1.322 1.095 0.962 0.933 0.889 

1.5 Present 1.069 0.954 0.889 0.875 0.853 

Ref. [7] 1.000 0.860 0.773 0.754 0.725 
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Table 4.5 below shows the effect of plate aspect ratio, and modulus ratio on non – dimensional critical buckling loads of simply 

supported (SS) antisymmetric angle – ply rectangular laminates under biaxial compression. The properties of material 2 were 

used. It is observed from table 4.5 that the prediction of the buckling loads by the present study is closer to that of Osman [6] and 

Reddy [7].   

Table 4.5 Buckling load for antisymmetric angle – ply           plate with different moduli and aspect ratios under 

biaxial compression (material 2) 

Aspect Ratio 

a/b 

Modular Ratio Biaxial Compression 

       10 20 25 40 

 Present 19.376 36.056 44.400 69.440 

0.5 Ref. [6] 19.480 - 44.630 -  

 Ref. [7] 18.999 35.076 43.110 67.222 

 Present 9.028 17.186 21.265 33.512 

1.0 Ref. [6] 9.062 - 21.345 - 

 Ref. [7] 8.813 16.660 20.578 32.343 

 Present 6.144 11.596 14.322 22.013 

1.5 Ref. [6] 6.170 - 14.383 - 

 Ref. [7] 6.001 11.251 13.877 21.743 

  

In tables 4.6 and 4.7, the buckling loads for symmetrically laminated composite plates of layer orientation (0/ 90/ 90/ 0) have been 

determined for three different aspect ratios ranging from 0.5 to 1.5 and two modulus ratios 40 and 5 of material 2. It is observed 

that the buckling load increases with increasing aspect ratio for biaxial compression loading. The buckling load is maximum for 

clamped – clamped (CC), and clamped – simply supported (CS) boundary conditions, while minimum for simply – simply 

supported (SS) boundary conditions. It is seen from tables 4.6 and 4.7 that the values of buckling loads by the present study is 

much closer to the of Osman [6].  

Table 4.6 Buckling load for (0/ 90/ 90/ 0) plate with different boundary conditions and aspect ratios under biaxial 

compression   ̅         
    (material 2)                                             

Aspect Ratio a/b Comparisons of 

Results 

Boundary Conditions 

CC SS CS 

0.5 Present 1.0742 0.4143 0.9679 

Ref. [6] 1.0827 0.4213 1.0022 

1.0 Present 1.3795 0.4409 1.0723 

Ref. [6] 1.3795 0.4411 1.0741 

1.5 Present 1.6402 0.4400 1.2543 

Ref. [6] 1.6367 0.4391 1.2466 

 

Table 4.7 Buckling load for (0/ 90/ 90/ 0) plate with different boundary conditions and aspect ratios   ̅         
   

(material 2)                                            

Aspect Ratio a/b Comparisons of 

Results 

Boundary Conditions 

CC SS CS 

0.5 Present 1.7786 0.6787 1.6325 

Ref. [6] 1.8172 0.6877 1.6838 

1.0 Present 2.1994 0.6972 1.8225 

Ref. [6] 2.2064 0.6985 1.8328 

1.5 Present 2.7961 0.8943 1.7643 

Ref. [6] 2.8059 0.8962 1.7618 

 

The same behavior of buckling load applies to symmetrically laminated composite plates (0/ 90/ 0) as shown in tables 4.8 and 4.9.   
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Table 4.8 Buckling load for (0/ 90/ 0) plate with different boundary conditions and aspect ratios   ̅         
   

(material 2)                                             

Aspect Ratio a/b Comparisons of 

Results 

Boundary Conditions 

CC SS CS 

0.5 Present 1.7471 0.3238 0.6870 

Ref. [6] 0.7529 0.3325 0.7201 

1.0 Present 0.9523 0.3485 0.7925 

Ref. [6] 0.9511 0.3489 0.7932 

1.5 Present 1.1811 0.3530 0.8190 

Ref. [6] 1.1763 0.3514 0.8099 

 

Table 4.9 Buckling load for (0/ 90/ 0) plate with different boundary conditions and aspect ratios   ̅         
   

(material 2)                                           

 

Aspect Ratio a/b Comparisons of 

Results 

Boundary Conditions 

CC SS CS 

0.5 Present 1.6947 0.6772 1.5842 

Ref. [6] 1.7380 0.6871 1.6337 

1.0 Present 2.1669 0.6970 1.7009 

Ref. [6] 2.1744 0.6984 1.7113 

1.5 Present 2.5008 0.8224 1.7658 

Ref. [6] 2.5075 0.8235 1.7622 

 

4.2.2 Comparisons with the Results of ANSYS Package 

ANSYS is a general-purpose finite element modeling package for numerically solving a wide variety of mechanical problems. 

