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Abstract 

 

This study addresses the problem of free vibration of laminated composite beams. Six end boundary conditions for 

beams are considered: clamped-clamped; hinged-hinged; free-free; clamped-hinged; clamped-free; and hinged-free 

beams. The problem is analyzed and solved using the energy approach which is formulated by a finite element model. 

This method of analysis is verified by comparing the numerical results obtained for AS/3501-6 graphite/epoxy 

composites with those found in literature. The effects of the aspect ratio, fiber orientation, and the beam end-

movements on the non-dimensional natural frequencies of beams were included.  

The results of the non- dimensional frequencies for some special cases of lamination were included. The mode shapes 

of free vibration for all boundary conditions were plotted. It was found that symmetrically   ///   and anti-

symmetrically    ///  laminated beams of similar dimensions and end conditions have equal natural 

frequencies. The longitudinal modes of free vibration are sensitive to axial motion of the ends, whereas the transverse 

modes depend solely on the condition of the lateral supports. It was also found that natural frequencies decrease as 

the aspect ratio and/or the angle of orientation increase. The free-free and hinged-free beams are found to have the 

highest frequencies of all beams although they look less constrained. 

Keywords:Laminated beam, finite element, shears deformation, natural frequencies, and free vibration. 

 

1. INTRODUCTION 

Composite have been used in engineering structures over the last six decades or so. They could be seen in a variety of 

applications as in craft wings and fuselage, satellites, helicopter blades, wind turbines, boats and vessels, tubes and 
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tanks, robot arms, brake pedals and springs etc. Their advantages over traditional materials are widely recognized and 

these are high strength to weight ratio, and their properties which can be tailored according to need. Other advantages 

include high stiffness, high fatigue and corrosion resistance, good friction characteristics, and ease of fabrication. They 

are made of fiber such as glass, carbon, boron, etc. embedded in matrix or suitable resin that acts as binding material. 

A laminated composite or simply a laminate is a structural element ( beam, plate, shell ) made up of unidirectional 

plies stacked together with appropriate orientation that achieve design requirements ( see Figure 1 ). 

 

 

 Figure 1 Three plies with their fiber arranged in three different orientations 

The ever growing use of composites in industry has led to tremendous advancements in the understanding of their 

micro and macro behavior. Many mathematical models for laminates subjected to static and dynamic loading have 

been developed. The knowledge of the few lower natural frequencies of a structure is of utmost importance in order to 

keep it in service from being subjected to unnecessary large amplitude of motion which can cause immediate collapse 

or ultimate failure by fatigue. 

Broadly speaking the mathematical models for laminates can be divided into three groups depending on whether shear 

deformation and rotary inertia (in case of vibration) are accounted for or not. Shear deformation is more pronounced in 

composites than in metals due to low ratio of inter laminar shear modulus to in-plane elastic modulus. The three 

mathematical models are: 

 

(i) Classical Laminated Theory (CLT): This theory neglects shear deformation and assumes that sections which 

are straight and normal to the mid-plane of the laminate remains so after deformation as shown in Figure 2(a). 

Because shear deformation is neglected, CLT is applicable only to thin laminates. For more information the 

reader could refer to Abarcar and Cubif [1]. 

(ii)  First-order Shear Deformation Theory (FSDT): This theory accounts for shear deformation but needs 

correction. In FSDT, a linear through thickness displacement field is assumed which leads to a constant 

transverse shear strain or stress that violates the state of zero shear stress on the free surface of the laminate. To 

reduce error induced by assuming constant rather than parabolic shear stress a shear correction factor is used as 

suggested by Cowper [2]and Madabhusi & Davalos[3]. The theory is applied by Chen and Yang [4]and 

Chandrashekhara & Krishnamurthy [5], Mahmoud Yassin and Osama Mohammed Elmardi Suleiman [6] and 

[7].The pattern of deformation is given in Figure 2(b). 

(iii) Higher-order Shear Deformation Theory (HSDT): In fact, this is a family of theories rather than one single 

theory. In HSDT, the stress distribution through thickness accounts for section warping after deformation as 

seenin Figure 2(c). When displacement through thickness is denoted by u, then according to HSDT:  
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 (   )   ( )     ( )   
   ( )    

The number of terms included in the displacement differentiates between different higher-order shear deformations 

theories. For example see Livingston [8]and Helinger& Reddy[9]. As expected HSDT become more and more 

complicated, as the number of unknowns increases. Furthermore, HSDT introduces abstract quantities in addition to 

those which can be physicallyinterpreted. 

Comparison between CLT, FSDT and HSDT can be found in Yildirim&Kiral[10]and Song &Waas[9]. It is claimed 

that the error in CLT is large, and that HSDT is not superior accuracy than FSDT. 

 

 

Figure 2 The Three Mathematical Models of Laminated Beams: (a) Deformation of a beam portion according 

to CLT, (b) Deformation of a beam portion according to FSDT, (c) Deformation of a beam portion according 

to HSDT 

A theoretical vibration analysis of composite beams with solid cross sections was presented by Teoh and Huang [12]. 

Abramovich[13] studied laminated composite beams considering  several boundary conditions. Abramovich and 

Livshits [14] presented numerical results for the free vibration of a laminated cross-ply composite beams.. FSDT was 

used by Teboub and Hajela [15] to analyze the free vibration of general composite beams, while Ghugal and Shimpi 

[16] presented a review paper about refined theories for the structural analysis of shear deformable isotropic of 

laminated beams. Depending on rotary inertia and shear deformation in addition to the coupling between the bending 

and tensional deformations , the dynamic stiffness matrices have been developed by Banerjee and Williams [17]. 

Marur and Kant [18] presented the higher order model for the transient dynamic analysis of composite and sandwich 

beams. Lee [19] presented the natural frequencies for a laminated beam with delimitations (i.e. a beam with defects in 
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the bonding material between layers).Banerjee [20] added the shape modes of a cantilever composite beam [45/0] to 

his numerical results. 

Some other authors presented different finite element techniques for the problem in addition to the previous ones. 

These are Subramanian [21], and Yildirim[22]. The latter two authors employed a first order-shear deformation 

theory, while the former one used a trigonometric shear deformation theory. Matsunaga [23]investigated the natural 

frequencies, inter-laminar stresses and buckling stresses of composite beams by applying the one-dimensional global 

higher-order theories that considered the effect of transverse shear deformation. Karama et al. [24]presented a multi-

layer laminated composite beam, in this study the exponential function used to predict the mechanical behavior of 

composite beams. Kapuria et al. [25]assessed a zigzag 1D laminated beam theory and compared the analytical 

solutions of simply supported beam to the exact 2D elasticity solutions. Murthy et al. [26]supposed a refined2-node 

beam element based on the TOSDBT for the free vibration analysis of asymmetrically stacked composite beams. 

Aydogdu[27] and [28] analyzed the free vibration for cross-ply and angle-ply laminated beams with different 

boundary conditions. Subramanian [29] developed the free vibration analysis of laminated composite beams applying 

two higher-order displacement-based shear deformation theories and finite elements based on the theories. Wu and 

Chen [30]assessed several displacement-based theories by analyzing the free vibration and the buckling behaviors of 

laminated beams with arbitrary layouts. Vidal and Polit[31] and [32] developed a 3-nodedbeam element on the basis 

of a sinus distribution with layer refinement for the dynamic analysis of laminated beams. Vidal and 

Polit[33]performed the vibration analysis of composite laminated beams by using the Murakami’s zigzag function in 

the sine model. Vo and Thai [34] and [35] presented the free vibration of axially loaded composite beams with 

arbitrary lay-ups applying the parabolic shear deformation theory. Based on the sinusoidal shear deformation theory, 

Vo et al. [36]studied the vibration and buckling of composite beams with arbitrary lay-ups. Carrera et al. 