These problems include: static/ dynamic structural analysis (both linear and non – linear), heat transfer and fluid problems, as well 

as acoustic and electromagnetic problems. The problem of buckling in ANSYS is considered as static analysis.  

To validate the present results with ANSYS, the present results were converted from its non – dimensional form to the 

dimensional form by using the formula  ̅         
 . The E – glass/ Epoxy material is selected to obtain the numerical results 

for the comparisons. The mechanical properties of this material (material 3) is given in table 4.10 below.  

 

Table 4.10 Mechanical Properties of the E – glass/ Epoxy material (material 3) 

Property Value 

                     

                     

                       

                       

                      

           0.28 

 

Tables 4.11 to 4.14 shows comparisons between the results of the present study and that simulated by ANSYS technique. Table 

4.11 shows the effect of boundary conditions on dimensional buckling loads of symmetric angle – ply (30/ -30/ -30/ 30) of square 

thin laminates (      ) under biaxial compression. The properties of material 3 in table (4.10) were used. Small differences 

were shown between the results of the two techniques. The difference ranges between 0.6% to less than 2%. It is observed that as 

the mode serial number increases, the difference increases. The same behavior of buckling load of both techniques applies to 

symmetrically laminated composite plates of the order (45/ -45/ -45/ 45), (60/ -60/ -60/ 60) and (0/ 90/ 90/ 0) shown in tables 

(4.12), (4.13) and (4.14). 
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Table 4.11 Dimensional buckling load of symmetric angle–ply (30/ -30/ -30/ 30) square thin laminates with different 

boundary conditions (a/h=20) (material 3) 

 

Boundary 

Conditions 

Method Mode Serial Number 

1 2 3 

SS Present 109.5 N 193.4 N 322.8 N 

ANSYS 109.4 N 206.5 N 315.8 N  

CS Present 234.7 N 257.2 N 371.41 N 

ANSYS 233.21 N 255.6 N 378.7 N 

     

Table 4.12 Dimensional buckling load of symmetric angle–ply (45/-45/-45/45) square thin laminates with different 

boundary conditions (a/h=20) (material 3) 

 

Boundary 

Conditions 

Method Mode Serial Number 

1 2 3 

SS Present 115.24 N 219.5 N 305.4 N 

ANSYS 116.3 N 225.5 N 312.7 N  

CS Present 196.33 N 282.8 N 439.53 N 

ANSYS 194.7 N 287.6 N 444.51 N 

     

Table 4.13 Dimensional buckling load of symmetric angle–ply (60/-60/-60/60) square thin laminates with different 

boundary conditions (a/h=20) (material 3) 

 

Boundary 

Conditions 

Method Mode Serial Number 

1 2 3 

SS Present 109.39 N 193.213 N 322.19 N 

ANSYS 109.6 N 191.13 N 325.37 N  

CS Present 161.4 N 279.1 N 370.5 N 

ANSYS 160.6 N 280.4 N 377.7 N 

     

Table 4.14 Dimensional buckling load of symmetric cross–ply (0/ 90/ 90/ 0) square thin laminates with different boundary 

conditions (a/h=20) (material 3) 

 

Boundary 

Conditions 

Method Mode Serial Number 

1 2 3 

SS Present 93.4 N 170.4 N 329 N 

ANSYS 94.4 N 181.4 N 315 N  

CS Present 244.5 N 263.7 N 366.23 N 

ANSYS 244.4 N 265.8 N 369.6 N 

 

4.2.3 Comparisons with Experimental Results 

Many numerical and mathematical models exist which can be used to describe the behavior of a laminate under the action of 

different forces. When it comes to buckling, a mathematical model can be developed which is used to model the phenomenon of 

buckling. But numerical methods become complicated as the number of assumptions and variables increase. Also, once the model 

is formed, it takes a lot of time to solve the partial differential equations and then arrive to the final result. This process becomes 

very cumbersome and time consuming. In view of the above-mentioned limitations, experimental methods are followed. The 

experimental process needs less time and less computational work. Also, the results obtained in experiments are fairly close to that 

which is obtained theoretically.  

The composites have two components. The first is the matrix which acts as the skeleton of the composite and the second is the 

hardener which acts as the binder for the matrix. The reinforcement that was used for the present study was woven glass fibers. 