[37]presented hierarchical beam elements used a unified formulation, where the displacement components were 

expanded in terms of the section coordinates. On the basis of a unified formulation, Biscani et al. [38]formulated 

variable kinematics beam elements, which were combined through the Arlequin method. Giunta et al. [39]addressed a 

free vibration analysis of functionally graded beams via hierarchical models, which were derived via a unified 

formulation. Giunta et al. [40]presented a unified formulation for the free vibration and elastic stability analysis of 

three-dimensional sandwich beams, in which shear deformation, in- and out-of-plane warping and rotary inertia were 

accounted for. Giunta et al. [41]investigated the free vibration of simply supported, cross-ply beams via several 

higher-order displacement-based theories accounting for non-classical effects. Jun Li et al. [42]compared the various 

shear deformation theories for free vibration of laminated composite beams with general lay-ups. 

 

2. MODELLING ANALYSIS 

Consider a beam of length L, breadth b and depth h made up of n plies with varying thickness, orientation and 

properties, but perfectly bonded together as shown in Figure 3. 
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Figure 3 Composite Laminated Beam 

Treat the beam as a plane stress problem, and employ first-order shear deformation theory. The longitudinal 

displacement  U  and the lateral displacement  W  can be written as follows: 

     

    







t,xwt,z,xW

                 t,xzt,xut,z,xU 
(1) 

Whereu and w are the mid-plane longitudinal and lateral displacements, is the rotation of the deformed section about 

the y-axis, z is the perpendicular distance from mid-plane to the layer plane, and t is time. 

The Strain-Displacement Relations: 
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Where: 
1 is the longitudinal strain, and 5 is the through-thickness shear strain. 

By employing 3-noded lineal element as shown in Figure 4: 
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Figure 4 Composite Laminated Beam with 3-Noded Lineal Element 

The displacements can be expressed in terms of shape function    and nodal displacements: 

                                                                              (3) 

The shape functions are:     
 

 
(   ) ,         

 ,     
 

 
(   ) 

From equations (2) & (3), the strains can be written as:       (4) 
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Where    [
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And    is the vector of nodal displacements      [      ]
         

The stress – strain relation:                  (5) 

Where  [    ] ,  [    ]  and the matrix containing the transformed elastic constants 
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Substitute equation (4) in equation (5):                 (6) 

The strain energy:   
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Where    ∫         
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Where   is density and the dot denotes differentiation with time. 
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Where     ∫          
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In the above derivation it is assumed the motion is harmonic and    is circular frequency. 

In the absence of damping and external nodal load, the total energy is:            

Or     
 

 
  
 
      

 

 
  
 
        

The principle of minimum energy require that 
  

   
   

The condition yields the equation of motion 

              

Or globally:     [     ]                                                (10) 
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Where  
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And n is number of elements. To facilitate the solution of equation (10), we introduce the following quantities: 
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Where     is the shear correction factor. 

The transformed elastic constants are:        
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And   is the angle of orientation of the ply with respect to the beam axis. 
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Non –dimensional quantities used in the analysis are: 
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The element stiffness matrix:    ∫         
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The stiffness matrix is    symmetrical matrix. The non-zero non-dimensional element of matrix are:  
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The mass matrix is     symmetrical matrix: 

   ∫              ,         ∫ [
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The non-zero non-dimensional elements of mass matrix are: 
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3. EFFECT OF THE TYPES OF SUPPORT 

 

The numerical results of the non-dimensional natural frequencies of laminated beams, given in this paper, were carried 

out for six end conditions. The transverse and rotational mode shapes for symmetric   angle-ply laminated beams with 

immovable ends are also displayed in Figure 17 to Fig 20. Moreover, longitudinal mode shapes of some selected non-

symmetric   laminated beams are given in Figure 21 and Figure 22.    

AS/3501-6 graphite-epoxy material was used for all numerical results because of its wide applications in modern 

industries. The mechanical properties of this material are: E1 =145 GN/m2, E2=9.6 GN/m2, G12=4.1 GN/m2, 

G13=4.1 GN/m2, G23=3.4 GN/m2, Poisson’s ratio   =0.3, Density =1520 kg/m3. 

3.1 Effect of the Aspect Ratio: 

Figure 5 to Figure 10 subjected to symmetric  45/45/45/45   angle-ply laminated beams. These figures show the 

variation of the non-dimensional frequencies with the aspect ratio range from 5 to 40 for the first three modes of 

vibration for all beams with immovable ends. It is obvious from the figure that the frequency increases rapidly for the 
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range of aspect ratio from 5 to 20, and slows down beyond this range. When the aspect ratio is greater than 20, the 

beam is slender and consequently shear deformation and rotary inertia have small noticeable effects on the natural 

frequencies. 

3.2 Effect of Axial Movements of the Ends: 

The values of the non-dimensional frequencies of the transverse modes are not affected by the longitudinal 

movements of the ends since these modes are generated by lateral movements only. However, the values of the natural 

frequencies of longitudinal modes are found to be the same for all beams with movable ends since they are generated 

by longitudinal movements only. Table 1, shows this observation for symmetric  60/60/60/60   laminated 

beams with aspect ratio of 10. 

Table 1Non-dimensional natural frequencies  2

1

4 hEL   of a symmetric [60/-60/-60/60] laminated 

beam, (L/h = 10). 

Mode 

No. 

beam with immovable ends beam with movable ends 

CF       HH          CC          HC        HF        

FF 

CF           HH         CC            HC         HF             

FF 

1 0.3596    0.9943    2.0601    1.4899    

1.5370    2.2088 

0.3596    0.9943    2.0601    1.4899    

1.5370    2.2088 

2 2.0893    3.6853    5.0523    4.3780    

4.5879    5.5663 

2.0893    3.6853    5.0523    4.3780    

4.5879    5.5663 

3 5.3017  7.4807    8.8047    8.1620    5.6426
*
 

9.8029 

5.3017    7.4807    8.8047    8.1620    

8.6142    9.8029 

4 5.6426
*
 11.2852

*
 11.2852

*
  11.2852

*
8.6142   

11.2852
* 

9.2760   11.2852
*
11.2852

*
11.2852

*
  

11.2852
*
11.2852

* 

5 9.2760   11.8779   12.9830   12.4481   

13.1506   14.4600 

11.2852
*
 11.8779   12.9830   12.4481   

13.1506   14.4600 

6 13.6886   16.5673   17.4219   17.0062   

16.9279
*
 19.2978 

13.6886   16.5673   17.4219   17.0062   

17.9208   19.2978 

7 16.9279
*
21.3826   22.0152   21.7057   

17.9208  22.5705
* 

18.3269   21.3826   22.0152   21.7057   

22.5705
*
  22.5705

* 

8 18.3269   22.5705
*
  22.5705

*
 22.5705

*
  

22.7784   24.1851 

22.5705
*
 22.5705

*
22.5705

*
 22.5705

*
  

22.7784   24.1851 

Notes: The frequencies marked '*' are the modes with predominance of longitudinal vibration. 
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3.3 Effect of Fiber Orientations: 

Figure 11 to Figure 16 show that the values of non-dimensional natural frequencies of various beams generally 

decrease as the angle of orientation of fibers with respect to the longitudinal axis of the beam is increased. 
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3.4 Effect of the Type of Supports: 

The type of supports affects the natural frequencies as could be noted from the table (1). Generally, it is found 

that more constrained beams have high values of natural frequencies. However, the free-free and hinged-free beams are 

found to have the highest frequencies amongst all beams although they look less constrained. This behavior is due the 

fact that the first mode of the two beams is equal zero and replaced by the second mode as could be seen in Figure 

21and Figure22.The fundamental mode shapes of both beams are straight lines and this due to the rigid motion in this 

mode where there is no vibrating motion. 