Glass fibers are materials which consist of numerous extremely fine fibers of glass. The hardener that utilized was epoxy which 

functions as a solid cement to keep fiber layers together. 
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To manufacture the composites the following steps were taken: 

1. The weight of the fiber was noted down, then approximately 1/3
rd

 mass of epoxy was prepared for further use. 

2. A clean plastic sheet was taken and the mold releasing spray was sprayed on it. After that, a generous coating of the hardener 

mixture was coated on the sheet. A woven fiber sheet was taken and placed on top of the coating. A second coating was done 

again, and a second layer of fiber was placed, and the process continued until the required thickness was obtained. The fiber was 

pressed with the help of rollers.  

3. Another plastic sheet was taken and the mold releasing spray was sprayed on it. The plastic sheet was placed on top of the fiber 

with hardener coating. 

4. The plate obtained was placed under weights for a period of 24 hours. 

5. After that the plastic sheets were removed and the plates separated. 

The buckling test rig for biaxial compression was developed in Tehran University of Science and Technology, College of 

Engineering, Iran. The frame was built using rectangular shaped mild steel channels. The channels were welded to one another 

and then the frame was prepared. A two-ton hydraulic jacks were assembled into the frame to provide the necessary hydraulic 

forces for biaxial compression of the plates. The setup can be easily assembled and disassembled. Thus, the setup offers flexibility 

over the traditional buckling setups.  

It is proposed to undertake some study cases and obtain experimental results of non – dimensional buckling of rectangular 

laminated plates subjected to in – plane biaxial Compressive loads. The plates are assumed to be either simply supported on all 

edges (SS), or a combined case of clamped and simply supported (CS), or clamped on all edges (CC). 

The effects of various parameters like material anisotropy, fiber orientation, aspect ratio, and edge conditions on the buckling load 

of laminated plates are to be investigated and compared with the present finite element results. The plates are made of graphite – 

epoxy material (material 3), and generally square with side           and length to thickness ratio (   )=20. The required 

experiments are explained below: 

 

Experiment (1): Effect of Material Anisotropy (     ) 

Cross – ply symmetric laminates with length to thickness ratio of (      ) are to be tested. The ratio of longitudinal to 

transverse modulus (     ) is to be increased from 10 to 50. The required number of plies is 8. The plate is simply – supported 

(SS) on all edges. The experimental values of buckling load were compared with the present theoretical results as shown in table 

4.15. 

Table 4.15 Effect of material anisotropy on buckling load        

      Method Buckling loads 

10 Present 0.5537 

Experimental 0.4985 

20 Present 0.4789 

Experimental 0.4310 

30 Present 0.4536 

Experimental 0.4082 

40 Present 0.4418 

Experimental 0.3976 

50 Present 0.4343 

Experimental 0.3908 

 

It is observed that the buckling load decreases with the increase in material anisotropy (     ). The present theoretical results 

were about 10% higher than the experimental values which is considered to be acceptable.  

 

Experiment (2):  Effect of Fiber Orientation     

Symmetric and anti – symmetric cross – ply laminated plates (0/ 90/ 90/ 0) and (0/ 90/ 0/ 90) with length to thickness ratio (   ) 

are to be tested. The required number of plies is 8. The plate is simply supported (SS) on four edges. As shown in table 4.16 

below, the theoretical buckling load was found to be 10% above the experimental value. 
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Table 4.16 Effect of fiber orientation on buckling load                  

Orientation Method Buckling loads 

Symmetric Present 0.4418 

Experimental 0.3976 

Anti – Symmetric  Present 0.4417 

Experimental 0.3975 

 

Experiment (3):  Effect of Aspect Ratio       

The effect of aspect ratio       on the buckling load is studied by testing cross – ply symmetric (0/ 90/ 90/ 0) laminates with 

length to thickness ratio (       . The aspect ratios 0.5, 1, 1.5 and 2.0 are to be tested. The required number of plies is 8. The 

plate is simply supported on four edges and the modulus ratio is taken to be (        ). As shown in table 4.17 below, the 

difference between the theoretical and experimental buckling was found to be about 10%. 

 

Table 4.17 Effect of aspect ratio on buckling load                  

Aspect Ratio   (   ) Method Buckling loads 

0.5 Present 0.4192 

Experimental 0.3773 

1.0 Present 0.4418 

Experimental 0.3976 

1.5 Present 0.7187 

Experimental 0.6468 

2.0 Present 1.2324 

Experimental 1.1092 

      

Experiment (4):  Effect of Boundary Conditions 

Cross – ply symmetric laminates (0/ 90/ 90/ 0) can be used to study the effect of the boundary conditions on the buckling load. 

The length to thickness ratio is taken to be (      ). The boundary conditions used are SS, CS and CC. The required number 

of plies is 8 and the modulus ratio (     ) is selected to be 40. As shown in table 4.18 below, the same difference between the 

theoretical and experimental results was observed. 

 

Table 4.18 Effect of boundary conditions on buckling load                  

Boundary Conditions Method Buckling loads 

SS Present 0.4418 

Experimental 0.3976 

CS Present 1.2882 

Experimental 1.1594 

CC Present 1.3812 

Experimental 1.2431 

 

 

6. CONCLUSIONS 
A Fortran program based on finite elements (FE) has been developed for buckling analysis of thin rectangular laminated plates 

using classical laminated plate theory (CLPT). The problem of buckling loads of generally layered composite plates has been 

studied. The problem is analyzed and solved using the energy approach, which is formulated by a finite element model. In this 

method, quadrilateral elements are applied utilizing a four noded model. Each element has three degrees of freedom at each node. 

The degrees of freedom are: lateral displacement ( ), and rotation ( ) and ( ) about the   and   axes respectively. To verify the 

accuracy of the present technique, buckling loads are evaluated and validated with other works available in the literature. Further 
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comparisons were carried out and compared with the results obtained by the ANSYS package and the experimental result. The 

good agreement with available data demonstrates the reliability of finite element method used. 
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APPENDICES 

 

Appendix (A) 

The transformed material properties are: 
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Appendix (B) 

       

i 

   

                                                   

   2 -3 3 0 -4 0 1 0 0 -1 1 1 

   1 -1 1 -1 -1 0 1 -1 0 0 1 0 

   -1 1 -1 0 1 1 0 0 -1 1 0 -1 

   2 -3 -3 0 4 0 1 0 0 1 -1 -1 

   1 -1 -1 -1 1 0 1 1 0 0 -1 0 

   1 -1 -1 0 1 -1 0 0 1 1 0 -1 

   2 3 3 0 4 0 -1 0 0 -1 -1 -1 

   -1 -1 -1 1 -1 0 1 1 0 0 1 0 

   -1 -1 -1 0 -1 1 0 0 1 1 0 1 

    2 3 -3 0 -4 0 -1 0 0 1 1 1 

    -1 -1 1 1 1 0 1 -1 0 0 -1 0 

    1 1 -1 0 -1 -1 0 0 -1 1 0 1 

 

 

Appendix (C) 

 

The integrals in equations (13) and (14) are given in nondimensional form as follows: 

∬
    

   
 
    

   
        

  

  
 ∬

    

   
 
    

   
       

 
   

  
(                                                 ) 

∬
    

   
 
    

   
        

  

  
 ∬

    

   
 
    

   
       

 
     

 
(                                                   ) 

∬
    

   
 
    

   
        

 

  
 ∬

    

   
 
    

   
       

     (                                                ) 

∬
    

   
 
    

   
        

 

  
 ∬

    

   
 
    

   
       

     (                                                ) 

∬
    

    
 
    

    
        

 

  
 ∬

    

    
 
    

    
       

     [                                       

                                                        

                ] 

∬
   

  
 
   

  
        

 

 
 ∬

   

  
 
   

  
       

 
 

  
[                                               

                                                                     

                                                           

                                                                     ] 

∬
   

  
 
   

  
        

 

 
 ∬

   

  
 
   

  
       

 
  

 
[                                            

                                                                            

                                                            

                                                                       ] 



Osama Mohammed Elmardi Suleiman et al., Validation of Finite Element Method in the Analysis of Biaxial…. 

Journal Impact Factor: 2.145 Page 42 
Index Copernicus Value (2016): I C V = 75.48 

 

 

 

∬
   

  
 
   

  
        ∬

   

  
 
   

  
       

                                                                       

                                                                          

                                                   

∬
   

  
 
   

  
        ∬

   

  
 
   

  
       

                                                                      

                                                                       

                                                      

∬
    

   
 
    

    
        

 

  
∬

    

   
 
    

    
       

    [     (                )                          ] 

∬
    

    
 
    

   
        

 

  
∬

    

    
 
    

   
       

    [     (                )                         ] 

∬
    

   
 
    

    
        

 

  
∬

    

   
 
    

    
       

      [     (                )                          ] 

∬
    

    
 
    

   
        

 

  
∬

    

    
 
    

   
       

      [     (                )                          ] 

 

In the above expressions    
 

 
   

 

 
  where   and   are the dimensions of the plate in the x – and y – directions respectively. 

  and   are the number of elements in the x – and y – directions respectively. Note that    
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   where   and   

are the normalized coordinates, and          