 

 

3.5 Verification: 

In order to check the validity of the present method, comparisons with the results of three references [13], [14] and 

[18] were performed. These comparisons were selected to cover four cases, orthotropic beams, symmetrically 

laminated beams, non-symmetrically laminated beams, and for different shear theories.  

3.5.1 Orthotropic Beams: 

Table 2 shows comparison with Abramovich[13]. This comparison shows the first five modes of natural frequencies in 

(kHz) of simply supported orthotropic  0  graphite-epoxy beams (L = 15 in., b = h = 1.0 in.).  

Table 2Natural frequencies of a simply supported orthotropic (0
 o
) graphite-epoxy beam (L = 15 in,  h =1 in,  w 

=1 in). 

Mode 

No. 

Natural frequencies (kHz) 

Present work Ref. [11] 

Shear factor, 

Kf=2/3 

Shear factor, 

Kf=5/6 

Shear factor, 

Ks=2/3 

Shear factor, 

Ks=5/6 
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1 0.7421 0.7544 0.743 0.755 

2 2.4300 2.5430 2.431 2.543 

3 4.3984 4.7059 4.393 4.697 

4 6.4064 6.9514 6.383 6.919 

5 8.4082 9.2044 8.349 9.127 

 

When (Kf= 2/3), the maximum percentage difference was found to be less than 0.13% for the fundamental frequencies, 

and 0.70% for the fifth mode. For the second value of the shear correction factor, (Kf= 5/6), a percentage difference of 

less than 0.08% was recorded for the fundamental mode, whereas, a difference of less than 0.80% have been recorded 

for the fifth mode. Those differences arise because the term representing the joint action of the shear deformation and 

rotary inertia in the equation of motion has been omitted in Ref. [13]because it is thought to be negligible.    

3.5.2 Symmetrically Laminated Beams: 

Table 3presents a comparison with Abramovich and Livshits [14] of the non-dimensional frequencies of symmetric 

[0/90/90/0] cross-ply graphite-epoxy beams for aspect ratio of (L/h = 10). The beams considered are hinged-hinged, 

fixed-free, and fixed-fixed with immovable ends. Here, the authors introduced the secondary effect of coupling 

between bending and torsion in their analysis, which is small, compared with the other secondary effects.  

Table 3Non-dimensional frequencies [
2

1

2 hEL.   ] of symmetric [0/ 90/ 90/ 0] cross-ply beams (L/h = 

10). 

 

Mode 

No. 

Hinged-hinged 

(Immovable) 

Fixed-free 

(Immovable) 

Fixed-fixed 

(Immovable) 

Present Ref. [12] Present Ref. [12] Present Ref. [12] 

1 2.3157 2.3194 0.8866 0.8819 3.6855 3.7576 

2 6.9813 7.0029 4.1062 4.0259 7.7244 7.8718 

3 12.004 12.037 8.9536 9.1085 12.381 12.573 

4 17.010 17.015 11.504
* 

12.193
* 

17.192 17.373 

5 22.015 21.907 13.924 14.080 22.119 22.200 

6 23.007
* 

23.007
* 

18.980 18.980 23.007
* 

23.007
* 

7 27.094 27.094 24.037 24.037 27.125 27.125 

                                         (*)Modes with predominance of longitudinal vibration. 

For the hinged-hinged beam, a percentage difference of less than 0.16% recorded for the fundamental frequency, and 

less than 0.54% for both fixed-free and fixed-fixed beams. This difference was observed to increase as the mode order 

increases (less than 1.4%) for the seventh mode for all beams considered. In addition, Table 3 shows the modes with 

predominance of longitudinal vibration.  

3.5.3 Non-symmetrically laminated Beams: 

Three comparisons with Abramovich and Livshits [14]were given in the Table 4. These tables compare the non-

dimensional frequencies of non-symmetric laminated hinged-hinged and clamped-clamped beams respectively for both 

conditions of movable and immovable ends. 
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The percentage difference of the frequencies found less than 0.6% for fundamental modes for both movable and 

immovable ends of hinged-hinged beams, and less than 1.8% for higher modes. For the mode with predominance of 

longitudinal vibration, the observed difference was less than 0.7% for both conditions as could be seen in Table 4. 
 

Table 4Non-dimensional frequencies [ DIL.p 1

2 ] of non-symmetrical [90/ 0] laminated beam (L/h = 10) 

for a hinged-hinged condition. 

Mode 

No. 

Immovable ends Movable ends 

Present Ref. [12] Present Ref. [12] 

1 8.1021 8.1439 6.1110 6.1459 

2 21.540 21.661 21.780 21.902 

3 43.619 43.778 42.527 42.698 

4 63.727 63.787 65.562 65.658 

5 88.820 89.150 89.743 86.126 

6 89.924
* 

89.313
* 

102.22
* 

102.75
* 

7 116.27 114.30 114.79 112.80 

                                        (*)Modes with predominance of longitudinal vibration. 

3.5.4 Different Shear Theories: 

 Comparison was carried out with the results of Marur and Kant [16]. Table 5 compares the first six modes of the non-

dimensional frequencies [
2

1

2 hEL.   ] of symmetric [ 0/90/90/0 ] cross-ply, graphite-epoxy, clamped-

free beam with aspect ratio of (L/h = 15). The authors applied the higher-order shear deformation theory (HOSDT) in 

the analysis, whereas, the present method uses first-order shear deformation theory. The comparison shows a 

percentage difference of less than 0.03% for the fundamental mode of vibration. This difference increases with the 

mode order to less than 3.6% for the sixth mode. 

Table 5Non-dimensional natural frequencies [
2

1

2 hEL.   ] of   symmetric [ 0/90/90/0  ] cross-ply 

clamped- free beam. (L/h = 15). 

Mode No. Present Ref. [16] 

1 0.9238 0.924 

2 4.8886 4.985 

3 11.4556 11.832 

4 17.2550
* 

- 

5 18.8481 19.573 

6 26.7793 27.720 

                                  (*)Modes with predominance of longitudinal vibration. 

 

4. CONCLUSIONS 

In this paper, free vibration of generally layered composite beams has been studied. Both secondary effects of 

transverse shear deformation and rotary inertia were included in the analysis. A first-order shear deformation theory 

was applied in the analysis. A finite element model has been formulated to predict the non-dimensional natural 

frequencies and to study the influence of both aspect ratio and angle of orientation of fibers on the natural frequencies. 
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Six end conditions were studied which are clamped-free, hinged-hinged, clamped-clamped, hinged-clamped, hinged-

free, and free-free beams with immovable and movable ends. 

The main conclusions are:   

(1) Similar beams, which are either, symmetrically laminated  [          ] , or anti-symmetrically laminated 

[          ]  have equal natural frequencies, also beams of movable and immovable ends have equal 

values of the transverse natural frequencies Repetition of a set of layers in symmetric or anti-symmetric 

similar beams does not alter the natural frequencies of the beam. If the lamination order of a laminated beam 

is reversed, the natural frequencies will remain the same.  

(2) The ends lateral supports of a beam have a noticeable effect on the longitudinal frequencies of vibration. i.e. 

All beams with movable ends have equal longitudinal frequencies of vibration, while those of beams with 

immovable ends are different. Namely, clamped-free and hinged-free beams with immovable ends have equal 

longitudinal frequencies, and the other beams have also equal longitudinal frequencies. 

(3) The natural frequencies are independent on the breadth of the beam as it cancels out in both stiffness and 

inertia matrices. It should be noted that treating the beam as a plane stress problem demands that the width 

must be small compared with the depth. 

(4) The natural frequencies of a laminated beam generally increase with the aspect ratio and they decrease as the 

fiber orientation angle increases. 

(5) It was found that the more the beam is constrained, the higher are the values of natural frequencies. But, the 

free-free and hinged-free beams were found to have the highest frequencies amongst all beams in spite they 

appear to have the least constrains. 
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